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Abstract
Diagnosing rare diseases remains a persistent
challenge, often hindered by cognitive anchor-
ing: once clinicians settle on a common diagno-
sis, alternative-especially rare-explanations are
often dismissed. To address this, we propose a
human-centered counterfactual reasoning frame-
work using a Denoising Autoencoder (DAE) to
simulate what-if diagnostic scenarios that dis-
rupt clinicians’ initial assumptions. Our model
uniquely jointly learns (1) the true distribution
of diseases and symptoms, and (2) human diag-
nostic behavior, revealing critical gaps between
medically possible and clinically considered diag-
noses. By strategically perturbing latent patient
representations, it generates contrastive counter-
factuals that highlight rare-but-plausible condi-
tions—conditions typically overlooked due to cog-
nitive bias. Unlike traditional decision-support
tools, our system proactively suggests rare dis-
eases not because they are statistically proba-
ble, but because they are cognitively neglected.
Evaluated on three rare disease datasets, our ap-
proach outperforms standard machine learning
classifiers in detecting rare conditions while main-
taining strong performance on common diagnoses.
Beyond boosting accuracy, it fosters hypothesis-
driven reasoning, enhancing both diagnostic pre-
cision and clinician learning.

1. Introduction
Despite advances in machine learning for clinical diagnosis,
rare diseases remain notoriously difficult to identify due
to their low prevalence, heterogeneous manifestations, and
frequent overlap with more common conditions (Schieppati
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et al., 2008; Griggs et al., 2009). Consider a patient present-
ing with persistent fatigue, joint pain, and skin rashes, clini-
cians often anchor on familiar diagnoses like lupus rather
than considering rare alternatives such as Ehlers-Danlos
syndrome. This diagnostic misdirection is not merely a
result of statistical rarity or symptom ambiguity, but also
due to a well-documented cognitive bias known as anchor-
ing—clinicians’ tendency to settle prematurely on an initial
diagnosis and insufficiently revise it in light of new or contra-
dictory evidence (Tversky and Kahneman, 1974; Saposnik
et al., 2016; Croskerry, 2002; Li et al., 2023).

This cognitive anchoring introduces a significant bottleneck
in rare disease detection, often leading to prolonged di-
agnostic delays, repeated misdiagnoses, and unnecessary
interventions. Studies in clinical cognition have shown that
medical decision-making is often driven by fast, heuristic-
based thinking that prioritizes pattern recognition over ana-
lytical reassessment (Norman et al., 2024). This is especially
problematic in the context of rare diseases, where diagnostic
presentations often overlap with more common syndromes,
creating fertile ground for premature closure. While previ-
ous machine learning efforts have primarily focused on en-
hancing accuracy through larger datasets or more powerful
models (Juba and Le, 2019; Sun et al., 2017; Moreno-Barea
et al., 2020), few have addressed the cognitive constraints
that shape clinicians’ interactions with model predictions,
particularly under uncertainty. Moreover, existing studies
indicate that clinicians may be unable to effectively inte-
grate the AI’s reasoning due to its opaque recommendations
(Jussupow et al., 2021; Lebovitz et al., 2022), potentially
exacerbating misdiagnoses (Jussupow et al., 2022).

Our work tackles the dual challenge of data sparsity and
cognitive rigidity by introducing a diagnostic framework
that not only detects rare diseases but also mitigates the
cognitive biases—particularly anchoring—that hinder ac-
curate diagnosis. Instead of merely maximizing predictive
likelihood, our system acts as a cognitive aid, encourag-
ing clinicians to consider alternative diagnostic hypotheses.
Drawing from cognitive science theories of bias mitigation
(Croskerry, 2002) and leveraging recent advances in genera-
tive modeling, we design a Denoising Autoencoder (DAE)
(Vincent et al., 2008) generative model to generate plausible
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diagnostic counterfactuals that promote reflective reasoning.

Our DAE-based model is trained on annotated clinical data
to learn both disease distributions and typical diagnostic
behaviors. By perturbing the latent representation of a
patient’s profile, the model generates alternative diagnos-
tic paths—plausible yet cognitively overlooked possibili-
ties—that suggest follow-up tests, outside the clinician’s
immediate expectations. For example, it might suggest:

The most likely rare disease overlapping with the
current symptoms is Ehlers-Danlos syndrome.
Consider additional tests such as genetic screen-
ing for connective tissue disorders. If the results
are positive, the probability of this diagnosis in-
creases significantly.

Unlike traditional AI systems that deliver static predictions,
our framework promotes active cognitive engagement, help-
ing cliniciansbreak habitual diagnostic patterns and rethink
their assumptions. By surfacing rare yet plausible con-
ditions, it expands the diagnostic space, fosters reflective
thinking, and supports more informed clinical decisions. As
(Buçinca et al., 2021) have demonstrated, a mechanism that
guides users to actively engage in critical thinking about
initial assumptions enhances decision-making quality more
effectively than merely providing predictions.

In our experiments, we evaluate the system’s effectiveness
using three rare disease datasets. our method outperformed
conventional machine learning (ML) classifiers in rare dis-
ease detection while preserving optimal performance on
common disease diagnosis. Counterfactual validation was
performed by comparing the model’s hypotheses with di-
agnoses made by human clinicians and assessments from
Large Language Models (LLMs). The results confirmed
that our model could identify plausible but cognitively ne-
glected conditions, thereby enhancing diagnostic precision
and fostering clinician learning.

2. Inherent Challenges in Modeling Rare
Disease Diagnosis

In clinical diagnosis, the fundamental task is to infer the
underlying disease label Y ∈ Y from observed clinical ev-
idence X ∈ X , such as patient-reported symptoms. Both
human clinicians and ML models aim to learn or approxi-
mate the mapping:

h : X 7→ Ŷ , where Ŷ ≈ argmax
Y

P (Y | X).

By Bayes’ theorem, this conditional probability can be ex-
pressed as:

P (Y | X) =
P (X | Y ) · P (Y )

P (X)
,

where P (Y ) encodes prior knowledge of disease prevalence
and P (X | Y ) reflects the data-generating process (e.g.,
symptom presentation) conditioned on a specific disease.
However, in the context of rare disease diagnosis, this in-
ferential process becomes fundamentally challenging, no
matter for logistic regression, support vector machines, or
even deep classifiers, are all subject to the same three critical
limitations:

1. Skewed priors. Rare diseases typically have extremely
small P (Y ). This prior imbalance biases both clinicians
and ML models to favor common diagnoses, even when
rare diseases are more plausible explanations.

2. Overlapping symptom profiles. Many hallmark symp-
toms of rare diseases (e.g., fatigue, muscle pain, or in-
flammation) are nonspecific and widely shared across
common conditions. As a result, the likelihoods P (X |
Yrare) and P (X | Ycommon) often overlap significantly,
making discrimination between them highly uncertain.

3. Incomplete evidence. Key diagnostic features—such as
genetic markers or specialized imaging—are frequently
missing from the record, due to cost, lack of access, or
simply being overlooked. This leads to an underspeci-
fied X , causing both humans and machines to rely on
incomplete or biased feature sets. Such gaps often rein-
force cognitive heuristics like anchoring, where initial
impressions dominate the diagnostic path.

These challenges create a shared algorithmic–cognitive bot-
tleneck across both humans and machines. Standard discrim-
inative models h : X 7→ Y , trained to directly map observed
features to labels, inherit the same structural vulnerabili-
ties as their human counterparts. Without mechanisms to
uncover latent structures, handle missing information, or
actively de-bias the inference process, both fall short in the
critical task of detecting rare and underrepresented diseases.

2.1. Motivation for a Latent-State Generative Model

These insights motivate the need for a new kind of AI-aided
diagnostic framework—one that can:

• Explicitly identify cases where the observed X lies in an
ambiguous or overlapping region of the feature space;

• Hypothesize possible latent rare disease explanations
even when current evidence is incomplete;

• Proactively recommend additional complementary tests
(e.g., genetic panels, imaging) that can disambiguate com-
peting diagnoses and help clinicians break out of anchored
diagnostic pathways.
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A discriminative model alone cannot meet these goals, as
it is designed only to map observed input X to a label pre-
diction Ŷ and lacks any mechanism for reasoning about
uncertainty, missing data, or counterfactual information ac-
quisition. To address these limitations, we propose a latent-
state generative model based on the Denoising Autoencoder
(DAE) framework. This model explicitly learns a latent
representation Z of the patient’s symptom input X and gen-
erates possible reconstructions and diagnostic outcomes in
a controlled, interpretable manner. The goal is to assist
both machine and human diagnostic reasoning by generat-
ing alternative hypotheses—especially those corresponding
to rare conditions that might be missed due to low priors or
heuristic bias.

The proposed latent-state generative model takes the follow-
ing form (as illustrated in Fig.1):

• Input: X (observed patient symptoms)

• Latent state: Z (learned stochastic representation of
patient condition)

• Outputs:

1. X ′: A reconstructed or generated version of pa-
tient symptoms (counterfactual or prototypical
symptom set)

2. Ŷ AI: Prediction of the true diagnosis based on
latent state Z

3. Ŷ human: Model’s simulation of a human doctor’s
likely diagnostic decision

3. Our Proposed Generative Model
Formulation

We assume access to a dataset of triplets{(
Xi, Y

human
i , Y true

i

)}N
i=1

, where Xi ∈ Rd represents
patient features, Y true

i ∈ {1, . . . , C} is the ground-truth
diagnosis, and Y human

i is the clinician’s recorded label. Our
goal is to learn a generative latent-state model that captures
three components: the patient’s latent diagnostic state Z,
the clinician’s decision Y human, and the Al’s prediction Y AI.
By explicitly modeling the cognitive gap between human
and AI reasoning, the model enables discrepancy-aware
inference and supports bias-aware diagnostic support.

pθ
(
X,Y AI, Y human , Z

)
=

p(Z)pθ(X | Z)pθ
(
Y AI | Z

)
pθ

(
Y human | Z̃

) (1)

Here, Z ∈ Rk is a latent representation inferred from X ,
and Z̃ denotes a modulated version of Z. Although humans
and AI observe the same input X , their predictions can
diverge due to: (1) cognitive load limiting human attention

to parts of X , and (2) fundamentally different mapping
functions. We explicitly reflect these factors in the design
of our DAE-based generative model.

Latent Representation Learning with Masked Denois-
ing Autoencoder Given that real-world clinical inputs
X ∈ Rd often contain missing or underreported features,
particularly for rare diseases, we employ a masked Denois-
ing Autoencoder (mDAE) (Dupuy et al., 2024) strategy, to
learn a robust and informative latent representation Z.

For each observed input Xi, we sample a binary mask
ri ∈ {0, 1}d to randomly drop a subset of observed en-
tries, simulating incomplete or noisy records. The resulting
corrupted input is X̃i = ri⊙Xi, which is then encoded to a
latent distribution qϕ

(
Zi | X̃i

)
. The decoder reconstructs

the full input, and the reconstruction loss is computed only
on the originally observed (i.e., uncorrupted) entries:

Lrecon = Eqϕ(Zi|X̃i)

[∥∥∥(1− ri)⊙
(
Xi − X̂i

)∥∥∥2
2

]
(2)

This approach helps the model infer missing or overlooked
features—like masked token prediction in language mod-
els—while learning robust, task-relevant representations.
These generalizable embeddings enable effective down-
stream applications such as diagnosis prediction and model-
ing human-AI divergence.

Dual Classification Losses The latent code Zi is lever-
aged to predict two diagnostic outcomes: the ground-truth
diagnosis Y true

i , and the observed human diagnosis Y human
i .

We define two separate classification objectives:

• AI Prediction Loss (truth-matching):

LAI = −Eqϕ(Zi|Xi)

[∑
c

αc(1− pc)
γ log pc

]
,

αc ∝
1

freq(c)
(3)

Here, pc = pθAI (Y
true
i = c | Zi) denotes the predicted

probability of class c under the AI classifier. This objective
encourages the model to leverage the full latent representa-
tion Zi to generate accurate, clinically grounded predictions
aligned with the ground-truth diagnosis, using a classifier
parameterized by θAI.

To address class imbalance-particularly prevalent in rare
disease settings, we employ a focal loss variant (Lin et al.,
2017) that dynamically down-weights well-represented, eas-
ily classified categories and emphasizes learning from rare
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Figure 1. DAE-guided counterfactual reasoning framework. (a) DAE encodes patient features into a latent space, enabling dual predictors
for AI and clinician diagnoses. (b) Counterfactuals are generated by perturbing latent vectors along specified directions, with AI producing
a list of alternative diagnoses and the decoder creating counterfactual samples that highlight key feature differences, providing clinicians
with bias-correcting diagnostic options and showing how slight changes in test results can shift a diagnosis from common disease to rare
disease.

or ambiguous cases. As the system is intended to assist clini-
cians in complex diagnostic scenarios, this calibrated formu-
lation promotes more exploratory AI behavior, enabling the
model to surface atypical or underrecognized patterns that
may otherwise be overlooked. Thus, the AI acts not only
as a predictor but also as a discovery aid, supporting more
comprehensive and inclusive clinical decision-making.

• Human Simulation Loss (cognitive-matching):

Lhuman =

Eqϕ(Zi|Xi)

[
− log pθhuman

(
Y human
i | Z̃i

)] (4)

Here, Z̃i = mi ⊙ Zi is a selectively masked version of
the latent vector, where the learned attention mask mi ∈
[0, 1]k gates which latent dimensions are used by the human
prediction head. This reflects the idea that, given the same
input Xi, humans and AI may focus on different parts of
the data and apply distinct cognitive functions to reach a
diagnosis.

Importantly, the prediction functions for AI and human sim-
ulation are parameterized separately, using θAI and θhuman
respectively. This architectural asymmetry captures both

attentional differences (via mi) and functional differences
in diagnostic reasoning, allowing us to explicitly model and
analyze human-AI cognitive divergence.

Modeling Human-AI Cognitive Gaps via Sparse Self-
Attention Mask Specifically, we compute the attention
mask mi using a learnable self-attention module:

mi = Softmax

(
Q (Xi)K (Xi)

⊤
√
d

)
V (Xi) (5)

where Q(·),K(·), V (·) are linear projections (as proposed
in (Vaswani et al., 2017)) that produce query, key, and value
vectors from the input Xi, and the output is pooled to form
a k-dimensional attention vector. This attention mechanism
identifies which latent features humans are likely to focus
on, given the current case.

To ensure interpretability and mimic human cognitive con-
straints, we impose an ℓ1 sparsity penalty on the attention
mask:

Lmask = λmask · ∥mi∥1 (6)

This encourages the human prediction head to rely on a
small subset of salient features, reflecting limited cogni-
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tive bandwidth and enhancing the interpretability of human
diagnostic pathways.

Contrastive Learning for Rare Disease Separability To
prevent rare disease embeddings from collapsing into com-
mon clusters, we introduce a contrastive loss:

Lcontrast =
∑

(i,j,k)

max
(
0, δ + d(Zi, Zj)− d(Zi, Zk)

)
,

where Zi and Zj are latent representations from the same
rare disease class, and Zk is from a common disease class.

This loss encourages embeddings of the same rare class to
remain close while pushing them away from embeddings
of common classes, thereby promoting greater separability
and preserving the distinctiveness of rare conditions in the
latent space.

Cognitive Gap Identification: Discrepancy Between AI
and Human Attention To quantify the cognitive discrep-
ancy between AI and human reasoning—especially in rare
disease cases—we introduce a cognitive gap loss. This loss
encourages the AI model to attend to features that may be
under-utilized by human clinicians, highlighting potential
diagnostic blind spots. Formally, we define the loss as:

Lgap =
∑

i:Y true
i ∈rare

∥∥mi ⊙∇Zi
log pθAI

(Y true
i | Zi)

∥∥2
2
,

where Zi is the latent representation, mi ∈ [0, 1]k is the
learned attention mask approximating human focus, and
∇Zi

log pθAI
(Y true

i | Zi) captures the sensitivity of the AI’s
prediction to each latent feature.

By penalizing high-gradient regions aligned with human
attention mi, the model is encouraged to focus on dimen-
sions that are often overlooked, especially in the context
of rare diseases. This fosters attentional divergence in rare
disease cases, where the AI can uncover atypical patterns
that clinicians might miss due to cognitive biases.

3.1. Total Objective and Training Curriculum

The overall loss function is defined as:

Ltotal =Lrec + LAI + Lhuman +

γLcontrast + ηLmask + ξLgap .
(7)

The training process follows a staged curriculum, starting
with the DAE warm-up using reconstruction loss, followed
by the introduction of focal loss for rare disease prediction.
The curriculum then adds human cognitive modeling and
sparsity regularization, followed by contrastive learning for
separating rare and common diseases. Finally, the cognitive
gap loss is incorporated to address attention mismatches
between Al and human clinicians.

We will train the DAE using the above loss function. Given
the learned generative DAE model, we can design the fol-
lowing counterfactual generation tasks.

4. Counterfactual Generation for Cognitive
Anchoring Correction

To mitigate diagnostic errors from cognitive anchoring, we
introduce a counterfactual generation mechanism that lever-
ages the model’s probabilistic structure. Given patient data
X , if pθAI assigns relatively high probability to a plausi-
ble diagnosis YAI—particularly a rare or under-considered
one—that diverges from the human’s current diagnosis, this
triggers counterfactual generation to challenge the initial
decision of human and guide follow-up evaluation or testing.

The goal of the counterfactual generation here is to

Disrupt doctors’ fixation on initial hypotheses
by generating alternative diagnostic pathways,
particularly for rare diseases.

Learning Optimal Perturbation The perturbation is
learned to increase uncertainty in the human (or human-
approximating) model, thus exposing cognitive blind spots.

∆z∗ = arg max
∥∆∥≤ϵ

Entropy (pθhuman(m⊙ (z +∆)))︸ ︷︷ ︸
Increase human uncertainty

(8)

Here, ∥∆∥ ≤ ϵ ensures that the changes remain within a
medically interpretable range. Without perturbation, the
Al’s prediction from the original z may align closely with
the clinician’s current belief. By contrast, perturbing z ex-
plores latent variations that introduce diagnostic ambiguity
from the human’s perspective-potentially uncovering under-
recognized or rare conditions.

Counterfactual Output Generation Once the optimal
perturbation ∆z∗ is obtained, the system generates two
outputs:

• Al Counterfactual Diagnosis

Y AI
cf ∼ pθAI (z +∆z∗) (9)

This may yield a rare disease prediction that prompts recon-
sideration of the original diagnosis.

• Synthetic Patient Data Generation An mDAE is used
to reconstruct the corresponding patient profile:

X ′
cf ∼ pθ (X | z +∆z∗) (10)

Here, X ′
cf represents a plausible synthetic patient who

presents similarly but includes key missing symptoms sup-
porting the rare disease.
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Finally, the system communicates the counterfactual insight
as:

"Consider alternative diagnoses with similar pre-
sentations: [Al-suggested disease Y AI

cf ]. If addi-
tional findings such as X ′

cf were observed, the
likelihood of this condition would increase to
pθAI

(Y AI
cf | z +∆)."

This form of explanation aims to encourage the clinician to
reflect, reassess, and refine their diagnostic reasoning with
evidence-informed support from the AI.

5. Experiment
To evaluate the effectiveness of our proposed framework,
we conducted extensive experiments employing three (pri-
vate) real-world rare disease datasets, focused on Gitelman
syndrome, acromegaly and hypertrophic cardiomyopa-
thy (HCM), with detailed specifications provided in Ap-
pendix B. These experiments were designed to achieve two
primary objectives: first, to validate the robust performance
and diagnostic accuracy of our model in rare disease detec-
tion; and second, to evaluate the efficacy of counterfactuals
in addressing cognitive gaps and guiding clinical decision-
making.

5.1. Model Performance

5.1.1. PREDICTION ON IMBALANCED DATA

The low prevalence of rare diseases inherently leads to im-
balanced datasets. This disparity poses a significant chal-
lenge for conventional machine learning classifiers, which
are often sensitive to such imbalances. We conducted ex-
periments on the real-world Gitelman dataset, where the
imbalance ratio (the number of common disease samples
divided by the number of rare disease samples) varies from
94:100 to 94:500. Our approach outperforms five typical
machine learning classifiers, as illustrated in Fig. 2 (from
left to right, the figure shows AUC, ACC for common dis-
eases, and ACC for rare diseases). Notably, our model’s
AUC increases as the imbalance ratio grows because the
larger overall data volume provides more information for
learning despite the greater skew. These results demon-
strate our method’s robustness and reliability in capturing
meaningful patterns in increasingly imbalanced data.

5.1.2. LATENT SPACE VISUALIZATION

We visualize the model’s latent space using the Gitelman
dataset in three distinct ways. These visualizations, shown
in Fig. 3, offer valuable insights into the model’s internal
representations. Panel (a) shows the structural organiza-
tion of latent embeddings, illustrating the model’s ability

to encode fine-grained phenotypic details that distinguish
clinically similar samples. Panel (b) presents an attention
map of clinician focus within the same space: mask values
of 1 mark high clinical relevance regions, while 0 indicates
lower priority, directly aligning attention with diagnostic
importance. Panel (c) highlights features exerting signifi-
cant influence on human classification decisions, exposing
potential decision boundaries where predictions may shift.
The visualization principle involves perturbing latent space
vectors to maximize human prediction uncertainty, with the
intensity distribution directly reflecting perturbation magni-
tude. Lighter colors denote higher diagnostic uncertainty,
revealing critical knowledge gaps that could lead to misdi-
agnosis.

Additionally, we conducted an ablation study to evaluate
the necessity of each loss term in our model’s total loss
function. As shown in Appendix C , our findings indicate
that removing any single loss term negatively impacts the
model’s performance.

5.2. Counterfactual Sample Generation

Addressing the pain points and diagnostic needs in rare
disease medicine, our model enables counterfactual analysis
experiments across diverse scenarios. Here, we focus on
three typical and practical scenarios for detailed evaluation:

Scenario 1: Feature Completion for Low-Confidence
Predictions: When a patient’s original input features have
missing values, overlap significantly with common disease
characteristics, and yield low-confidence AI predictions
for common diagnoses, our model generates counterfactual
samples to address missing features. This refines clinical
judgments and guides decision-making.

Scenario 2: AI-Human Prediction Discrepancy Resolu-
tion: When discrepancies exist between AI predictions and
clinician diagnoses, our model generates flipped samples to
reveal differences in decision-making logic. This provides
clinicians with interpretable insights to reconcile divergent
conclusions.

Scenario 3: Uncertainty-Driven Alternative Diagnoses:
By perturbing feature vectors in latent spaces where clin-
icians exhibit maximal diagnostic uncertainty, our model
generates alternative diagnosis lists. This anchors cognitive
bias correction and supports robust differential diagnosis.

5.3. Qualitative Evaluation of Counterfactuals

For a more comprehensive assessment, an LLM- and doctor-
based evaluation framework is designed for evaluating coun-
terfactual outcomes.

Evaluated by LLM Since 2023, LLMs with advanced
instruction-following and semantic comprehension have en-
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Figure 2. Comparison of model performance under imbalanced data.

     rare disease
     common disease

(a)  Latent Space 3D Visualization By Disease Type (b) Visualization of latent space mask
(c) Visualization of the intensity distribution 

of doctors' uncertainty

          

Figure 3. Latent space visualization by disease type, clinician attention, and diagnostic uncertainty.

abled automated evaluation (Gao et al., 2025). In our frame-
work, pre-trained LLMs assess generated counterfactual
instances via structured prompts emulating human judg-
ment, evaluating criteria like plausibility, clinical relevance
and cognitive enhancement potential. LLMs systemati-
cally quantify counterfactual effectiveness across semantic,
causal, and operational dimensions.

Evaluated by Doctors Clinical experts from a leading
hospital validated rare disease counterfactuals for medical
plausibility and clinical relevance, leveraging their domain
expertise.

Fig. 4 shows Prompt, LLM evaluations and doctor evalua-
tions across three scenarios, including case segments from
three datasets and core elements of the LLM prompting
framework (roles, instructions, evaluation forms). Empirical
analyses and prompting details are integrated to demonstrate
diagnostic evaluation structures

For LLM prompting specifics and responses, See Ap-
pendix D.

5.4. Quantitative Evaluation of Counterfactuals against
Baselines

In addition to the above qualitative approach, We also con-
ducted quantitative comparative experiments, where we con-
sider two baseline methods for generating counterfactuals.
This dual quantitative-qualitative approach ensures compre-
hensive validation of the scientific validity and practical
utility of counterfactual samples in advancing rare disease
research.

5.4.1. EXPERIMENTAL SETUP

Baselines We consider two baseline methods for gener-
ating counterfactuals: REVISE (Joshi et al., 2019) and
CF-VAE (Nagesh et al., 2023). REVISE employs an
optimization-based strategy within the latent space of a
generative model to produce counterfactuals. In contrast,
CF-VAE, a counterfactual variational autoencoder, does not
rely on latent space optimization; instead, it jointly opti-
mizes the variational autoencoder alongside a subsequent
binary prediction model.

Metrics We quantitatively evaluate the counterfactuals
generated by our method and baseline models across two

7



Unanchoring the Mind: DAE-Guided Counterfactual Reasoning for Rare Disease Diagnosis

Alteration of missing bicarbonate and pH data 
reveals hidden metabolic alkalosis with renal 
potassium loss, redirecting diagnosis toward 
Gitelman syndrome despite normal serum 
potassium. 
In cases where AI and clinician assessments 
conflict, generating such scenarios illuminates 
differing decision pathways, mitigates anchoring 
bias, and prompts targeted investigations for 
optimized diagnostic workflow.

Assume you are a specialist physician (nephrologist/endocrinologist/cardiologist) analyzing a case of [Gitelman syndrome/Acromegaly/Hypertrophic 
Cardiomyopathy (HCM)].

Background Information: 
Scenario one: When the original input contain missing values and generate low-confidence AI predictions……
Scenario two: When there are differences between the predictions of AI and the diagnoses of doctors……
Scenario three:  Perturbe the latent space along the direction of greatest diagnostic uncertainty as predicted by the physician……

The goal is to explain the key diagnostic logic based on the provided changes in indicators and diagnostic probabilities.

Evaluation Form:
1. Summary of Clinical Significance on the diagnosis of [Gitelman syndrome/Acromegaly/HCM] ; 2. Explanation of Probability Changes ; 3. Clinical 
Value of 'NAN'(missing) Perturbations ; Value of Counterfactual Simulation.

Prompt 

LLM Response  

Doctor Evaluation 

an example of scenario one

Adjustment of uncertain test values reveals 
hallmark renal potassium wasting with metabolic 
alkalosis, shifting diagnostic probability toward 
Gitelman syndrome rather than gastrointestinal 
losses. 
By perturbing the most ambiguous indicators 
and illustrating their effect on disease likelihood, 
flipped scenarios expose anchoring biases, 
guide targeted electrolyte and tubular function 
testing, and optimize differential diagnosis.

an example of scenario two an example of scenario three

Counter fac tua l  OGTT suppress ion  da ta 
u n c o v e r s  d e f i n i t i v e  g r o w t h  h o r m o n e 
non-suppression, redirecting diagnosis to 
acromegaly despite non-specific IGF-1 and 
basal GH. 
When initial features overlap common conditions 
and AI yields low-confidence predictions, flipped 
scenarios expose hidden evidence, correct 
anchoring biases, and mandate disease-specific 
testing for optimized clinical decision-making.

This counterfactual case is highly valuable, 
clearly demonstrating the critical role of key tests 
in acromegaly diagnosis.

The case is extremely useful. It helps break 
cognitive limitations and better assess Gitelman 
syndrome's possibility.

A very valuable case. It quantifies undetected 
indicators '  impact,  improving di f ferent ia l 
diagnosis.

Figure 4. Illustration of prompt, LLM response segment and real world doctor evaluation segment.

Table 1. Performance metrics across three datasets.
Dataset Model Label Flip Rate RMSE

Gitelman

REVISE 0.96±0.03 5.40±0.89
CFVAE 0.96±0.02 12.00±1.77

Our Model 1.00±0.00 1.93±0.76
Ablation 1.00±0.00 4.85±3.27

Acromegaly

REVISE 0.92±0.11 13.96±14.44
CFVAE 0.85±0.15 13.96±14.84

Our Model 1.00±0.00 0.18±0.10
Ablation 1.00±0.00 0.21±0.08

HCM

REVISE 0.70±0.40 0.33±0.04
CFVAE 0.80±0.40 0.33±0.01

Our Model 1.00±0.00 0.10±0.13
Ablation 1.00±0.00 0.46±0.27

key dimensions: (1) Label Flip Rate: For the binary classi-
fication tasks across our three real-world datasets, label flip
rate measures the proportion of counterfactuals classified
by the target model into the intended target class, assessing
their validity. (2) Root Mean Squared Error (RMSE):
RMSE is computed between each generated counterfactual
and its corresponding original input to quantify the pertur-
bation magnitude with a lower RMSE suggesting higher
plausibility.

5.4.2. COMPARISONS WITH BASELINE METHODS

Table 1 compares our model, two baseline methods(REVISE
and CFVAE) and an ablation experiment across three
datasets. The ablation experiment removes the final multi-
loss fine-tuning phase, retaining only stage-wise training
of the DAE, AI predictor, human predictor, and mask net-
work. Our model achieves the highest Label Flip Rate and
lowest RMSE across all datasets, indicating superior effec-
tiveness in generating relevant counterfactuals with minimal
perturbation.

6. Conclusion
We introduced a human-centered counterfactual reasoning
framework that perturbs latent patient representations via a
DAE-based latent state generative model to counteract cog-
nitive anchoring in rare disease diagnosis. By generating
realistic and clinically plausible “what-if” scenarios, our
method surfaces overlooked conditions and systematically
guides clinicians toward alternative diagnostic hypotheses.
A comprehensive mixed evaluation involving both large lan-
guage models (LLMs) and medical professionals confirms
the scientific soundness, clinical relevance, and interpretive
clarity of the generated cases. This framework fosters re-
flective diagnostic reasoning, enhances interpretability, and
offers a scalable tool for bridging human knowledge gaps
in challenging medical scenarios.
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Impact Statement
This work introduces a counterfactual reasoning framework
to address cognitive biases in rare disease diagnosis, po-
tentially reducing diagnostic delays and improving patient
outcomes by prompting clinicians to consider overlooked
conditions. The approach prioritizes ethical considerations
through data anonymization and interpretable AI design, en-
suring it supplements rather than replaces clinical judgment.
By modeling human-AI cognitive gaps, the framework ad-
vances responsible AI in healthcare, with broader implica-
tions for mitigating biases in high-stakes decision-making
domains.
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A. Related work
Counterfactual Explanations The evolution of counterfactual explanations has transitioned from optimizing feature
perturbations (Wachter et al., 2017) to frameworks that prioritize human-AI collaboration and safety. Early methods focused
on generating minimal feasible changes (e.g., DiCE (Mothilal et al., 2020)), but were criticized for ignoring user-specific
constraints and real-world applicability (Verma et al., 2020). More recent work, including (Lee and Chew, 2023), highlights
the role of counterfactuals in mitigating cognitive biases. (Lee and Chew, 2023) showed that exposing users to hypothetical
scenarios reduces overreliance on erroneous AI predictions, particularly among non-experts susceptible to confirmation
bias. This aligns with broader findings in human-AI interaction, where explanations must balance interpretability with
decision accuracy (Buçinca et al., 2021; Straitouri et al., 2024). A significant advancement in this area is the formalization of
counterfactual harm, defined as the risk that explanations may degrade human judgment. (Straitouri et al., 2024) introduced
structural causal models with conformal risk control to bound harmful outcomes in clinical systems. Their approach
integrates monotonicity assumptions (e.g., “higher biomarker values correlate with worse prognosis”) to ensure explanations
align with domain knowledge, thereby addressing a gap in earlier optimization-based methods (Van Looveren and Klaise,
2021). This shift reflects a growing emphasis on safety-critical metrics, moving beyond traditional criteria like sparsity and
realism (Verma et al., 2020).

Counterfactual Generative Models Generative models have been introduced to generate numerical counterfactuals,
enabling dynamic adaptation to user constraints. Early GAN-based approaches, such as CounterRGAN (Nemirovsky et al.,
2022), enforced immutable features via residual networks but lacked flexibility for real-time customization. FCEGAN
(Hellemans et al., 2025) addresses this limitation by incorporating user-defined templates and dual discriminator losses,
facilitating personalized explanations in domains like loan approvals (Yang et al., 2022). These frameworks align with
CTGAN’s training-by-sampling strategy (Xu et al., 2019) to handle class imbalance, a persistent challenge in financial and
medical datasets. While REVISE (Joshi et al., 2019) introduced a method for generating numerical counterfactuals using
arbitrary generative models, it can produce unrealistic counterfactuals, making them unsuitable for healthcare applications,
and is limited by the need for multiple calls to an optimization module. Although CFVAE (Nagesh et al., 2023) was
designed for generating counterfactuals in healthcare settings using variational autoencoders, it does not account for realistic
challenges in healthcare, such as class imbalance in rare disease cases and missing values in datasets. To overcome these
limitations, we propose a novel method designed for healthcare applications, particularly in rare disease diagnosis. Our
approach generates personalized counterfactuals for clinicians while handling missing values and class imbalance in the
training data.

B. Experimental Datasets
To evaluate our method, we consider the following three private datasets.

Gitelman Syndrome This dataset comprises real clinical records from a top hospital, focusing on Gitelman syndrome (GS),
a rare autosomal recessive renal tubulopathy. The data contains 594 patients, including 94 diagnosed with GS and 500
non-GS individuals. Five key diagnostic features are included: Serum Potassium, Urine Potassium, pH, Bicarbonate, and
High Blood Pressure, with labels derived from clinical diagnoses. To emulate real-world scenarios where critical test results
are missing (a common challenge in rare disease diagnosis), we artificially mask a subset of these features in the original
data (initially complete) by replacing values with NaN. This enables counterfactual analysis to quantify how missing tests
impact predictions, thereby guiding clinicians to prioritize specific examinations for undiagnosed cases. The dataset is
split into 80%-20% train-test sets for GS classification, with subsequent counterfactual perturbation analysis performed in
the latent space of the complete data. It should be noted that we retained the situation of data imbalance, which is to be
consistent with the situation that the incidence of rare diseases in the real world is much lower. And despite this imbalance,
our model still maintained good performance.

Acromegaly This dataset includes real-world clinical records from a top hospital, focusing on acromegaly, a chronic disorder
caused by excessive growth hormone (GH) secretion, typically due to pituitary somatotroph adenomas. The data contains
181 patients, comprising 88 diagnosed with acromegaly and 93 non-acromegaly controls. Three clinically significant features
are incorporated: Serum GH, IGH-1, and OGTT-GH_min, with labels derived from clinical diagnoses. To reflect realistic
data incompleteness, we retain naturally occurring missing values in the original dataset and explicitly record their positions.
This facilitates counterfactual generation that aligns with clinical practice, allowing clinicians to evaluate how incomplete
laboratory profiles influence diagnostic predictions. The dataset is partitioned into 80%-20% training-test sets for binary
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(1) Remove contrastive loss (2) Remove gap loss (3) Remove recon loss

(4) Remove AI loss (6) Remove human loss (7) Remove mask loss

AUC of AI predictor: 
Original 0.96 → Ablation 0.89

AUC of Human predictor: 
Original 0.98 → Ablation 0.61

AUC of Human predictor: 
Original 0.98 → Ablation 0.9

Figure 5. Ablation study: loss function removal impact on latent space and model performance.

classification, followed by counterfactual perturbation and interpretability analysis in the latent space of the complete data to
identify critical diagnostic drivers.

Hypertrophic Cardiomyopathy (HCM) This dataset includes real-world clinical records from a top hospital, focusing on
hypertrophic cardiomyopathy (HCM), an inherited cardiac disorder characterized by abnormal myocardial thickening that
may lead to ventricular outflow tract obstruction, arrhythmias, and heart failure. The data contains 36 patients, including 21
HCM-diagnosed individuals and 15 individuals with another rare disease (ATTR, amyloidosis trans-thyretin related) as the
control group. Eight clinically significant features are incorporated: Asymmetric Hypertrophy, SAM, Low Left Ventricular
Voltage, High Left Ventricular Voltage, Family History, Sarcomere Gene Mutation, TTR Gene Mutation, and Amyloid
Deposition. Similarly, to preserve clinical authenticity, naturally occurring missing values in the original dataset are retained
and explicitly mapped for interpretability. The dataset is partitioned into 80%-20% training-test splits for HCM classification.
Post-training, counterfactual perturbation and causal analysis are conducted in the latent space of the complete data to
identify critical diagnostic patterns and feature interactions.

C. Latent Space Visualization with Ablation Study
We conduct an ablation study to evaluate the necessity of each loss term in our model’s total loss function. Specifically, we
visualize the distribution of the latent space when individually removing each loss component during fine-tuning (prior to
fine-tuning, each component of our model, including DAE, AI predictor, mask net and human predictor, is first trained in
stages with its corresponding loss function). As shown in Fig. 5, Our findings indicate that the removal of the contrastive
loss, gap loss, or reconstruction loss degrades the quality of the latent space representation, thereby impairing the model’s
ability to discriminate between similar samples. In contrast, removal of the AI prediction loss, AI prediction loss or mask
regularization loss impairs the performance of the AI predictor or human predictor, as depicted by the AUC changes in the
figure, underscoring the indispensable role of each loss component in maintaining model effectiveness.
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D. Details of Prompting LLM and Counterfactual Evaluations
Fig. 6 illustrates the operational mechanism of prompting the LLM and LLM response across three counterfactual scenarios.
For each scenario, a representative case is selected: the first from the acromegaly dataset, and the latter two from the
Gitelman dataset. This visual depiction not only offers profound insights into the framework’s functionality but also provides
a practical reference for clinicians and researchers, underscoring the significance of counterfactual reasoning in enhancing
the differential diagnosis of rare diseases.

E. Model Architecture Details
E.1. DAE Architectures

The Denoising Autoencoder (DAE) architecture captures clinical feature mappings through an Encoder and Decoder. The
Encoder uses ELU activations to project raw features into a 32-dimensional latent space, while the Decoder reconstructs
inputs from this space. Categorical features are embedded via a dedicated layer, and the design supports robust learning
from incomplete data. Take the Gitelman syndrome dataset as an example, key components are detailed in Table 2, which
outlines layer dimensions and functional roles.

Table 2. DAE architecture configuration
Component Layers Dimension Functional Description

Encoder

Input Layer 5 Raw clinical features
Hidden Layer 128 ELU-activated transformation: h = ELU(Wx+

b)
Latent Space 32 Bottleneck representation: z
Embedding 8 Categorical feature encoding: onehot(x)We

Decoder
Input Layer 32 Latent space input: z
Hidden Layer 128 Feature decoding: hd = ELU(Wdz + bd)
Output Layer 5 Feature reconstruction: x̂

E.2. Predictor Architectures

The AI and human predictors, along with the attention mask network, are designed to explicitly model the divergence
between machine and clinician reasoning. The AI predictor operates in the full latent space to generate ground truth-aligned
diagnoses, while the human predictor uses a sparse attention mask (generated by the mask network) to simulate cognitive
constraints in clinical decision making. Table 3 outlines the architecture details, including layer dimensions, activation
functions, and the attention mechanisms. This modular design supports interpretable counterfactual generation by isolating
human-AI cognitive gaps in the latent space.

Table 3. Predictor Architectures Configuration

Component Layers Dim/Num of Heads Description

AI Predictor
Input Layer 32 ELU-activated projection into hidden space
Hidden Layer 128 ELU transformation of latent features
Output Layer 2 Produces class logits for prediction

Mask Network
Input Layer 5 ELU-activated linear embedding
Attention Layer 4 Multi-head self-attention for contextual feature

interaction
Output Layer 32 Generates masking coefficients

Human Predictor
Input Layer 32 Takes the masked latent representation as input
Hidden Layer 128 ELU transformation of masked latent space
Output Layer 2 Produces class logits aligned with experts
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F. Training Configuration Details
F.1. Stage-Wise Training Details

The model is trained in four stages: DAE warm-up, AI predictor training, joint human predictor and mask network training,
and fine-tuning. Table 4 specifies the learning rate schedules, batch sizes, and regularization strategies (e.g., gradient
clipping) for each phase on the Gitelman syndrome dataset. For instance, the DAE warm-up phase employs learning rate
annealing and early stopping to stabilize latent space initialization. This staged approach balances model complexity and
training stability while ensuring task-specific optimization.

Table 4. Progressive training strategy
Phase Components Learning Rate Key Details

DAE Train Encoder / Decoder 1e-4 • LR annealing
• Early stop
• Gradient clip ≤ 1.0
• Batch size 16

AI Predictor Train AI Predictor Network 1e-4 • LR annealing
• Early stop
• Gradient clip ≤ 1.0
• Batch size 16

Human Predictor + Mask Net Train Human Predictor Network,
Mask Network

1e-4 • LR annealing
• Early stop
• Gradient clip ≤ 1.0
• Batch size 16

Fine-Tuning Full Network 1e-4 • Gradient clip ≤ 1.0
• Batch size 16

F.2. Loss Function Weight in Fine-Tuning Stage

The total training loss combines multiple objectives, including reconstruction, classification, contrastive separation, and
cognitive gap minimization. Table 5 defines the weights assigned to each loss component on the Gitelman syndrome dataset,
emphasizing the balance between feature reconstruction (dominant in early stages) and rare/common disease separability
(enforced via contrastive loss).

Table 5. Loss Function Specification
Loss Type Weight Function

Reconstruction 1 Reconstruct input features
AI 1 Maximize AI prediction accuracy
Human 1 Align with human diagnoses
Mask 0.001 Promote sparse attention masks masks
Contrastive 1.5 Separate rare/common diseases
Gap 1.5 Reduce human-AI attention gaps

G. Broader Impact and Limitation
This study aims to address the underdiagnosis of rare diseases caused by cognitive biases in clinical decision-making. Our
framework helps clinicians consider rare conditions more effectively through generative counterfactuals, potentially reducing
diagnostic delays and improving patient outcomes, especially in underserved areas with limited specialized expertise. By
modeling the cognitive gaps between humans and AI, it promotes transparent and bias-aware collaboration, setting a practical
example for AI applications in healthcare and other high-stakes fields.

Potential risks include the possibility of over-relying on AI, which we mitigate by designing interpretable counterfactual
explanations to supplement, rather than replace, clinical judgment. Data privacy and bias issues are addressed through strict
data anonymization and cross-population validation to ensure fairness. Ethically, the research focuses on diagnostic support
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rather than treatment decisions and uses synthetic data for validation to minimize risks.

However, While our framework demonstrates promise, several limitations warrant consideration. First, the datasets are
derived from specialized hospitals, which may limit generalizability to diverse healthcare settings or underrepresented
populations. Second, while validated on three rare diseases, the model’s effectiveness on ultra-rare conditions remains
untested. Finally, the computational cost of latent space perturbation may hinder real-time deployment in resource-
constrained environments.

In conclusion, this work balances technical innovation with ethical considerations, providing a scalable tool to advance
rare disease diagnosis and foster collaborative AI-driven healthcare. Its approach offers valuable insights for AI-assisted
decision-making in complex domains.

H. Computing Infrastructure
All synthetic data experiments are performed on Ubuntu 20.04.3 LTS system with Intel(R) Xeon(R) Gold 6248R CPU @
3.00GHz, 227 Gigabyte memory.
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System
Prompt

LLM
Response

Assume you are a specialist physician (nephrologist/endocrinologist/cardiologist) analyzing a case of [Gitelman syndrome/Acromegaly/Hypertrophic
Cardiomyopathy (HCM)].

Background Information: The counterfactual changes in clinical indicators in the following case are generated by perturbing the model along the direction of
greatest diagnostic uncertainty as predicted by the physician. This method aims to provide a data-driven alternative perspective that may differ from the
initial clinical judgment, helping to correct cognitive anchoring and enabling a more comprehensive assessment of rare diseases.

The goal is to explain the key diagnostic logic based on the provided changes in indicators and diagnostic probabilities.

Important Note for HCM: The HCM-related indicators (e.g., asymmetric hypertrophy, left ventricular voltage, family history, etc.) are binary variables (0 or
1), where 0 typically indicates negative/normal and 1 indicates positive/abnormal. These are not continuous physiological measurements.

The final evaluation should include:
Summary of Clinical Significance: Summarize the overall impact of key indicator changes on the diagnosis of [Gitelman syndrome/Acromegaly/HCM].
Explanation of Probability Changes: Summarize the main reasons for the changes in diagnostic probabilities.
Clinical Value of 'nan' Perturbations (if applicable): Summarize the significance of perturbing 'nan' (missing) values for prompting further tests and
diagnosing rare diseases.
Value of Counterfactual Simulation: Briefly describe, based on its generation mechanism (perturbing in the direction of greatest uncertainty to correct
cognitive anchoring), how this simulation helps clinical diagnosis, especially in avoiding premature exclusion of rare diseases.

User
Prompt

The key indicator changes for case {i+1} are as follows, where the original value of 'nan' indicates that the test was not performed:
[Disease-specific indicators, e.g., for Gitelman: Urine Potassium, Bicarbonate, Serum Potassium, High Blood Pressure, pH; for Acromegaly: IGF-1, Serum
GH, OGTT-GH; for HCM: Asymmetric Hypertrophy, Low/High Left Ventricular Voltage, Family History, Amyloid Deposition, Sarcomere Gene Mutation,
LVOTO, SAM, TTR Gene Mutation]
Diagnostic probability changes:
Original (Common Disease/Rare Disease): {p_common}/{p_rare}
After Perturbation (Common Disease/Rare Disease): {p_common_perturb}/{p_rare_perturb}
Please provide a detailed process analysis and result evaluation based on the above data and your medical knowledge.

Case 1:

Initially relying solely on IGF-1 and basal GH
levels may not clarify the diagnosis (both may be
at critical values or nonspecific), leading to
similar probabilities for the rare disease
(acromegaly) and common diseases (e.g.,
physiological GH fluctuations, other metabolic
disorders). After perturbation, the OGTT-GH
suppression test result directly confirms the
diagnosis. The failure of GH to suppress during
OGTT—a key pathological feature of
acromegaly—exhibits extremely high specificity,
effectively ruling out other common diseases.
Omission of the critical OGTT-GH suppression
test introduces diagnostic uncertainty and may
lead to missed acromegaly (which requires
OGTT for confirmation). The perturbed
scenario highlights the irreplaceable role of this
test.

This simulation validates the impact of
prioritizing key tests in rare disease diagnosis:
for acromegaly, IGF-1 and basal GH provide
only screening clues, while the OGTT-GH
suppression test is the gold standard for
confirmation. It prompts clinicians that if initial
tests (IGF-1/GH) are abnormal but nonspecific,
OGTT must be mandated to avoid diagnostic
delays. By contrasting probability changes
before and after perturbation, it reinforces the
clinical logic that "rare diseases require specific
tests," optimizing diagnostic workflow
efficiency.

**Conclusion**: Abnormal results from the
OGTT-GH suppression test are decisive evidence
for acromegaly diagnosis. Their absence leads to
diagnostic ambiguity, while supplementation
significantly improves diagnostic specificity.
Counterfactual simulation reveals the central
role of key tests in rare disease differentiation,
correcting clinicians’ cognitive gaps.

Case 2:

In the original data, clinicians may exclude
Gitelman syndrome based solely on normal
serum potassium and nonsignificant urine
potassium, while AI can earlier identify the rare
disease pattern of metabolic alkalosis
mismatched with urine potassium excretion,
unaffected by the "hypokalemia anchoring
effect." After counterfactual perturbation, a
bicarbonate level of 38 mmol/L and pH 7.6
clearly indicate metabolic alkalosis, prompting
clinicians to reassess the possibility of renal
tubular dysfunction.

Value of Counterfactual Simulation:
Overcoming Uncertainty: Clinicians initially
believed "normal serum potassium rules out
Gitelman syndrome," but counterfactual data
drive re-evaluation of diagnostic logic.
Correcting Cognitive Anchoring: The simulation
targets clinicians’ decision blind spots (e.g.,
undetected HCO3-), pushing them to shift from
a "common disease" framework to complex
pathophysiological analysis.
Educational Significance: Reminds clinicians to
screen for Gitelman syndrome (e.g., via genetic
testing or magnesium/calcium urine tests) when
acid-base imbalance exists despite normal serum
potassium.
Clinical Significance: Highlights the need for
complete blood gas and electrolyte tests in
hypokalemia/alkalosis patients to avoid
misdiagnosis due to missed key indicators.

**Conclusion**: This case demonstrates that
counterfactual simulation, by supplementing
critical evidence of metabolic alkalosis, helps
clinicians overcome cognitive limitations of
"hypokalemia" and "common disease priority,"
enabling more comprehensive evaluation of
Gitelman syndrome. It underscores the tool’s
importance in rare disease differential diagnosis.

Case 3:

The core feature of Gitelman syndrome is renal potassium
wasting. Elevated urine potassium (>20 mmol/24h), when
combined with hypokalemia (serum potassium 2.2
mmol/L), strongly supports renal tubular dysfunction (e.g.,
distal tubule NCC channel inactivation), distinguishing it
from gastrointestinal potassium loss or inadequate intake.
Metabolic alkalosis, a typical manifestation, is driven by
renal hydrogen ion loss (via Na⁺-H⁺ exchange
compensating for hypovolemia) and renin-angiotensin-
aldosterone system (RAAS) activation related to
hypomagnesemia. In the original diagnosis, missing urine
potassium and HCO₃⁻ measurements may lead clinicians to
default to "non-renal potassium loss" or "compensatory
alkalosis," favoring common diseases (e.g., diarrhea,
diuretic abuse). After perturbation, significantly elevated
urine potassium and HCO₃⁻ directly indicate renal tubular
dysfunction, consistent with Gitelman pathophysiology.
Persistent hypokalemia (2.2 mmol/L) alongside elevated
urine potassium creates a "hypokalemia-hyperuricosuria"
paradox, a key marker distinguishing Gitelman syndrome
from non-renal potassium loss.

Value of Counterfactual Simulation:
Cognitive Anchoring Correction: Perturbation targets the
most uncertain indicators (undetected urine potassium and
HCO₃⁻), breaking the "common disease first" mindset
through simulated abnormal values and forcing rare
disease reassessment.
Avoiding Premature Rare Disease Exclusion: Clinicians
may underestimate Gitelman syndrome due to incomplete
testing or assuming "nan values indicate normalcy."
Counterfactual simulation, via data-driven abnormal
values, highlights the diagnostic weight of key indicators,
prompting early rare disease differential diagnosis.

**Conclusion**: This case, by perturbing "nan" values of
urine potassium and HCO₃⁻, reveals the critical paradox of
Gitelman syndrome (hypokalemia + hyperuricosuria +
metabolic alkalosis + no hypertension), significantly
increasing its diagnostic probability. The value lies in
quantifying the potential impact of undetected indicators,
assisting clinicians in overcoming cognitive limitations and
systematically improving differential diagnosis processes.

In the presented cases:
1. The true labels represent the actual disease status recorded in clinical practice.
2. For each indicator, the value before the arrow is the patient's actual test result (where "nan" indicates that the patient did not undergo that particular test),
and the value after the arrow is the generated counterfactual indicator result. For missing indicators, the Δ change is calculated as the difference between the
mean value of that indicator in the dataset and the counterfactual data. For other indicators, the Δ change is calculated as the difference between the original
data and the counterfactual data.
3. The changes in prediction probabilities are obtained from a trained accurate AI model. The higher the score, the greater the likelihood. The cases
respectively demonstrate the AI prediction results for the patient's original tests and the AI prediction results under counterfactual scenarios. Taking the first
case below as an example:
When the original tests were conducted, the model predicted the probability of a common disease to be 0.7770 and that of a rare disease to be 0.2230. After
counterfactual perturbation, the probability of a common disease dropped sharply to 0.1297, while the probability of a rare disease increased to 0.8703,
intuitively showing the reversing effect of supplementing key indicators on the diagnostic tendency. This case indicates that the reasonable supplementation of
key missing indicators can significantly change the AI diagnostic tendency through counterfactual reasoning, providing a quantitative reference for clinicians
to identify potential rare diseases. 

Descrption

Figure 6. Prompting LLM and LLM response under three counterfactual scenarios
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