Graph Diffusion that can Insert and Delete

Matteo Ninniri Marco Podda
Department of Computer Science Department of Computer Science
University of Pisa University of Pisa
56127 Pisa (Italy) 56127 Pisa (Italy)

matteo.ninniri@phd.unipi.it marco.podda@unipi.it

Davide Bacciu
Department of Computer Science
University of Pisa
56127 Pisa (Italy)
davide.bacciu@unipi.it

Abstract

Generative models of graphs based on discrete Denoising Diffusion Probabilistic
Models (DDPMs) offer a principled approach to molecular generation by system-
atically removing structural noise through iterative atom and bond adjustments.
However, existing formulations are fundamentally limited by their inability to
adapt the graph size (that is, the number of atoms) during the diffusion process,
severely restricting their effectiveness in conditional generation scenarios such
as property-driven molecular design, where the targeted property often correlates
with the molecular size. In this paper, we reformulate the noising and denoising
processes to support monotonic insertion and deletion of nodes. The resulting
model, which we call GRIDDD, dynamically grows or shrinks the chemical graph
during generation. GRIDDD matches or exceeds the performance of existing
graph Diffusion Models on molecular property targeting despite being trained on
a more difficult problem. Furthermore, when applied to molecular optimization,
GRIDDD exhibits competitive performance compared to specialized optimization
models. This work paves the way for size-adaptive molecular generation with
graph diffusion.

1 Introduction

Generating molecules conditioned on predefined structures or properties is a central endeavor in
computational chemistry, with applications ranging from de novo drug design [You et al.|[2018a] to
materials discovery [Zhao et al.,|2023]]. Depending on the conditioning information, we distinguish
two key learning tasks: property targeting, aimed at generating molecules endowed with prespecified
properties; and property optimization, where the goal is to edit a given molecule to improve a target
property while retaining its core structure. Unlike continuous data, generating graphs must account
for their discrete and combinatorial connectivity. For molecules in particular, chemical constraints
invalidate most atom-bond and atom-atom combinations, making this problem difficult and, therefore,
actively researched. Despite these challenges, deep graph generators [Faez et al.,2021]] have achieved
striking success in the above-mentioned tasks, due to their ability to approximate complex molecular
distributions and their flexibility in incorporating conditioning information.

Based on the way they decode a graph from a latent representation, deep generative models for
molecules can be broadly categorized as autoregressive or one-shot [Zhu et al., 2022[]. Autoregressive
models build the graph sequentially (atom-by-atom as in|You et al.[[2018b], or fragment-by-fragment

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Figure 1: Two qualitative examples of the proposed model (GRIDDD) when generating molecules
from the QM9 dataset. In the top row, from left to right, we show a subset of the denoising process
to generate a molecule starting from a latent graph with two atoms (which are extremely rare in
QMD9). GRIDDD successfully inserts six more nodes to obtain a sample resembling the training set’s
distribution. In the bottom row, we start from a latent with 18 atoms instead (not present in QM9).
GRIDDD manages to delete nine atoms and obtain a valid molecule. Notice that, unlike current
DDPMs for graphs, the graph size is changed dynamically during denoising.

as inJin et al.[[2018b]), but suffer from order dependence and linearly-scaling sampling time. One-
shot methods generate all nodes and edges in a single pass enabling parallel sampling, but struggle to
learn high-order interactions. Denoising Diffusion Probabilistic Models (DDPMs) [Ho et al.| [2020]
for graphs bridge these approaches by progressively removing Gaussian or discrete noise to recover
the molecular graph. Indeed, DDPMs preserve permutation invariance and sampling parallelism
while iteratively refining long-range interactions (e.g., ring closures), which traditional one-shot
decoders are forced to learn in a single transformation. Moreover, DDPMs can be easily adapted to
conditional generation with classifier-based [Dhariwal and Nichol, [2021]] or classifier-free [Ho and
Salimans}, 2022| guidance.

One drawback of Diffusion Models (not limited to graphs) is that the sample size remains fixed
throughout the generative process. While for different modalities this is less of a concern (e.g., for
images it is equivalent to fixing the resolution beforehand), it becomes relevant when generating
molecules, and more in general when modeling combinatorial data. In practical terms, this restriction
implies that the model by design cannot add or remove atoms during generation, leading to two major
drawbacks: a) in property targeting, it is not possible to make the molecular structure responsive to
properties which correlate with the size, e.g., when generating molecules with a specific molecular
weight; b) in property optimization, the model cannot optimize a given property by adapting the
generated structure. Existing methods circumvent this limitation by sampling the graph size before
the generative process starts. For example, [Vignac et al.| [2023a] and [Hoogeboom et al.| [2022]
sample different graph sizes from the empirical distribution of the training dataset, while Ninnir1
et al|[2024] use an auxiliary classifier to predict the graph size from the conditioning information.
Though these workarounds are sufficient for property targeting, they become ineffective for property
optimization, where size is strictly related to the structure to optimize. Ketata et al.|[2025]] adapts to
property optimization by sampling additional nodes in the reverse process, but does not incorporate
this procedure into the training process.

Motivated by these considerations, our primary contribution is a generalization of the standard discrete
diffusion process on graphs. Our approach enables step-wise monotonic node insertions and removals
during diffusion, and is specifically designed to change the graph size dynamically throughout the
generative process, providing the necessary flexibility to incorporate conditional information more
effectively. We implement this novel formulation as a model called GRIDDD (short for Graph
Insert-Delete Discrete Diffusion). An intuitive example of how GRIDDD generates molecules is
provided in Figure[T} We test GRIDDD on property targeting in two widely used benchmarks (QM9
and ZINC-250k), where it consistently performs on par or better than the state of the art in terms
of approximating the target property while keeping high chemical validity, despite having been
trained on a more difficult problem. When applied to molecular optimization, GRIDDD convincingly
outperforms other molecular optimizers, achieving a higher average improvement and optimization
success rate. To the best of our knowledge, this is the first work that allows size-adaptive molecular
generation with graph diffusion. Our code is available at https://github.com/mninniri/GrIDDD,

https://github.com/mninniri/GrIDDD

2 Background and related works

Notation We represent molecules with n atoms as graphs G = (X, E), where X € R"*% is
the matrix of one-hot encoded atom types (over a possible atom types), and E € R"*"*? is an
adjacency (or edge) tensor that encodes both the bond connectivity and the one-hot encoded bond
types (over b possible bond types while considering the absence of a bond as an additional bond
type). We denote as x; € R® the i-th row of X and as e;; € R? the slice of E along the first and
second dimensions. Oftentimes, we use the terms “nodes” and “edges” to refer to atoms and bonds,
respectively. Conditioning vectors will be generally denoted as y € R¢, d being a positive integer.

2.1 Graph Generative Models for Property Targeting and Optimization

Several models have recently been developed for property targeting, mostly based on graph diffusion
since it is particularly suited for conditional generation. For example, DiGress [[Vignac et al.||2023a]
uses a categorical diffusion process on nodes and edges, and a graph transformer denoiser to learn
a generative distribution over molecular graphs. DiGress allows conditional sampling through
classifier-based guidance, by training an auxiliary regressor to steer the generation towards the
target properties. FreeGress [Ninniri et al., |2024]] builds upon DiGress and proposes a classifier-free
approach for conditional generation that injects the guide directly into the denoiser during training,
greatly improving property-targeting accuracy.

Molecular property optimization is mainly achieved through translation models and optimization
models. VJITNNs [Jin et al., 2018b]], Seq2Seq models [He et al.| |[2021]], and HierG2G [Jin et al.|
2020] all work by translating between different types of molecular representations, ranging from
junction trees to SMILES strings. While these models achieve good results, they require a dataset
of pairs of similar molecules with specific properties, which are of limited availability. At the same
time, they are not designed to generate new molecules from scratch. Optimization models are usually
designed for molecular generation. GCPN [You et al., 2018al] and JT-VAE [Jin et al., 2018a] employ
different techniques, ranging from reinforcement learning to junction trees, to generate data, and are
easily extensible to perform property targeting and optimization.

2.2 Discrete Denoising Diffusion Probabilistic Models

DDPMs consist of an un-parameterized forward process q(xt|x'~1) and a parameterized reverse
process pg(x'~t|x!). The forward process progressively corrupts the initial data point 2°, transform-
ing it into a noise-like sample 7. The reverse process, trained to denoise these samples, aims to
reconstruct ¥ by sequentially removing the added noise. Sampling from a trained DDPM involves
drawing 7 from the noise distribution and applying the reverse process iteratively over T steps to
obtain a new sample Z° ~ ¢(x). While in the original formulation of DDPMs the noise distribution
is Gaussian, we focus on discrete DDPMs where noise is injected through specially crafted transition
matrices Q', with [Q'];; = p(z' = j|z*~! = i), encapsulating the probability of switching from
category ¢ to category j at step ¢ of the forward process. Crucially, cumulative transitions from
an arbitrary timestep s to ¢ can be expressed as a matrix Qﬂs = H’;:S 11 Q'. The reverse process
po(xz'~1|x!) is computed by marginalization over the possible categories of the input .

2.3 Insert and delete operations for Diffusion Models

The idea of insert and delete operations for discrete Diffusion Models originates from Johnson et al.
[2021]], which, similarly to us, proposed to gradually insert or delete nodes both during the forward
and reverse process. However, there are some major differences with our work. Firstly, our solution
is designed for graphs, instead of textual data. Secondly, they resort to complex edit summaries to
compute the various probability distributions involved, while we simplify the computation of the
posteriors by generalizing the denoising process to account for nodes that have yet to be deleted or
inserted through the computation. Some continuous-time Diffusion Models [Campbell et al.| [2023]]
can increase the entries in the data point during the reverse process, but can not remove them, making
them unsuitable for property optimization. At the same time, they are better suited for continuous
data with positional dependencies, rather than graphs.

3 Graph Insert-Delete Discrete Diffusion

We now introduce our main contribution. The backbone of GRIDDD is a reformulation of the
standard discrete denoising diffusion for graphs to support the use of monotonic node insertions and
deletions, which we describe in this section.

Preliminaries. Our end goal is to obtain a denoised graph G° = (X°, E°) with n° nodes from
a latent noisy graph with GT = (X7, ET) with nT nodes. To change size from n’ to n°, we
monotonically delete (if nT > n°) or insert (if n7 < n°) |AT| nodes, where AT = n” — n0, as the
reverse process advances. This gives us full control over the graph size at any given moment. The
timesteps when insertions and deletions are performed are sampled from the normalization of the
absolute value of the logistic distribution’s probability density function ¢’ (t):

t—D
’ e w

CO e

| ey

The function is scaled in a way such that ZtT:O ¢'(t) = 1, with ¢'(0) = ¢'(T) = 0. The parameter
D indicates the timestep in which the function is maximized, while w is the scale parameter (from
a visual standpoint, it controls the steepness of the curve). During training, the final size n” that a
training sample with size n° will assume is sampled from a discrete distribution on the number of
nodes h,,0(n). In our work, we defined it as follows, and then normalized it to sum to one:

o (1) = Prnas + 2 (5 0), @)

TMmax
where n,,« 1S the maximum size that a graph may assume (which can be set to be higher than the size
of the largest graph in the dataset), while pui, and pmax are hyperparameters. Intuitively, the highest
probability pp.x occurs when n = n?, and it linearly decreases to py,, with a rate equal to pn;p“

as the absolute difference between n° and n increases.

3.1 Forward process

The discussion above implies that we have three different forward processes, depending on whether
AT >0, AT < 0,0or AT = 0. We start by describing the latter, which is the simplest and serves as a
basis for the deletion and insertion cases. Building on previous works [Vignac et al., 2023al Ninnir1
et al}[2024]), when AT = 0, the forward process is implemented as:

¢(G' |G =(X"'Qx B Q). 3)
Focusing on the nodes X (edges are defined analogously), the associated transition matrix is:
Qx =a'Ax + (1 - a')Bx, “

where Ax = I, Bx = 1am-)r(, with m x being the vector of the marginal distribution of the atom
types computed on the training set, and {«; };—1 .. 7 being a set of noise schedulers, chosen such that
a1 = 1, ar = 0, and the intermediate elements gradually decrease from one to zero. Multi-step

. . . . —t|s
transitions from an arbitrary timestep s can be computed as a matrix)lf defined as:

t
—tls i —t|s —t|s
Q% = [] @x =a'"Ax +(1-a"Bx, 5)
1=s5+1

t

—tls _ @'l® . —tj0 _ i o (m ()"
where @'® = &5, with @' = [[;_, o' = cos (3

1+s

)2 (notice the hyperparameter v/).

Monotonic deletions (A7 < 0). To introduce deletions, we build on [Johnson et al.| [2021]] and
treat them as an additional atom type DEL. This is similar to absorbing diffusion [Kong et al., 2023,
in which the forward process consists of progressively switching all atom types to the deletion
type; our strategy is more general, as we allow for nodes and edges to change category during
the forward and reverse processes. During the reverse process, nodes need to be reinserted at step
t whenever they were deleted during the forward process at the same timestep (that is, if they
transitioned to type DEL at forward step t). Consequently, such nodes are expected to revert to a

M 20 7 M 20 T
A = 00 (1) B* = 00)
g b i1 g 07T o
g g e g g e
D D* D D*
0 0:0: 1 7 0 0:1:0 7
C*=|0 ... 0:0: 1 3) D=0 ... 0:1:0 (4)
R R SR 6T o
g e e e

Figure 2: The matrices employed in the computation of Q** and a*ﬂs. For spacing reasons, the
states DEL and DEL* have been shortened as D and D*.

proper (non-DEL) type at the next step ¢ — 1. However, since the DEL state is absorbing (meaning
p(x? # DEL | #'~! = DEL) = 0), such transition is forbidden: once a node is deleted, it must
remain deleted up to the end of the forward process, as doing otherwise would violate monotonicity.
To enable node reinsertion, we introduce an auxiliary transient type DEL*, designed such that
p(x! = DEL|z!~! = DEL*) = 1, i.e., the transition from DEL* to DEL during the forward process is
deterministic, and p(x'~! € {DEL,DEL*}|x’ = DEL*) = 0. This ensures that if a node is in state
DEL* during the reverse process, it can only switch to a proper (non-DEL) type. This mechanism
guarantees that nodes deleted at step ¢ can be reinserted at step ¢ — 1, thereby preventing the absorbing
DEL state from blocking node recovery. To ensure that the final graph size is consistent with the one
fixed at the start of the forward process, preventing that too many nodes switch into the deletion
state, we employ a hybrid scheme, in which ng — |AT'| nodes undergo the standard forward process
(described by Eq. El), while |AT| nodes use a different transition matrixﬂ defined as:

Q" = ((t) (" A" + (1 —a")B*) + (1 - ((t) C*. ©)

Above, A* and B* are A and B augmented to account for the deletion types, C* describes the
transition from a normal type to a deletion (see Figure , and ((t) is the integral of ¢’ (¢) described
in Equation Since ¢’ (¢) is a probability distribution, ¢(t) can be seen as its cumulative distribution

function; therefore, at time 7', Q*7 = C*. If ¢ " is chosen such that ¢(T — 1) = 0, we enforce exactly
|AT| nodes with DEL type at timestep 7. We refer the reader to Appendix for more details on

L - . . - e i
the function ¢’ used in this study. Computing the cumulative transition matrix @ - HZZS 1 Q7
requires an additional matrix D* (also displayed in Figure2):

—xt|s

Q

—t—1|s

il (a“SA* + (1 - a“s) B*) +¢

—t—1|s

a-coyer+(1-¢"")p @
where Zﬂs = HE:S 41 ¢(7). Intuitively, D* represents a state where all nodes are immediately
switched to state DEL. If a node is set to category DEL or DEL*, so are the edges associated with it.

Monotonic insertions (A” > 0). Node insertions are defined implicitly (i.e., without a specific
INS type) since by design, a node is effectively inserted in the graph, or “activated”, only at timestep
s + 1 if the model sampled s as insertion time. The critical operation after inserting nodes is to
establish which category they belong to. Our solution is to sample the inserted node’s state from
the marginal distribution m x of the graph itself, which can be precomputed with no significant
computational overhead (for more information, refer to Appendix[A.2). Once a node is inserted, so
are the edges connecting it to the rest of the graph. Their initial state is computed analogously using
meg.

"From here on, we drop the subscript X for brevity. Equations 6-9 are defined analogously for E.

3.2 Reverse process

The reverse process starts from a randomly initialized graph and gradually removes noise. However,
since our main objective is to perform conditional generation, we also input the conditioning vector
y using classifier-free guidance [Ho and Salimans| [2022]]. We factorize the reverse process as the
product of the individual reverse probabilities of the nodes and edges (assuming mutual independence,
which we discuss in Appendix [B.4):

po(GHG" y) = H pola; e},) H polel; el). (3)

1€0,...,nt—1 4,j€0,...,nt—1

In previous works [Ninniri et al.} [2024], the posterior for the nodes was implemented with the aid
of a neural network py(z’ = x|z’, y) tasked to predict the true atom and bond types given their
noisy categories and the guide. However, this no longer works in our setting, as we cannot predict
nodes that did not exist when ¢ = 0 but were inserted subsequently during the forward process. To
address this issue, we let the main model predict, alongside G, the activation time § of each node
and introduce the following generalized posterior:

pe(wt_II:Bt,y) _ Z Q($t|mt_1)Q(wt_1|w§ = 33)

@ =) po(a’ = zlz',y). ©)

xEX

The activation time of the nodes belonging to the original graph is assumed to be zero. Notice that
when g(z!|x" = x) = 0, then py(x!~|z!, y) is set to zero as well. The edge posterior is computed
analogously. Below, we describe how to extend the base setting to support insertions and deletions.

Deletions. During the reverse process, nodes deleted during the forward process need to be re-
inserted. We do so with an auxiliary neural network g4(G") that predicts, given the latent noisy graph
G, the number of DEL*s to add before passing the model to the main neural network that predicts the
original graph G° given G*. The auxiliary network is trained alongside the main model by masking
out the nodes set to DEL* in G* after computing py(GP°|G*, y), which reduces the training time
significantly. Notice that g is trained only when ¢ ' (t) > 0, since it is not possible to insert nodes
otherwise.

Insertions. Conversely to the deletion case, nodes inserted during the forward process need to be
deleted. To do this, we let the main model predict, alongside G, the activation time § of each node.
Then, at timestep ¢, we remove from the graph the nodes predicted to have been inserted at step ¢.
The activation time of the nodes belonging to the original graph is assumed to be zero.

3.3 Training and sampling

Training. During the learning phase, our goal is to train the model by corrupting each dataset
sample G = (X, EY) into G*' = (X*!, E*"), with t < T, sampled from a uniform distribution,
using the forward process. Having been subject to insertions or deletions, X ** might contain only a
subset of the nodes in X (if we deleted nodes) or include a new set of nodes (the ones that have
been inserted up to step t). We train the main model to predict the values that the nodes X *! and
edges E* had at their respective activation times S* (which may be equal to zero if the element
belongs to the original graph) and denote these prediction as X*0 and E*0. At the same time, we
predict the activation times themselves, which we denote as S*. Finally, we train the auxiliary model
g¢(G*t) to predict the correct amount npg+ of DEL*s that were present in G*!, which we denote as
NipgL~. The final loss is a sum of Cross-Entropy (CE) terms of the targets X **, E*!, §*, and npg -
against their respective predictions:

AxCE(X*0, X*0) + \pCE(E*?, E*®) + A\sCE(S*, S*) + Aoz CE (Tipgr+, pgr+), (10)

where Ax, Ag, Ag, and A\pg. are hyperparameters that control the weight of each term. If we are
training a model to condition on a specific set of properties y, it is also fed at training time an auxiliary
term ¢ which, with a probability equal to 1 — p, p being an hyperparameter, will be equal to y, while
in the remaining cases it will assume the value of a parametrized placeholder y, which is randomly
initialized. This technique is called conditional dropout and is shown to produce better results in
conditional generation [Ho and Salimans| 2022]]. Algorithm[I]in Appendix [A.3]describes the new
training process.

Sampling. During sampling, we start from a random latent G sampled from the marginal distri-
butions on the nodes and edges m x and mg. The size of a sample is also chosen from the marginal
distribution of the nodes in the training set. At each step, we first insert as many DEL* nodes as
predicted by the auxiliary neural network. Then, we feed the current latent G* to the main model to
predict G*C. That is, the values that each node and edge had at their respective activation timesteps,
as well as the activation timesteps themselves. Afterwards, we delete the nodes that are predicted
to have been inserted at timestep ¢. Finally, we use these information to compute Equation [} and
sample from it the node and edge values at step ¢ — 1 to obtain G*~1. We then repeat the operations
using it as the new G, and we keep doing so for a total of T steps until we obtain the final graph G°.
In the case in which we are performing conditional generation on a property ¥, the term pg(z°|x?) is
re-elaborated as follows:

po(z® = zla' y) = po(@® = x[a’,G) + A(ps(z® = z|2’,y) — po(2® = z[z",7)), (1D

where \ is a hyperparameter controlling the influence of the conditioning vector y. Algorithm 2]in
Appendix [A.3]describes the sampling process in detail.

4 Experiments

Here, we detail the experiments to evaluate GRIDDD on different property targeting and optimization
tasks. Our code is based on MiDi [Vignac et al., 2023b|] which, in turn, is based on DiGress. In
all our experiments, we have 7" = 500 diffusion timesteps. The function ¢ / (t) is parameterized
with w = 0.05 and D = % = 250. Similarly to MiDi, we use v = 1 for the node matrices’ noise
schedulers and v = 1.5 for the edge matrices. A x and Ag are set, respectively, to 1 and 2. We set the
hyperparameters pmin and pmax in Equation [2]respectively as 0.2 and 1.

Datasets. Following previous works [Ninniri et al., 2024, |Vignac et al., 2023al], we used QM9
[Ramakrishnan et al., 2014, a dataset of 133k molecules made by up to 9 non-hydrogen atoms, and
ZINC-250k, a collection of 250k drug-like molecules selected from the ZINC dataset [Irwin and
Shoichet, |2005]. On ZINC-250k, the molecules were first preprocessed by removing stereochemistry
information and infrequent non-neutrally-charged atoms, leaving only N+ and O-. These atoms have
been treated as standalone atom types. Dataset splits are described in Appendix

4.1 Property Targeting

We adhere to the setup of |[Ninniri et al.| [2024], where they extract 100 property vectors from the test
set and generate, for each one of them, 10 molecules. Then, they compute the Mean Absolute Error
(MAE) between the target properties ¢ and the estimated properties of the generated molecules y:

100 10

MAE(y, §) = 1505 57 " s — (12)

=1 j=1

On QM9, we targeted the Dipole Moment x4 and the Highest Occupied Molecular Orbital (HOMO)
properties, while on ZINC-250k we targeted the Log-Partition coefficient (LogP), the Quantitative
Estimation of Drug-likeness (QED), and the molecular weight (MW). Since MW strongly correlates
with the number of nodes of the molecular graph, it provides a natural and intuitive testbed to assess
the ability to flexibly adapt the graph size, which is precisely what GRIDDD was designed for. Our
baseline for comparison is discussed in Appendix

4.2 Property Optimization

We use the test suite by [Jin et al.|[[2020]], which consists of three experiments on the ZINC-250k
dataset. The objective is to generate molecules that improve on a certain property while meeting a
similarity constraint. To optimize a molecule, we corrupt it for 100 steps before starting the denoising
process, setting the property vector y as the target value that the optimized molecule should have.
In the LogP experiment, we optimize the 800 molecules with the lowest LogP among those in the
test set. For each of them, we sample 20 candidates starting from different latents and only keep
the one with the largest improvement among the ones with a fingerprint Tanimoto similarity with
the starting molecule equal to or above a threshold 6. We report the average of these improvements

across the 800 molecules, with § € {0.4,0.6}. In the QED experiment, we optimize 800 molecules
from the test set with QED in the range [0.7, 0.8]. For each molecule, we sample 20 candidates from
different latents. We consider the optimization successful if at least one among the candidates has a
QED in the range [0.9, 1.0] and a fingerprint Tanimoto similarity with the starting molecule > 0.4.
We report the success rate across the 800 molecules. In the DRD2 experiment, we optimize for the
biological activity against the dopamine type 2 receptor, selecting 800 molecules from the test set
with DRD2 activity score < 0.05. For each molecule, we sample 20 candidates from different latents.
We consider the optimization successful if at least one among the candidates has a DRD2 score > 0.5
and a fingerprint Tanimoto similarity with the starting molecule > 0.4. We report the success rate
across the 800 molecules. Our baseline for comparison is discussed in Appendix

4.3 Out-of-distribution sampling

To assess whether GRIDDD is able to generate valid molecules outside the training distribution,
we train an instance of DiGress and one of GRIDDD to generate samples unconditionally on QM9.
However, during training, we force GRIDDD to insert up to 14 nodes in the molecular graph, despite
the fact that QM9 features molecules with up to 9 atoms. Then, during generation, we force both
models to generate molecules with up to 15 atoms (that is, above GRIDDD’s training capacity).

Experimental setup. The denoising network shares a similar architecture to FreeGress, and is
described in Appendix For QM9, we use the same hyperparameters employed by the authors.
The auxiliary neural network used to predict the number of DEL*s also uses the exact same setup,
with the exception that it only uses one layer. For ZINC-250k, we also use the same hyperparameters
as FreeGress except for the number of layers, which we set to 10 instead of the original 12 to use
approximately the same number of parameters. The size of the linear layer used to predict the
activation time is 256. In QM9, we set the guidance scale to A = 3, while in ZINC-250k we set
A = 2. These values have been chosen since they were the ones offering the best results for FreeGress.
All experiments have been performed on an nVidia A100 GPU with 80 GBs of VRAM (two on
ZINC-250k).

5 Results

Here, we detail the experimental results obtained by GRIDDD. A visual collection of samples
obtained from the model is available in Appendix

5.1 Property targeting

QMY9. Results are displayed in Table[I] As can be seen, GRIDDD stably achieves state-of-the-art
performance. When conditioning on f, it improves MAE by 14% at the expense of a slightly lower
validity. Conversely, when conditioning on HOMO, the model achieves a better validity at the expense
of a slightly higher MAE. For ablation purposes, we also include an unconditional model in the
comparison, which is unable to optimize the properties to a satisfactory degree. A discussion of the
failure cases in QM9 is presented in Appendix [D.4]

Table 1: Results of property targeting on QM9.

M HOMO
MAE | Val. t MAE | Val. t
Unconditional 1.68 +0.15 91.5% 095+0.10 915%

Method

DiGress 0.80£0.07 825% 0.61+007 912%
FreeGress 0744008 83.7% 032+0.04 90.1%
GRIDDD 0.66 007 79.0% 037£0.07 94%

ZINC-250k. Results are shown in Table[2] On ZINC-250k, GRIDDD once again achieves compa-
rable or better MAE, while improving validity rates in two cases out of three. Of particular interest is
the MW experiment, as this property strongly correlates with the graph size. Note that FreeGress’

results have been obtained using an auxiliary neural network to predict the optimal number of atoms
the molecule should have given the target MW, information which is used to set the graph’s size
before starting the denoising process. GRIDDD is capable of halving FreeGress” MAE without any
prior knowledge of the graph size distribution. In summary, GRIDDD shows an improved capacity
in generating valid molecules without sacrificing the MAE. What is truly relevant in these results is
the fact that GRIDDD is capable of obtaining them despite being trained on a more difficult task,
showing that our solution has a smoother tradeoff between validity and accuracy.

Table 2: Results of property targeting on the ZINC-250k dataset.
LogP QED MW
MAE | Val. t MAE | Val. 1 MAE | Val. t
Unconditional 1.52+0.12 86.1% 0.15+001 86.1% 74.16+6.71 86.1%

Method

DiGress 074 £0.08 746% 0.15+001 851% 2092+290 404%
FreeGress 017 £0.01 849% 0.04+001 849% 896+193 79.7%
GRIDDD 0.19+0.02 879% 0.04+000 872% 4.89+057 84.2%

5.2 Out-of-distribution sampling

Results are displayed in Figure[3] While both models perform similarly with up to 12 atoms, the
validity rates of DiGress steeply decrease on larger graph sizes. Notably, GRIDDD still generates
35% of valid molecules with 15 nodes, despite being trained on latents with up to 14 nodes. This
shows how our model is fairly usable in out-of-distribution sampling, as it is able to learn graph sizes

that do not appear in the training dataset.

[I
100 ‘\\ ’ —o— DIGRESS
50 |- \‘\“_\ﬂ .
| | | | |

10 11 12 13 14 15
Molecule size (atoms)

GRID]SD \)

Validity (%)
/

Figure 3: Validity results of out-of-distribution sampling on QM9.

5.3 Property optimization

Results are summarized in Table[3] Regarding the LogP property optimization, GRIDDD outperforms
all competitors in both settings in terms of improvement. In particular, when the similarity threshold
is 0.6, it achieves an average improvement almost twice as high as the second best. In the other two
tasks, GRIDDD scores remarkably better, especially in the QED task where it improves 5 times the
success rates of GCPN. An additional comparison with the method by [Ketata et al.| [2025]] (under a
slightly different experimental setup) is provided in Appendix showing that GRIDDD performs
comparably or better than methods that use 3D information to optimize molecules.

5.4 Computational considerations

The insertions and deletions performed by GRIDDD inevitably introduce computational overhead
during training, leading to slightly increased training durations compared to methods that do not
employ these operations. In particular, our analysis indicates that it is 30% slower than FreeGress
(see Appendix [C.T|for an extended discussion). However, its flexibility in adapting the number of
denoising steps to the task makes it generally faster to sample from (as detailed in Appendix[C.2).

Ablation. To test the effective influence of insert and delete operations over the optimization
process, we performed the same experiments with GRIDDD but disabling insertions and deletions.

Table 3: Benchmark on graph property optimization.
LogP (sim > 0.4) LogP (sim > 0.6) QED (sim > 0.4) DRD2 (sim > 0.4)

Method

Improv. + Div.t Improv.t Div.t Suce.t Div.t Succ.t Div.t
JT-VAE 1.03 £ 1.39 - 0.28 +0.79 - 8.8 % - 34 % -
CG-VAE 0.61 +1.09 - 0.25 £0.74 - 4.8 % - - -
GCPN 2.49 +1.30 - 0.79 + 0.63 - 94 % 0.216 44 % 0.152

GRIDDD 270 £094 0482 133+0.61 0280 451% 0.283 5.0 % 0.121

The results show that while the success rate remains relatively unchanged in the LogP and DRD2
experiments, it significantly drops to 33.8% when optimizing QED, likely because the QED score is
a function of the molecular weight (and thus, it correlates with the number of atoms). We conclude
that, similarly to targeting MW, controlling the graph size substantially increases success rates.

A naive form of insertion and deletion operations can be achieved implicitly on any graph DDPM
by working with a large graph size (even beyond the largest in the training data), treating excess
nodes/edges as padding nodes marked by a special PAD class which allows their removal at the end of
the denoising process. Clearly, this method is slower to train and sample from, as it always works
with maximally sized graphs. To check that this approach is also less accurate, we compared two
DiGress variants that implement node and edge padding against GRIDDD: the first only assigns
the PAD category to padding nodes, while the second also assigns it to their associated edges. All
models were trained on the QM9 dataset for 250 epochs, after which we sampled 100 molecules each
without conditioning. The results are displayed in Table[d] As it is possible to see, while the baseline
generates 3% more valid molecules than GRIDDD, they severely underperform in every other metric.

Table 4: Comparison of GrIDDD with DiGress-based padding variants that perform implicit in-
sertions and deletions. Val: validity, Avg NC: average number of connected components, Max
NC: maximum number of connected components, NSC: number of graphs sampled with a single
connected component, XCE (ECE): validation cross-entropy over nodes (edges).

Model Valt AvgNC| MaxNC| NSCt XCE| ECE|
GrIDDD 0.97 1 1 100 0.44 0.32
Nodes PAD 1 1.56 8 69 0.47 0.37
All PAD 1 1.2 4 84 0.48 0.38

In Appendix [D.2] we conduct a sensitivity analysis on some critical hyperparameters of GRIDDD,
showing that results are robust to their choices.

6 Conclusions

We introduced GRIDDD, a discrete DDPM which supports the insertion and deletion of atoms
during the denoising process. This addresses one of the major limitations of graph DDPMs, which
cannot change the graph size throughout the generative process. In future studies, we aim to study a
simplified approach that does not need an auxiliary network to predict when to insert a node during
the denoising process, and whether the distribution of the inserted nodes can be learned rather than
employing predefined heuristics. Lastly, since the methodology we propose is quite general, we
foresee its applications to domains such as, e.g., vector floor-plan generation [Shabani et al.| [2023]).

Limitations. During generation, we observed that the two neural networks composing GRIDDD
may occasionally conflict, simultaneously performing an insertion and a deletion at the same timestep,
which is theoretically illegal in our framework. GRIDDD also tends to produce more split molecules
compared to FreeGress and DiGress. This is likely because nodes inserted late in the denoising
process are challenging to connect before denoising concludes. Incorporating additional input
features, such as the current number of connected components, could potentially mitigate this issue.

10

Acknowledgments

This work has been partially supported by EU-EIC EMERGE (Grant No. 101070918) and PNRR,
PE00000013, “FAIR - Future Artificial Intelligence Research”, Spoke 1, funded by European
Commission under NextGeneration EU programme (CUP: B53D2302625000).

References

Andrew Campbell, William Harvey, Christian Weilbach, Valentin De Bortoli, Tom Rainforth, and
Arnaud Doucet. Trans-dimensional generative modeling via jump diffusion models, 2023. URL
https://arxiv.org/abs/2305.16261.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Lio, and Petar Velickovié. Principal
neighbourhood aggregation for graph nets. In Advances in Neural Information Processing Systems,
volume 33, pages 13260-13271. Curran Associates, Inc., 2020.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Infor-
mation Processing Systems, 2021. URL https://openreview.net/forum?id=AAWuCvzaVt,

Faezeh Faez, Yassaman Ommi, Mahdieh Soleymani Baghshah, and Hamid R. Rabiee. Deep graph
generators: A survey. [EEE Access, 9:106675-106702, 2021. doi: 10.1109/ACCESS.2021.
3098417.

Jiazhen He, Huifang You, Emil Sandstrom, Eva Nittinger, Esben Jannik Bjerrum, Christian
Tyrchan, Werngard Czechtizky, and Ola Engkvist. Molecular optimization by capturing
chemist’s intuition using deep neural networks. J. Cheminformatics, 13(1):26, 2021. doi:
10.1186/S13321-021-00497-0. URL https://doi.org/10.1186/s13321-021-00497-0.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop
DGMs Applications, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems, volume 33, pages 6840—6851. Curran Associates, Inc.,
2020.

Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
for molecule generation in 3D. In Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pages 8867-8887. PMLR,
17-23 Jul 2022.

John J. Irwin and Brian K. Shoichet. Zinc - a free database of commercially available compounds
for virtual screening. Journal of Chemical Information and Modeling, 45(1):177-182, 2005. doi:
10.1021/ci049714+. URL https://doi.org/10.1021/ci049714. PMID: 15667143.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 2323-2332. PMLR,
10-15 Jul 2018a.

Wengong Jin, Kevin Yang, Regina Barzilay, et al. Learning multimodal graph-to-graph translation
for molecular optimization. In ICLR, 2018b.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular graphs
using structural motifs. In Proceedings of the 37th International Conference on Machine Learning,
ICML20. JMLR.org, 2020.

Daniel D. Johnson, Jacob Austin, Rianne van den Berg, and Daniel Tarlow. Beyond in-place
corruption: Insertion and deletion in denoising probabilistic models. In ICML Workshop on
Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models, 2021. URL
https://openreview.net/forum?id=cAsVBUelRnj.

11

https://arxiv.org/abs/2305.16261
https://openreview.net/forum?id=AAWuCvzaVt
https://doi.org/10.1186/s13321-021-00497-0
https://doi.org/10.1021/ci049714
https://openreview.net/forum?id=cAsVBUe1Rnj

Mohamed Amine Ketata, Nicholas Gao, Johanna Sommer, Tom Wollschlédger, and Stephan Giin-
nemann. Lift your molecules: Molecular graph generation in latent euclidean space. In The
Thirteenth International Conference on Learning Representations, 2025.

Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B. Aditya Prakash, and Chao Zhang.
Autoregressive diffusion model for graph generation. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research, pages 17391-17408. PMLR, 2023. URL
https://proceedings.mlr.press/v202/kong23b.htmll

Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L. Gaunt. Constrained graph
variational autoencoders for molecule design. In Neural Information Processing Systems, 2018.
URL https://api.semanticscholar.org/CorpusID:43924638.

Matteo Ninniri, Marco Podda, and Davide Bacciu. Classifier-free graph diffusion for molecular
property targeting. In Albert Bifet, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi,
and Indré Zliobaite, editors, Machine Learning and Knowledge Discovery in Databases. Research
Track, pages 318-335, Cham, 2024. Springer Nature Switzerland. ISBN 978-3-031-70359-1.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. Proceedings of the AAAI Conference on Artificial
Intelligence, 32(1), 2018. doi: 10.1609/aaai.v32i1.11671.

Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and O. Anatole von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific Data, 1(1), August 2014.
ISSN 2052-4463. doi: 10.1038/sdata.2014.22.

Mohammad Amin Shabani, Sepidehsadat Hosseini, and Yasutaka Furukawa. Housediffusion: Vector
floorplan generation via a diffusion model with discrete and continuous denoising. In 2023
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), page 5466-5475.
IEEE, June 2023. doi: 10.1109/cvpr52729.2023.00529. URL http://dx.doi.org/10.1109/
CVPR52729.2023.00529.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. In The Eleventh International Confer-
ence on Learning Representations, 2023a.

Clement Vignac, Nagham Osman, Laura Toni, and Pascal Frossard. Midi: Mixed graph and 3d
denoising diffusion for molecule generation. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 560-576. Springer, 2023b.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional
policy network for goal-directed molecular graph generation. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc., 2018a.

Jiaxuan You, Rex Ying, Xiang Ren, et al. GraphRNN: Generating realistic graphs with deep auto-
regressive models. In Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 5708-5717. PMLR, 10-15 Jul
2018b.

Yong Zhao, Edirisuriya M. Dilanga Siriwardane, Zhenyao Wu, Nihang Fu, Mohammed Al-Fahdi,
Ming Hu, and Jianjun Hu. Physics guided deep learning for generative design of crystal materials
with symmetry constraints. npj Computational Materials, 9(1), March 2023. ISSN 2057-3960. doi:
10.1038/s41524-023-00987-9. URL http://dx.doi.org/10.1038/s41524-023-00987-9.

Yangiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and Shu Wu. A survey
on deep graph generation: Methods and applications. In The First Learning on Graphs Conference,
2022. URL https://openreview.net/forum?id=Im8G9R1boQi,

12

https://proceedings.mlr.press/v202/kong23b.html
https://api.semanticscholar.org/CorpusID:43924638
http://dx.doi.org/10.1109/CVPR52729.2023.00529
http://dx.doi.org/10.1109/CVPR52729.2023.00529
http://dx.doi.org/10.1038/s41524-023-00987-9
https://openreview.net/forum?id=Im8G9R1boQi

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have introduced a new model called GRIDDD, which can perform insert
and delete operations. The Results section shows how it can match and even surpass the
baseline used despite being trained on an arguably more difficult problem.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have discussed the limitations of our model in the Conclusions. We have
been as transparent as possible.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

13

Answer: [NA]
Justification: Our paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have been as complete as possible. Our experiments employ the same
architecture of previously published models with the same hyperparameters (albeit with
minor modifications discussed in the paper). Regardless, we have discussed the architecture
in detail in the supplemental material.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

14

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include the source code, as well as how to set up a Conda environment to
run it, in the supplemental material. The dataset is downloaded automatically by the source
code. We will make the source code publicly available in the case of an acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: we have discussed the dataset splits in the supplemental material. As stated
in the main paper, most of our hyperparameters are the same used by FreeGress, and we
have only listed the differences with our solution. Our source code contains the various
configurations files in .yaml format.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We reported the same metrics used by the baseline.
Guidelines:

* The answer NA means that the paper does not include experiments.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discussed the type of GPU employed. In the appendix, we discussed the
run time compared to the baseline. The runtime is similar for all experiments, so we did not
find it necessary to report every single run time.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We believe our work is conforming to the Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We do not believe that our work will have any societal impact.

16

https://neurips.cc/public/EthicsGuidelines

11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have credited the paper on which we based our own code. We have cited
both ZINC-250k and QM9. We are not aware of any license or terms of use concerning
these assets.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

17

13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We did not release any new asset.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing and we did not perform research
with human subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing and we did not perform research
with human subjects.

Guidelines:

18

paperswithcode.com/datasets

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Additional details on the methodology

A.1 Delete scheduler and insert/delete timestep distributions

We show a possible realization of the delete scheduler {(¢) and the insert/delete timestep distribution

¢'(t)in Figure

1.0 0.010 1
0.8 1 0.008 1
0.6 1 0.006 -
N 3
0.4 A 0.004 1
021 0.002 1
0.0 0.000 1 : : . . . :
(I) 1(‘)0 260 3('.‘)0 4CI)0 560 o 100 200 ¢ 300 400 500
t
Loy 8
(@) C(t)) ¢ (1) = =5

Figure 4: The functions ¢(t) and its derivative ¢ (¢) for w = 0.05 and T' = 500. 1 — ((t) is
effectively the “delete scheduler”, and represents the probability that a node selected for deletion has
already been deleted at timestep ¢. ¢ l (t) represents instead the probability that a node chosen for
deletion will switch to category DEL* exactly at timestep t.

A.2 Distribution of the labels of the inserted nodes and edges

During the forward process, GRIDDD assigns labels to the newly inserted nodes and edges using a
marginal distribution of these labels computed on the individual training sample. Such distributions
can be computed just once before starting the training process and can also be saved for multiple
training sessions. We have also tried different distributions during our preliminary studies, such
as always inserting the least frequent node/edge class, as well as sampling them from a uniform
probability, but the sample’s marginal distribution gave us better results.

A.3 Training and sampling algorithms

Here, we provide the pseudocode describing the procedures to train (Algorithm[I)) and sample from
(Algorithm[2) GRIDDD.

B Additional experimental details

B.1 Dataset splits

QM9. On QM?Y, the training set is made of the first 100000 samples in the dataset. The test set is
made of 10% of the overall data, and the remaining data is used to make the validation set.

ZINC-250k. The training set uses the first 80% of the data. The remainder is equally split between
the validation set and the test set.

B.2 Neural architecture

Both the main model and the auxiliary model employed to predict the number of DELs are based on
FreeGress’ architecture. The model is composed of a stack of Graph Transformer layers. It receives
as input the node features matrix X, edge features matrix E, and a vector w encoding the timestep ¢
and optional extra features. These inputs are augmented with conditioning information y (denoted
with the + superscript in Figure [Sa)) and processed through the transformer stack.

20

Algorithm 1 Pseudocode of the training algorithm

Require: G = {G,}Y , dataset of N graphs

Require: 7', the number of denoising timesteps,

Require: py, the main model,

Require: g4, the model tasked to predict the number of DEL*s in G*,

Require: ¢ ' (t), a discrete probability distribution function defined on T,

Require: h(n), which given a graph size n returns a probability distribution A, on the number of
nodes.
1: for each graph G, = (X;, E;) € G: do
2: Tlo = ‘X1|
3 n? ~ hpo(n)
4: t ~Uniform(1,T)
5: mx,, mg, = marginal distribution computed on the node and edges of G;.
6: S* = {0,...,0} vector storing the insertion times of the nodes
T XLE ~ (XD QY (BD Q)
8: AT =nT —n0
9: Sample U = {u;} timesteps, with j € {0...|AT| — 1}, where u; ~ ¢’
10: Remove from U the elements greater than ¢
11: for each u; € U do
12: if AT > 0 then > Insert
13: Sample a new node x ~ m x, with insertion time u;, and add it to X;
14: Sample ' from the distribution w/azéluj and add it to X!
15: Sample from mg,, for each node already in the graph, an inward and
outward edge with the newly added x;
16: Sample the edges e’s final state e’ from e/@;‘w and add them to E;*
17: Append u; at the end of §*
18: else if AT < 0 then > Delete
19: Sample one random node « among the ones in G; that are not set to state DEL
or DEL*
20: if u; = ¢ then
21: x = DEL*
22: Set all incoming and outgoing edges of x as DEL*
23: else
24: Remove z from X}
25: Remove all incoming and outgoing edges of x from E;}*
26: Remove the entry in S™* associated to the node
27: end if
28: end if
29: end for
3. G = (X* E*)
31: {(X*0,E0), 8%} = py(G*)
32: loss; = AxCE(X*0, X*0) 4+ A\pCE(E*?, E**) + A¢CE(5*0, §*0)
33: nper+ = number of nodes set to DEL* in G*?
34: Remove all nodes set to DEL* in G** as well as the associated edges
35: losst = CE(g9y(G™), npgL+)
36: end for

21

Algorithm 2 Pseudocode of the denoising algorithm

Require: T, the number of denoising timesteps,

Require: n”, the number of nodes in the noisy graph G7,

Require: pg, the main model,

Require: g4, the model tasked to predict the number of DEL*s in G?,

Require: m x and m g, the dataset’s marginal distributions on the nodes and the edges;
1: Sample GT = (X7, ET) with n” nodes from an the marginal distributions m x and mg;
2: for each timestep t € [T, ..., 1]: do
3: Use g4(G") to predict the number of DEL* entries to insert in the graph, and insert them.

4: Set all the edges connecting the newly inserted nodes to the rest of the graph as DEL*.
5: Use py(G") to predict S*, the insertion times for each node in the graph, and G*°.
6: Remove the nodes x; such that S; = ¢, as well as their edges.
7: Use S* and G** to sample, for each node «! and edge e}, in G*, their type at step ¢ — 1:
. t—1 -1ty _ a(@lle Da(@ Mali=a) oS ot
8 x ~pe(Ei) =20, P peo(xst = x|xh).
_ - (el lel atel ey " =e) man(si,s;)
9: e?.lm e?.let, = ae€ijlei; vJ AN L Bt :eef,.
1) p@(1) | Zj) Zees q(egj‘elr;am(sl,sj):e) 9(1] | L])
) -1 _ t—1 t—1
10: G =({z; boAe)
11: end for

Each Graph Transformer layer (Figure [5b) follows the standard architecture: self-attention, dropout,
residual connection, layer normalization, and a feedforward block. The self-attention mechanism
(Figure applies scaled dot-product attention to the augmented node features X . The resulting
attention weights are modulated by the edge tensor E via a FiLM layer [Perez et al.,2018]], normalized
with softmax, and used to re-weight X . The output is flattened and combined with w through another
FiLM layer before linear projection to prediction logits.

Separately, X and E are passed through independent PNA layers [Corso et al., [2020], and their
outputs are summed with a linearly projected u to form the final graph representation. In GRIDDD,
the final output u' s employed by our auxiliary model to predict the amount of DEL* nodes that
must be reintroduced at the current timestep. The final Graph Transformer Layer’s output designed
to predict the matrix X "is passed to two Linear layers, instead of just one. The first is used, just
like before, to predict the final node matrix. The second one is used instead to predict the activation
timestep s of the various nodes.

B.3 Baselines

For the task of property targeting, discussed in Section[4.1] we compared our model against DiGress
[Vignac et al.,|2023al], a Graph Diffusion Model capable of performing conditional graph generation
through a classifier-based guidance, and FreeGress [Ninniri et al., [2024]], a Graph Diffusion Model
which employs a classifier-free guidance system instead. For the task of property optimization,
discussed in Section [4.2] we employ a baseline of three models. In particular, we employ the
Junction-Tree Variational Autoencoder (JT-VAE, [Jin et al.| [2018al]), an Autoencoder that works
on the molecular sub-structural level rather than the atomic level, the Graph Convolutional Policy
Network (GCPN, [You et al.|[2018a]), which employs Reinforcement Learning to generate molecules
atom-by-atom, and the Constrained Graph Variational Autoencoders (CG-VAE, [Liu et al.|[2018]), a
graph-based Autoencoder whose peculiarity is that it applies chemical validity constraints during the
generative process to increase its performance in molecular tasks.

B.4 Considerations on the independence between nodes and edges in the forward process

When a node is switched to DEL*, so are the edges associated with it. This effectively creates
a dependence between the two, while standard Diffusion Models assume a mutual independence
between them. This is similar to what is done with Masked Diffusion [Kong et al., |2023]], where
the edges associated with masked nodes are masked as well. In our case, what we effectively do
is replacing the forward process p(e§j|e§j_1) with p(e§j|e§j_17 x}, xt), and p(efj_l\e’? el.) with

iJ2 €ij
p(efj_1 et s e?j, x!, :1:3) However, it should be kept in mind how the latter equation is, in all practical

22

+ atl
ki

@

Layer Norm

FiLM + Linear FiLM + Linear

(]
f

Linear

Lmear Lmear >+ Flat. heads @ Flat. heads ﬁ ’—> j
T i ' E PNA| PNA
Graph Transformer Layer 1Lk, 5 Doy | H Lin.
f ! -
Lin. 4 ReLU + Dropout Softmax
1 — i
Graph Transformer Layer Layer Norm FiLM
f f f - |
Linear Linear Linear 4\ : §
i i i Dropout i Outer prod. -+ scale
Concat Concat Concat : /r q\
() :
Self-Attention Linear Linear Linear
(b)

Figure 5: (a) High-level architecture of GRIDDD. (b) Detail of the graph transformer layer. V'
represents the triple (X, E, u). (c) The self attention-layer within the graph transformer layer. In
the pictures, orange boxes indicate inputs, blue boxes indicate outputs, and green boxes indicate
layers/operations.

scenarios, identical to p(|el ;€ e), as the only situations where ! /i could influence the value of

ef’l is when the former is labeled as DEL* and the latter to DEL, in which case eﬁ;l should switch to
DEL* as well. However, this scenario is not possible in practice, as neither the nodes nor the edges
can appear explicitly with label DEL during the reverse process. We leave to future research the study
of independent edge processes that still allow for the deletion of the associated nodes.

C Additional computational considerations

C.1 Runtime

On average, one training epoch of GRIDDD takes 309.1 seconds on two nVidia A100 GPUs.
FreeGress, on the same problem (hence, without insert and delete operations), takes 243 seconds.
This means that GRIDDD is approximately 27% slower than its counterpart. This is similar to the
33.3% increase we have found on QM9, where GRIDDD takes 18 seconds on average to complete a
training epoch on a single A100, while FreeGress takes 13.5.

C.2 Sampling speed

Interestingly enough, GRIDDD can be faster at sampling than standard Diffusion Models. When
tasked with generating a variegated batch of graphs with different sizes, a standard Diffusion Model
would first sample the graph sizes from the dataset’s node distribution. This means that, in practice,
the sizes of the node and edge matrices will have one or more dimensions equal to the highest
graph size sampled. In turn, this means that every graph generated will require a processing power
proportional to such size.

On the other hand, GRIDDD is capable of generating a graph of any shape, even when starting from
a different size. In this scenario, one could start the sampling process with very small latents (even
zero nodes). Since the tensors representing the sample batch would be very small, the computational
power required to process these tensors will be small as well. This means that the early phases of
the sampling process, before most nodes are inserted, will likely be faster than standard diffusion
(although this is highly dependent on ((t)).

To test this hypothesis, we have sampled 128 molecules on ZINC-250K, conditioning on the LogP
value, with FreeGress and GRIDDD. For the latter, we have performed three experiments. In the first,

23

GRIDDD starts from latents with a size of two nodes. In the second, we have used an initial size of
24 (the most frequent graph size in the training set), and then we have sampled the initial graph size
using the training set’s node distribution, as is done in FreeGress. The results, summarized in Table@
show how GRIDDD is capable of performing as well as FreeGress while halving the sampling time
in the best case scenario, and even in the worst case scenario it requires as little as five percent more
time to perform as well as FreeGress.

Table 5: Sampling speed comparison between GrIDDD and FreeGress when generating 128 samples
on ZINC-250k conditioned on the LogP value, using different initial latent sizes.

Model Validity MAE | Sampling time |
FreeGress 89.8% 0.31 152.05s
GRIDDD (initial size=2) 91.4% 0.23 68.09s
GRIDDD (initial size=24) 90.6% 0.31 120.19s
GRIDDD (initial size ~ p(n)) 88.2% 0.26 159.85s

D Additional results

D.1 Comparison with EDM-SyCO

We compared to the 3D Diffusion Model by Ketata et al.|[2025] called EDM-SyCO, since it performs
property optimization similarly to GRIDDD. Notably, EDM-SyCO also inputs 3D coordinates to
the diffusion process. To ensure a fair comparison, we slightly adapted our original setup to the less
restrictive one used in the related paper. In particular, they attempt to optimize each molecule 100
times, rather than 20 as in our previous experiment. Then, among the ones within the similarity
threshold, they select the 10 ones with the best improvement, duplicate each one of them ten times,
and run the optimization process a second time. The process is repeated four times (for a total of
400 optimization rounds), after which the molecule with the best improvement within the similarity
threshold is selected. All the successful molecules obtained in the process (that is, within the
similarity threshold) are considered when computing the diversity score. In cases where the number
of successful experiments is less than two, the diversity score is set to zero. Results of the comparison
are reported in Table[6] showing competitive or superior performances by GRIDDD, even though
it does not benefit from using 3D information as input. We have compared our results against
EDM-SyCo on property targeting as well. Specifically, we have trained a model on ZINC-250K with
1000 denoising timesteps (as is done by our baseline) that is conditioned on the molecular weight.
We have obtained a MAE of 2.13 + 0.19 and a validity of 86.2%, while EDM-SyCo records a MAE
of 3.86 4 0.08 and a validity of 88%.

Table 6: Comparison with EDM-SyCo on property optimization.

LogP (sim > 0.4) LogP (sim > 0.6) QED (sim > 0.4) DRD2 (sim > 0.4)
Improv. T Div.t Improv. T Div.t Succ.t Div.t Suce. Div.t
EDM-SyCo 3.11+127 0555 1514+1.10 0360 464% 0.163 273% 0.083

Method

GRIDDD 327+091 0511 1.594+054 0359 641% 0269 197 % 0.058

D.2 Hyperparameter sensitivity analysis

We show in Table [/| an analysis of GRIDDD’s sensitivity of the hyperparameters regulating the
scheduler (D and w) and the node counts distribution (pmi, and pmax). One interesting insight that
can be gathered from the table is the fact that the number of split molecules generated significantly
increases with smaller Ds. From a practical perspective, small values for this hyperparameter imply
that, during the denoising process, the model can insert nodes relatively late during the reverse
process. We conjecture that split molecules are mostly caused by nodes inserted too late during such
a process, as they cannot be re-attached in time to the main graph since the noise scheduler does
not allow for too many changes in the graph’s structure during the last phases of the process. We

24

have also noted that this phenomenon is sensibly reduced when GRIDDD is given in input, as extra
features, different powers of the adjacency matrix.

Table 7: Study of GrIDDD’s sensitivity to hyperparameter changes when sampling 100 molecules
after training on the QM9 dataset. The hyperparameters tested are the delete scheduler’s parameters
D, w, and the node count distribution’s parameters Py, and pm.x. Val: validity, Avg NC: average
number of connected components, Max NC: maximum number of connected components, NSC:
number of graphs sampled with a single connected component.

D Valt AvgNC] MaxNC| NSCt w Val? AvgNC| MaxNC| NSC+?

025 093 1.15 4 88 0.025 0.94 1 1 100
0.50 0.93 1.02 2 98 0.050 0.93 1.02 2 98
0.75 0.95 1.01 2 99 0.075 0.92 1.03 2 97
Pmin ValT AvgNC| MaxNC]| NSC*1 pmax ValT AvgNC| MaxNC] NSC1
0.2 0.93 1.02 2 98 0.5 0.86 1.02 2 98
04 0.91 1 1 100 0.1 0.93 1.02 2 98
0.6 0.96 1.02 3 99 0.01 0.89 1.01 2 99
0.8 0.94 1.02 2 98 0.001 0.94 1.02 2 98

D.3 Generated molecules

Figure[6]shows 6 (3 for the QED task, 3 for the LogP task) randomly selected molecules optimized by
GRIDDD on the ZINC-250k dataset. For each molecule, we show 4 different successful optimizations.
Figure|/|shows 30 random molecules generated without conditioning by GRIDDD on QM9.

D.4 Failure Analysis

While analyzing the situations where GRIDDD fails in conditional generation the most, we have
noticed how, unlike FreeGress, the experiments targeting p tend to fail most frequently when targeting
values close to zero. The few molecules generated tend to be small, split graphs. We have investigated
the phenomenon and found out that the molecule with SMILES string CC (ethane) is known to have
a dipole moment equal to zero. We believe that it is likely that GRIDDD tries to generate ethane
or similar small molecules to minimize p, with higher failure rates than usual since these small
molecules are under-represented in the dataset. Remarkably, DiGress and FreeGress are unable to
pursue this minimization, since they almost inevitably start the reverse process from latents with
a larger graph size and cannot adapt it to produce smaller molecules later on. Overall, this is an
interesting behavior which shows that GRIDDD can successfully learn the properties of molecules
with infrequent sizes as well.

25

T

p

Original LogP: -3.3677

Original LogP: -3.3100

Original LogP: -3.2214

Qi

Original QED: 0.7246

Qwﬁ%

Original QED: 0.7401

i

p

LogP: -1.4483
Similarity: 0.6393

LogP: -2.1297
Similarity: 0.8000

-

LogP: -1.9749
Similarity: 0.6364

P

QED: 0.9044
Similarity: 0.5195

7

QED: 0.9407
Similarity: 0.5161

=il

LogP: -1.9506
Similarity: 0.6949

o W,
"\‘\ W,] N
)

LogP: -1.8929
Similarity: 0.6667

LogP: -1.9749
Similarity: 0.6087

%, 30

QED: 0.9158
Similarity: 0.4286

<>~m%

QED: 0.9056
Similarity: 0.6102

Oy 7 oOra G

Original QED: 0.7351

QED: 0.9106
Similarity: 0.4861

QED: 0.9068
Similarity: 0.4675

v

s

LogP: -1.9536
Similarity: 0.6032

W

LogP: -1.9788
Similarity: 0.7167

LogP: -1.8188
Similarity: 0.6087

QED: 0.9027
Similarity: 0.4304

@\ﬁ

QED: 0.9117
Similarity: 0.4754

oo

QED: 0.9106
Similarity: 0.4861

\

s

LogP: -1.6673
Similarity: 0.6250

"\Vi W,

LogP: -2.0308
Similarity: 0.6875

LogP: -1.9749
Similarity: 0.6087

wa

QED: 0.9054
Similarity: 0.4051

O R

QED: 0.9200
Similarity: 0.5323

a)
O,
la®)

QED: 0.9172
Similarity: 0.6935

Figure 6: Randomly selected optimization experiments on ZINC-250k. The first element in each row
is the original molecule, while the other four are results of different optimization experiments. We
report, for each experiment, the original value and the resulting one.

26

O/\/Qo OQ@;}\
L e
HO, . . / N

i

S
0] NH,

N\ =

N
(0]
OH

HINM HZN/%_N

HO HO

Figure 7: 30 non-curated samples generated without conditioning on QM9.

	Introduction
	Background and related works
	Graph Generative Models for Property Targeting and Optimization
	Discrete Denoising Diffusion Probabilistic Models
	Insert and delete operations for Diffusion Models

	Graph Insert-Delete Discrete Diffusion
	Forward process
	Reverse process
	Training and sampling

	Experiments
	Property Targeting
	Property Optimization
	Out-of-distribution sampling

	Results
	Property targeting
	Out-of-distribution sampling
	Property optimization
	Computational considerations

	Conclusions
	Additional details on the methodology
	Delete scheduler and insert/delete timestep distributions
	Distribution of the labels of the inserted nodes and edges
	Training and sampling algorithms

	Additional experimental details
	Dataset splits
	Neural architecture
	Baselines
	Considerations on the independence between nodes and edges in the forward process

	Additional computational considerations
	Runtime
	Sampling speed

	Additional results
	Comparison with EDM-SyCO
	Hyperparameter sensitivity analysis
	Generated molecules
	Failure Analysis

