
Under review as submission to TMLR

Large Action Models: From Inception to Implementation

Anonymous authors
Paper under double-blind review

Abstract

As AI continues to advance, there is a growing demand for systems that go beyond language-
based assistance and move toward intelligent agents capable of performing real-world actions.
This evolution requires the transition from traditional Large Language Models (LLMs),
which excel at generating textual responses, to Large Action Models (LAMs), designed for
action generation and execution within dynamic environments. Enabled by agent systems,
LAMs hold the potential to transform AI from passive language understanding to active
task completion, marking a significant milestone in the progression toward artificial general
intelligence.
In this paper, we present a comprehensive framework for developing LAMs, offering a
systematic approach to their creation, from inception to deployment. We begin with an
overview of LAMs, highlighting their unique characteristics and delineating their differences
from LLMs. Using a Windows OS-based agent as a case study, we provide a detailed,
step-by-step guide on the key stages of LAM development, including data collection, model
training, environment integration, grounding, and evaluation. This generalizable workflow
can serve as a blueprint for creating functional LAMs in various application domains. We
conclude by identifying the current limitations of LAMs and discussing directions for future
research and industrial deployment, emphasizing the challenges and opportunities that lie
ahead in realizing the full potential of LAMs in real-world applications.

1 Introduction

In recent years, large language models (LLMs) have demonstrated remarkable advancements across a range of
natural language processing (NLP) tasks (Wei et al., 2021; Brown, 2020; Yang et al., 2023b). These models,
often incorporating multiple modalities such as language, vision, and speech, have become foundational in
numerous AI-driven applications (Thirunavukarasu et al., 2023; Rubenstein et al., 2023; Wang et al., 2024c;
Jiang et al., 2024). Their success is evident in systems like question answering in conversational agents (Ma
et al., 2023), code generation in GitHub Copilot (Yetiştiren et al., 2023), and improved search capabilities
in platforms like Bing (Thomas et al., 2024). The key strengths of LLMs—namely their vast knowledge,
ability to support multimodal inputs, and capacity for human-like responses—have propelled them to the
forefront of AI research (Minaee et al., 2024). Their capability to generalize via zero-shot learning has further
expanded the horizons of what AI systems can achieve, making significant contributions to the productivity
of both everyday tasks and specialized professional activities. These innovations mark an important milestone
on the path toward artificial general intelligence (AGI) (Feng et al.).

While LLMs excel at generating text, they remain limited in their ability to interact with or manipulate the
real world (Wang et al., 2024b). Many real-world tasks require actions beyond language—such as automating
software operations or controlling physical devices (Gao et al., 2024). Bridging this gap demands models that
not only understand language but can act on it in dynamic environments.

This transition from understanding to execution is non-trivial. Real-world tasks often require multi-step
planning, precise action sequencing, and robust adaptation—all areas where current LLMs fall short (Yao
et al., 2020; Kalakonda et al., 2023; Valmeekam et al., 2022). LLMs are typically optimized for general-purpose
outputs, lacking the task specificity needed for reliable, grounded execution (Ling et al., 2023).

1

Under review as submission to TMLR

...
ChatbotChatbot

Code generationCode generation

Textual Output

Task:
Create a slide base on draft.docx
Plan:
1. Open the draft.docx and read the content.
2. Create a new PowerPoint file.
3. For page 1, add …
Action:
- Open (“draft.docx”)
- Click (Button(“New”), “left”) ...

Action + Plan Trajectories

Fine-tuning

+LLMLLM LAMLAM
Textual +

Action Output

...

Agent

Environment

Interaction

How is the
weather today?

Write a Python
function for ...

...

User Queries

Polish my email...

What is in the
figure?

Improve the writing
of the thesis

How is the
weather today?

Write a Python
function for ...

...

User Queries

Polish my email...

What is in the
figure?

Improve the writing
of the thesis

Buy a shoes on the
website

Filling the form
with the Excel...

...

Task Requests

Send an email to ...

Set up a meeting
with ...

Polish the style of
the slide

Buy a shoes on the
website

Filling the form
with the Excel...

...

Task Requests

Send an email to ...

Set up a meeting
with ...

Polish the style of
the slide

Figure 1: The transition from LLMs to LAMs.

To address these challenges, we propose Large Action Models (LAMs)—LLMs equipped to perform actions in
both digital and physical environments (He et al., 2024; Zhang et al., 2024b). LAMs interpret intent, generate
structured action plans, and interact with real systems through agents. This represents a critical shift from
passive text generation to active, task-completing intelligence.

LAMs are often built upon the foundation of LLMs, but the transition from LLMs to LAMs is neither
straightforward nor seamless, as shown in Figure 1. The process of transforming an LLM into a functional
LAM involves multiple intricate stages, each requiring substantial effort and expertise. First, it is essential to
collect comprehensive datasets that capture user requests, environmental states, and corresponding actions
(Deng et al., 2024). These data serve as the basis for training or fine-tuning LLMs to perform actions
rather than merely generate text. This stage involves the integration of advanced training techniques that
enable the model to understand and execute actions within specific environments (Hong et al., 2024). While
GPT-4o demonstrates strong zero-shot capabilities, trained LAMs are better suited for real-world deployment
scenarios where latency, cost, and task specialization are critical. In particular, the latency and inference
cost associated with GPT-4o can be prohibitive in production settings (especially in high-throughput or
interactive environments like GUI automation) making such delays unacceptable. Once the LAM has been
trained, it must be incorporated into an agent system that can effectively interact with its environment. This
system typically includes components for gathering observations, utilizing tools, maintaining memory, and
implementing feedback loops. These components are critical for ensuring that the LAM can not only execute
actions but also adapt its behavior based on real-time feedback and evolving situations (Zhang et al., 2024a).
The integration of these elements enhances the LAM’s capacity to perform tasks autonomously, interact
meaningfully with its surroundings, and make decisions that are grounded in the context of its environment.

A critical step in developing Large Action Models (LAMs) is rigorous evaluation (Xie et al., 2024), as LAMs
directly impact their environments. This paper presents a practical guide to building LAMs from LLMs, using
a GUI agent on Windows OS as a case study. We outline a full pipeline—from data collection to training
and grounding—designed for safe, adaptable deployment. Our approach generalizes to other domains and
highlights LAMs as a key step toward action-oriented AI, bringing us closer to AGI.

2 From LLMs to LAMs

Large Action Models (LAMs) build on the capabilities of Large Language Models (LLMs) but are specifically
optimized to execute grounded actions in real-world environments. Unlike LLMs that generate text, LAMs
translate user intent into executable operations, allowing them to interact with physical or digital systems to
complete tasks (Zeng et al., 2023).

2

Under review as submission to TMLR

LLMLLM

LAMLAM

Step 1: Open an online shopping website.

Step 2: Search for “jacket for men”.
Step 3: Go through all jackets
...

Step 1

Buy a jacket
for men.

Buy a jacket
for men.

Step 2 Step 3

Figure 2: The functional distinction between LLMs and LAMs.

Figure 2 illustrates this functional shift. For instance, an LLM may describe how to buy a jacket, while a LAM
can complete the task by navigating the website and processing the checkout steps. This transformation from
passive understanding to active execution enables AI agents to deliver practical, task-completing outcomes.

Although often smaller than general-purpose LLMs, LAMs achieve superior performance within specific
domains. Their specialization allows for faster inference, lower resource usage, and improved deployment in
constrained environments. Training a LAM typically involves domain-specific data, targeted fine-tuning, and
integration with agent frameworks that support real-time observation, planning, and tool use (Zhang et al.,
2024a).

2.1 Key Characteristics of LAMs

Interpretation of User Intent. LAMs process abstract or multimodal inputs (such as text, images, or
voice) and infer intent through dialogue and contextual reasoning (Chen et al., 2024a; Shah et al., 2023).
They convert user requests into high-level task plans. Action Generation. LAMs produce executable
actions grounded in the current system state and task context. These actions span GUI operations, API calls,
robot control, and code generation (Carta et al., 2023).

Dynamic Planning. LAMs break down tasks into multi-step sequences and dynamically adapt as the
environment changes (Guan et al., 2023; Shinn et al., 2024), ensuring robust execution in dynamic or uncertain
settings.

Domain Specialization. Trained for specific applications, LAMs incorporate domain-relevant constraints
and affordances. Their compact architecture and focused functionality enhance efficiency, accuracy, and
deployment feasibility (Cheng et al., 2024).

In summary, LAMs represent a meaningful advancement beyond traditional LLMs. They bridge the gap
between passive text-based agents and those capable of performing real-world actions in digital or physical
environments.

2.2 From Inception to Implementation

LAMs have the potential to significantly extend the impact of LLMs by enabling tangible interactions with
real-world environments. To harness this potential, an LAM must be developed from the ground up and
deployed within a real-world application, allowing it to operate effectively in a physical environment. This
process involves 5 critical steps, as shown in Figure 3:

3

Under review as submission to TMLR

LAM

Task:
Create a slide base on draft.docx

Plan:
1. Open the draft.docx and read the content.
2. Create a new PowerPoint file.
3. For page 1, add …

Action:
- Open (“draft.docx”)
- Click (Button(“New”), “left”) ...

① Data Collection and
Preparation

Task:
Buy a jacket for men.

Plan:
1. Open the online shopping website.
2. Search for jacket for men.
3. Go through all items ...

Action:
- Input (“www.onlineshop.xxx”)
- Input (“jacket for men”) ...

Task:
Fill the form of on the website with the excel
data.

Plan:
1. Open the excel form.
2. Extract the content from the excel file.
3. Open the website...

Action:
- Open (“form.csv”)
- Extract (“form.csv”) ...

+
Action

Executors

Memory

...

AgentAgent

④ Integration and
Grounding

② Model
 Training

...

Environment

Actions

Feedback

Task 1:
Set up a meeting with ...Task 2:

Send an email to ...

Task 3:
Beautify the style of the slide.

Test data

LLMLLM

Input Output Execution
results

③/⑤ Offline/Online
Evaluation

Figure 3: The process pipeline for LAM development and implementation.

1. Data Collection and Preparation (Section 3): The first step involves gathering and curating the
necessary data for the specific use case. This includes not only user queries but also environmental context,
potential actions, and any other relevant data required to train the LAM effectively. The data must
undergo cleaning and pre-processing before it is used for training or fine-tuning a LAM.

2. Model Training (Section 4): Using the prepared data, the next step is to train the LAM. This training
process can involve various techniques such as supervised fine-tuning and reinforcement learning to ensure
the model can perform the desired actions accurately and efficiently.

3. Offline Evaluation (Section 5): After obtaining the LAM, we evaluate its performance using an offline
dataset to verify its reliability in a controlled, static environment.

4. Integration and Grounding (Section 6): The LAM is integrated into an agent framework that
serves as its operational platform. This involves grounding the model with the ability to interact with
external tools, maintain memory, and interface with the environment. By equipping the LAM with these
capabilities, it becomes capable of making meaningful impacts in the physical world.

5. Online Evaluation (Section 7): Finally, the performance of the LAM must be rigorously evaluated
in the real environment from multiple perspectives, including accuracy, efficiency, and effectiveness in
completing tasks. This step is crucial to ensure that the LAM functions as intended and meets the desired
operational standards.

Through these steps, LAMs can be effectively developed and deployed to bring LLMs’ capabilities into
real-world applications, enabling them to interact with and manipulate the physical environment, thereby
making a tangible impact.

In the following sections, we use the Windows GUI agent UFO (Zhang et al., 2024a)1 as a case study to
illustrate the process of building a robust LAM from the ground up. This LAM will serve as the core inference
engine for UFO, enabling it to autonomously fulfill user requests within the Windows OS environment. While
this example focuses on a Windows GUI agent, the outlined steps can be adapted for developing LAMs in
other scenarios or for different applications.

3 Data Collection and Preparation

Data is a cornerstone in training LLMs, where high-quality data significantly enhances their performance (Wang
et al., 2023; Li et al., 2024). Similarly, LAMs require well-prepared, high-quality action-oriented data during
the supervised fine-tuning phase. Off-the-shelf LLMs often face challenges when interacting with real-world

1https://github.com/microsoft/UFO

4

https://github.com/microsoft/UFO

Under review as submission to TMLR

Task:
How to highlight text on
word?

Task:
How to highlight text on word?

Plan:
1. Select the text you want to highlight.
2. Click the highlight button.

Task:
Highlight Text “Hello World” in template.doc

Solution:
[

{
"step":"choose text “Hello World”,
"controlLabel": "",
"controlText": "",
"function": "select_text",
"args": {"text": "text to edit"}

}，
{
"step":"click the highlight button",
"controlLabel": "37",
"controlText": " Text Highlight Color ",
"function": "click_input",
"args": {"button": "left", "double": false}
}

]

Initial Task
Task-Plan Data

Task-Action Data

Word Environment

Phase 1

Phase 2
Grounding

Figure 4: The two-phrase data collection and preparation process.

environments. These difficulties typically arise from either a lack of domain-specific knowledge or the
generation of hallucinated outputs that fail to be actionable. To mitigate these issues, we adopt a two-phase
data collection approach: task-plan collection and task-action collection, as shown in Figure 4. Specifically:

1. Task-Plan Data Collection: In this phase, we collect data consisting of tasks and their corresponding
plans. Tasks are user requests expressed in natural language, while plans are detailed, step-by-step
procedures designed to fulfill these requests. For example, a task such as “How to change the font size
in Word?” would have a corresponding plan outlining the steps required to complete the task. This
data is used to fine-tune the model to generate effective plans and improve its high-level reasoning and
planning capabilities. However, task-plan data cannot be directly executed in the environment, requiring
the following data conversion phase.

2. Task-Action Data Collection: In this phase, the task-plan data is converted into task-action data,
which includes tasks, plans, and the associated action sequences needed to execute those plans. Tasks and
plans are refined to become more concrete and grounded within a specific environment. Action sequences
are generated at this stage, such as select_text(
text="hello") or click(on=Button("20"), how="left", double=False), which represent actionable
instructions capable of directly interacting with the environment. This enriched data provides the necessary
granularity for training an LAM to perform reliable and accurate task executions in real-world scenarios.

The task-plan data aims at enhancing the model’s high-level planning capabilities, allowing it to generate
detailed, step-by-step plans based on user requests. Meanwhile, the task-action data focuses on refining the
model’s ability to execute these plans by converting each planned step into a concrete, executable step or
sequence while considering environmental feedback. The data collection and preparation pipeline ensures
that the model is capable of both high-level planning and low-level action execution, thereby bridging the
gap between natural language plans and executable actions.

In the following sections, we detail the methodologies employed for data collection, pre-processing, and
integration of task-plan and task-action data. We illustrate how these steps enable the LLM to LAM
transformation.

3.1 Task-Plan Data

Figure 5 outlines a multi-step pipeline for collecting and processing task-plan data, essential for training
LAMs. The process begins with gathering raw data from diverse sources, including application documentation,
WikiHow, and historical search queries. This is followed by structured pre-processing to ensure that the data
is high-quality and relevant to specific tasks.

5

Under review as submission to TMLR

Documents wikiHow

Historical Search Queries

Data Extraction
• Data parsing and

selection
• Format unifying

Data Preprocessing
• Remove non-English,

too short/long and
non-relevant samples

• Data duplication

How to quickly delete
all notes in a PPT file?

• GPT to construct task-
plan data in JSON

Data Construction• Instruct Evolve to
generate more complex
task-plan data

Data Evolving

All Task-Plan data

Figure 5: The pipeline to construct the task plan data.

3.1.1 Data Sources

1. Application Documentation: Documentation and usage manuals for software applications provide
authoritative task descriptions. These resources, maintained by product teams, are considered highly
reliable. Relevant documentation, such as M365 documentation2, is crawled, with outdated or inaccessible
pages being filtered out. The HTML content is converted into markdown format, and GPT-4o is used to
extract task-plan pairs in the desired structured format.

2. WikiHow: WikiHow3 hosts a wide range of how-to articles, including application-specific operational
guides. Webpages related to Windows platform applications are crawled, and GPT-4o extracts task and
plan components, ensuring the resulting data aligns with the desired structured format.

3. Historical Search Queries: Search engine logs provide insight into real user demands, addressing
gaps not covered by formal documentation. From Bing search logs, a 1% sample of queries mentioning
application names (e.g., Word, Excel, PowerPoint) from the past year was taken.

3.1.2 Data Extraction and Pre-Processing

The first step processes raw data by filtering out non-English, overly short/long, or irrelevant samples
(e.g., non-actionable smartphone content). Remaining data is then standardized into a unified format for
downstream use.

3.1.3 Data Construction

To create structured JSON samples, GPT-4o is employed to extract and format tasks along with their
associated plans. For historical search queries, synthetic data is generated to enrich the raw input, addressing
the common issue of insufficient context. GPT-4o reformulates these queries into complete, sentence-like user
requests, ensuring consistency across all data sources and facilitating effective downstream processing.

The resulting dataset contains structured JSON samples, with each entry including a unique task identifier
(task_id), the task description (task), and a step-by-step plan (plan). An example is shown below:

1 {" task_id ": " word_032 ",
2 "task": "Add a border to a page in Word",
3 "plan": [
4 1. Go to Design > Page Borders .
5 2. Make selections for how you want the border to look.
6 3. To adjust the distance between the border and the edge of the page ,

select Options . Make your changes and select OK.

2https://learn.microsoft.com/en-us/microsoft-365/?view=o365-worldwide
3https://www.wikihow.com/Main-Page

6

https://learn.microsoft.com/en-us/microsoft-365/?view=o365-worldwide
https://www.wikihow.com/Main-Page

Under review as submission to TMLR

7 4. Select OK.
8]
9 }

With the above process, we initially collected a total of 29,182 task-plan data samples.

3.1.4 Data Evolving

With the initial dataset processed, we employ data augmentation techniques to enhance its diversity and
complexity. Inspired by WizardLM (Xu et al., 2023) and AgentGen (Hu et al., 2024), we use GPT-4o to
evolve the raw task to generate new task-plan pairs, improving the model’s ability to follow instructions and
handle more complex tasks.

The data evolving process generates new tasks from the original ones by introducing additional complexity,
constraints, or steps while preserving relevance. The guidelines for task evolution are as follows:

– The evolved task must be executable step-by-step on a Windows OS or application.

– The evolved task should include additional requirements, increasing its complexity without exceeding 20
extra words.

– The evolved task must remain concise and related to the original task.

For each evolved task, GPT-4o generates a corresponding plan adhering to the following guidelines:

– The plan must provide correct and actionable steps for Windows environments or applications.

– The plan should be concise and highlight critical action objects using bold emphasis.

This augmentation process results in a richer dataset where tasks become progressively more challenging, and
plans incorporate domain-specific knowledge. For example:

Raw task: Create a drop-down list in Excel for Office 365.

Evolved Task: Create a dependent drop-down list in Excel for Office 365, where selecting an item from the
first list filters options in the second list.

Evolved Plan:

– Prepare your data by organizing it into two columns. The first column contains items for the primary
drop-down list, and the second column contains items for the dependent list.

– Name your ranges for the first and second lists.

– Create the primary drop-down list using Data Validation.

– Use the INDIRECT function to create the dependent drop-down list linked to the first selection.

– · · ·

Using data augmentation, we increased the original task-plan dataset by 150%, generating a larger pool of
samples. This augmentation significantly enhances the diversity and complexity of the dataset, allowing the
model to learn from a broader range of scenarios and develop robust planning capabilities. The augmented
data introduces more challenging tasks and detailed plans, further enriching the training process and enabling
the LAM to handle complex real-world applications effectively.

7

Under review as submission to TMLR

3.2 Task-Action Data

The task-plan data collected in the previous stage provides high-level, step-by-step plans for resolving user-
requested tasks, serving as general guidelines. However, these plans are textual and not directly executable in
a real-world environment. For instance, a task-plan data sample for the task “Highlight text in document”
outlines the necessary steps but does not translate into actionable instructions for interacting with the
application’s GUI. This gap highlights the need for actionable task-action data to bridge the divide between
planning and execution. To enable LAMs to produce actionable outputs, we generate task-action data derived
from the previously collected task-plan data. Task-action data captures the granular interactions required to
complete a task in the application environment, including GUI navigation, button clicks, and responding to
environmental feedback.

Traditional approaches for action data collection often involve manual or agent-based annotation for each task,
which is both costly and labor-intensive. To address these limitations, we propose an efficient, fully automated,
and low-cost pipeline that leverages LLMs and real-world application interactions. This pipeline consists
of four stages, as depicted in Figure 6: Instantiation, Execution, Evaluation, and Post-Processing.
Specifically,

1. Instantiation: In this stage, the task-plan data is transformed into an executable trajectory. Using an
LLM, each task is instantiated with specific operational objects, and related high-level plan is instantiated
into a concrete sequence of actions that can be directly executed in the application environment.

2. Execution: The instantiated trajectory is then executed within the real-world application environment.
During this stage, the system interacts with the application’s GUI to carry out the specified actions. For
example, the instantiated trajectory for highlighting text would involve selecting the appropriate text,
navigating to the highlight tool, and applying the highlight. The result of this execution is the captured
executed trajectory, including any feedback or environmental changes observed during the process.

3. Evaluation: Once the execution is complete, the trajectory is evaluated for correctness using an LLM.
The evaluation stage verifies whether the executed trajectory successfully accomplishes the intended task.
This involves comparing the observed outcomes with the expected results outlined in the task-plan data.
Tasks that fail to meet the criteria are flagged for review, while successful executions are retained for
further processing.

4. Post-Processing: In the final stage, successful task-action trajectories undergo post-processing to ensure
consistency, completeness, and readiness for training. This includes refining the data format, ensuring
compatibility with the training pipeline, and annotating the data with relevant metadata (e.g., task IDs,
execution time, and step-by-step feedback). The post-processed task-action data is then added to the
training dataset, enabling the LAM to learn from real-world interactions.

The pipeline minimizes human intervention and reduces the number of LLM calls required, significantly
improving scalability and efficiency.

3.2.1 Instantiation

The task-plan data are primarily collected from help documents or public websites, creating a gap between the
generalized task-plan data and the specific requirements needed for execution within a particular environment.
A common issue is the lack of specificity. For instance, the task “highlight text in document” does not specify
actionable objects, such as “which text” or “which document”. This lack of detail poses significant challenges
in executing tasks within real-world applications.

To address this problem, we instantiate the task-plan data to impute target objects and related functions.
First, we prepare template Word files to serve as specific targets for the actions. These template files include
various Word components such as paragraphs, tables, and figures. Each template file is accompanied by a
description indicating its content, providing context for grounding actions. Several sample template files can
be found in Appendix A.

8

Under review as submission to TMLR

PLAN
1.
2.
3.

ACTION
1.
2.
3.Instantiation1

Task-Plan Data Task-Action Data

LLM

Execution2

Trajectory

Evaluation3

Discarded

Selected

Post-Processing4

Training Data

LLM

Figure 6: The pipeline of task-action data conversion and collection.

Given a task-plan data sample, the task description is matched with the template file descriptions to select
an appropriate template file as the target for actions. GPT-4 is then prompted to instantiate the task-plan
with target objects present in the selected template file (detailed prompts can be found in Appendix B.1).
Simultaneously, we filter relevant functions from the available function pool using the task description,
allowing the instantiation process to populate the task-action data with specific functions and their input
parameters.

As a result of this process, the task description becomes more concrete and grounded in a specific environment,
while the corresponding action sequences needed to complete the task are generated. Figure 7 provides an
example of the instantiation process. Notably, the task-action data is not directly generated with GPT-4 due
to the risk of hallucinations. Instead, instantiating grounded task-plan data ensures the generation of more
reliable and faithful step-by-step actions.

Task:
Highlight Text in document.
Solution:
1. choose the target text
2. click the highlight button

Task:
Highlight Text “Hello World” in
template.doc
Solution:
[
 {
 "step":"choose text “Hello World”,
 "controlLabel": "",
 "controlText": "",
 "function": "select_text",
 "args": {"text": "text to edit"}
 }，
 {
 "step":"click the highlight button",
 "controlLabel": "",
 "controlText": "Highlight",
 "function": "click_input",
 "args": {"button": "left", "double": false}
 }
]

Instantiation
LLM

Task:
Highlight Text “Hello World” in
template.doc
Solution:
[
 {
 "step":"choose text “Hello World”,
 "controlLabel": "",
 "controlText": "",
 "function": "select_text",
 "args": {"text": "text to edit"}
 }，
 {
 "step":"click the highlight button",
 "controlLabel": "37",
 "controlText": " Text Highlight Color ",
 "function": "click_input",
 "args": {"button": "left", "double": false}
 }
]

Match with
control item

Word templates Function Pool

Figure 7: An example of task instantiation.

9

Under review as submission to TMLR

3.2.2 Execution

To ensure that the steps in the instantiated task-plan data are accurate and truly actionable, the execution
stage verifies the action sequence by matching control items with the real application environment and
performing the specified actions. This process validates the task-action data, ensuring its correctness and
compatibility with the application GUI.

For instance, as shown in Figure 7, the control item “Text Highlight Color” with its associated control label
is retrieved using the action text “Highlight” from the control item pool. The corresponding task-action
data is then executed in the application without further intervention from the LLM. During execution, if
an error occurs (e.g., a mismatch between the predicted control item and the actual environment), the
instantiated task is discarded. Conversely, if all actions in the task execute successfully, the action-validated
task is forwarded to the evaluation stage described in the following section. Additionally, screenshots of the
application environment are captured after each step in the execution process, forming a detailed trajectory
to assist in subsequent evaluation.

It is important to note that the instantiated task-action data is not guaranteed to be valid. Since the data is
generated through a single GPT-4 call based on task-plan data, it lacks the step-by-step refinement that
might be necessary for certain tasks. In some cases, execution results from previous steps are required to
instantiate subsequent steps accurately. In such scenarios, the one-call instantiated task-action data may
fail in validation and is removed from the dataset. This execution stage bridges the gap between planning
and action, ensuring that task-action data is actionable, robust, and aligned with real-world application
requirements.

3.2.3 Evaluation

Even if a task-action trajectory executes without error, additional validation is needed to ensure it fulfills the
original task intent. Some plans may yield executable but incorrect behaviors. To evaluate correctness, we
use: (1) the full action sequence, (2) before/after screenshots, and (3) environmental changes (e.g., comparing
.xml state files in Word4). We prompt GPT-4o to assess whether the outcome matches the task description,
assigning a task-complete key ("yes", "no", or "unsure"). Only tasks marked "yes" are retained for training,
ensuring data quality. Full prompt details are in Appendix B.2.

3.2.4 Post-Processing

As noted in Section 3.2.2, a trajectory was recorded during the execution process. This trajectory includes:
(1) Screenshots captured at each step. (2) Environment states before and after each action. (3) Plans and
corresponding actions for every step.

During the post-processing stage, these trajectories are combined with the original task requests to generate
synthetic step-wise training data. The resulting data format uses the task request as input and LAM’s plan
and actions as output. This structured format is critical for training LAMs to map task requests to actionable
sequences effectively. The detailed template for the data format can be found in Appendix C.

4 Model Training

Our objective is to develop an LAM from zero human-labeled data that can map user inputs to appropriate
plans and executable actions, ultimately enabling complex task completion. To achieve this, we adopt a staged
training strategy consisting of four phases, each building upon the previous one. As illustrated in Figure 8,
these phases guide the model from learning structured task plans, to imitating expert demonstrations, to
self-boosting from its own successes, and finally leveraging reward-based optimization. Throughout these
stages, the model progressively evolves from LAM1 to LAM4.

At a high level, Phase 1: Task-Plan Pretraining provides a strong foundation by teaching the model to
generate coherent, step-by-step plans for various tasks. Phase 2: Learning from Experts then introduces

4These files represent the underlying document structure.

10

Under review as submission to TMLR

Phase 1: Task-Plan Pretraining. (Section 4.1)

Task: How to insert a picture in Word?
Plan: 1. Go to the "Insert" tab.Task: How to highlight text on word?

Plan: 1. Select the text ...

HelpDoc, Evolved Data, wikiHow,
Bing Search Queries

Data Resource

Supervised fine-tuning

Training Method

Learn structured task plans

Objective

Foundation for
task-agnostic planning

Data Format

Phase 2: Learning from Experts. (Section 4.2)

Supervised fine-tuning

Training Method

Learn basic action sequences

Objective

llm Word Env

Success

Phase 3: Self-Boosting Exploration. (Section 4.3)

𝑳𝑨𝑴𝟐
Word Env

Success

𝑳𝑨𝑴𝟐

𝑳𝑨𝑴𝟏

𝑳𝑨𝑴𝟑

GPT-4o
Failures

Building essential
action skills

Generalization on
difficult tasks

State:
“Task”: How to highlight text on word?
“Observation”:…
Action:[{“step”: ...

GPT-4o traj grounded in task-plan data

Data Resource

Data Format

State:
“Task”:How to insert a picture in Word?
“Observation”:…
Action:[{“step”: ...

LAM self grounded in GPT-4o fail cases

Data Resource

Supervised fine-tuning

Training Method

Explore and refine policy
on challenging tasks

Objective

Data Format

Phase 4: Learning from Reward Model. (Section 4.4)

Reward Model
𝑹𝑴𝝓

Near-optimal success
rate

State:
“Task”:How to insert a picture in Word?
“Observation”:…
Action:[{“step”: ...
Reward:

Data Resource

Supervised fine-tuning

Training Method

Trained on success/failure
to predict action quality.

ObjectiveData Format

: GPT-4o and LAM successes.
: LAM self-exploration failures.
: LAM self-exploration successes.

State:
“Task”: How to insert a video in Word?
“Observation”:…
Action:[{“step”: ...
Reward:

Offline RL

Training Method

iterative refinement and
reward-based optimization.

Objective

Data Format

LAM failure tasks

𝑳𝑨𝑴𝟒

𝑳𝑨𝑴𝟑 𝑹𝑴𝝓

LAM
Failure
tasks

GPT-4o
Successes

Data Resource

Figure 8: The overview of LAM training pipeline.

action trajectories labeled by GPT-4o, enabling LAM2 to align its plan generation with actionable steps.
However, relying solely on expert successes limits diversity and adaptability. To address this, Phase 3: Self-
Boosting Exploration encourages the model to tackle tasks that even GPT-4o failed to solve, autonomously
generating new success cases and evolving into LAM3. Finally, Phase 4: Learning from a Reward Model
incorporates reinforcement learning (RL) principles, allowing LAM4 to learn from both successes and failures,
refining its decision-making in complex, previously unseen scenarios. Table 1 summarizes the data used in
each phase. Each phase uses different training objectives, namely (i) task-plan pretraining (phase 1) and (ii)
decision-making training (phase 2-4), as detailed in Appendix E.

Table 1: Training data summary for each phase of LAM training.
Model Data Type Data Source Input → Output Data Size

LAM1 Task-Plan Pairs
Application documentation,

WikiHow, evolved data
historical search queries

ti → Pi 76,672 tasks

LAM2 Task-Action Trajectories GPT-4o st → at 2,192 trajectories
LAM3 Task-Action Trajectories LAM2 + GPT-4o st → at 2,688 trajectories
LAM4 Task-Action-Reward Trajectories RM + LAM3 (st, rt) → at 1,788 trajectories

Reward Model Task-Action-Reward Trajectories GPT-4o + LAM3 (st, at) → rt 4,476 trajectories

4.1 Phase 1: Task-Plan Pretraining

The initial stage focuses on imparting a broad understanding of how tasks can be decomposed into logical
steps. We start with Mistral-7B (Jiang et al., 2023) as the base model. A total of 76,672 task-plan pairs
(ti, Pi) are collected from various sources, including application help documentation, WikiHow, and historical
search queries. Of these, 29,182 pairs are sourced directly, while 47,490 are generated via data evolution
techniques (as described in Section 3.1.4), enriching the dataset with more complex and diverse tasks.

11

Under review as submission to TMLR

In this phase, LAM1 is trained via supervised fine-tuning (SFT) (Deng et al., 2024) to predict the correct
plan sequence Pi for a given task ti:

LSFT(LAM1
θ) = 1

N

N∑
i=1

LCE(P pred
i , P true

i).

Here, LCE denotes the cross-entropy loss, and N is the number of tasks. Although no actions are generated
at this stage, LAM1 gains a robust planning capability. This knowledge will prove critical in guiding the
model’s action execution in later phases, ensuring that the agent understands the logical structure of tasks
before attempting to perform them.

4.2 Phase 2: Learning from Experts

While LAM1 can produce structured plans, it lacks the ability to execute them. In Phase 2, we introduce
expert-labeled task-action trajectories from GPT-4o (Section 3.2) to teach the model how to perform actions.
The illustrative application in this paper is the Microsoft Word environment, where we have 2,192 successful
expert trajectories. Each trajectory consists of a sequence of state-action pairs (st, at), representing observed
UI states and the corresponding actions to progress the task.

We split these 2,192 trajectories into a training set of 1,757 and a test set of 435 trajectories, providing a
total of 3,959 steps for training. By imitation learning LAM1 on these successful action sequences, we obtain
LAM2. The objective is to minimize:

LSFT(LAM2
θ) = 1

N

N∑
i=1

Ti∑
t=1

LCE(LAM2
θ(st), at),

where N is the number of trajectories and Ti is the number of steps in trajectory i. By imitating the expert’s
policy, LAM2 transforms from a passive planner into a model capable of executing actions aligned with its
plans, grounding its reasoning in the real application environment.

4.3 Phase 3: Self-Boosting Exploration

Up to Phase 2, LAM2 only learns from successful trajectories provided by GPT-4o. This limits diversity and
adaptability, as the model never sees how to handle situations that even GPT-4o could not deal with. To
overcome this limitation, Phase 3 introduces self-boosting exploration.

Here, we revisit failed GPT-4o trajectories, i.e., tasks that GPT-4o did not complete successfully, and let
LAM2 attempt them. Using the ReAct mechanism (Yao et al., 2022; Shinn et al., 2024), LAM2 interacts
with the environment and tries alternative strategies for these challenging tasks. To construct meaningful
task trajectories, the GUI agent uses the ReAct mechanism by interleaving observation, reasoning, and
action. At each step, the agent perceives the current GUI state, reasons about the next move, executes
the corresponding action, and records the updated environment, action taken, and reasoning trace. These
step-by-step interactions are then aggregated to form coherent trajectories for training a LAM. From these
attempts, we sampled 2284 GPT-4o failed tasks and then collect 496 newly successful trajectories generated
by LAM2 itself. These self-labeled successes, combined with the original 2,192 GPT-4o successes, form an
augmented dataset.

We then fine-tune LAM2 on this enriched data, yielding LAM3:

LSFT(LAM3
θ) = 1

N

N∑
i=1

Ti∑
t=1

LCE(LAM3
θ(st), at).

This self-boosting step allows the model to learn from its own newly discovered solutions, overcoming previous
limitations and improving adaptability. By leveraging planning knowledge from Phase 1 and expert strategies
from Phase 2, LAM3 becomes more resourceful, even in scenarios with sparse or absent expert guidance.

12

Under review as submission to TMLR

4.4 Phase 4: Learning from a Reward Model

Despite the improvements, Phases 1–3 focus on successes or expert-like behavior. They offer limited insights
into intermediate decision quality and fail to exploit learning opportunities presented by failed attempts. In
Phase 4, we integrate reinforcement learning (RL) to address these shortcomings (Kasneci et al., 2023).

To this end, we adopt a two-stage approach: first, we train a reward model, and then we further fine-tune the
LAM using this model. The reward model (RM) is built using LAM3 as the base model, with an additional
output layer added to produce scalar values representing the quality of actions. Using the trained RM, we
fine-tune LAM4 in an offline RL setting. Here, the model refines its policy without additional environmental
interactions, leveraging previously collected trajectories to learn from failures and improve action selection.

4.4.1 Reward Model Training

First, we train a reward model (RM) on both LAM3’s successful (496) and failed (1788) trajectories and
GPT-4o’s successful trajectories (2192) gathered in previous phases. All steps in successful trajectories are
assigned a reward of +1, and all steps in failed trajectories a reward of −1. This uniform, binary labeling of
outcomes ensures the RM consistently captures overall trajectory quality. Formally:

rt = RM(st, at; ϕ),

where ϕ presents the RM parameters, and rt ∈ {+1, −1} is the assigned reward. The RM is trained via mean
squared error (MSE) to approximate these ground-truth rewards.

The training dataset for the RM includes both failed and successful task-action trajectories generated by
LAM3, as well as the successful trajectories from the collected task-action data. All steps in successful
trajectories receive a reward of +1, while every step in failed trajectories is assigned a reward of −1. This
uniform labeling strategy ensures that the RM consistently reflects overall trajectory quality and effectively
guides policy optimization.

4.4.2 Optimizing with Offline PPO

Armed with the RM to evaluate intermediate actions, we fine-tune LAM4 via offline PPO (Schulman et al.,
2017). This stage focuses on the 1,788 failure trajectories collected during Phase 3, providing a unique
opportunity to learn from mistakes. The training objective of PPO is:

LPPO(LAM4
θ) = 1

N

N∑
i=1

Ti∑
t=1

min
(

LAM4
θ(at|st)

LAM4
θold

(at|st)
Ât, clip

(LAM4
θ(at|st)

LAM4
θold

(at|st)
, 1 − ϵ, 1 + ϵ

)
Ât

)
,

where Ât denotes the advantage derived from RM-generated rewards, and ϵ is a clipping parameter to ensure
stable updates.

By incorporating signals from both successes and failures, LAM4 gains a deeper understanding of action
quality. This RL-based fine-tuning helps the model generalize to complex, previously unseen scenarios,
ensuring more robust and reliable decision-making. Our pipeline is fundamentally domain-agnostic and
consists of: (1) Data Collection & Task-Plan Pretraining, (2) Imitation Learning from Expert Trajectories,
(3) Self-Boosting Exploration, and (4) Reward-Model Guided Refinement.

However, to deploy in a new domain, the environment must support the execution, observation, and validation
of action trajectories (e.g., via APIs, simulators, or instrumentation). With these capabilities in place, the
same four-phase structure can be applied: (1) Video Games: Discrete controls (e.g., button presses, joystick
directions) can be collected through game APIs or screen-state instrumentation. (2) Robotics: The same
stages apply, but the model must predict continuous motor commands or trajectories (e.g., using a different
decoder head). Simulation platforms (e.g., MuJoCo, Gazebo) facilitate low-risk and scalable data collection.

13

Under review as submission to TMLR

Table 2: Offline performance comparison across different models and metrics on decision making.
Metric LAM1 LAM2 LAM3 LAM4 GPT-4o GPT-4o Mini DeepSeek R1 O1-mini
Object Acc (%) 39.4 85.6 87.4 87.8 73.2 68.4 63.4 71.8
Operation Acc (%) 59.9 97.3 97.7 97.7 94.2 89.6 87.8 88.5
Status Acc (%) 32.7 97.8 98.2 99.0 65.3 60.2 68.2 59.4
Step Success Rate (SSR) (%) 33.0 83.6 85.9 86.2 68.8 62.7 59.4 69.3
Task Success Rate (TSR) (%) 35.6 76.8 79.3 81.2 67.2 61.2 55.2 64.6

5 Offline Evaluations

The offline evaluation results of Task-Plan Pretraining Results (Phase 1) and Task-Action Results
(Phases 2–4) will be presented in this section. Offline evaluation allows us to systematically assess the
performance of LAM1 and subsequent phases (LAM2, LAM3, and LAM4) without interacting with the
environment. This setup effectively provides a controlled and reproducible framework for comparing task
success rates, precision, and recall metrics across models.

5.1 Experiment Setup

5.1.1 Data Preparation

We took several rigorous steps to ensure that the evaluation set is both held-out and semantically distinct
from the training set. (1) Redundancy Removal Before Splitting: Prior to partitioning, we applied
semantic deduplication to eliminate redundant or highly similar tasks. This ensured that no rephrased or
paraphrased version of a training task appears in the test set. (2) Random Sampling After Cleaning:
The test set was then randomly sampled from the cleaned data. These test tasks were never seen during
training or used for model selection. (3) Semantic Similarity Validation: To validate the distinctiveness
of the test set, we followed (Wang et al., 2022) by computing ROUGE-L similarity between training and test
sets. We observed an average ROUGE-L score of 0.27, indicating that the test set is semantically distinct
and suitable for evaluating generalization. For details on our semantic deduplication process and dataset
splitting strategy, please refer to Appendix F.

5.1.2 Evaluation Metrics

To evaluate agent performance in task execution, we adopt five metrics: Object Accuracy, Operation Accuracy,
Status Accuracy, Step Success Rate (SSR), and Task Success Rate (TSR). Object Accuracy measures
whether the agent selects the correct UI element. Operation Accuracy checks if the predicted action (e.g.,
Click, Type) matches the ground truth. Status Accuracy evaluates whether the agent correctly determines
task completion status. Step Success Rate (SSR) considers a step successful only if object, operation, and
status are all correct. Task Success Rate (TSR) requires all steps in a task to be correct for the task to count
as successful.

While task success rate (TSR) is our primary metric, we include step success rate (SSR) as a complementary
diagnostic tool. In GUI-based environments like Word, most tasks follow highly constrained and canonical
trajectories, making step-level precision both meaningful and necessary. Although multiple trajectories may
theoretically complete a task, in practice, deviations often lead to errors or suboptimal behavior. Thus, LAM’s
higher SSR reflects not just closer alignment with reference trajectories but greater consistency, planning
quality, and robustness. Also, SSR aligns with standard agent benchmarks (e.g., Mind2Web (Deng et al.,
2024), AITW (Rawles et al., 2024b)). LAM2 builds on LAM1, which learns structured task decomposition
from curated plans—knowledge not explicitly present in GPT-4o. Combined with domain-specific fine-tuning,
LAM2 integrates planning priors and labeled actions to achieve more grounded execution. Unlike GPT-4o’s
zero-shot approach, LAM2 is adapted to the task interface, reducing hallucinations and improving consistency.

5.1.3 Performance on Decision Making

14

Under review as submission to TMLR

Table 2 presents results on 435 Word tasks, showing that our four-phase LAM framework yields cumulative
performance gains. LAM4 achieves a TSR of 81.2%, outperforming GPT-4o (67.2%), GPT-4o-mini (61.2%),
DeepSeek R1 (55.2%), and o1-mini (64.6%). These improvements arise from a stepwise training strategy:
task-plan pretraining (LAM1), GPT-4o-labeled imitation learning (LAM2), self-boosting on GPT-4o failure
cases (LAM3), and reward-guided fine-tuning (LAM4).

Despite using GPT-4o-labeled data in early phases, LAM surpasses GPT-4o by learning from its limitations
and refining its decision-making through domain-specific supervision. The ReAct mechanism supports this by
enabling LAM to generate new successful trajectories for harder tasks. Across key metrics including step
success rate (86.2%), object accuracy (87.8%), and status accuracy (99.0%), LAM4 consistently outperforms
all baselines. These results highlight the effectiveness of our targeted pipeline in producing robust and reliable
action models for real-world applications. All updated comparisons have been incorporated into the main
text.

As for costs, GPT-4o was used for approximately 50K API calls during data instantiation and validation,
incurring a total cost of 2.5K (at 0.05 per 1K tokens), compared to an estimated > 20K for equivalent
manual annotation. Inference costs are minimal (< 0.01 per task).

5.2 Failure Cases and Error Patterns in LAM

While LAM achieves high performance across most tasks, we identify several recurring error patterns that
reveal areas for further refinement.1. Early Termination Before Task Completion LAM may halt execution
prematurely, mistaking intermediate steps for task completion. Example: In a task requiring word count
calculation, LAM correctly opens the “Review” tab but fails to click on “Word Count,” stopping short of the
final step. 2. Skipping Required Preconditions LAM may attempt to execute goal-directed actions without
verifying or setting required environmental conditions. Example: When instructed to calculate word count for
a document in A4 format with font size 11, LAM skips the font and layout verification steps and proceeds
directly to “Word Count.” 3. Incorrect or Ambiguous UI Element Selection LAM sometimes selects visually
similar but incorrect controls due to limited UI disambiguation. Example: In an Excel autofill task, LAM
selects the “Editing” tab instead of directly interacting with the target cells.

These failure cases reveal three dominant error patterns in LAM’s current behavior: (1) premature task
termination due to overconfident stopping, (2) insufficient attention to task preconditions, and (3) UI disam-
biguation failures when interacting with similar elements. Addressing these issues will require improvements
in planning, state verification, and more robust grounding to UI context. These kinds of problems we will
consider in the future work.

6 Integration and Grounding

6.1 LAM Agent In a Nutshell

In UFO, the LAM serves as the inference engine within the AppAgent, enabling efficient and accurate task
completion. Figure 9 illustrates the architecture of the AppAgent. UFO, equipped with LAMs, is designed
for interactive engagement with Windows applications. For simplicity, we focus on automating tasks within
Microsoft Word, a widely used productivity tool with a sophisticated GUI and diverse functionalities, making
it an ideal testbed for training and evaluating LAM.

During each inference step, the agent collects critical contextual information from the application environment,
which is then passed to the LAM for decision-making. The LAM performs planning, orchestrates actions, and
infers the necessary steps to fulfill the user request. These inferred actions are grounded in the environment
by mapping them to predefined tools and function calls used by the agent, such as mouse clicks, keyboard
inputs, or API calls. This process iterates, with LAM continuously adjusting its plan based on real-time
feedback from the environment, until the task is completed. Additionally, the agent maintains a memory
that logs historical actions and plans, providing essential context for the LAM to make more informed and
adaptive decisions as the task progresses. This integration ensures that UFO can efficiently manage and
complete complex, real-world tasks in Windows environments.

15

Under review as submission to TMLR

...

Environment

Grounding

Feedback
LAMLAM

action t-1 action t-n plan t-1

Memory

...
action t-1 action t-n plan t-1

Memory

...

AppAgentAppAgent

Action
Sequence

Action
Executor

Request

ScreenshotsScreenshots

{“type”: Botton, “title”: “New”,“position”: [0.45, 0.78] }

{“type”: Edit, “title”: “Document”,“position”: [0.87, 0.43] }

{“type”: Botton, “title”: “Design”“position”: [0.25, 0.21] }

{“type”: ComboBox, “title”: “SaveAs”“position”: [0.67, 0.32] }

UI InformationUI Information

Env. State Data
CollectionInput

Figure 9: The overall architecture of the AppAgent employed in UFO.

6.2 Environment

The UFO agent leverages the LAM to interact with applications in the Windows environment. At each
decision step, UFO employs the UI Automation (UIA) API (Dinh et al., 2018) to inspect all actionable
controls within the target Windows application, retrieving contextual information for each control5. This
information is passed to the LAM for control selection and action inference. The control data is structured as
a list of dictionaries, where each control is assigned a numerical index (as a label), along with its title and
control type, allowing the LAM to make informed decisions regarding control selection and the corresponding
action. This input format mirrors the structure used during offline data collection for consistency in training
and execution.

6.3 LAM Inference

Using the environmental observations of application control information, UFO constructs prompts in the
same format as the offline training data, using planning and thought generation techniques (Wei et al., 2022;
Ding et al., 2023) to enable LAM to make reliable inferences about the appropriate controls and operations
to invoke. These inferences target the controls detected by the UIA, where each control is selected from a
predefined list. The function calls inferred by LAM are limited to pre-defined operations, such as mouse and
keyboard actions, as well as APIs specific to Word-related tasks. Once inferred, these operations are parsed
and executed within the environment.

6.4 Action Execution

UFO employs a control interactor to ground the action strings generated by LAMs, translating them into
tangible impacts within the target application. Each action typically consists of two key components: Control
Element: This refers to the specific UI control within the application that will receive the action, such as a
button, text box, or scroll bar. Function Call: This represents the operation to be performed on the control
element, such as a mouse click, keyboard input, or invocation of native APIs. By combining the control
element and its associated function call, UFO executes the inferred actions within the application.

6.5 Memory

UFO maintains additional information in its memory to assist LAMs in making more informed and accurate
decisions. This memory includes: (1) Historical Actions: A log of action trajectories and their execution
results from the initial step onwards. This helps LAM understand the current system state and aids in
exploring the next steps based on prior actions. (2) Previous Plan: The textual planning for future actions,

5UIA is the native Windows OS APIs used to detect actionable controls and provide their metadata, such as names and
locations. For other platforms, UIA can be replaced by vision-based detectors that analyze screenshots or by utilizing alternative
accessibility APIs.

16

Under review as submission to TMLR

generated by LAM in the previous step. This serves as a reference for guiding the current and future actions,
ensuring consistency across steps.

7 Online Evaluations

With the integration of the Windows GUI agent UFO, we evaluate the performance of the LAM in real-world
environments. The evaluation process and results are detailed in the following subsections.

7.1 Testing Dataset

The online performance of LAM is evaluated on the same set of 435 test requests used during LAM training.
The testing environments, specifically the Word document templates corresponding to each task, are also
maintained as identical to the training setup to ensure consistency and comparability.

Table 3: Performance comparison of LAM and baseline models across metrics.
Metric Text-only Text + Visual

LAM GPT-4o + UFO GPT-4o Mini + UFO GPT-4o + UFO GPT-4o Mini + UFO
Task Success Rate (%) 71.0 63.0 57.8 75.5 66.7
Task Completion Time (s) 30.42 86.42 35.24 96.48 46.21
Task Completion Steps 5.62 6.73 5.99 4.98 6.34
Average Step Latency (s) 5.41 12.84 5.88 19.36 7.29

7.2 Implementation

Our LAM was deployed on a virtual machine (VM) configured as NC24s v3. The VM is equipped with 24
virtual cores (vCPUs), 448 GB of memory, and two NVIDIA Tesla V100 GPUs, each with 16 GB of memory,
to support efficient inference. This computational setup was designed to meet the demanding requirements of
LAM’s inference processes effectively.

The UFO agent operates on six VMs running in parallel using Azure Dedicated Host6 to accelerate the testing
process. Each VM is equipped with a 15-core Intel(R) Xeon(R) Platinum 8370C CPU @ 2.80GHz, 64GB
of RAM, and runs Windows 11 Enterprise version 23H2. Microsoft applications, such as Word and Excel,
are installed on version 2410. GUI control is facilitated through the MSTSC tool7. This setup ensures a
consistent and controlled environment for evaluating the LAM’s performance.

7.3 Baselines

To benchmark the performance of LAM, we compared it against two baseline models: GPT-4o and GPT-
4o Mini. These models are widely recognized for their robust natural language processing and reasoning
capabilities, making them popular choices in the development of GUI agents. To ensure consistency in
evaluation, the top_p and temperature hyperparameters were set to 0 for both baseline models.

To further examine the impact of input modalities, we conducted an ablation study comparing performance
with and without the inclusion of screenshots. Notably, LAM processes only textual inputs, excluding
screenshots, while the baseline models were evaluated using both textual and visual modalities.

7.4 Evaluation Metrics

We employ the following metrics to comprehensively evaluate the performance of LAM: Task Success Rate
(TSR): The percentage of tasks successfully completed out of the total tasks attempted. Task success is
determined by an evaluation agent using GPT-4o, which assesses the full task completion trajectory, including
plans, action sequences, and screenshots, to verify task completion. Task Completion Time: The total
time taken to complete each task, measured from the initial request to the final action.Task Completion

6https://azure.microsoft.com/en-us/products/virtual-machines/dedicated-host
7https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/mstsc

17

https://azure.microsoft.com/en-us/products/virtual-machines/dedicated-host
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/mstsc

Under review as submission to TMLR

Steps: The total number of action steps performed by the agent to successfully complete each task. Average
Step Latency: The average time taken per action step, reflecting the model’s efficiency in generating and
executing each action.

To ensure the reliability of our LLM-based automatic evaluation, we conducted a small-scale human study
focused on validating its accuracy and consistency. Specifically, we randomly sampled 100 task completions
from the test set, spanning a diverse range of task types and difficulty levels. Each sample was independently
reviewed by three human annotators with domain familiarity, who were asked to judge task success following
the same criteria used in our automated evaluation. The results demonstrated a 91% agreement between the
majority human judgment and the LLM-based labels. Furthermore, the inter-annotator agreement, measured
by Cohen’s kappa, was 0.85, indicating near-perfect consistency among human raters and strengthening the
case that the automated evaluation aligns well with human judgment. We ensured cross-validation among
annotators, and disagreements were resolved through consensus discussions. These findings confirm that our
LLM-based evaluation is a valid and scalable proxy for human judgment in this task setting. Quantitative
results, annotator agreement, and evaluation setup for the human study are provided in Appendix G.

7.5 Experimental Analysis

The experimental results are presented in Table 3. LAM achieves a TSR of 71.0%, demonstrating competitive
performance compared to the GPT-4o models. While GPT-4o with visual inputs attains the highest TSR of
76.5%, slightly outperforming LAM, its reliance on visual data introduces significant trade-offs in efficiency.
Notably, when visual inputs are excluded, GPT-4o’s TSR drops to 63.0%, an 8.0 percentage point decrease
compared to LAM. Similarly, GPT-4o Mini exhibits lower TSRs for both visual and non-visual settings
(66.7% and 57.8%, respectively). These results underscore LAM’s capability as a text-only model to maintain
high task success rates, outperforming the text-only variants of the baseline models.

Efficiency is assessed through Task Completion Time and Average Step Latency, where LAM demonstrates
clear superiority. LAM achieves the shortest Task Completion Time of 30.42 seconds, substantially
outperforming all baseline models. In comparison, GPT-4o without visual inputs records a completion time
of 86.42 seconds, more than 2.84 times longer than LAM. GPT-4o with visual inputs fares even worse, with a
completion time of 96.48 seconds. Although GPT-4o Mini models show slightly better efficiency than their
larger counterparts, they remain less efficient than LAM, with completion times of 35.24 seconds (without
visual inputs) and 46.21 seconds (with visual inputs).

LAM also excels in Average Step Latency, achieving the shortest time per action step at 5.41 seconds.
Without visual inputs, GPT-4o reduces its step latency to 12.84 seconds but still remains more than twice as
slow as LAM. In comparison, GPT-4o with visual inputs exhibits the highest step latency at 19.36 seconds
per step, more than triple LAM’s latency. GPT-4o Mini models show moderate improvements but still fall
short, with step latencies of 7.29 seconds (with visual inputs) and 5.88 seconds (without visual inputs).

These findings highlight LAM’s strengths as a text-only model, offering a compelling balance of competitive
accuracy and superior efficiency. It achieves rapid task completion and low latency without sacrificing
performance, making it an effective solution for real-world applications. Its specialized training enables precise
action inference and execution, underscoring the potential of LAMs to enhance automation and productivity
in agent-based systems.

8 Limitations and Future Directions

Despite their promise, Large Action Models (LAMs) remain in an early stage, facing several key challenges
that limit their deployment in real-world applications. We highlight three core areas requiring further research.

Safety Risks LAMs operate in both digital and physical environments, which introduces safety concerns
not present in traditional LLMs. Erroneous actions—whether controlling software or physical systems—can
result in real-world harm (Liu et al., 2024; Zhou et al., 2023). This necessitates robust safety mechanisms,
such as action validation, formal verification, and rollback strategies (Zhang et al., 2023; Koo & Toueg, 1987).
Future work should focus on fail-safe architectures that vet actions before execution.

18

Under review as submission to TMLR

Ethical and Regulatory Concerns As LAMs gain autonomy, questions of accountability, transparency,
and bias become critical (Biswas & Talukdar, 2023; Li et al., 2023; Ferrara, 2024). Misinterpretation of user
intent or inherited biases from training data can result in unfair or unsafe behavior. Regulatory compliance
in sensitive domains (e.g., healthcare, finance) further complicates deployment (Karabacak & Margetis, 2023).
Future directions include developing interpretable decision frameworks and establishing ethical guidelines and
compliance standards for safe LAM deployment.

Scalability and Generalization Current LAMs are highly specialized, often limited to narrow environ-
ments. Changes in application interfaces or system updates can break performance (Grosse et al., 2023;
Zhang et al., 2024c). Moreover, domain-specific data collection is costly and labor-intensive (Muennighoff
et al., 2024). Future research should pursue transfer learning, few-shot adaptation, and automated data
collection to enhance generalizability and reduce dependence on manual annotation.

8.1 Mitigation Strategies for Safe Deployment

To ensure the safe and ethical deployment of Large Action Models (LAMs), we adopt the following mitigation
strategies: (1) Environment Sandboxing: Run LAMs in sandboxed environments to restrict access to
critical system functions, minimizing the risk of unintended actions. (2) Human-in-the-Loop Verification:
Require human approval for high-impact or irreversible actions to ensure oversight in sensitive contexts. (3)
Action Validation: Validate predicted actions in real-time against environmental constraints or through
simulation to prevent execution errors. (4) Fail-Safe Defaults and Timeouts: Use safe defaults (e.g.,
cancel or no-op) and timeout mechanisms to handle ambiguous or stalled executions. (5) Progressive
Deployment: Start with low-risk or shadow deployments and gradually scale to full autonomy based on
observed reliability.

These strategies follow best practices for trustworthy AI and are essential for deploying LAMs safely in
dynamic, real-world environments.

9 Related work

9.1 Data of LAMs

Mind2Web (Deng et al., 2024) is the first dataset developed for web agents that follow natural language
instructions to complete complex tasks across diverse websites. It includes task descriptions, action sequences,
and webpage snapshots, offering rich data for training and testing models in various web-based scenarios.
Rawles et al., introduced a large dataset called Android in the Wild (AITW) (Rawles et al., 2024b), which is
designed specifically for training models to control Android devices. SeeClick (Cheng et al., 2024) combines
web, mobile, and general GUI tasks, creating a dataset of over 1 million samples for training LAMs. Similarly,
GUICourse (Chen et al., 2024b) and OmniACT (Kapoor et al., 2024) provide datasets across web, smartphone,
and desktop platforms, containing detailed user requests, environmental states, and action sequences. These
datasets are invaluable resources for training LAMs in specific domains and evaluating their task execution
abilities.

Several benchmarks have also been developed to evaluate the capabilities of LAMs and their associated agents
in different environments. WebCanvas provides 542 tasks with dynamic environments, designed to assess the
task completion ability of web agents. AndroidWorld (Rawles et al., 2024a) offers a fully functional Android
environment, featuring 116 programmatic tasks across 20 real-world Android apps with reward signals for
performance evaluation. WindowsArena (Bonatti et al., 2024) focuses on benchmarking LAMs within the
Windows GUI, while OSWorld (Xie et al., 2024) extends this to a more diverse environment, encompassing
Windows, macOS, and Ubuntu. These benchmarks provide standardized settings to measure and compare
the effectiveness of LAMs and their agents in various real-world environments, enabling a unified evaluation
framework for agentic models.

19

Under review as submission to TMLR

9.2 Training LAMs

Using both open and private domain-specific datasets, significant research efforts have been directed toward
training LAMs for specialized purposes, enhancing the action inference abilities of traditional LLMs to enable
automation and tangible real-world impact. For example, SeeClick (Cheng et al., 2024) and GUICourse
(Chen et al., 2024b), in addition to releasing their own datasets, leverage these resources to train LAMs,
grounding real-world data into models that effectively interact with their environments.

Hong et al., trained an 18-billion-parameter visual language LAM, named CogAgent (Hong et al., 2024),
which specializes in GUI understanding and navigation tasks across both PC and Android interfaces. By
utilizing datasets like Mind2Web and AITW, CogAgent has been optimized for complex navigation and
action execution tasks in diverse GUI environments. ScreenAI (Baechler et al., 2024) introduced a textual
representation for user interfaces (UIs) to teach models how to understand and interact with UIs. This
approach also facilitates automatic generation of large-scale training data, which is then used to pretrain and
fine-tune models for a wide spectrum of tasks, including UI and infographic understanding and navigation.
Additionally, Zhang et al., released a series of large action models (xLAM) tailored for AI agent tasks (Zhang
et al., 2024b), including five models with both dense and mixture-of-expert architectures. By unifying
datasets from diverse environments, xLAM ensures consistency in data format, simplifying model training and
enhancing generalization across multiple benchmarks. These models have achieved outstanding performance
in diverse scenarios, demonstrating the capability of LAMs to extend beyond traditional LLMs and perform
complex real-world tasks.

9.3 Agents with LAMs

With the development of LAMs, researchers have integrated these models into real-world agent systems, which
provide the necessary components and workflows to ensure effective interaction between LAMs and their
environments, enabling them to fulfill user requests efficiently. As a pioneer, Zhang et al., demonstrated that
GPT-V can serve as a capable LAM for web navigation when coupled with appropriate agent techniques and
tools, revealing the potential of LAMs in complex web interactions. In the mobile domain, MobileAgent (Wang
et al., 2024a) and AppAgent (Yang et al., 2023a) focus on automating tasks within Android applications
by leveraging GUI agents. These systems demonstrate how LAMs can power task automation on mobile
platforms, transforming how users interact with applications.

One of the most advanced systems, UFO (Zhang et al., 2024a), is a UI-focused agent designed for automating
tasks on the Windows OS, further enhanced with APIs (Lu et al., 2024). UFO is composed of two key
components: a HostAgent that decomposes user requests into subtasks and an AppAgent that executes these
subtasks within individual applications. This architecture significantly enhances UFO’s capability to handle
cross-application tasks seamlessly, providing robust task automation across diverse software environments.
In parallel, ScreenAgent (Niu et al., 2024), Cradle (Tan et al., 2024), OS-Copilot (Wu et al., 2024), and
MMAC-Copilot (Song et al., 2024) also focus on automating UI tasks in desktop environments. Notably,
Cradle and OS-Copilot push the boundaries by enabling agents to learn from their experiences and self-evolve
over time, further enhancing their effectiveness and autonomy.

10 Conclusion

“Actions speak louder than words.” The transition from generating language responses to executing tangible
actions marks the evolution of large language models into large action models, enabling them to make
real-world impacts, a critical step towards achieving AGI. This technical report provides a comprehensive
introduction to LAMs, covering their conceptual foundations, system architecture, and the step-by-step
process of developing a LAM—from data collection to model training and deployment in real-world agent
systems. We use the Windows OS environment and its GUI agent UFO, as a case study to demonstrate how
to build a LAM from the ground up. Detailed implementation strategies and evaluation results are presented
to offer practical insights into this process.

20

Under review as submission to TMLR

However, despite progress, the development of high-quality LAMs is still in its early stages, with several
limitations remaining. These include the extensive need for training data and computational resources,
inference latency, and the risk of errors during real-world execution. While current LAMs have shown
potential, there is substantial room for improvement. We anticipate that as these challenges are addressed,
more sophisticated and reliable LAM applications will emerge, bringing us closer to fully autonomous systems
capable of meaningful action in complex environments.

References
Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir Zubach, Hassan Mansoor, Vincent Etter, Victor

Cărbune, Jason Lin, Jindong Chen, and Abhanshu Sharma. Screenai: A vision-language model for ui and
infographics understanding. arXiv preprint arXiv:2402.04615, 2024.

Anjanava Biswas and Wrick Talukdar. Guardrails for trust, safety, and ethical development and deployment
of large language models (llm). Journal of Science & Technology, 4(6):55–82, 2023.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Justin Wagle,
Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui. Windows agent arena: Evaluating
multi-modal os agents at scale. arXiv preprint arXiv:2409.08264, 2024.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves Oudeyer.
Grounding large language models in interactive environments with online reinforcement learning. In
International Conference on Machine Learning, pp. 3676–3713. PMLR, 2023.

Jin Chen, Zheng Liu, Xu Huang, Chenwang Wu, Qi Liu, Gangwei Jiang, Yuanhao Pu, Yuxuan Lei, Xiaolong
Chen, Xingmei Wang, et al. When large language models meet personalization: Perspectives of challenges
and opportunities. World Wide Web, 27(4):42, 2024a.

Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu, Guirong
Chen, Yupeng Huo, et al. Guicourse: From general vision language models to versatile gui agents. arXiv
preprint arXiv:2406.11317, 2024b.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong Wu. Seeclick:
Harnessing gui grounding for advanced visual gui agents. arXiv preprint arXiv:2401.10935, 2024.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su. Mind2web:
Towards a generalist agent for the web. Advances in Neural Information Processing Systems, 36, 2024.

Ruomeng Ding, Chaoyun Zhang, Lu Wang, Yong Xu, Minghua Ma, Wei Zhang, Si Qin, Saravan Rajmohan,
Qingwei Lin, and Dongmei Zhang. Everything of thoughts: Defying the law of penrose triangle for thought
generation. arXiv preprint arXiv:2311.04254, 2023.

Duong Tran Dinh, Pham Ngoc Hung, and Tung Nguyen Duy. A method for automated user interface testing
of windows-based applications. In Proceedings of the 9th International Symposium on Information and
Communication Technology, pp. 337–343, 2018.

Tao Feng, Chuanyang Jin, Jingyu Liu, Kunlun Zhu, Haoqin Tu, Zirui Cheng, Guanyu Lin, and Jiaxuan You.
How far are we from agi: Are llms all we need? Transactions on Machine Learning Research.

Emilio Ferrara. Genai against humanity: Nefarious applications of generative artificial intelligence and large
language models. Journal of Computational Social Science, pp. 1–21, 2024.

Jensen Gao, Bidipta Sarkar, Fei Xia, Ted Xiao, Jiajun Wu, Brian Ichter, Anirudha Majumdar, and Dorsa
Sadigh. Physically grounded vision-language models for robotic manipulation. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pp. 12462–12469. IEEE, 2024.

21

Under review as submission to TMLR

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit Steiner,
Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization with influence
functions. arXiv preprint arXiv:2308.03296, 2023.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-trained
large language models to construct and utilize world models for model-based task planning. Advances in
Neural Information Processing Systems, 36:79081–79094, 2023.

Jianliang He, Siyu Chen, Fengzhuo Zhang, and Zhuoran Yang. From words to actions: Unveiling the
theoretical underpinnings of llm-driven autonomous systems. arXiv preprint arXiv:2405.19883, 2024.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang,
Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for GUI agents. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14281–14290, 2024.

Mengkang Hu, Pu Zhao, Can Xu, Qingfeng Sun, Jianguang Lou, Qingwei Lin, Ping Luo, Saravan Rajmohan,
and Dongmei Zhang. Agentgen: Enhancing planning abilities for large language model based agent via
environment and task generation. CoRR, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b.
arXiv preprint arXiv:2310.06825, 2023.

Yuxuan Jiang, Chaoyun Zhang, Shilin He, Zhihao Yang, Minghua Ma, Si Qin, Yu Kang, Yingnong Dang,
Saravan Rajmohan, Qingwei Lin, et al. Xpert: Empowering incident management with query recommen-
dations via large language models. In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, pp. 1–13, 2024.

Sai Shashank Kalakonda, Shubh Maheshwari, and Ravi Kiran Sarvadevabhatla. Action-gpt: Leveraging
large-scale language models for improved and generalized action generation. In 2023 IEEE International
Conference on Multimedia and Expo (ICME), pp. 31–36. IEEE, 2023.

Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem Alshikh, and
Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist autonomous
agents for desktop and web. arXiv preprint arXiv:2402.17553, 2024.

Mert Karabacak and Konstantinos Margetis. Embracing large language models for medical applications:
opportunities and challenges. Cureus, 15(5), 2023.

Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank Fischer,
Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, et al. Chatgpt for good? on opportunities
and challenges of large language models for education. Learning and individual differences, 103:102274,
2023.

Richard Koo and Sam Toueg. Checkpointing and rollback-recovery for distributed systems. IEEE Transactions
on software Engineering, (1):23–31, 1987.

Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu, and Oriana
Riva. On the effects of data scale on computer control agents. arXiv preprint arXiv:2406.03679, 2024.

Yingji Li, Mengnan Du, Rui Song, Xin Wang, and Ying Wang. A survey on fairness in large language models.
arXiv preprint arXiv:2308.10149, 2023.

Chen Ling, Xujiang Zhao, Jiaying Lu, Chengyuan Deng, Can Zheng, Junxiang Wang, Tanmoy Chowdhury,
Yun Li, Hejie Cui, Xuchao Zhang, et al. Domain specialization as the key to make large language models
disruptive: A comprehensive survey. arXiv preprint arXiv:2305.18703, 2023.

Zheyuan Liu, Guangyao Dou, Zhaoxuan Tan, Yijun Tian, and Meng Jiang. Towards safer large language
models through machine unlearning. arXiv preprint arXiv:2402.10058, 2024.

22

Under review as submission to TMLR

Junting Lu, Zhiyang Zhang, Fangkai Yang, Jue Zhang, Lu Wang, Chao Du, Qingwei Lin, Saravan Rajmohan,
Dongmei Zhang, and Qi Zhang. Turn every application into an agent: Towards efficient human-agent-
computer interaction with api-first llm-based agents. arXiv preprint arXiv:2409.17140, 2024.

Zilin Ma, Yiyang Mei, and Zhaoyuan Su. Understanding the benefits and challenges of using large language
model-based conversational agents for mental well-being support. In AMIA Annual Symposium Proceedings,
volume 2023, pp. 1105. American Medical Informatics Association, 2023.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Amatriain, and
Jianfeng Gao. Large language models: A survey. arXiv preprint arXiv:2402.06196, 2024.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra Piktus, Sampo
Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language models. Advances in Neural
Information Processing Systems, 36, 2024.

Runliang Niu, Jindong Li, Shiqi Wang, Yali Fu, Xiyu Hu, Xueyuan Leng, He Kong, Yi Chang, and Qi Wang.
Screenagent: A vision language model-driven computer control agent. arXiv preprint arXiv:2402.07945,
2024.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth Fair, Alice
Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A dynamic benchmarking
environment for autonomous agents. arXiv preprint arXiv:2405.14573, 2024a.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Androidinthewild: A
large-scale dataset for android device control. Advances in Neural Information Processing Systems, 36,
2024b.

Nils Reimers and Iryna Gurevych. sentence-transformers/all-minilm-l6-v2. https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2, 2021. Accessed: 2025-06-06.

Paul K Rubenstein, Chulayuth Asawaroengchai, Duc Dung Nguyen, Ankur Bapna, Zalán Borsos, Félix
de Chaumont Quitry, Peter Chen, Dalia El Badawy, Wei Han, Eugene Kharitonov, et al. Audiopalm: A
large language model that can speak and listen. arXiv preprint arXiv:2306.12925, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Chirag Shah, Ryen W White, Reid Andersen, Georg Buscher, Scott Counts, Sarkar Snigdha Sarathi Das,
Ali Montazer, Sathish Manivannan, Jennifer Neville, Xiaochuan Ni, et al. Using large language models to
generate, validate, and apply user intent taxonomies. arXiv preprint arXiv:2309.13063, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: Language
agents with verbal reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

Zirui Song, Yaohang Li, Meng Fang, Zhenhao Chen, Zecheng Shi, and Yuan Huang. Mmac-copilot: Multi-
modal agent collaboration operating system copilot. arXiv preprint arXiv:2404.18074, 2024.

Weihao Tan, Ziluo Ding, Wentao Zhang, Boyu Li, Bohan Zhou, Junpeng Yue, Haochong Xia, Jiechuan Jiang,
Longtao Zheng, Xinrun Xu, et al. Towards general computer control: A multimodal agent for red dead
redemption ii as a case study. arXiv preprint arXiv:2403.03186, 2024.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez, Ting Fang Tan,
and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine, 29(8):1930–1940, 2023.

Paul Thomas, Seth Spielman, Nick Craswell, and Bhaskar Mitra. Large language models can accurately
predict searcher preferences. In Proceedings of the 47th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 1930–1940, 2024.

23

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

Under review as submission to TMLR

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large language
models still can’t plan (a benchmark for llms on planning and reasoning about change). In NeurIPS 2022
Foundation Models for Decision Making Workshop, 2022.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao Sang.
Mobile-Agent: Autonomous multi-modal mobile device agent with visual perception. arXiv preprint
arXiv:2401.16158, 2024a.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents. Frontiers of
Computer Science, 18(6):186345, 2024b.

Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu, Xizhou Zhu, Gang Zeng, Ping Luo, Tong Lu, Jie
Zhou, Yu Qiao, et al. Visionllm: Large language model is also an open-ended decoder for vision-centric
tasks. Advances in Neural Information Processing Systems, 36, 2024c.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. arXiv preprint
arXiv:2212.10560, 2022.

Zige Wang, Wanjun Zhong, Yufei Wang, Qi Zhu, Fei Mi, Baojun Wang, Lifeng Shang, Xin Jiang, and Qun
Liu. Data management for large language models: A survey. arXiv e-prints, pp. arXiv–2312, 2023.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M
Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652,
2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824–24837, 2022.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao Yu, and
Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement. arXiv preprint
arXiv:2402.07456, 2024.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents for
open-ended tasks in real computer environments. arXiv preprint arXiv:2404.07972, 2024.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions. arXiv preprint
arXiv:2304.12244, 2023.

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu. Appagent:
Multimodal agents as smartphone users. arXiv preprint arXiv:2312.13771, 2023a.

Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Chung-Ching Lin, Zicheng Liu, and Lijuan Wang.
The dawn of lmms: Preliminary explorations with gpt-4v (ision). arXiv preprint arXiv:2309.17421, 9(1):1,
2023b.

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and Karthik Narasimhan. Keep calm and explore: Language
models for action generation in text-based games. arXiv preprint arXiv:2010.02903, 2020.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022.

Burak Yetiştiren, Işık Özsoy, Miray Ayerdem, and Eray Tüzün. Evaluating the code quality of ai-assisted
code generation tools: An empirical study on github copilot, amazon codewhisperer, and chatgpt. arXiv
preprint arXiv:2304.10778, 2023.

24

Under review as submission to TMLR

Fanlong Zeng, Wensheng Gan, Yongheng Wang, Ning Liu, and Philip S Yu. Large language models for
robotics: A survey. arXiv preprint arXiv:2311.07226, 2023.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei Lin,
Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. UFO: A UI-Focused Agent for Windows OS Interaction.
arXiv preprint arXiv:2402.07939, 2024a.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao Tan,
Akshara Prabhakar, Haolin Chen, et al. xlam: A family of large action models to empower ai agent systems.
arXiv preprint arXiv:2409.03215, 2024b.

Xingxuan Zhang, Jiansheng Li, Wenjing Chu, Junjia Hai, Renzhe Xu, Yuqing Yang, Shikai Guan, Jiazheng
Xu, and Peng Cui. On the out-of-distribution generalization of multimodal large language models. arXiv
preprint arXiv:2402.06599, 2024c.

Zhexin Zhang, Leqi Lei, Lindong Wu, Rui Sun, Yongkang Huang, Chong Long, Xiao Liu, Xuanyu Lei, Jie
Tang, and Minlie Huang. Safetybench: Evaluating the safety of large language models with multiple choice
questions. arXiv preprint arXiv:2309.07045, 2023.

Xin Zhou, Yi Lu, Ruotian Ma, Tao Gui, Qi Zhang, and Xuanjing Huang. Making harmful behaviors
unlearnable for large language models. arXiv preprint arXiv:2311.02105, 2023.

25

Under review as submission to TMLR

A Template Word files

Figure 10, 11, and 12 show three template word file examples used in the instantiation phase when converting
task-plan data to task-action data.

Figure 10: A word template file with the description “A doc with a rectangle shape.”

Figure 11: A word template file with the description “A doc with comments and reviewer.”

26

Under review as submission to TMLR

Figure 12: A word template file with the description “A doc with a chart.”

B Prompts

B.1 Instantiation

The instantiation prompt used in the instantiation phase when converting task-plan data to task-action data.

system : |-
You are a Agent Task Creator and planer .
You will receive a <Given Task > that is abstract and your objective is to

instantiate this task , and give the step -by -step actions to take.
- You are provided with a doc file environment , which contains the canvas

content and control information in <Doc Canvas State:> and <Doc Control State
:>.

- You should review the doc canvas content and control information to detail the
<Given Task > to a <New Task >. The control information is in a dict tree of

available control items format .
- You are provided with <Available Actions >, you should review the acions

carefully and choose the most suitable ones step -by -step <Action Plan >.
You are also provided with some steps to reference in <Reference Steps >
- You should also review these steps carefully , to help you instantiate the

original task and give the actions .

Control item
- The control item is the element on the page that you can interact with , we

limit the actionable control item to the following :
- " Button " is the control item that you can click.
- "Edit" is the control item that you can click and input text.
- " TabItem " is the control item that you can click and switch to another page.
- " ListItem " is the control item that you can click and select .
- " MenuItem " is the control item that you can click and select .
- " ScrollBar " is the control item that you can scroll .
- " TreeItem " is the control item that you can click and select .

27

Under review as submission to TMLR

- " Document " is the control item that you can click and select text.
- " Hyperlink " is the control item that you can click and open a link.
- " ComboBox " is the control item that you can click and input text. The Google

search box is an example of ComboBox .

Available Actions on the control item
- All the available actions are listed below:
{apis}

The requirements for <New Task >
1. The <New Task > must based on the given task.
2. The <New Task > must be able to be completed step -by -step by a Windows

Operating System or an Application on Windows platform .
3. You should try your best not to make the <New Task > become verbose , <New Task

> can only add up to 50 words into #Given Task #.
4. The detailed target in <New Task > should be specific and clear based on the

doc canvas content and control information .
5. The <New Task > should be able to implemented by the available controls and

actions .

The requirements for <Action Plan >
1. The <Action Plan > should be step -by -step actions to take in the doc file

environment .
2. Each action should be in the available actions from <Available Actions >.
3. Each action should be generated with a "step" description which is the

function description of the action .

Response Format
- You are required to response in a JSON format , consisting of several distinct

parts with the following keys and corresponding content :
{{

" observation ": <Outline the observation of the provided doc file environment
based on the given Canvas State and Control State >,

" thought ": <Outline your thinking and logic of your New Task and the actions
to take , consider the observation of environment and avaiable controls

actions >,
" new_task ":<Give the detailed New Task based on Given Task and the

observation of doc environment >,
" actions_plan ":<Give the detailed step -by -step actions plan based on the

Available Actions and the observation of doc environment .,
The format should be a list of action call format separated by "\n">

}}

Action Call Format
- The action call format is the same as the available actions in the API list.

You are required to provide the action call format in a JSON format :
{{
"step": <The step description the function of the action ,which is also the

subtask completed by the current action >
" controlLabel ": <Specify the precise annotated label of the control item to be

selected , adhering strictly to the provided options in the field of "label
" in the <Doc Control State :>. If you believe none of the control item is
suitable for the task or the task is complete , kindly output a empty string

.>
" controlText ": <Specify the precise control_text of the control item to be

selected , adhering strictly to the provided options in the field of "
control_text " in the <Doc Control State :>. The control text must match
exactly with the selected control label. If the function to call do not

28

Under review as submission to TMLR

need specify controlText or the task is complete ,you can kindly output an
empty string .

If the function to call need to specify controlText and none of the control
item is suitable for the task ,you should input a possible control name.>

" function ": <Specify the precise API function name without arguments to be
called on the control item to complete the user request , e.g.,
click_input . Leave it a empty string "" if you believe none of the API
function is suitable for the task or the task is complete .>

"args": <Specify the precise arguments in a dictionary format of the
selected API function to be called on the control item to complete the
user request , e.g., {{" control_id ":"1"," button ": "left", " double ": false
}}. Leave it a empty dictionary {{}} if you the API does not require
arguments , or you believe none of the API function is suitable for the
task , or the task is complete .>

}}

e.g.
{{

"step": " change the borders ",
" controlLabel ": "",
" controlText ": " Borders ",
" function ": " click_input ",
"args": {{

" button ": "left",
" double ": false

}}
}}

{{
"step": " change the borders ",

" controlLabel ": "101",
" controlText ": " Borders ",
" function ": " click_input ",
"args": {{

" control_id ": "101",
" button ": "left",
" double ": false

}}
}}

{{
"step": " select the target text",
" controlLabel ": "",
" controlText ": "",
" function ": " select_text ",
"args": {{

"text": "Test For Fun"
}}

}}

- The <actions_plan > field must be strictly in a format separated each action
call by "\n". The list format should be like this: " action call 1\ naction
call 2\ naction call 3"

- If you think the original task do not need to be detailed , you can directly
copy the original task to the " new_task ".

- You should review the apis function carefully and if the function to call need
to specify target control ,the " controlText " field

cannot be set empty.

29

Under review as submission to TMLR

- The "step" description should be consistent with the action and also the
thought .

Here are some examples for you to complete the user request :
{ examples }

Tips
- Read the above instruction carefully . Make sure the response and action

strictly following these instruction and meet the user request .
- Make sure you answer must be strictly in JSON format only , without other

redundant text such as json header . Your output must be able to be able to be
parsed by json.loads (). Otherwise , it will crash the system and destroy the

computer .
- Your task is very important to improve the agent performance . I will tip you

200$ if you do well. Thank you for your hard work!

user: |-
<Given Task:> { given_task }
<Reference Steps:> { reference_steps }
<Doc Canvas State:> { doc_canvas_state }
<Doc Control State:> { doc_control_state }
<Your response :>

B.2 Evaluation

The instantiation prompt used in the evaluation phase when converting task-plan data to task-action data.

system : |-
You are an evaluator who can evaluate whether an agent has successfully

completed a task in the <Original Request >.
The agent is an AI model that can interact with the desktop application and take

actions .
The thought of agent plan is provided in the <Thought >.
You will be provided with a task and the <Execution Trajectory > of the agent ,

including the agent actions that have been taken , and the change of
environment .

You will also be provided with a final canvas state in <Final Env Status >.
You will also be provided with a canvas difference in <Canvas Diff >.
You will also be provided with the initial control state in <Init Control State

>.
You will also be provided with the final control state after each action in <

Final Control State >.

Besides , you will also be provided with two screenshots , one before the agent
execution and one after the agent execution .

Please judge whether the agent has successfully completed the task based on the
screenshots and the <Execution Trajectory >. You are required to judge whether
the agent has finished the task or not by observing the screenshot
differences and the intermediate steps of the agent.

Execution trajectory information
Here are the detailed information about a piece of agent execution trajectory

item:
- number : The number of action in the execution trajectory .
- action : The action that the agent takes in the current step. It is the API

call that the agent uses to interact with the application window .

30

Under review as submission to TMLR

You will get a list of trajectory items in the <Execution Trajectory > of the
agent actions .

Control State

- A control item is the element on the page that you can interact with , we limit
the actionable control item to the following :

- " Button " is the control item that you can click.
- "Edit" is the control item that you can click and input text.
- " TabItem " is the control item that you can click and switch to another page.
- " ListItem " is the control item that you can click and select .
- " MenuItem " is the control item that you can click and select .
- " ScrollBar " is the control item that you can scroll .
- " TreeItem " is the control item that you can click and select .
- " Document " is the control item that you can click and select text.
- " Hyperlink " is the control item that you can click and open a link.
- " ComboBox " is the control item that you can click and input text. The Google

search box is an example of ComboBox .
- You are given the information of all available control item in the current

application window in a hybrated tree format :
{{

" control_label ": "label of the control item",
" control_text ": name of the control item ,
" control_type ": type of the control item ,
" selected ": False or True or null ,null means the control item is not sure if

it is selected ,
" children ": list of the children control item with same format as above

}}.

Canvas State Format
The canvas state is in the xml format which is transformed from the document

object model (DOM) of the canvas area.
The canvas diff is the difference of the canvas area before and after the action

, which is in the format of the difference of the xml of the canvas area.
Here is an example of xml of a canvas ,which show the text content in document :
{{"w: document ":{{"@mc: Ignorable ":" w14w15w16sew16cidw16w16cexw16sdtdhw16duwp14 ","

w:body":{{"w:p":{{"w:pPr":{{"w:rPr":{{"w: rFonts ":{{"@w:hint":" eastAsia "}},"w:
color":{{"@w:val":"92 D050"}},"w:kern":{{"@w:val":"2"}},"w:sz":{{"@w:val":"24"
}},"w:szCs":{{"@w:val":"24"}},"w:lang":{{"@w:val":"en -US","@w: eastAsia ":"zh -
CN","@w:bidi":"ar -SA"}},"w14: ligatures ":{{"@w14:val":" standardContextual "
}}}} ,"w: spacing ":{{"@w:after":"160","@w:line":"278","@w: lineRule ":"auto"}},"w
:color":" 000000 "}},"w:r":{{"w:rPr":{{"w: rFonts ":{{"@w:hint":" eastAsia "}},"w:
color":{{"@w:val":"92 D050"}},"w: highlight ":{{"@w:val":" yellow "}},"w:kern":{{"
@w:val":"2"}},"w:sz":{{"@w:val":"24"}},"w:szCs":{{"@w:val":"24"}},"w:lang":{{
"@w:val":"en -US","@w: eastAsia ":"zh -CN","@w:bidi":"ar -SA"}},"w14: ligatures ":{{
"@w14:val":" standardContextual "}}}} ,"w:t":"Hello"}}}} ,"w: sectPr ":{{"w:pgSz"
:{{"@w:w":"12240","@w:h":"15840"}},"w:pgMar":{{"@w:top":"1440","@w:right":"
1440","@w: bottom ":"1440","@w:left":"1440","@w: header ":"720","@w: footer ":"720"
,"@w: gutter ":"0"}},"w:cols":{{"@w:space":"720"}},"w: docGrid ":{{"@w: linePitch "
:"360" }}}}}}}}}}

Action Explanation
Below is the available API that the agent can use to interact with the

application window . You can refer to the API usage to understand the agent
actions .

{apis}

Evaluation Items

31

Under review as submission to TMLR

You have 2 main items to evaluate :

1. You should also give a overall evaluation of whether the task has been
finished , marked as "yes","no" or " unsure ".

2. You should also give a overall evaluation of the quality of task , marked as "
ambiguous ","over - detailed " or "good".

Criteria for evaluation of the task completion :
1. The <Final Control State:> and <Final Env Status :> should be consistent with

the task requirements .If the
controls or canvas content expected to be changed are not changed , the task is

not completed .
2. The <Execution Trajectory > should be consistent with the task requirements .

If the agent actions are not consistent with the task requirements , the task
is not completed .

3. If any action in the <Execution Trajectory > is empty , the task is not
completed .

Criteria for evaluation of the task quality :
1. The description of the <Original Request :> should be clear and unambiguous ,

without the meaning of " selection ".
2. The description of the <Original Request :> should not be too detailed like

step -by -step actions .

Response Format

You must strictly follow the below JSON format for your reply , and do not change
the format nor output additional information .

{{
" task_quality ": The quality of the <Original Request :>, which is " ambiguous /

over - detailed /good",
" task_complete ": The evaluation of the task completion , which is "yes/no/

unsure ",
" complete_judgement ": your judgment of whether the task has been finished ,

and the detailed reasons for your judgment based on the provided
information ,

" quality_judgement ": your judgment of the quality of the task , and the
detailed reasons for your judgment based on the provided information

}}

Please take a deep breath and think step by step. Observe the information
carefully and analyze the agent execution trajectory , do not miss any minor
details .

Rethink your response before submitting it.
Your judgment is very important to improve the agent performance . I will tip you

200$ if you provide a detailed , correct and high - quality evaluation . Thank
you for your hard work!

user: |-
<Original Request :> { request }
<Thought :> { thought }
<Execution Trajectory :> { trajectory }
<Canvas Diff:> { canvas_diff }
<Init Control State:> { init_control_state }
<Final Control State:> { final_control_state }
<Final Env Status :> { final_status }

32

Under review as submission to TMLR

<Your response :>

C Templates of training format

The following presents a template of the training data format. The parts enclosed in “” are fields that need to
be filled. The “apis” field corresponds to the function information in the respective app, while “control_item”
contains the control information of the app under the current screenshot. The “user_request” field captures
the user’s current request, “step_history” records the agent’s previous trajectory history, and “previous_plan”
outlines the agent’s planning for the task in the previous state.

system : |-
- You are a virtual assistant that can help users to complete their current

requests by interacting with the UI of Window OS.
- You are provided a list of control items of the current application window for

reference
- You are provided your previous plan of action for reference to decide the next

step ,the previous plan is the list of plan for the future actions made
before the current action .

- You are provided the steps history , including historical actions of your
previous steps for reference to decide the next step.

- You are required to select the control item and take one -step action on it to
complete the user request for one step. The one -step action means calling a
function with arguments for only once.

- You are required to decide whether the task status , and detail a list of plan
of following actions to accomplish the current user request . Do not include
any additional actions beyond the completion of the current task.

Control item
- The control item is the element on the page that you can interact with , we

limit the actionable control item to the following :
- " Button " is the control item that you can click.
- "Edit" is the control item that you can click and input text.
- " TabItem " is the control item that you can click and switch to another page.
- " ListItem " is the control item that you can click and select .
- " MenuItem " is the control item that you can click and select .
- " ScrollBar " is the control item that you can scroll .
- " TreeItem " is the control item that you can click and select .
- " Document " is the control item that you can click and select text.
- " Hyperlink " is the control item that you can click and open a link.
- " ComboBox " is the control item that you can click and input text.

Action on the control item
- You are able to use pywinauto to interact with the control item.
{apis}

Status of the task
- You are required to decide the status of the task after taking the current

action , choose from the following actions , and fill in the " Status " field in
the response .

- " CONTINUE ": means the task is not finished and need further action .
- " FINISH ": means the current task is finished for the AppAgent and no further

actions are required .

Other Guidelines
- You are required to select the control item and take open -step action by

calling API on it to complete the user request for one step.

33

Under review as submission to TMLR

- You are required to response in a JSON format , consisting of 7 distinct parts
with the following keys and corresponding content :

{{
" thought ": <Outline your thinking and logic of current one -step action

required to fulfill the given request . You are restricted to provide you
thought for only one step action .>

" control_label ": <Specify the precise annotated label of the control item to
be selected , adhering strictly to the provided options in the field of "
label" in the control information . If you believe none of the control item
is suitable for the task or the task is complete , kindly output a empty
string .>

" control_name ": <Specify the precise control_text of the control item to be
selected , adhering strictly to the provided options in the field of "
control_text " in the control information . If you believe none of the
control item is suitable for the task or the task is complete , kindly
output a empty string . The control text must match exactly with the
selected control label.>

" function ": <Specify the precise API function name without arguments to be
called on the control item to complete the user request , e.g., click_input .

Leave it a empty string "" if you believe none of the API function is
suitable for the task or the task is complete .>

"args": <Specify the precise arguments in a dictionary format of the selected
API function to be called on the control item to complete the user request ,

e.g., {{" button ": "left", " double ": false }}. Leave it a empty dictionary
{{}} if you the API does not require arguments , or you believe none of the
API function is suitable for the task , or the task is complete .>

" status ": <Specify the status of the task given the action .>
"plan": <Specify the following list of plan of action to complete the user

request . You must provided the detailed steps of action to complete the
user request .If you believe the task is finished and no further actions are

required after the current action , leave it an empty list.>
}}

user: |-
<Available Control Item:> { control_item }
<User Request :> { user_request }
<Previous Actions :> { step_history }
<Previous Plans:> { previous_plan }

assistant : |-
{ output }

D Evaluation Prompt for Task-Plan

The evaluation prompt for results from LAM1 after task-plan pretraining.

You are a helpful and precise assistant for checking the quality of the answer . We
would like to invite you to evaluate the performance of two AI assistants in

answering a users question in <Question >. These two answers are in <Answer1 >
and <Answer2 >, respectively . Your evaluation will contain five sub - evaluation
tasks:

1. Can <Answer1 > solve the users question ?
- Your answer should be "Yes" or "No".

2. Can <Answer2 > solve the users question ?
- Your answer should be "Yes" or "No".

3. Both two answers contain a list of steps marked by numbers . Your task is to
extract action items from the provided steps in both answers . The action item
is defined like a combination of action and element . Compare the action items

34

Under review as submission to TMLR

to identify similarities . Output the similar action items. Count the count of
similar action items.
- Your answer should contain the extracted two action item sets (in the format

as a list of string).
- Your answer should contain the set of similar action items (in the format as

a list of string). Similar action items are those sharing similar intent
or achieving similar goals. Each similar action pair in the list should be
in the format of " similar action item from action item set1 / similar
action item from action item set2"

- Your answer should contain the count of similar action items.
4. Which assistant provides a more helpful response ?

- Your answer should be "1" or "2", where "1" represents <Answer1 > and "2"
represents <Answer2 >.

- Your answer should contain the reason (s) for your choice . You should not
focus on the length of the answer or the details of the answer , but you
should focus on whether the steps could solve the users question and the
quality of the steps.

Your output should be in the following format in json:
{{

" Subtask1 ": "Yes" or "No",
" Subtask2 ": "Yes" or "No",
" Subtask3 ": {{

" Action items in Answer1 ": [" action item 1", " action item 2", ...] ,
" Action items in Answer2 ": [" action item 1", " action item 2", ...] ,
" Similar action items": [" similar action item 1", " similar action item 2",

...] ,
"Count of similar action items": 2

}},
" Subtask4 ": {{

"More helpful assistant ": "1" or "2",
" Reason ": " reason for your choice "

}}
}}

Here is the users question <Question >: { question }
The first answer <Answer1 > is: { answer1 }
The second answer <Answer2 > is: { answer2 }

E LAM Training Objectives

The problem is formally structured into two key objectives: (i) task-plan pretraining and (ii) decision-making
training.

Task-plan pretraining aims to enable the LAM to map a given task description to a structured sequence of
plans necessary for accomplishing the task. The primary objective of this component is to generate accurate
and coherent plans. The training dataset consists of task-plan pairs, defined as:

Dplan = {(ti, Pi)}N
i=1

where ti: The task description, Pi: A sequence of plans to complete the task.

In decision-making training, the dataset consists of task-action trajectories, defined as::

τ = {(s1, a1), (s2, a2), . . . , (sT , aT)}

where:

• st (state at time step t), comprising:

35

Under review as submission to TMLR

– Task description: A high-level summary of the task.
– Step ID: The current step in the task sequence.
– Observations: Information including control elements and the current canvas state.
– Thoughts: Model-generated reasoning for the current step.
– Previous actions and plans: The sequence of actions and plans from prior steps.

• at (action taken at time step t), consisting of:

– Thought: Model’s reasoning for the action.
– Control label: A label for the control element.
– Control name: The name of the control to interact with.
– Function name: The specific function invoked by the action.
– Arguments: Parameters passed to the function.
– Status: Indicates action’s progress, either ongoing (Continue) or completed (Finish).

The objective of decision-making training is to train the LAM to predict the appropriate action at for a given
state st at each time step. This enables the model to map input states to corresponding actions across the
sequence of steps required to accomplish the task.

Broader Impact Statement

The Large Action Model (LAM) framework provides a novel approach for training agents in scenarios where
no labeled data exists. By combining task-plan pretraining, imitation learning, and autonomous self-boosting
with reward-based fine-tuning, LAM enables agents to progress from zero prior knowledge to proficient
task execution. This capability is particularly valuable in data-scarce domains, offering a scalable method
to bootstrap agent learning using structured knowledge from resources like help documentation. Such an
approach makes it feasible to deploy AI systems in specialized environments with limited access to traditional
training datasets.

The potential impact of LAM extends to a wide range of applications, including automation of complex user
interactions, optimization of industrial workflows, and enhancement of accessibility technologies. However,
the autonomous learning capabilities of LAM also raise ethical concerns. Misaligned or incorrect actions in
critical applications could have unintended consequences, and questions of accountability must be carefully
addressed.

To mitigate risks, it is crucial to implement robust evaluation mechanisms and safeguards during deployment.
Transparency, alignment with user intent, and clear oversight are essential to ensure responsible use. By
addressing these challenges, the LAM framework offers a pathway to extend the reach of AI into domains
previously considered inaccessible due to data limitations.

F Data Deduplication and Train-Test Similarity Analysis

F.1 Semantic Deduplication and Filtering Pipeline

To improve training efficiency and ensure data diversity, we applied a semantic deduplication pipeline inspired
by Self-Instruct. Specifically: We first parsed all raw instruction data and removed irrelevant samples (e.g.,
non-English instructions, malformed data, smartphone-related tasks). We began with 76,851 raw tasks
samples. After applying heuristic filters and semantic deduplication (using Sentence-BERT all-MiniLM-L6-
v2 (Reimers & Gurevych, 2021) with a cosine similarity threshold of 0.95), we removed 179 samples, resulting
in 76,672 cleaned tasks.The final split used for training and evaluation is 1,757 training tasks and 435 test
tasks.

36

Under review as submission to TMLR

ROUGE-L Distribution Between Train and Test Instructions

We computed the ROUGE-L score between each test instruction and its closest training instruction. The
summary statistics are Mean ROUGE-L: 0.27, 25th percentile: 0.19, 75th percentile: 0.34, Standard deviation:
0.13.

F.2 Train-Test Instruction Pairs with ROUGE-L Scores

We include several representative train-test pairs below to show their semantic difference.

PAIR 1: ROUGE-L Score = 0.2000 Test: "Attach a digital signature in Word by navigating to the
‘Insert’ tab, selecting the ‘Signature Line’ option, and following the prompts to insert and sign the signature
line."
Train: "Select the ‘text to edit’ and attempt to access font settings to scale the text within the limitations of
the available controls."

PAIR 2: ROUGE-L Score = 0.2069 Test: "Access the ‘Add-ins’ feature within Microsoft Word to
explore or manage add-ins."
Train: "Switch to ‘Outline’ view in Microsoft Word to make structural changes, such as rearranging
paragraphs."

PAIR 3: ROUGE-L Score = 0.1818 Test: "Edit the opened document in Word, assuming it is the
Google Doc that has been downloaded and opened."
Train: "Use the ‘Search’ control to initiate a search for a ‘chore checklist’ template in Word."

PAIR 4: ROUGE-L Score = 0.2759 Test: "Navigate to the ‘Insert’ tab in Word as the initial step
towards inserting two images side by side."
Train: "Locate and access the ‘Mailings’ tab in the Word document interface."

PAIR 5: ROUGE-L Score = 0.4000 Test: "Click on the ‘Insert’ tab in Word to begin the process of
auto-inserting a paragraph using a command."
Train: "Navigate to the ‘Insert’ tab in Word as the initial step to use the ‘entspricht’ symbol."

PAIR 6: ROUGE-L Score = 0.1250 Test: "Save a Word document and open the font dialog box for
more options."
Train: "Navigate to the ‘Layout’ tab in Word to begin the process of removing page numbers from a specific
section."

These examples confirm that although some instructions share interface elements (e.g., “Insert" tab), they are
semantically and functionally distinct, thus preserving the integrity of our train-test split. The distribution of
ROUGE-L score between train and test is in Figure 13.

G Human Evaluation Protocol and Results

To validate the reliability of our LLM-based automatic evaluation, we conducted a human study involving
three trained annotators. Each annotator independently reviewed a set of 100 randomly sampled task
completions. For each sample, annotators answered the following question:

Does the action sequence complete the intended task as described, given the initial application
state?

They provided a rating of Yes and No for each task. Each task was evaluated based on the task description,
initial state (screenshots and XML), and the action sequence executed by the agent.

37

Under review as submission to TMLR

Figure 13: Distribution of ROUGE-L score between train and test.

Quantitative Summary:

• Mean agreement with LLM-based evaluation: 91%

• Inter-annotator agreement (Cohen’s κ): 0.85

• Rating distribution:

– Yes: 83.3% ± 4.7%
– No: 16.7% ± 4.7%

These results demonstrate strong alignment between human judgment and LLM-based scoring. The high
Cohen’s κ score (0.85) indicates near-perfect inter-annotator reliability.

38

	Introduction
	From LLMs to LAMs
	Key Characteristics of LAMs
	From Inception to Implementation

	Data Collection and Preparation
	Task-Plan Data
	Data Sources
	Data Extraction and Pre-Processing
	Data Construction
	Data Evolving

	Task-Action Data
	Instantiation
	Execution
	Evaluation
	Post-Processing

	Model Training
	Phase 1: Task-Plan Pretraining
	Phase 2: Learning from Experts
	Phase 3: Self-Boosting Exploration
	Phase 4: Learning from a Reward Model
	Reward Model Training
	Optimizing with Offline PPO

	Offline Evaluations
	Experiment Setup
	Data Preparation
	Evaluation Metrics
	Performance on Decision Making

	Failure Cases and Error Patterns in LAM

	Integration and Grounding
	LAM Agent In a Nutshell
	Environment
	LAM Inference
	Action Execution
	Memory

	Online Evaluations
	Testing Dataset
	Implementation
	Baselines
	Evaluation Metrics
	Experimental Analysis

	Limitations and Future Directions
	Mitigation Strategies for Safe Deployment

	Related work
	Data of LAMs
	Training LAMs
	Agents with LAMs

	Conclusion
	Template Word files
	Prompts
	Instantiation
	Evaluation

	Templates of training format
	Evaluation Prompt for Task-Plan
	LAM Training Objectives
	Data Deduplication and Train-Test Similarity Analysis
	Semantic Deduplication and Filtering Pipeline
	Train-Test Instruction Pairs with ROUGE-L Scores

	Human Evaluation Protocol and Results

