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ABSTRACT

Since the emergence of large reasoning models (LRMs), reasoning has often been
framed as a tree-of-thought search, where a model traverses a discrete tree of sub-
thoughts within a single chain of thought (CoT), reusing context to perform back-
tracking and consistency checks. This view presupposes reasoning as a discrete
search over symbolic structures. In this work, we challenge this view by proposing
a new framework that conceptualizes LRM inference as continuous optimization
over an implicit energy landscape. Here, intermediate representations correspond
to positions in a high-dimensional space, and an implicit energy function encodes
progress toward the solution. We motivate this perspective by showing that LRMs,
unlike standard LLMs, follow smooth trajectories that make steady progress to-
wards a solution rather than making discrete jumps. We identify decision tokens as
checkpoints where the model explicitly estimates energy, and chooses to either ex-
ploit a local minimum or explore by performing larger updates, akin to basin hop-
ping. We further demonstrate that compared to standard tokens, decision tokens
operate at a slower frequency and within a distinct activation subspace, suggest-
ing LRMs employ specialized machinery for planning and verification, analogous
to the hierarchical cortical processes underlying human System 2 reasoning. Our
framework unifies tree-structured reasoning and energy-based models, suggesting
new directions to improve LRMs, such as improving energy estimation at decision
tokens or tuning checkpoint frequencies to balance exploration and exploitation.

1 INTRODUCTION

Reasoning enabled via chain-of-thought (CoT) prompting requires models to generate intermedi-
ate tokens before producing a final answer significantly enhancing their performance on complex
problem solving Wei et al. (2022)Yang et al. (2025). Successive tokens enhance a model’s ability to
integrate disparate, non co-located concepts found in training data Prystawski et al. (2023). The se-
quence of these tokens can also be interpreted as a discrete search trajectory over the token space Yao
et al. (2023). Imposing logical structures—such as backtracking, self-validation, or planning—on
this process has been shown to improve search efficiency Gandhi et al. (2025). Extensions like Yao
et al. (2023) further formalize reasoning as a search over branching “thought” units, with correct-
ness evaluated at the level of final outcomes. In parallel, other lines of work have begun to explore
reasoning both as a continuous Hao et al. (2024); Zhu et al. (2025) and hybrid Yue et al. (2025)
process in latent space, aiming to understand the dynamics of reasoning beyond discrete tokens.

In this work, we propose an alternative perspective on how step-by-step reasoning via sub-thoughts
improves model behavior Hammoud et al. (2025). We conceptualize inference in a reasoning model
as a continuous optimization process over an implicit energy landscape in latent space. Here, in-
termediate token representations correspond to points in a high-dimensional space, and reasoning
unfolds as a smooth trajectory through these points, guided by implicit energy functions. We iden-
tify decision tokens, as key checkpoints emitted by the model when an internal progress (energy)
signal crosses a threshold, thereby deciding whether to refine the current sub-thought or advance to
the next. This realizes a natural exploration–exploitation tradeoff that is ubiquitous in optimization.

Furthermore, we show that decision tokens differ from standard tokens: they occur at a slower
frequency and activate a distinct subspace. This aligns with recent findings on hierarchical reasoning
and supports the notion that reasoning operates at multiple temporal scales. Our framework unifies
perspectives from tree-structured reasoning Yao et al. (2023); Guan et al. (2025) and energy-based
modeling Gladstone et al. (2025); Du et al. (2024), and it opens up new avenues for improving
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large reasoning models (LRMs)—for example, by enhancing energy estimation at decision tokens
or tuning the frequency of decision checkpoints to better balance exploration and exploitation.

2 HIERARCHAL ENERGY OPTIMIZATION FORMULATION

We model LRM inference as optimization over implicit energy functions defined on a small set of
hierarchical latent variables. Although we believe the model may be optimizing over many such
hiearchies, we focus on two salient levels in this paper:

1. a thought-level hypothesis T , which defines a compressed latent representation of a full
text solution, including the logical steps and the final answer.

2. sub-thoughts d which are sentence/paragraph-scale reasoning steps that decode to text

Notation. Given a question Q and token index t ∈ {1, . . . , T} we define:

• Tt denotes the current thought-level hypothesis; T ∗ is a solution-consistent fixed point.

• d
(a)
t denotes the active sub-thought during step t at refinement iteration a; d∗t is the finalized

sub-thought for step t.
• At token t, the current thought Tt is updated via a function of the working set of decision

tokens:
Tt+1 = f(Tt, d∗0, d∗1, . . . , d∗m(t)−1, d

(0:a)
m(t))

Energies. Each of these hierarchies posit implicit, task-dependent energies that decrease as rea-
soning progresses:

Esol(Q, T ) thought-level energy (progress toward a full solution trace),
Esub(Q, T , d) sub-thought energy (progress within the current step),

Multi-frequency hypothesis. If optimization proceeds over T and d concurrently, we expect dis-
tinct characteristic time scales interefering with eachother.

Relation to tree-of-thought. Tree search presumes discrete branch expansion and selection after
explicit unrolling. In our view, branch evaluation is relaxed into continuous energy descent over
latent variables at multiple time-scales. From our observations, decision tokens are still emitted at
key points after the model has estimated energy, and mark optimization steps at the decision token
frequency.

3 EXPERIMENTS

3.1 LRMS EXHIBIT SMOOTH TRAJECTORIES

We begin by motivating our energy-based perspective of reasoning with a simple observation: LRMs
exhibit smoother hidden state dynamics than standard LLMs. If inference is interpreted as optimiza-
tion over a continuous energy function E : Rd → R defined on hidden states, then the evolution of
the representation for token t across generation steps should resemble a gradient-based update

h
(l)
t+1 ≈ h

(l)
t − λ∇

h
(l)
t
E

where h
(l)
t ∈ Rd denotes the hidden state of token t at layer l. In this view, representations evolve

through small, coherent updates along a smooth trajectory, rather than abrupt jumps. This is in con-
trast to a discrete tree-of-thought view, where each step corresponds to a symbolic branch expansion.

To quantify smoothness, we compute the cosine similarity between successive hidden states at a
fixed layer l:

cos sim
(
h
(l)
t , h

(l)
t+1

)
=

⟨h(l)
t , h

(l)
t+1⟩

∥h(l)
t ∥2 ∥h(l)

t+1∥2
.
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Figure 1: Left. Heatmap of cosine similarity between consecutive hidden states across layers (y-
axis) and generation steps (x-axis) for a representative example. Right. Distribution of cosine simi-
larities aggregated over all MATH 500 examples. DeepSeek-R1-Distill-Qwen-7B exhibits
consistently higher alignment than Qwen2.5-7B-Instruct, supporting the view that large rea-
soning models follow smoother, optimization-like trajectories through representation space.

Under the assumption that E is L-smooth, the cosine alignment changes very slowly with λ (see
proof in Appendix A.1.1). Thus high cosine similarity indicates that consecutive representations
are aligned, consistent with smooth gradient-based updates. Low similarity would suggest abrupt
representational shifts, more consistent with discrete tree expansion.

Figure 7 shows a representative trajectory as well as the aggregate distribution of cosine similari-
ties across the MATH 500 benchmark. We find that DeepSeek-R1-Distill-Qwen-7B con-
sistently exhibits higher cosine similarity across steps compared to Qwen2.5-7B-Instruct,
supporting the hypothesis that LRMs follow smoother optimization-like trajectories.

3.2 HIERARCHICAL DYNAMICS

If LRMs optimize over multiple hierarchical variables, we expect their internal updates, when ob-
served as one vector, to unfold at multiple time scales. To test this, we study the per-token “speed”
of hidden states at the final layer L (which has been shown to have the richest representations):

v
(L)
t =

∥∥h(L)
t+1 − h

(L)
t

∥∥
2

Figure 2 shows activation speeds for a single prompt. The raw trace (blue) is overlaid with a re-
construction from two PSD bands (orange), isolating the low and high frequency components that
best explain the variance. The DeepSeek-R1-Distill-Qwen-7B model exhibits a clear slow
oscillation in addition to a faster one, while Qwen2.5-7B-Instruct is dominated by a higher-
frequency periodic band.

To generalize across examples, we compute the normalized cumulative power spectral density (PSD)
of activation speeds over the MATH500 benchmark. Because Qwen-Instruct’s chains of thought
(CoTs) are on average much shorter than DeepSeek’s, we first truncate each completion to the length
of the shorter trace for each example before computing spectra. As shown in panel (c), DeepSeek-
Qwen consistently attributes a larger fraction of variance to longer periods, suggesting a greater role
for slow dynamics. While Qwen-Instruct does show a high cumulative variance at periods beyond
∼1000 tokens, such long timescales are not meaningful as Qwen-Instruct CoTs are usually shorter
than these periods.

Multiple characteristic frequencies in LRM dynamics are consistent with hierarchical optimization:
a slower process tracking “thought-level” updates and a faster process refining sub-thoughts. In the
next section we try and disentangle the activation space to isolate the modes of operation. We find
that decision tokens align with boundaries between the hiearchies and we use this observation to
gain further insight into the model machinery for dynamics at multiple frequencies.
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(a) DeepSeek-R1-Distill-Qwen-7B

(b) Qwen2.5-7B-Instruct
(c) Aggregated cumulative (normalized)

Figure 2: (a–b) Activation speeds (token-to-token norm differences at the last layer, blue) for a
single prompt, shown for an LRM (a) and its LLM counterpart (b). The orange curve shows a
reconstruction from two PSD bands: one low-frequency and one high-frequency component that are
chosen to most explain the variance. DeepSeek exhibits a lower-frequency band with a noticeably
longer period, alongside a high-frequency band of similar period to Qwen (the latter is less visible
due to the scale). (c) Normalized cumulative variance of activation speeds vs. period (where larger
from left to right = slower to faster from left to right), averaged across all MATH500 examples.
Solid lines show means; shading shows variability across examples. Higher values at long periods
indicate that a larger share of variance is explained by slow dynamics. The dashed line marks the
approximate transition period at 30 tokens.

3.3 DECISION TOKENS ARE HIERARCHAL CHECKPOINTS

We now disentangle the multi–time-scale behavior observed in 3.2 by locating (i) timesteps (tokens)
and (ii) activation subspaces that index specific levels of the hierarchy. Empirically, we find that
decision tokens mark boundaries at which the model begins decoding a new sub-thought. At these
boundaries, the model (i) performs a reset in the representation used for the current sub-thought and
(ii) implicitly evaluates progress (energy) before deciding whether to refine the current sub-thought
or advance to the next.

Concretely, writing the active sub-thought at time t as d
(a)
t (iteration a of sub-thought t), decision

tokens coincide with either

(i) a refinement step d
(a)
t →d

(a+1)
t , or

(ii) a transition d
(a)
t →d

(0)
t+1 to begin the next sub-thought,

and occur after the model has internally estimated a progress signal E(dt) to be sufficiently low
(favoring refinement) or high (favoring transition).

3.3.1 DECISION TOKENS REVEAL A CHARACTERISTIC SUBSPACE AND FREQUENCY

In section 3.2, we considered full final-layer activations h(L)
t ∈ Rd across tokens x1:T , where raw

speed ∥h(L)
t+1−h

(L)
t ∥2 mixes multiple processes and thus obscures interpretable periodicity. Here we

identify a subspace in which a single characteristic frequency dominates and within which decision
tokens are distinct.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) Top-2 PCs of h(L)
t (b) Speed in decision-token subspace over time

Figure 3: Decision tokens define a distinct subspace and frequency. (a) Decision tokens (crosses)
form a distinct cluster in the top principal components of the final-layer activations. (b) Projected
speeds exhibit sawtooth signals that reset at decision tokens - consistent with sub-thought level scale
dynamics.

Let H ∈ RT×d stack tokenwise activations as rows. We compute a PCA basis W of H and ana-
lyze the projected dynamics zt = W⊤h

(L)
t . In Fig. 3(a), the trajectory in the top two PCs exhibits

two clear clusters. One of these clusters if formed by crosses, which correspond to tokens drawn
from the decision-token set defined in prior work (e.g., “Wait,” “But,” “Then,” “So,” etc.; full list in
Appendix A.2.1). This separation indicates a basis in which the model encodes decision tokens dif-
ferently from intermediate tokens; we refer to the span of these PCs as the decision-token subspace.

Speeds calculated in this subspace (∥zt+1 − zt∥2), are plotted in Fig. 3(b). Here we see rapid drops
in speed at decision tokens after which the speed gradually rebuilds, revealing a consistent low-
frequency rhythm aligned with sub-thought boundaries. Combined with the clustering observation,
this suggests that the model tracks token-level updates in the decision-token subspace until an op-
timization step is committed on dt (refinement or transition), after which the subspace resets such
that the decision tokens appear to have similar representations. While one could argue that speed in
this subspace merely increase until a decision token is outputted, we show in the following section
that this timing is not periodic but causally sensitive to progress, implying the subspace carries a
meaningful signal, which we refer to as an energy estimate.

3.3.2 CAUSAL INTERVENTION

If decision tokens indeed signal hierarchical checkpoints, their timing should depend on meaningful
metrics like progress rather than an arbitrary fixed period for example. We test this via causal
interventions that perturb progress within a sub-thought.

Method. For each MATH500 prompt, we generate a baseline completion at temperature 0 and
identify decision tokens {dt}Tt=1. For a uniformly sampled decision index t, we measure the baseline
gap k (tokens from dt to the next decision token dt+1). We then restart generation from the context
starting at dt but sample completions at a high temperature to inject off-policy perturbations. Finally
we record k′, the number of tokens until a decision token d′t+1 becomes the most probable token.
We then record the proportion of examples where k′ < k.

temp p ± SE

0.5 0.604± 0.0219

2.0 0.69± 0.0207

3.0 0.706± 0.0206

Table 1: Temperature and Error

Result. Over 500 traces, we observe a decision token is emit-
ted earlier when progress degrades. This result indicates that the
emission of a decision token is causally linked to a progress sig-
nal—consistent with an internal estimate E(dt).

If reasoning were a strict tree-of-sub-thoughts search, a decision
point would be emitted only after fully unrolling a sub-thought to
select among branches. Instead, we observe preemptive boundary
insertion as soon as progress deteriorates.

5
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Moreover, sweeping the sampling temperature yields a positive
relationship between temperature and the advancement k − k′.
The noisier (and thus less progressive) the continuation, the earlier the boundary appears. This
behavior reflects a graded progress signal rather than a binary dead-end flag, and suggests that
timing is driven by hidden-state dynamics (e.g., the decision-token subspace) rather than by the
lexical identity of the decision tokens themselves.

We also look at examples A.2.4 where the the model reaches a dead end d0t and re-optimizes d1t .
We then intervene by giving it the correct d∗t , and find the model more quickly outputs a decision
token and moves to d0t+1. As an orthogonal check, when we provide corrective hintsA.2.4 that align
with the ground-truth sub-thought d∗t , the next boundary occurs sooner as the model exits refine-
ment and initiates the next sub-thought, again matching the energy-checkpoint view. In particular,
low estimated progress triggers refinement (d(a)t → d

(a+1)
t ) and earlier resets; high progress favors

advancing to d
(0)
t+1.

3.4 OPTIMIZATION OVER HIERARCHIES

Thus far we have argued that LRMs behave as if optimizing over an implicit energy functions, but we
have not analyzed how they traverse such spaces. In this section, we propose estimates for energies
associated with multiple hierarchies and observe the models trajectories over these landscapes. At
the thought level, the objective is to assemble a complete solution via a chain-of-thought. At a finer
scale, the objective is to optimize sub-thoughts to steer towards producing the final answer. We
therefore define two progress measures:

(i) a solution energy that reflects the model’s progress towards producing a particular full solution
trace, and (ii) an answer energy that reflects progress toward emitting the final boxed answer. Practi-
cally, we track these over time by forcing (appending) a candidate solution/answer at every prefix of
the generated CoT and measuring the (log-)probability the model assigns to that forced continuation.
In this way, we are actually measuring and plotting the inverse energy in the following sections. 1

3.4.1 THOUGHT OPTIMIZATION

We first estimate progress toward a full solution trace. Let Tt denote the current thought-state at
token t and let S be a fixed solution trace (a sequence of tokens) that captures one correct line of
reasoning. To probe E(Tt), we append a delimiter (“Wait, ”) followed by S to each CoT prefix
and compute the summed log-probability assigned to S by the model; higher values indicate the
model is closer to reproducing that particular solution. We only consider this particular solution for
now as we know that if the model is indeed optimizing for a solution, the solution it outputted is a
likely candidate.

For DeepSeek-R1-Distill-Qwen-7B, we take the model’s own final solution (after the
</think> tag) as S, and also construct paraphrases by rewording and re-explaining the same
logic. For Qwen2.5-7B-Instruct, we use its (typically shorter) final solution as S and sim-
ilarly generate paraphrases. Figure 4 plots the resulting solution energy curves for the original S,
reworded S, and re-explained S. While both models show a gradual rise for the exact solution they
produced, Qwen-Instruct becomes increasingly unlikely to produce paraphrases of its own so-
lution. In contrast, DeepSeek exhibits invariant progress curves across paraphrases (note the com-
parable logit scales), suggesting it maintains and optimizes a compressed latent representation of
the solution.

3.4.2 SUB-THOUGHT OPTIMIZATION

We next estimate a higher-frequency objective defined by the models ability to produce the final
answer. Let A⋆ be the ground-truth answer string. At each CoT prefix, we append the template
“\nTherefore the answer is \boxed{A⋆}” and compute the summed log-probability
over the answer tokens. We refer to this quantity as the answer energy (again, higher log-probability
⇔ lower energy / greater progress). We can think of such a probability as the probability of decoding
the final subthought representation dT into the answer.

1For plots we sum token log-probabilities of the forced span.
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(a) base (b) reworded (c) re-explained

Figure 4: Inverse solution energy (thought-level progress) for LRM vs. LLM. Top:
DeepSeek-R1-Distill-Qwen-7B. Bottom: Qwen2.5-7B-Instruct. Each panel shows
the (summed) log-probability of a forced full solution trace appended to each CoT prefix. Left:
original solution; middle: reworded; right: re-explained. DeepSeek exhibits progress curves that
are largely invariant to paraphrasing, consistent with the notion that the model is steadily building
and optimizing a latent representation of the solution

Figure 5: Inverse answer energy (sub-thought-level progress) for Qwen-Instruct (left) vs.
DeepSeek (right). Curves show the (summed) log-probability of a forced ground-truth answer
appended to each CoT prefix. DeepSeek exhibits smooth, structured growth with discrete jumps
at decision tokens (dashed red lines); Qwen-Instruct displays noisier dynamics lacking clear
hierarchical structure.

Figure 5 compares answer energy trajectories for a difficult problem that DeepSeek solves and
Qwen-Instruct misses (the DeepSeek trace is truncated to match Qwen’s length for compa-
rability). Qwen-Instruct shows high-variance and no interpretable structured search over the
space. While DeepSeek exhibits a smoother trajectory, barring key jumps at decision tokens (ver-
tical dashed lines), consistent with hierarchical optimization observations in 3.3.1. This smooth
optimizes of an energy landscape, indicates that dT may be updated along with d1:T−1 during in-
ference. Later in the trace, after earlier sub-thoughts d1:T−1 optimization stabilizes, the answer
probabilty rises steadily towards 1, indicating that the final sub-thought dT is refined last to commit
to the boxed answer.

Finally, Fig. 6 contrasts the ground-truth answer with incorrect alternatives: probabilities for the
correct answer jump up at decision tokens, while those for incorrect answers jump down. This
divergence suggests that the decision tokens may have some representation, dT that aligns with the
ground truth answer. This observation aligns with prior observations of elevated mutual information
between decision token representations and solution features Qian et al. (2025).

4 RELATED WORKS

4.1 ENERGY BASED MODELS

Existing energy-based reasoning approaches model problem solving as iterative optimization on
learned energy landscapes over a token level configuration space. Du et al. (2022) treats reasoning
as adaptive energy minimization, where local minimas in energy provide natural stopping points

7
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Figure 6: Counterfactual answer energy separates correct from incorrect alternatives. At each
CoT prefix we force “\nTherefore the answer is \boxed{a}” and plot the summed
log-probability over the answer tokens (y-axis) vs. token index (x-axis). Panels show two incor-
rect candidates (a = 7, a = 8) and the ground-truth (a = 9). Vertical dashed lines mark decision
tokens. Probabilities decrease at decision tokens for incorrect answers (left, middle) but increase
for the correct answer (right). This divergence is consistent with the hypothesis the latent dt tracks
progress toward the true solution.

for output. In a follow-up paper, Du et al. (2024) reformulates reasoning as an energy-based opti-
mization where energy functions are learned over input/output pairs and models solve for outputs
by iteratively minimizing energy, using a sequence of annealed energy landscapes. Gladstone et al.
(2025) extends this idea to large architectures, assigning energies to candidate predictions and re-
fining them via gradient descent, yielding stronger out-of-distribution generalization and scalable
reasoning. Together, these works show that energy-based formulations support structured, control-
lable reasoning beyond standard CoT. In our work however, we look at energy optimizations beyond
just the high frequency optimizations of token completions, and consider other latent optimizations
occuring at different scales.

4.2 LATENT SPACE REASONING

Other works have motivated that exploring latent reasoning dynamics in LRMs is critical to under-
stand reasoning behavior beyond tokens. Geiping et al. (2025) introduces a model architecture that
lets the model iterate a recurrent latent block at inference time (unrolling to arbitrary depth) rather
than generating longer CoT. It shows that this form of compute scaling in latent space can dra-
matically improve performance without requiring longer context windows or specialized CoT-style
training data.Lee et al. (2024) shows that neural networks can perform multiple steps of mathemat-
ical reasoning within a fixed-dimensional latent space. Finally Wang et al. (2025a) introduces a
Hierarchical Reasoning Model with high-level and low-level recurrent modules, achieving strong
reasoning performance without chain-of-thought supervision. Our work, extends these perspectives
of latent trajectories at multiple frequencies to CoT reasoning by arguing that even a standard LLM
is capable of tracking and optimizing latent representations in activation space.

4.3 COT TOKENS THEMSELVES DON’T MATTER

Recent work increasingly suggests that the reasoning abilities of language models rely more on
latent computation and internal representations than on the specific tokens emitted during inference.
Pfau et al. (2024) show that models can perform comparably well when intermediate reasoning steps
are replaced with filler tokens, implying that additional tokens act primarily as compute scaffolding
rather than semantically meaningful content. Turpin et al. (2023) find that chain-of-thought (CoT)
rationales are often unfaithful to the model’s actual decision process, functioning more as post hoc
justifications. Approaches like Coconut Hao et al. (2024), CODI Shen et al. (2025), and System-1.5
Reasoning Wang et al. (2025b) further demonstrate that continuous latent-space reasoning can match
or outperform explicit CoT while emitting fewer or no intermediate tokens. These findings also align
with interpretability work in Zhang & Nanda (2024) which shows that critical computation often
occurs in hidden states, regardless of what the model verbalizes. Collectively, this body of work
indicates that token-level reasoning may be more superficial than previously assumed, with the true
reasoning residing in the model’s internal activation dynamics.

5 LIMITATIONS AND FUTURE WORK

Limitations. Our analysis provides a promising first step towards establishing reasoning as
continuous energy descent. However, our observations are limited to experiments run on

8
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DeepSeek-R1-Distill-Qwen-7B and Qwen2.5-7B-Instruct over examples mostly
taken from the MATH 500. We hope to expand the scale of our experiments and validate our
hypothesis across other model families and scale.

Future Work. We plan to further substantiate our claims by looking at the models attention at
decision tokens and within the decision-token subspace (Section 3.3.1) to test whether sub-thought
content is explicitly represented and used for decoding.

Additionally we plan to run causal masking experiments to show that these subspaces are necessary
to decode meaningful progress in an energy landscape. We also hope to show by attention patching
that we can improve or degrade latent representations and decode solutions faster.

Beyond the thought and sub-thought bands, we will search for additional characteristic frequencies
of reasoning. Finally, we aim to train energy-based transformers with explicit multi-level progress
heads and checkpoint regularizers, aligning training objectives with hierarchical energies to improve
reliability and sample efficiency.

Conclusion In this work, we introduced a new framework that reformulates inference in Large
Reasoning Models (LRMs) as continuous optimization over an implicit energy landscape. In this
view, intermediate representations correspond to positions in a high-dimensional latent space, and
reasoning unfolds as a smooth trajectory shaped by descent along an implicit energy function encod-
ing progress toward a solution. This energy-based perspective offers a unifying account of emergent
reasoning, bridging symbolic tree-structured search with continuous optimization.

Our empirical analysis revealed that LRMs—unlike standard LLMs—exhibit smooth, coherent la-
tent trajectories consistent with gradient-based optimization. We identified hierarchical temporal
dynamics, where slower ”thought-level” decisions are interleaved with faster ”sub-thought” refine-
ments. Central to this hierarchy are decision tokens, which serve as implicit checkpoints in a distinct
activation subspace, marking transitions between exploration and exploitation. Causal interventions
further showed that the timing of these tokens reflects an implicit latent progress signal. By defin-
ing proxies for solution energy and answer energy, we demonstrated that LRMs make consistent,
paraphrase-invariant progress toward solutions with decision tokens marking divergence points be-
tween correct and incorrect reasoning paths.

Our framework opens new directions for building more robust, efficient, and interpretable mod-
els by shaping their internal energy trajectories, and optimizing tradeoffs between exploration and
convergence.
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A APPENDIX

A.1 MATH PROOFS

A.1.1 COSINE ALIGNMENT PROOF

Here we provide a formal derivation supporting the claim in Section 3.1.

Let E : Rd → R be an L-smooth function, i.e.

∥∇E(x)−∇E(y)∥ ≤ L∥x− y∥ ∀x, y.

Furthermore, the gradient-based update rule is given by

ht+1 = ht − η∇E(ht),

where η > 0 is the step size.

Then the cosine similarity between ∇E(ht+1) and ∇E(ht) is high.

Proof. We define gt := ∇E(ht) and gt+1 := ∇E(ht+1).

Proof: Using the definition of smoothness we can write

∥gt+1 − gt∥ ≤ L∥ht+1 − ht∥. (1)

Applying the update rule to equation 1 we get

∥gt+1 − gt∥ ≤ L∥ − ηgt∥ ≤ ηL∥gt∥. (2)

Now consider the unit vectors ĝt := gt/∥gt∥ and ĝt+1 := gt+1/∥gt+1∥. Then

∥ĝt+1 − ĝt∥2 = ∥ĝt+1∥2 + ∥ĝt∥2 − 2∥ĝt+1∥∥ĝt∥ cos θ
= 2(1− cos θ), (3)

Now,

∥ĝt+1 − ĝt∥ =

∥∥∥∥ gt+1

∥gt+1∥
− gt

∥gt∥

∥∥∥∥
=

∥∥∥∥gt+1∥gt∥ − gt∥gt+1∥
∥gt+1gt∥

∥∥∥∥ (4)

We now upper bound the numerator and lower bound the denominator in (4).

∥gt+1∥gt∥ − gt∥gt+1∥∥ ≤ ∥(gt+1 − gt)∥gt∥ − gt∥gt+1 − gt∥∥
≤ ∥(gt+1 − gt)∥∥gt∥+ ∥gt∥∥gt+1 − gt∥∥
≤ 2∥gt+1 − gt∥∥gt∥ (5)
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Substitute the bound equation 2 into equation 5 to get

∥gt+1 − gt∥2 ≤ 2(ηL) ∥gt∥2. (3)

For the denominator use the reverse triangle inequality:

|∥gt+1∥ − ∥gt∥| ≤ ∥gt+1 − gt∥ (Reverse triangle inequality)
±(∥gt+1∥ − ∥gt∥) ≤ ∥gt+1 − gt∥ (7)

∥gt+1∥ − ∥gt∥ ≤ ∥gt+1 − gt∥

Thus

∥gt+1∥ ≥ ∥gt∥ − ∥gt+1 − gt∥
≥ (1− ηL)∥gt∥, (8)

Thus the denominator can be lower bounded by

∥gt∥ ∥gt+1∥ ≥ (1− ηL)∥gt∥2. (4)

Substituting equation 3 and equation 4 into equation 4 yields

∥ĝt+1 − ĝt∥ ≤ 2ηL∥gt∥2

2(1− ηL)∥gt∥2
=

2ηL

1− ηL
. (5)

Substituting equation 5 into equation 3 we get

2(1− cos θ) ≤ 4

(
Lη

1− Lη

)2

=⇒ cos θ ≥ 1− 2

(
Lη

1− Lη

)2

Therefore, for sufficiently small step-size η (so that 1 − ηL > 0), the quantity cos θ is close to 1
which proves that the gradients gt and gt+1 are aligned.

A.2 EXPERIMENTAL DETAILS

All experiments are run with greedy sampling unless otherwise specified.

A.2.1 REASONING TRACES

We define the following as chosen decision tokens and split thoughts into subthoughts, as done in
Hammoud et al. (2025)

{"So", "Let", "Hmm", "I", "Okay", "First", "Wait", "But", "Now",
"Then", "Since", "Therefore", "If", "Maybe", "To"}
For all reasoning traces, we use the following system prompt to generate rollouts.

system_prompt = "Please reason step by step, and put your final
answer within \boxed{}."

Frequency band reconstruction We choose one lower frequency, and one higher frequency PSD.
The low and high frequency points are decided by a threshold boundary set at a frequency of 0.01.
We then choose the largest PSD peak within the categories. The speeds are plotted with a rolling
average of 10 to denoise high frequencies for better visualization.

Normalized Cumulative Variance To compare across examples and models, we compute the
cumulative PSD normalized by its total variance. The normalized cumulative curve thus reaches 1
and indicates the fraction of total variance explained by oscillations with period greater than or equal
to T . Aggregating across all 500 MATH examples, we report mean and standard deviation bands
for each model on a common frequency grid.
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A.2.2 SOLUTION ENERGY

Here is the example, the reworded and the re-explained text: lets plot some more examples of
solution energy here

A.2.3 ANSWER ENERGY

Figure 7: answer energy for LLM vs LRM. Here we show an example of the probablity of forced
ground truth answer two models for a question they both answer correctly. For comparison deepseek
trace has been truncated to match qwens length. Over this period it is evident how even what we call
the sub-thought latent dT evolves more smoothly and with more structure. you can also see clear
spikes at decision tokens marked as dashed red vertical lines.

A.2.4 CAUSAL INTERVENTION

Example 2.4.1

dt−1: Okay, so I have this geometric sequence: 125/9, 25/3, 5, 3, and so on. I need to find the
eighth term. Hmm, let me think about how geometric sequences work.
First, I remember that in a geometric sequence, each term is found by multiplying the previous
term by a common ratio, which is usually denoted as ’r’. So, if I can figure out what ’r’ is, I
can find any term in the sequence, including the eighth one.
Let me write down the terms again to see the pattern:
1st term: 125/9
2nd term: 25/3
3rd term: 5
4th term: 3 So, to find the common ratio, I can divide the second term by the first term. Let me
calculate that:
r = 25/3

125/9

Dividing fractions is the same as multiplying by the reciprocal, so:
r = 25

3 · 9
125 First, I remember that in a geometric sequence, each term is found by multiplying

the previous term by a common ratio, r. So, to find r, I can divide the second term by the first
term. Let me calculate that: (25/3) divided by (125/9).

d0t : Wait, let me check that again. 25/3 divided by 125/9 is ( 253 ) · ( 9
125 ). 25 times 9 is 225, and

3 times 125 is 375. So, 225
375 . Simplifying that, both numerator and denominator can be divided

by 75. 225÷ 75 = 3, and 375÷ 75 = 5. So, yes, r = 3/5. That seems right.

d∗t : Let me verify with the next term. If I take 25/3 and multiply by 3/5, I should get 5. Let’s
see: ( 253 ) · ( 35 ) =

25·3
3·5 = 75

15 = 5. Perfect, that works.

dt+1: So, the common ratio r is 3/5. Now, the formula for the nth term of a geometric sequence
is an = a1 · rn−1. Here, a1 is 125/9, and r is 3/5. I need to find the eighth term, so n = 8.

Example 2.4.2

dt−1: Okay, so Frank took this aptitude test with 100 questions. Each correct answer gives him
5 points, each incorrect one deducts 2 points, and leaving a question blank gives him nothing.
He answered 80 questions and scored 232 points. I need to figure out how many he got right.

d0t : First, there are 100 questions in total. Frank answered 80, so that means he left 20 blank. .

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

d1t : So, we know that: c+ i = 80 Because he answered 80 questions in total

d∗t : Now the total score is 5c− 2i

dt+1 : Which is 232. So, we have two equations:

Example 2.4.3

dt−1: Okay, so I need to compute 99 squared plus 99 plus 1 in my head. Hmm, that seems a
bit tricky at first glance, but maybe there’s a clever way to break it down. Let me think about
how to approach this.

d0t : Wait, maybe I can think of it as (99+1)2 - something. Let’s see: (99+1)2 = 1002 = 10000.
But 992 + 99 + 1 is 992 + 99 + 1. Let me compute (99 + 1)2: that’s 992 + 2 · 99 + 1. So,
992 + 2 · 99 + 1 = 10000.

d∗t : Therefore, 992 + 99 + 1 is equal to (992 + 2 · 99 + 1) − 99 = 10000 − 99 = 9901. Oh,
that’s a neat trick!

dt+1 : So, by recognizing that (99 + 1)2 is 1002 = 10000, and then subtracting 99, I get the
result.

Example 2.4.4

dt−1: Okay, so I have this problem here: A point (x, y) is randomly selected such that 0 ≤ x ≤
8 and 0 ≤ y ≤ 4. I need to find the probability that x+ y ≤ 4. Hmm, let me think about how
to approach this.

d0t First, I know that when dealing with probabilities involving areas, especially with uniform
distributions, the probability is usually the ratio of the favorable area to the total area.

d∗t So, in this case, the total area where the point can be selected is a rectangle with length 8
and width 4. Let me calculate that.
Hint: the area of the triangle based on x+ y ≤ 4 is ...

dt+1: is 8 so the probability is 8/32.

Example 2.4.5

dt−1: Okay, so I have this problem where I need to find the matrix A multiplied by another
vector, specifically A times (-13, 3, 4). I know that A is a matrix that transforms two given
vectors into two other vectors. Let me write down what I know: First, A multiplied by the
vector (3, 1, 0) gives (2, 4, -3). So, mathematically, that’s: A * [3, 1, 0]T = [2, 4, -3]T Second,
A multiplied by (-5, 2, 2) gives (0, -5, -5). So, A * [-5, 2, 2]T = [0, -5, -5]T
And I need to find A multiplied by (-13, 3, 4). Hmm, okay

d∗t : Hmm, but I need to express (-13, 3, 4) as a combination of these two vectors.

Hint: Let me check if they are linearly independent.

dt+1: If I set up the equation: c1*(0, -5, -5) + c2*(something) = (-13, 3, 4)
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