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ABSTRACT

Image deblurring, removing blurring artifacts from images, is a fundamental task
in computational photography and low-level computer vision. Existing approaches
focus on specialized solutions tailored to particular blur types, thus, these solutions
lack generalization. This limitation in current methods implies requiring multiple
models to cover several blur types, which is not practical in many real scenarios.
In this paper, we introduce the first all-in-one deblurring method capable of effi-
ciently restoring images affected by diverse blur degradations, including global
motion, local motion, blur in low-light conditions, and defocus blur. We propose
a mixture-of-experts (MoE) decoding module, which dynamically routes image
features based on the recognized blur degradation, enabling precise and efficient
restoration in an end-to-end manner. Our unified approach not only achieves per-
formance comparable to dedicated task-specific models, but also shows promising
generalization to unseen blur scenarios, particularly when leveraging appropriate
expert selection.

1 INTRODUCTION

Blur is a fundamental component of the image formation process (Elad & Feuer, 1997; Karaimer &
Brown, 2016; Delbracio et al., 2021) and arises during image capture due to factors such as object
motion, camera shake, or lens settings like focus and aperture. Conventional approaches (Elad &
Feuer, 1997; Levin et al., 2009; Zhu et al., 2012; Schuler et al., 2013) model the blur degradation as:

y = x⊗ k+ n, (1)

where y denotes the blurred image, x is the latent sharp image, k represents the blur kernel, and n is
the additive noise. The symbol ⊗ indicates the convolution operation. This degradation significantly
reduces image quality, which may result in user dissatisfaction. Moreover, the space of possible blur
kernel k is infinite, making this inverse problem highly challenging.

To remove blur, numerous methods have been proposed, including conventional blind deconvolution
approaches (Levin et al., 2009; Zhu et al., 2012; Schuler et al., 2013), which iteratively optimize a
blur kernel k and the latent sharp image x. In contrast, learning-based methods (Nah et al., 2017;
Rim et al., 2020; Kupyn et al., 2018; 2019; Zamir et al., 2022b; Zhou et al., 2022), offer more
straightforward approaches. They do not require complex modeling or constraints, as conventional
methods do. Instead, deep networks are trained using a deblurring dataset, allowing them to implicitly
learn to model degradation and effectively remove it. However, their performance is still limited due
to the wide variety of blur patterns in real-world blurred images. For instance, subject movement
results in local blur, handheld camera shake can cause global motion blur (Li et al., 2023a; Rim et al.,
2020; Nah et al., 2017), and a shallow depth of field may introduce defocus blur.

To address this, most deep learning-based deblurring methods are trained on datasets designed for
specific types of blur, such as RealBlur (Rim et al., 2020) for camera shake, ReLoBlur (Li et al.,
2023a) for object motion, and DPDD (Abuolaim & Brown, 2020) for defocus blur. As a result, a
network trained on defocus blur will fail to resolve motion blur and viceversa. Therefore, there is a
clear generalization gap across blur degradations, as shown in Figure 1. This is a clear limitation of
current task-specific approaches (Figure 1 (a)).

Recently, all-in-one image restoration methods (Li et al., 2022; Potlapalli et al., 2023; Park et al.,
2023; Ma et al., 2023; Zhang et al., 2023b;a; Chen et al., 2024; Cui et al., 2024; Lin et al., 2024; Li
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a) Task-specific models b) All-in-one models c) Our proposal

Blur in Low-light Defocus Global Motion Local Motion

LBAG LEDNet Restormer MLWNet

Our all-in-one method is the first one able to tackle blurry images under diverse conditions.

Figure 1: Illustration of different types of blur restoration. At top, a set of possible deblurring
restoration strategies. At bottom, a comparison of task-specific methods and our proposed DeMoE.
Previous approaches can tackle only specific types of blur and fail to deal with different types of blur.
Our all-in-one deblurring method addresses multiple types of blur degradations using a single model.
Zoom in for optimal comparison.

et al., 2024) have grown in popularity, establishing themselves as a solid solution to restore images
under different conditions using a single neural model e.g., remove noise, correct low illumination,
remove haze and rain. Some of these multi-task methods explicitly exploit (or implicitly) the
similarities that can be found between different degradations (Cui et al., 2024).

These approaches –illustrated in Figure 1 (b)– inspire us to pose the following questions: How
can we efficiently restore blurry images with diverse types of blur? How similar are the different
blur degradations? Can we use a single robust model to restore different types of blur? Following
all-in-one restoration, we aim to simplify the following pipeline into an end-to-end neural network:
(i) recognize the degradation i.e., type of blur, (ii) select the degradation-specific (or task-specific)
model, (iii) restore the image y using the optimal “expert” model.

Our contributions. In this work, we propose the first all-in-one deblurring method to restore
efficiently “any” blurry image. Following recent developments in all-in-one restoration, we train our
model using diverse datasets that contain multiple blur degradations (global motion, local motion,
blur in low-light, and defocus blur). We design a mixture-of-experts (MoE) decoding module to route
features according to the detected blur degradations. This novel approach allows us recognize the
type of blur present in the image and restore it, in an end-to-end manner. Moreover, our method is
efficient, robust, and generalizes effectively to out-of-distribution (OOD) real-world blurry images
when guided by manual expert selection.
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2 RELATED WORK

Image Deblurring. Image deblurring aims to recover sharp images from blurred ones caused by
camera shake, object movement, and defocus blur. Most existing approaches (Nah et al., 2017; Tao
et al., 2018; Zhang et al., 2019; Kupyn et al., 2019) primarily target motion blur and use the GoPro
dataset (Nah et al., 2017) as the main benchmark. However, even within motion blur, the types
of blur can vary significantly. Rim et al. (2020) presented the RealBlur dataset, comprising real
images blurred caused by camera shake. Li et al. (2023a) introduced the ReLoBlur dataset to tackle
local motion deblurring, emphasizing moving objects blurred against static backgrounds. Recently,
Zhou et al. (2022) introduced LOLBlur, the joint low-light enhancement and deblurring task, where
degraded images suffer from both motion blur and low illumination.

Recent defocus deblurring methods have been advanced through dual-pixel imaging. Abuolaim &
Brown (2020) established the DPDD dataset to leverage the complementary information from dual-
pixel views. Subsequent work includes IFAN (Abuolaim et al., 2022), which synthesizes dual-pixel
images via multi-task learning, and Son et al. (2021), who employed kernel-sharing parallel atrous
convolutions.

Recent advancements in sophisticated architectures (Cho et al., 2021; Zamir et al., 2022a; 2021;
Jiang et al., 2024; Tsai et al., 2022b;a; Kong et al., 2023) have led to further improvements in
handling motion and defocus blur. Despite these advancements, each model remains specialized and
constrained to particular blur types, necessitating separate training procedures. Our approach is the
first to propose a unified all-in-one deblurring model that integrates multiple blur modalities.

All-in-One Image Restoration. Most methods in the literature are designed to tackle a single
degradation e.g., noise, blur, low-light, rain. However, in many cases their real-world applications are
limited due to the required resources i.e., allocating different task-specific models in memory and
selecting the specific model on demand.

In recent years, all-in-one (also known as multi-task) image restoration has emerged as a possible
solution to such limitations (Park et al., 2023; Zhang et al., 2023a; Yao et al., 2023; Valanarasu et al.,
2022; Cui et al., 2024; Chen et al., 2024). These methods use a single neural network to tackle different
degradation types and levels. We can highlight AirNet (Li et al., 2022) and PromptIR (Potlapalli
et al., 2023; Conde et al., 2024) as the early proposed solutions. The image restoration pipeline now
becomes an end-to-end neural network, instead of an ensemble of multiple task-specific models.

These methods use different techniques to learn effective multi-task representations. For instance, a
degradation classification model (Li et al., 2022; Park et al., 2023; Lin et al., 2024), and guidance
embeddings (“prompts”) (Potlapalli et al., 2023; Ma et al., 2023; Conde et al., 2024) that help the
model discriminate the different types of degradation in the image. Some works also explore Mixture
of Experts (MoEs) (Jacobs et al., 1991; Xu et al., 1994; Shazeer et al., 2017; Guo et al., 2024; Ren
et al., 2024), which allows to learn implicitly task-specific experts within the neural network.

3 METHOD

3.1 PRELIMINARIES: DEBLURRING SIMILARITY ANALYSIS

We aim to find a global function fΘ able to recover sharp images x from any blurry image y, without
having any prior information about the blur k – thus, blind image deblurring.

Let us consider two neural networks with the same architecture, fΘ1 and fΘ2, the first is trained to
solve global motion deblurring, the second is trained to solve defocus deblurring. We assume the
following statement to be true: given fΘ1 and fΘ2 trained for similar tasks, the learned parameters
Θ1 and Θ2 shall be very similar (Nguyen et al., 2020). Therefore, we pose the following question:

Considering the model f , and two sets of parameters Θ1 and Θ2 optimized for two different
deblurring tasks, how similar are the learned parameters and representations?

Before we develop a multi-task deblurring method, we want to understand which layers of a neural
network are the most relevant to restore blurry images, and how similar such networks are. We use
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Figure 2: Network Similarity Study across Deblurring tasks. We show the layer-wise correlations
between different deblurring versions of NAFNet i.e., each bar represents the weights correlation of
one layer. Excluding the LOLBlur dataset, all the other weights hold a high-correlation (greater than
0.7 (Asuero et al., 2006), over the red line). For instance, this reveals that a model trained to solve
defocus (DPDD) learns similar representations as a model trained for motion deblurring (GOPRO).

NAFNet (Chen et al., 2022) as the baseline model f . First, we trained the same model on different
blurry-clean datasets, returning a set of specialized weights for each deblurring task {Θ1,Θ2, . . . }.
Next, we compare the layer-wise Pearson correlations between these model weights. This gives us an
intuition on how similar the models behave when restoring different blur degradations.

For this study, we classified the weights defined in NAFNet into the following four types of parameters:
simplified channel attention (SCA) blocks, layer normalization, 1 × 1 convolutions, and 3 × 3
convolutions. Intuitively, the latter operations are the most relevant for image deblurring (Zhu et al.,
2012; Schuler et al., 2013) —to restore blurred images, the neighbor pixel information must be
combined—, as shown in Figure 2, where the 3× 3 convolution layers hold a high correlation. Also,
following the same layer taxonomy, a similarity study between these models using Centered Kernel
Alignment (Kornblith et al., 2019), can be found in the supplementary. These results suggest that
models fΘ1, fΘ2, . . . trained for different deblurring tasks (see Figure 2), share common neighbor
operations. Therefore, a model trained with different blur datasets will build a similar type of general
neighbor operations correction, making it a potential way of restoring general blur.

Based on this study, we propose an All-in-One deblurring method –see Figure 1 (c)–, our model
can be divided into: (1) a general feature extractor and classifier encoder, and (2) a MoE decoder.
Following the results of the correlation study, the neural blocks used for the method are inspired by
the NAFNet blocks. An illustration of the network architecture is shown in Figure 3.

3.2 GENERAL BLUR RESTORATION BASELINE

We use NAFNet as our baseline, which employs the Metaformer (Yu et al., 2022) block design and
a U-Net (Ronneberger et al., 2015) architecture. The popular NAFBlocks perform two different
transformations: channel attention and a feed-forward network (FFN). This efficient architecture
represents the state-of-the-art (SOTA) in well-known deblurring datasets, such as GoPro or RealBlur.
For this reason and the previous correlation analysis, we use this as our baseline architecture.

As a first improvement, we incorporate an attention-based router R for degradation classification
at the end of the NAFNet encoder, as shown in Figure 3. The encoder E extracts high and low-
frequency features and identifies image degradations with the help of an MLP (multi-layer perceptron)
branch. The router output is a vector of normalized weights w ∈ RN , where N is the number of
experts (Jacobs et al., 1991; Xu et al., 1994). We use N = 5 in DeMoE, since we use five different
deblurring datasets. For the considered training datasets, the router achieves perfect classification
accuracy i.e., > 95% accuracy. More explained details can be found in the supplementary material.

3.3 MIXTURE OF DEBLURRING EXPERTS

Based on the similarity study (Sec. 3.1), we aim to learn (within a single all-in-one model) the
task-specific features that account for the notable model differences i.e., attention and FFN weights.

After extracting features and recognizing the blur degradation, the MoE decoder restores the image.
In each level of the decoder, we add a MoEBlock that incorporates N different experts e tailored to
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Figure 3: DeMoE Network Architecture. We adopt NAFNet as backbone. The encoder generates
a feature space optimized for both restoration and degradation classification. The router uses the
encoded features to determine the degradation and assigns weights to each expert. During training, all
experts contribute to restoration; during inference, only the top-k experts—selected based on router
weights—are used to produce the final output.

restore specific blur degradations. During training, we use a differentiable softmax σ gating, such
that all experts are used for restoration, even those with low-weight contributions (Yu et al., 2021;
Guo et al., 2024) – see Eq 2. During inference, only the top-k experts are selected based on the k
larger weights given by the router σ gating, considering the contribution of only the most relevant
experts to restore the image. The output result of the MoEBlock follows the relation:

ĥ =

N∑
i=0

wi · ei(h) where w = σ(R(E(y))) . (2)

The feature map h passes through each of the selected experts ei, returning a restored feature map
ĥ – see Figure 3 MoEBlock. Finally, at the end of each MoEBlock, all restored feature maps are
added together weighted according to the relevance given by the router wi. Note that the same router
weights are applied in all MoEBlocks. Note that when we use k = 1 (top-1) expert during inference,
the DeMoE architecture is equivalent to our NAFNet baseline, saving computation and runtime.

3.4 DEGRADATION-AWARE PRE-TRAINING

The network is trained end-to-end using a multi-step approach similar to Lin et al. (2024); Chen et al.
(2024); Hu et al. (2025). Moreover, we use a combination of image regression and classification
losses. These losses are defined as Lpixel = ||x− x̂||1 and Lclass = −

∑
p(x) logw,where Lpixel is

the L1 loss calculated using f(y) = x̂ as the enhanced image and x as the ground-truth. On the other
hand, Lclass is the Cross-Entropy loss. The distributions compared in this case are the ground-truth
degradation label of each of the images p(x) and the predicted weights by the router w.

The network is trained end-to-end in a two-step pipeline. First, we train the baseline and router
using the following combination of losses L = λp · Lpixel + λcl · Lclass. The constants λp and
λcl are, respectively, 1.0 and 0.001. Then, we freeze the router and encoder layers and finetune the
MoEBlocks and decoder layers using only L = Lpixel.

4 EXPERIMENTAL RESULTS

The AIO-Blur Dataset To train and evaluate all-in-one deblurring methods, a dataset containing
various types of blur degradation is required. However, there is no such dataset so far. To address
this, we construct the All-In-One-Blur (AIO-Blur) dataset by collecting diverse types of blur datasets
from open-source repositories. Specifically, AIO-Blur comprises a diverse set of blur types, including:
camera motion blur (i.e., RealBlur), object motion blur (i.e., ReLoBlur), camera and object motion
blur (i.e., GoPro), low-light and motion blur (i.e., LOLBlur, and defocus blur (i.e., DPDD). We follow
the original train/test splits for each dataset.
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DPDD
RealBlur
ReLoBlur
GoPro
LOLBlur
RSBlur
Real-LOLBlur
RealDOF

Dataset Train Train/Eval Split Real-world Blur type

RealBlur ✓ 3758 / 980 ✓ Camera Motion
ReLoBlur ✓ 2010 / 395 ✓ Local Motion
LOLBlur ✓ 10200 / 1800 ✗ Low-Light Motion
GoPro ✓ 2103 / 1111 ✗ Camera/Object Motion
DPDD ✓ 350 / 75 ✓ Defocus

Real-LOLBlur ✗ - / 872 ✓ Low-Light Motion
RealDOF ✗ - / 50 ✓ Defocus
RSBlur ✗ 8878 / 3360 ✓ Camera/Object Motion

Figure 4: (Left) t-SNE distribution of the testing images in the AIO-Blur and AIO-Blur-OOD datasets.
(Right) Main specifications of each dataset used for training and testing. We use three real-world
datasets to test the robustness of the models in out of distribution (OOD) scenarios.

Table 1: All-in-one Single Image Deblurring. We compare state-of-the-art image restoration
methods trained for “all-in-one deblurring”. Each method is tested on the most representative
benchmarks for motion deblurring (RealBlur, GoPro), low-light deblurring (LOLBlur), local
motion deblurring (ReLoBlur), and defocus deblurring (DPDD). We report PSNR↑ (dB) / SSIM↑ /
LPIPS↑ (Zhang et al., 2018) across datasets. We also report computational cost based on parameters
(M) / MACs (G) / runtime (ms). MACs and Runtime were calculated using crops of size 256px x
256px. Runtime was averaging the forward pass of 1000 iterations using an NVIDIA RTX 4090. The
bold and underlined stand for the best and second best results, respectively. Our method, DeMoE,
has the best performance in general image deblurring and is the second one in efficiency.

Method Computational Cost RealBlur ReLoBlur DPDD LOLBlur GoPro Average

PromptIR 35.59 / 158.4 / 34.4 29.23 / 0.867 / 0.198 34.50 / 0.925 / 0.189 25.21 / 0.766 / 0.282 26.03 / 0.846 / 0.206 28.18 / 0.849 / 0.213 28.63 / 0.851 / 0.218
Restormer 26.13 / 141.24 / 33.2 28.80 / 0.866 / 0.217 34.33 / 0.924 / 0.205 24.72 / 0.764 / 0.309 25.61 / 0.844 / 0.227 27.76 / 0.848 / 0.233 28.24 / 0.853 / 0.238
FFTFormer 16.56 / 131.75 / 61.8 28.08 / 0.839 / 0.230 34.45 / 0.922 / 0.189 25.04 / 0.776 / 0.281 22.72 / 0.825 / 0.246 27.61 / 0.841 / 0.226 27.58 / 0.841 / 0.234
SFHFormer 7.67 / 52.32 / 32.5 29.69 / 0.888 / 0.172 34.32 / 0.924 / 0.188 25.15 / 0.779 / 0.288 25.61 / 0.857 / 0.211 29.09 / 0.884 / 0.194 28.77 / 0.867 / 0.211
NAFNet 10.08 / 11.02 / 8 29.18 / 0.883 / 0.203 34.56 / 0.926 / 0.228 25.60 / 0.795 / 0.266 26.69 / 0.871 / 0.188 29.56 / 0.890 / 0.191 29.12 / 0.873 / 0.215

DeMoEk=1 20.15 / 11.05 / 13.1 28.96 / 0.884 / 0.198 34.52 / 0.925 / 0.232 25.56 / 0.797 / 0.258 26.84 / 0.878 / 0.175 30.06 / 0.900 / 0.176 29.19 / 0.877 / 0.208

Additionally, we construct test-only datasets to evaluate the robustness of methods on out-of-
distribution (OOD) data. The dataset includes test sets of Real-LOLBlur (Zhou et al., 2022), Re-
alDOF (Lee et al., 2021), and RSBlur. For Real-LOLBlur, we omit its RealBlur subset, since RealBlur
is already included in AIO-Blur. We refer to this dataset as AIO-Blur-OOD.

Figure 4 provides an overview of AIO-Blur and AIO-Blur-OOD datasets, along with a t-SNE (Van der
Maaten & Hinton, 2008) visualization of cascade CLIP (Radford et al., 2021) blurry features for each
dataset. The clear separation among datasets highlights the diversity of blur types across various
environments. This motivates the need for an all-in-one deblurring model able to handle such diverse
degradations. A more detailed explanation on the datasets can be found in the supplementary material,
as well as extensive implementation details and additional results.

4.1 RESULTS ON AIO-BLUR

In this section, we evaluate DeMoE on the AIO-Blur dataset and compare it with other deblurring
and all-in-one methods, including Restormer (Zamir et al., 2022a), PromptIR (Potlapalli et al., 2023),
FFTFormer (Kong et al., 2023), SFHFormer (Jiang et al., 2024), and NAFNet (Chen et al., 2022). We
use PromptIR as the canonical AIO method for comparison. For fairness, all methods are trained
on the AIO-Blur dataset. Table 1 presents quantitative results on test sets, where DeMoE (based
on NAFNet) is the best method overall. SFHFormer achieves the best performance on RealBlur,
which we attribute to its Fourier-domain branch being particularly effective for camera motion blur.
Table 1 also presents a computational cost analysis, including the number of parameters, runtime,
and Multiply-Accumulate Operations (MACs). As shown in the table, DeMoE is the second most
efficient method regarding both runtime and MACs. Compared to PromptIR, our method uses ≈ 2×
fewer parameters, ≈ 15× fewer operations, and is 2× faster.
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Table 2: Quantitative evaluations on AIO-Blur-OOD. DeMoE†
k=1 denotes using a manually

selected expert. For reference, we also report the state-of-the-art for each dataset.

Method RealDOF RSBlur Real-LOLBlur

PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ MUSIQ↑ / NRQM↑ / NIQE↓

General deblur

Restormer 22.98 / 0.684 / 0.471 14.04 / 0.556 27.71 / 5.169 / 7.381
FFTFormer 23.36 / 0.697 / 0.440 15.60 / 0.589 30.18 / 5.780 / 6.469
SFHFormer 24.20 / 0.736 / 0.428 13.54 / 0.553 29.58 / 5.320 / 6.806
NAFNet 24.64 / 0.762 / 0.382 15.00 / 0.576 32.02 / 5.515 / 6.865
DeMoEk=1 24.59 / 0.758 / 0.377 19.23 / 0.640 31.34 / 5.470 / 7.560
DeMoE†

k=1 24.59 / 0.758 / 0.377 27.53 / 0.763 38.91 / 6.113 / 5.820

Task-specific
IFAN 24.71 / 0.748 / 0.306 - -
MLWNet-B - 30.91 / 0.818 -
LEDNet - - 39.11 / 5.643 / 4.764

Table 3: Quantitative comparisons with task-specific methods. DeMoE is the proposed all-in-one
deblurring method trained on the AIO-Blur dataset, while the other methods are task-specific and
trained on their respective datasets. DeMoE∗

k=1 denotes the task-specific DeMoE (equivalent to
fine-tuned NAFNet) trained on each respective dataset.

Method PSNR↑ SSIM↑ LPIPS↓
KinD++ (Zhang et al., 2021) 21.26 0.753 0.359
DRBN (Yang et al., 2020) 21.78 0.768 0.325
DeblurGAN-v2 (Kupyn et al., 2019) 22.30 0.745 0.356
DMPHN (Zhang et al., 2019) 22.20 0.817 0.301
MIMO (Cho et al., 2021) 22.41 0.835 0.262
LEDNet (Zhou et al., 2022) 25.74 0.850 0.224
DarkIR (Feijoo et al., 2025) 27.00 0.883 0.162
DeMoE∗

k=1 26.94 0.881 0.172
DeMoEk=1 26.84 0.878 0.175

LOLBlur results

Method PSNR↑ SSIM↑
DeepDeblur (Nah et al., 2017) 33.05 0.8946
DeblurGAN-v2 (Kupyn et al., 2019) 33.85 0.9027
SRN-DeblurNet (Tao et al., 2018) 34.30 0.9238
HINet (Chen et al., 2021) 34.36 0.9151
MIMO-Unet (Cho et al., 2021) 34.52 0.9250
LBAG (Li et al., 2023a) 34.66 0.9249

DeMoE∗
k=1 34.50 0.926

DeMoEk=1 34.52 0.925

ReLoBlur results

Method PSNR↑ SSIM↑ LPIPS↓
DMENet (Lee et al., 2019) 23.41 0.714 0.349
EBDB (Karaali & Jung, 2017) 23.45 0.683 0.336
JNB (Shi et al., 2015) 23.84 0.715 0.315
DPDNet (D) (Abuolaim & Brown, 2020) 25.13 0.786 0.223
KPAC (Son et al., 2021) 25.22 0.774 0.227
IFAN (Lee et al., 2021) 25.37 0.789 0.217
Restormer (Zamir et al., 2022a) 25.98 0.811 0.178
DeMoE∗

k=1 25.67 0.800 0.255
DeMoEk=1 25.56 0.797 0.258

DPDD results

Method PSNR↑ SSIM↓
DeblurGAN-v2 (Kupyn et al., 2019) 29.69 0.870
MPRNet (Zamir et al., 2021) 31.76 0.922
MIMO-UNet++ (Cho et al., 2021) 32.05 0.921
BANet+ (Tsai et al., 2022b) 32.42 0.929
Stripformer (Tsai et al., 2022a) 32.48 0.929
FFTformer (Kong et al., 2023) 32.62 0.933
GRL-B (Li et al., 2023b) 32.82 0.932
MLWNet-B (Gao et al., 2024) 33.84 0.941
DeMoE∗

k=1 29.08 0.886
DeMoEk=1 28.96 0.884

RealBlur-J results

Method PSNR↑ SSIM↑
DeblurGAN-v2 (Kupyn et al., 2019) 29.55 0.934
DeepDeblur (MSCNN) (Nah et al., 2017) 29.08 0.914
MPRNet (Zamir et al., 2021) 32.66 0.959
Restormer (Zamir et al., 2022a) 33.57 0.966
MLWNet-B ()gao2024efficient 33.83 0.968
FFTFormer (Kong et al., 2023) 34.21 0.969
DeMoE∗

k=1 30.17 0.901
DeMoEk=1 30.06 0.900

GoPro results

4.2 RESULTS ON AIO-BLUR-OOD

We evaluate DeMoE on the AIO-Blur-OOD dataset and report the quantitative results in Table 2,
along with the task-specific baselines —IFAN (Lee et al., 2021), MLWNet-B (Gao et al., 2024)
and LEDNet (Zhou et al., 2022)— for reference. While all methods perform comparably to the
task-specific model on RealDOF, performance drops significantly on RSBlur and Real-LOLBlur. We
suspect that the reason is that the distributions of RSBlur and Real-LOLBlur are significantly different
from those of AIO-Blur, as shown in Figure 4. As a result, all methods struggle to deblur these
datasets. In the case of DeMoE, the router classifier fails to correctly select an expert on these datasets
–see Section E–, ultimately leading to sub-optimal performance. However, thanks to its design,
expert selection can be manually controlled by users when necessary. Thus, for RealDOF, RSBlur
and Real-LOLBlur, we manually assign the experts of DPDD, RealBlur and LOLBlur, respectively.
Table 2 shows the DeMoE results with manual expert selection, achieving superior performance
across all datasets. Even when the distribution of the test data is shifted, DeMoE can easily handle
the shift through manual expert selection, whereas other methods cannot.

4.3 COMPARISON WITH TASK-SPECIFIC METHODS

We compare DeMoE, the first all-in-one deblur model, with task-specific methods that are carefully
designed for specific types of blur. We also evaluate task-specific versions of DeMoE∗, where we use
a single expert in the decoder and we fine-tune in each specific dataset. This variant of DeMoE can be
interpreted as the upper-bound limit of each DeMoE expert and is equivalent to a single specialized
NAFNet model – see DeMoE∗ in Table 3.
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Input SFHFormer NAFNet LEDNet* DeMoE Ground Truth

Input Restormer NAFNet LBAG* DeMoE Ground Truth

Input SFHFormer NAFNet MLWNet* DeMoE Ground Truth

Input SFHFormer NAFNet MLWNet* DeMoE Ground Truth

Figure 5: Qualitative comparison of the general deblur methods. Methods with ∗ are SOTA
task-specific methods. Results, from top to bottom, of the following datasets: DPDD, LOLBlur,
ReLoBlur, GoPro and RealBlur. Our method, DeMoE, provides results comparable to SOTA.

All-in-one (AIO) methods for general image restoration typically underperform compared to task-
specific methods. For instance, AIO Restormer (Zamir et al., 2022b; Conde et al., 2024; Zhang
et al., 2023b) achieves a PSNR (dB) of 27.22 in GoPro deblurring and 20.41 in LOL correction,
while the task-specific designed methods FFTformer (Kong et al., 2023) and LLFormer (Wang
et al., 2023) achieve 34.21 and 23.64, respectively.

Motion Deblurring Table 3 shows results on the RealBlur-J dataset (Rim et al., 2020), our model
achieves competitive performance, closely matching the specialized DeblurGAN-v2 (Kupyn et al.,
2019), yet without dedicated training, and being more versatile and efficient.

Local Motion Deblurring In the local motion deblurring scenario (Table 3), our unified multi-task
approach attains results (34.52 dB PSNR, 0.925 SSIM) comparable to LBAG (Li et al., 2023a), the
current SOTA method specifically designed for local blur (34.66 dB PSNR, 0.925 SSIM).

Defocus Deblurring Table 3 illustrates the results for defocus deblurring on the DPDD dataset.
While specialized single-image defocus methods such as Restormer achieve slightly higher metrics
(25.98 dB PSNR, 0.811 SSIM), our unified model still achieves competitive performance (25.56
dB PSNR, 0.797 SSIM), closely trailing the best specialized single-task methods. Considering our
model handles multiple blur types simultaneously, this marginal performance gap is outweighed by
the significant efficiency and flexibility benefits provided by our multi-task design.

Low-Light Deblurring In low-light deblurring (Table 3), our model delivers excellent results
(26.84 dB PSNR, 0.878 SSIM, 0.175 LPIPS), clearly exceeding the task-specific LEDNet (25.74 dB
PSNR, 0.850 SSIM, 0.224 LPIPS). The strong performance in this particularly challenging low-light
scenario further illustrates our model’s adaptability and underscores its practical efficiency, as it
alleviates the need for separate task-specific training and architectures.
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DeMoEk=5
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Params (M)
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Runtime (ms)

MACs (G)

Params (M)

Runtime (ms)

Ablation PSNR↑ SSIM↑ LPIPS↓
· End-to-end training from scratch 28.88 0.868 0.221
· Added noise to the router weights
while training to use more experts 29.13 0.876 0.208
· Fine-tune the pre-trained baseline 29.08 0.874 0.213

· Fine-tune only the MoE decoder
(DeMoEk=1)

29.19 0.877 0.208

Figure 6: (Left) Computation cost representation in parameters, MACs and runtime of some general
deblur methods considered in Table 1. (Right) Ablation study performed on DeMoE. The first column
of the table states the configuration used during training. The values on PSNR, SSIM and LPIPS are
referred to the averaged metrics of the AIO-Blur dataset.

Upper-bound of DeMoE Table 3 shows the performance of task-specific DeMoE∗. The average
metrics of all task-specific DeMoE∗ are 29.27 PSNR and 0.879 SSIM, thus, the DeMoE performance
drop is just ≈ 0.3%. This demonstrates that each expert in DeMoE effectively learns to deblur
specific blur types and achieves performance comparable to task-specific models.

Qualitative Results In Figure 5, qualitative samples are presented. We compare DeMoE with
general deblur methods trained in the AOI-Blur dataset and the SOTA result in that specific dataset.
We provide more qualitative results, including the AOI-Blur-OOD dataset, in the supplementary.

5 DISCUSSION

Ablation Study In Table 6 (right) we present a study of different training approaches for DeMoE.
As in some previous works (Lin et al., 2024; Hu et al., 2025), pre-training and expert MoE fine-tuning
is optimal. In Section F extended ablation studies support the proposed architecture.

Efficiency Study Figure 6 (left) illustrates the computational cost of deblurring methods, where
DeMoE achieves a notable reduction in MACs and runtime compared to models such as FFTFormer
and Restormer. Note that DeMoEk=1 is as efficient as NAFNet – the additional parameters and
operations are due to the router and do not affect the runtime. The figure also presents DeMoE-5, an
ensemble comprising the five task-specific DeMoE∗ networks in Table 3 – similar to an ensemble of
five task-specific NAFNets. Compared to the ensemble, DeMoE reduces the parameter count from
50.4 M to 20.15 M (2.5× fewer), with only a 0.3% drop in PSNR and SSIM.

Performance of DeMoE DeMoE sometimes performs worse than task-specific methods, partic-
ularly on RealBlur and GoPro. We suspect that this is due to the inherent limitations of general
all-in-one methods, and due to our limited number of parameters to maintain efficiency.

Limitations and Future Work As discussed in Section 4.2, one limitation of DeMoE is the router
degradation classifier. If the router cannot identify properly the degradation, the experts are not
properly used, leading to sub-optimal results. This issue could be mitigated by enriching the training
dataset with a broader range of images and blur, enabling to generalize over more diverse scenes.

6 CONCLUSION

We introduce the first all-in-one deblurring method capable of efficiently restoring images with
diverse blur degradations such as motion blur, blur in low-light conditions, and defocus blur. We
employ a mixture-of-experts (MoE) decoding module, which dynamically routes features based on
the recognized blur degradation, enabling precise and efficient restoration in an end-to-end manner.
Our unified approach, as a single model, achieves performance comparable to dedicated task-specific
models across five datasets, yet being general and more robust. Our method will be open-source.
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SUPPLEMENTARY MATERIAL

A SIMILARITY WEIGHTS ANALYSIS

Correlation Analysis During the preliminary step of this research, a study of weight similarities
was developed. Given each of the datasets that form part of AIO-Blur, a baseline NAFNet (Chen
et al., 2022) fΘ has been trained on each of them. Then, pairs of training weights Θ1, Θ2 of the
same architecture fΘ in different datasets are compared using two similarity methods: the Pearson
correlation and CKA (Kornblith et al., 2019). In Figures 7, 8 and 9 the results of this study are shown.

To calculate the correlations, we classify the different blocks of the NAFNet architecture into four
types of layers: pixel-wise 1×1 convolutions, 3×3 convolutions, layer normalization, and simplified
channel attention (SCA) layers. Each of these layers is composed of a set of C filters that resemble
the channel size of the features that are introduced to the layer. For each pair of weights Θ1, Θ2, we
compute the correlation of their layer values per filter. Then, the mean of these filter correlations is
calculated to define the final correlation value of the layer. The correlation for each filter is given by

r =

∑
i(Θ1,i − Θ̄1)(Θ2,i − Θ̄2)√∑

i(Θ1,i − Θ̄1)2
∑

(Θ2,i − Θ̄2)2
, (3)

where Θ̄j and Θj,i are the average filter values and an element value of a filter for Θj task-specific
weights, respectively. Finally, we calculate the mean of the correlations of the filters in order to get
the mean correlation for each block. The mean is calculated following

R =

∑C
i=1 ri
C

, (4)

where C is the number of filters in the layer and ri is the correlation of the ith filter.

Figure 7 gives us a general idea on how these weights are related and that in general, LOLBlur (Zhou
et al., 2022) has a lower correlation with the other datasets, which can be related not only to blur
degradations, but also to low-light ones. We also observe that convolution blocks with a kernel size
of 3 exhibit a strong correlation across all dataset pairs. This is likely because these blocks uniquely
incorporate information from neighboring pixels in their computations, making them particularly
well-suited for capturing the local structure involved in convolutional operations such as blurring.
The results in Figure 7 suggest that the impact of these blocks on blur restoration is consistent across
different cases, regardless of the specific type of blur degradation.

We confirmed that these results were consistent with our interpretation of the Pearson correlation
values by computing the weight correlations between the models trained on each deblurring task
and those trained on a low-light restoration task. The selected training dataset for the low-light task
weights was LOLv2-real (Yang et al., 2021). The results of this study are shown in Figure 8, where it
can be seen that neither of the layers considered shows any correlation with the AIO-Blur dataset
weights. This supports the idea that weights Θ1, Θ2 trained in different blur degradations share
similarities.

Centered Kernel Alignment Following the same strategy to calculate correlations per filter, we
computed the Centered Kernel Alignment similarity index by (Kornblith et al., 2019). Since Pearson’s
coefficient does not capture non-linear relationships, we also performed a CKA analysis to ensure the
results obtained in the previous study. The authors introduced two variants of the CKA by changing
the kernel function: a linear kernel or an RBF (radial basis function) kernel. We chose to use the
second one in order to capture non-linear relationships. The values range from 0 to 1, with higher
values indicating greater similarity between the weights.

Let X ∈ Rn1×p and Y ∈ Rn2×p denote two matrices of activations of p neurons for n1 and n2

examples, respectively; Kij = k(xi,xj) and Lij = l(yi,yj), with k and l two different kernels. The
CKA is calculated following

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K) ∗HSIC(L,L)
, (5)
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Figure 7: Correlations calculated for different types of neural layers in NAFNet between task-specific
weights. The layer considered for each diagram is stated in x axis. Correlation values over 0.7 state a
high-correlation (Asuero et al., 2006).
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Figure 8: Correlations of the weights compared to a different task.

where HSIC(K,L) represents the Hilbert-Schmidt Independence Criterion empirical estimator
(Gretton et al., 2005). This estimator is calculated by

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 200.0

0.5

1.0

CK
A 

va
lu

e

RealBlur - ReLoBlur

0 200.0

0.5

1.0 RealBlur - DPDD

0 200.0

0.5

1.0 RealBlur - GOPRO

0 200.0

0.5

1.0 RealBlur - LOLBlur

0 200.0

0.5

1.0 ReLoBlur - DPDD

0 20
Conv 3x3 Blocks

0.0

0.5

1.0

CK
A 

va
lu

e

ReLoBlur - GOPRO

0 20
Conv 3x3 Blocks

0.0

0.5

1.0 ReLoBlur - LOLBlur

0 20
Conv 3x3 Blocks

0.0

0.5

1.0 DPDD - GOPRO

0 20
Conv 3x3 Blocks

0.0

0.5

1.0 DPDD - LOLBlur

0 20
Conv 3x3 Blocks

0.0

0.5

1.0 GOPRO - LOLBlur

0 50 100 1500.0

0.5

1.0

CK
A 

va
lu

e

RealBlur - ReLoBlur

0 50 100 1500.0

0.5

1.0 RealBlur - DPDD

0 50 100 1500.0

0.5

1.0 RealBlur - GOPRO

0 50 100 1500.0

0.5

1.0 RealBlur - LOLBlur

0 50 100 1500.0

0.5

1.0 ReLoBlur - DPDD

0 50 100 150
Conv 1x1 Blocks

0.0

0.5

1.0

CK
A 

va
lu

e

ReLoBlur - GOPRO

0 50 100 150
Conv 1x1 Blocks

0.0

0.5

1.0 ReLoBlur - LOLBlur

0 50 100 150
Conv 1x1 Blocks

0.0

0.5

1.0 DPDD - GOPRO

0 50 100 150
Conv 1x1 Blocks

0.0

0.5

1.0 DPDD - LOLBlur

0 50 100 150
Conv 1x1 Blocks

0.0

0.5

1.0 GOPRO - LOLBlur

0 10 20 300.0

0.5

1.0

CK
A 

va
lu

e

RealBlur - ReLoBlur

0 10 20 300.0

0.5

1.0 RealBlur - DPDD

0 10 20 300.0

0.5

1.0 RealBlur - GOPRO

0 10 20 300.0

0.5

1.0 RealBlur - LOLBlur

0 10 20 300.0

0.5

1.0 ReLoBlur - DPDD

0 10 20 30
SCA Blocks

0.0

0.5

1.0

CK
A 

va
lu

e

ReLoBlur - GOPRO

0 10 20 30
SCA Blocks

0.0

0.5

1.0 ReLoBlur - LOLBlur

0 10 20 30
SCA Blocks

0.0

0.5

1.0 DPDD - GOPRO

0 10 20 30
SCA Blocks

0.0

0.5

1.0 DPDD - LOLBlur

0 10 20 30
SCA Blocks

0.0

0.5

1.0 GOPRO - LOLBlur

0 20 40 600.0

0.5

1.0

CK
A 

va
lu

e

RealBlur - ReLoBlur

0 20 40 600.0

0.5

1.0 RealBlur - DPDD

0 20 40 600.0

0.5

1.0 RealBlur - GOPRO

0 20 40 600.0

0.5

1.0 RealBlur - LOLBlur

0 20 40 600.0

0.5

1.0 ReLoBlur - DPDD

0 20 40 60
Normalization Blocks

0.0

0.5

1.0

CK
A 

va
lu

e

ReLoBlur - GOPRO

0 20 40 60
Normalization Blocks

0.0

0.5

1.0 ReLoBlur - LOLBlur

0 20 40 60
Normalization Blocks

0.0

0.5

1.0 DPDD - GOPRO

0 20 40 60
Normalization Blocks

0.0

0.5

1.0 DPDD - LOLBlur

0 20 40 60
Normalization Blocks

0.0

0.5

1.0 GOPRO - LOLBlur

Figure 9: CKA similarity index calculated for different types of neural layers in NAFNet between
task-specific weights. Values near 1 represent higher similarity values.

HSIC(K,L) =
1

(n− 1)
tr(KHLH), (6)

where H is the centering matrix Hn = In − 1
n11T . We observed that the CKA results are similar to

the ones obtained using correlation, as shown in Figure 9. This reinforces the statement on Θ1 and
Θ2 weights similarities for different deblurring degradations.

Conclusions From this analysis, we can conclude that the operations needed for the deblurring task
are similar for different types of blur, based on:

• There is a high correlation between the layer weights in the neighbor-based operations: the
kernel size 3 convolutions. These layers have a similar behavior for any type of blur.

• The weighs of the layers that do not operate on neighbors show no significant correlation,
thus, there is no similar behavior between these layers.

• CKA analysis shows great similarity indexes between the weights of the layers needed for
the deblurring task, which means that they not only have a similar behavior, but they also
learn similar representations.

B MORE DETAILS OF AIO-BLUR

In this section, we provide more details of the datasets used to construct AIO-Blur.

GoPro (Nah et al., 2017) is a synthetic dataset for motion blur. Blurred images are generated by
averaging consecutive frames from high-speed videos. Then, the center frame of each sequence is
used as the ground-truth sharp image. The dataset consists of 2,103 training blur-sharp pairs and
1,111 test pairs.
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Dataset Original Sample Final Sample

RealBlur (Rim et al., 2020) 3758 3758
ReLoBlur (Li et al., 2023a) 2010 4018
LOLBlur (Zhou et al., 2022) 10200 4200
GoPro (Nah et al., 2017) 2103 4206
DPDD (Abuolaim & Brown, 2020) 350 3850

AIO-Blur 18421 20032

Table 4: Final distribution of images in the training set of AIO-Blur. The testing sets were not
modified.

RealBlur (Rim et al., 2020) is a real-world dataset for camera motion blur. RealBlur was collected
using a dual-camera system, where one camera captures a sharp image with a short exposure time,
and the other captures a blurred image with a long exposure time. Using the dual-camera system,
RealBlur provides real blurred images caused by camera motion and the corresponding ground-truth
sharp images. We used the RealBlur-J subset, which provides JPEG RGB images. The dataset
contains 3,758 training pairs and 980 testing pairs.

ReLoBlur (Li et al., 2023a) is a real-world dataset for local motion blur. It was introduced for
the task of local motion deblurring, with an emphasis on blurred moving objects against static
backgrounds. The dataset was collected by capturing moving objects in front of static backgrounds,
using a dual-camera system. It consists of 2,010 training blur-sharp pairs and 395 test pairs.

LOLBlur (Zhou et al., 2022) is a synthetic dataset for low-light motion blur. Blur typically occurs
in low-light environments, such as dimly lit indoor scenes or nighttime, where captured images
often suffer not only from motion blur but also from low-light degradation. To address this issue,
the dataset was introduced for the joint task of low-light enhancement and deblurring. Blurred
images are generated by averaging consecutive frames, and low-light degradation is simulated using
EC-Zero-DCE (a variant of Zero-DCE Guo et al. (2020)). LOLBlur consists of 10,200 low-light
blurry training pairs and 1,800 testing pairs.

DPDD (Abuolaim & Brown, 2020) is a real-world dataset for defocus blur. The dataset was collected
on static scenes using a single camera mounted on a tripod. A blurred image was captured with a
small aperture, and the ground-truth sharp image was captured immediately afterward using a large
aperture. DPDD consists of 500 defocus-sharp pairs, split into training (70%), validation (15%) and
testing (15%) sets. For AIO-Blur, only the training and testing sets are used.

In addition, we constructed another deblurring dataset, namely AIO-Blur-OOD, to evaluate the
robustness of methods on out-of-distribution (OOD) data. The dataset is composed of the following
open-source datasets:

RealDOF (Lee et al., 2021) is a real-world dataset for defocus blur. RealDOF was collected using
a dual-camera setup, where one camera captures all-in-focus images with a small aperture, and the
other captures defocused images with a large aperture. The dataset is test-only dataset consisting 50
scenes.

RSBlur (Rim et al., 2022) is a real-world dataset for motion blur. The dataset is composed of a total
of 13,358 real blurred images of 697 scenes. This pairs are split into 8,878 training, 1,120 validation,
and 3,360 test sets. The dataset was collected using a dual-camera system including both camera
shake and object motion blur.

Real-LOLBlur (Zhou et al., 2022) is a real-world dataset for low-light and motion blur. The
dataset contains 872 real-world low-light blurry images without ground-truth sharp images. For
Real-LOLBlur, we use non-reference metrics for evaluation.

For training with AIO-Blur, we equally scaled the size of the datasets to make sure that the network
learned enough features for each dataset. The largest dataset is LOLBlur, with 10,200 pairs of images.
As this is a very large compared with the other datasets, we worked on a reduction of this dataset to
have a number of samples similar to the second largest dataset, RealBlur. The other datasets were
upsampled to also have a similar number of samples like RealBlur. The final distribution of the
different datasets in AIO-Blur can be seen in Table 4.
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Figure 10: (Left) Distribution of MSE in LOLBlur. (Right) MSE-based classification for the
downscaling of the dataset. Note that due its low population the last bin is not relevant in the whole
distribution, thus the images that belong to this set are not considered in the final training set.

Subsample of LOLBlur To subsample this dataset, we calculate the mean-squared error (MSE) of
all the images in the train split of the dataset. When checking the histogram of MSE values of all the
images we found a large shift into small MSE values, which in most cases can be related to images
that are easier to restore. To have a diverse set of images in this dataset, we draw the same histogram
considering only four bins. Both of these histograms can be seen in Figure 10. Based on the low
population of the last bin in the four-bin histogram, we did not considered images in this subset. Of
the remaining 3 bins, we randomly picked 1,400 image pairs from each. The whole process led to the
final 4200 pairs of training images of LOLBlur dataset in AIO-Blur dataset.

C IMPLEMENTATION DETAILS

Our implementation is based on PyTorch. We train DeMoE using the training set of AIO-Blur. We
randomly cropped 384×384 patches and applied vertical and horizontal flip augmentations. The batch
size is set to 32 and we used 4 H100 GPUs for training. The optimizer used is AdamW (Loshchilov
& Hutter, 2017), setting β1 = 0.9 and β2 = 0.9, with an initial learning rate 1e−3 and updated to a
minimum value of 1e−7 by the cosine annealing strategy (Loshchilov & Hutter, 2016). The training
is divided into two steps: pretraining the baseline and finetuning the experts and decoder layers. Each
of the steps has been trained for 400 epochs, for a total time of ≈ 6 days.

D EXPERTS SPECIALIZATION

To show the specialization of each of the experts in the DeMoE network, in Figure 11 the correlations
between the different experts are presented. Apart from the LayerNorm layers, the remaining layers
of the five experts do not show significant correlation. Two ideas can be extracted from this analysis:

1. The normalization layers are very similar, so the features that are introduced in each of the
experts are in a similar space.

2. Other layers do not share correlations because of the specialization of the different experts
to each task. Thus, the MoEBlocks work as expected.

E CLASSIFICATION ERROR OF THE ROUTER

In Section 4.2, it has been pointed out how the router classification of the AIO-Blur-OOD is the one
that produces the low results of DeMoE when manual expert selection is not used. To ilustrate this
bad performance of the router, in Figure 12 we represent the average output tensor of the router for
the different datasets on AIO-Blur and AIO-Blur-OOD. It can be seen that the expert usage for the
AIO-Blur datasets is the expected one, while in the OOD case the router fails to classify the RSBlur
dataset and Real-LOLBlur one.
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Figure 11: Correlations of the different experts in MoEBlock for the DeMoE network proposed. The
lack of correlation in every layer, apart from normalization, suggest that the experts are specialized in
the different deblurring tasks.

F FURTHER ABLATION STUDY

Architecture Ablation In Table 5 (Left) we present the results of using different fusions of the
generated features of each expert. The addition residual can be formulated as

ĥ = h+

N∑
i=0

wi · ei(h) , (7)

where h and ĥ are the input and output features, respectively. wi is the corresponding weight of
the expert ei. Following the same formulation, the attention connection presented in Table 5 can be
stated as
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Figure 12: Average output tensor of the router for the AIO-Blur (Left) and AIO-Blur-OOD (Right)
Datasets.

Table 5: (Left) Architectural ablations performed in DeMoE. (Right) Ablations performed in the
pretrained baseline of DeMoE and number of blocks of DeMoE.

Ablation PSNR↑ SSIM↑ LPIPS↓
Addition residual to MoEBlock output 29.10 0.876 0.209
Attention connection to MoEBlock output 28.83 0.870 0.218
Larger channel embedding (32 → 64) 29.23 0.880 0.203
DeMoEk=1 29.19 0.877 0.208

Ablation Params (M)↓ MACs (G)↓ Runtime (ms)↓ PSNR↑ SSIM↑ LPIPS↓
Baseline w/o
classification loss 10.08 11.02 8 28.84 0.868 0.225
Baseline w/
original architecture 22.07 20.37 14.8 29.19 0.878 0.207
Baseline w/
classification loss 10.08 11.02 8 29.12 0.873 0.215
More middle
NAFBlocks 38.67 15.11 15.6 29.18 0.878 0.206
More MoEBlocks 32.54 13.18 17.4 29.26 0.879 0.203

ĥ = h ·
N∑
i=0

wi · ei(h) . (8)

We also trained a model with a larger embedding depth, increasing the channel count from 32 to 64.
While this modification yielded slightly higher performance, the improvement was insufficient to
justify the substantial increase in computational cost (79.71 M parameters, 42.77 G MACs, 22.4 ms
runtime). Consequently, this model was not considered for further qualitative or out-of-distribution
(OOD) analysis. Furthermore, we experimented with adding more NAFBlocks at the deepest encoder
level and doubling the number of MoEBlocks in each decoder level. As shown in Table 5 (Right), these
architectural expansions did not yield a more favorable trade-off. Collectively, these ablation studies
confirm that the proposed DeMoE architecture achieves the optimal balance between performance
and efficiency.

Pretrained baseline ablations Table 5 (Right) also presents ablations concerning the pretraining of
the NAFNet baseline. Our proposed architecture has two NAFBlocks per each encoder layer and three
for the middle block and decoder layers. This is different from the original design of NAFNet (Chen
et al., 2022) for image deblurring, which typically employs one NAFBlock per encoder-decoder step,
except for the final encoder step that uses 28 blocks. We evaluated the pretrained NAFNet using this
original architecture (with three NAFBlocks per decoder layer) and include the results in Table 5.
However, due to the substantial increase in operations, parameters, and runtime, we selected our more
efficient baseline architecture.

In addition, we studied the impact of the classification loss on the pretrained baseline. The quantitative
results can also be seen in Table 5, where it is shown that the inclusion of the classification loss
notably increases the performance of the network. In Figure 13, we present some qualitative results
on the use of the original baseline and classification loss. Given all the images in the test sets of
the AIO-Blur dataset, we apply CLIP (Radford et al., 2021) and t-SNE (Van der Maaten & Hinton,
2008) in cascade to the encoder features of different weights: random initialized weights, AIO-Blur
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Figure 13: t-SNE representations of different baseline models.

weights without classification loss, AIO-Blur weights with classification loss, and original NAFNet
architecture with classification loss. As expected, trained weights produce distinct clusters while
random weights do not. Contrary to our expectation, the point clouds for all trained models appear
remarkably similar. The key insight is that the similarity between the cluster plots of the original and
our proposed architecture suggests that a heavily parameterized encoder stage is unnecessary. Instead,
parameters are more effectively allocated to the task-specific restoration stage in the decoder. This
finding reinforces the advantage of our proposed architecture over the original design.

TLC Ablation Table 6 presents the results of applying the test-time local converter (TLC (Chu
et al., 2022)) to NAFNet blocks during inference. This method adapts the behavior of specific
network layers at test time and is designed to improve performance on images larger than those used
in training. While TLC leads to notable metric improvements in some restoration tasks, our study on
its application to DeMoE considered three scenarios: (1) no TLC, (2) TLC applied to all layers, and
(3) TLC applied partially only to experts where it yielded significant gains. The results in Table 6
indicate that TLC adversely affects the LOLBlur and ReLoBlur experts, leading to performance
degradation in low-light and local-motion deblurring tasks. Since TLC did not provide a general
improvement and even hampered performance on the low-light task, we excluded it from the final
version of DeMoE.

Experts Ablation We conducted an ablation study on different expert blocks for constructing the
MoEBlock. This exploration included modifications of the NAFBlock as well as other established
architectures. Since deblurring requires a large receptive field, the selected blocks were based on
this principle, utilizing dilated convolutions, large kernels, and transformer layers. Among these, the
Restormer block Zamir et al. (2022b) achieved the highest performance but significantly increased
the number of parameters and computational operations. We also evaluated the PLKBlock Lee et al.
(2024), which employs large convolutional layers to expand the receptive field; however, as shown in
Table 7, it performed poorly on the AIO-Blur dataset. To maintain the NAFBlock structure while
increasing its receptive field, we incorporated the wavelet LWN block from Gao et al. (2024), which
increased the model size by a factor of five. Finally, we tested the DarkIR block (Feijoo et al., 2025),
originally designed for low-light enhancement. While its efficiency was comparable, its performance
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Table 6: Comparison of the results of applying TLC during inference for NAFNet and DeMoE. It
can be seen that some of the datasets metrics are improved when using TLC while others suffer a
decrease. The average result suggests that it is better to not use TLC.

Method RealBlur ReLoBlur DPDD LOLBlur GoPro Average

NAFNet 29.18 / 0.883 / 0.203 34.56 / 0.926 / 0.228 25.60 / 0.795 / 0.266 26.69 / 0.871 / 0.188 29.56 / 0.890 / 0.191 29.12 / 0.873 / 0.215
NAFNet w/ TLC 29.15 / 0.884 / 0.199 34.33 / 0.925 / 0.227 25.77 / 0.806 / 0.258 25.80 / 0.873 / 0.185 29.95 / 0.897 / 0.184 29.00 / 0.877 / 0.211
DeMoEk=1 w/ TLC 29.00 / 0.885 / 0.195 34.23 / 0.923 / 0.232 25.70 / 0.806 / 0.250 26.13 / 0.880 / 0.172 30.42 / 0.906 / 0.170 29.10 / 0.880 / 0.204
DeMoEk=1 w/ partial TLC 29.00 / 0.885 / 0.195 34.26 / 0.924 / 0.232 25.70 / 0.806 / 0.250 26.32 / 0.881 / 0.172 30.42 / 0.906 / 0.170 29.14 / 0.880 / 0.204
DeMoEk=1 28.96 / 0.884 / 0.198 34.52 / 0.925 / 0.232 25.56 / 0.797 / 0.258 26.84 / 0.878 / 0.175 30.06 / 0.900 / 0.176 29.19 / 0.877 / 0.208

Table 7: A comparison of DeMoE’s performance with different expert blocks on the AIO-Blur dataset
shows that the considered NAFBlock architecture achieves the best trade-off between performance
and efficiency. The metrics reported are average values across the dataset.

Expert Params (M)↓ MACs (G)↓ Runtime (ms)↓ PSNR↑ SSIM↑ LPIPS↓
DarkIR (Feijoo et al., 2025) 21.9 11.05 14.2 29.15 0.876 0.207
Wavelet Expert 101.89 14.64 14.7 29.25 0.879 0.203
Restormer (Zamir et al., 2022b) 29.06 13.25 15.2 29.26 0.879 0.203
PLK Expert (Lee et al., 2024) 119.64 30.46 14.1 28.46 0.860 0.236

DeMoE 20.15 11.05 13.1 29.19 0.877 0.208

was inferior to the original NAFBlock. This ablation study confirms that the proposed architecture
achieves the best performance/efficiency trade-off.

G MORE RESULTS IN OOD

Quantitative results In addition to the quantitative results discussed in OOD in the main article,
we present extended results in this dataset in Tables 8 and 9.

Qualitative results We show the performance of DeMoe compared to the other general deblur
methods using the OOD datasets in Figure 14. A state-of-the-art method is also included in each of
the qualitative samples.

H BROADER IMPACTS OF DEMOE

As a preliminary exploration of task-related restoration, DeMoE has the following impacts:

• Applications in many fields: Compared to existing methods, DeMoE offers higher robustness
to different scenarios where blurry artifacts can be generated. It can be widely applied to
any computer vision task with images that can potentially suffer blur degradation, such as
autonomous driving or commercial photography.

• Negative social impacts: To the best of the authors knowledge, there are no negative social
impacts.

Table 8: Quantitative evaluations on various datasets. Results with † were extracted from (Lee
et al., 2021)(RealDOF) and (Gao et al., 2024)(RSBlur). Results with ∗ were trained in the AIO-Blur
dataset.

Method PSNR↑ SSIM↑ LPIPS↓
Restormer∗ (Zamir et al., 2022a) 22.98 0.684 0.471
FFTFormer∗ (Kong et al., 2023) 23.36 0.697 0.440
SFHFormer∗ (Jiang et al., 2024) 24.20 0.736 0.428
NAFNet∗ (Chen et al., 2022) 24.64 0.762 0.382
JNB† (Shi et al., 2015) 22.36 0.635 0.601
EBDB† (Karaali & Jung, 2017) 22.38 0.638 0.594
DMENet† (Lee et al., 2019) 22.41 0.639 0.597
DPDNet† (Abuolaim & Brown, 2020) 22.67 0.666 0.420
IFAN† (Lee et al., 2021) 24.71 0.748 0.306
DeMoEk=1 24.59 0.758 0.377

RealDOF results

Method PSNR↑ SSIM↑
Restormer∗ (Zamir et al., 2022a) 14.04 0.556
SFHFormer∗ (Jiang et al., 2024) 13.54 0.553
NAFNet∗ (Chen et al., 2022) 15.00 0.576
FFTFormer∗ (Kong et al., 2023) 15.60 0.589
FFTFormer† (Kong et al., 2023) 29.70 0.787
BANet+† (Tsai et al., 2022b) 30.24 0.809
MLWNet-B† (Gao et al., 2024) 30.91 0.818
DeMoEk=1 19.23 0.640
DeMoEk=realblur 27.53 0.763

RSBlur results
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Table 9: Robustness study of OOD night blurry images using Real-LOLBlur dataset (Zhou et al.,
2022). Methods with ∗ were trained in AIO-Blur dataset, but methods with † were extracted from
Zhou et al. (2022).

RUAS MIMO FFTFormer∗ NAFNet∗ Restormer∗ SFHFormer∗ LEDNet† DarkIR DeMoEk=1 DeMoEk=lolblur

→ MIMO† → Zero-DCE†

MUSIQ↑ 34.39 28.36 30.18 32.02 27.71 29.58 39.11 48.36 31.34 38.91

NRQM↑ 3.322 3.697 5.780 5.515 5.169 5.320 5.643 4.983 5.47 6.113
NIQE↓ 6.812 6.892 6.469 6.865 7.381 6.806 4.764 4.998 7.56 5.82

Input NAFNet MLWNet* DeMoE Ground Truth

Input NAFNet Restormer* DeMoE Ground Truth

Input SFHFormer NAFNet LEDNet* DeMoE

Figure 14: Qualitative comparison of the general deblur methods in OOD datasets. Methods with ∗

are task-specific ones. The first two rows are images from RSBlur (Rim et al., 2022), the next two
rows are from RealDOF (Lee et al., 2021), and the final rows are from Real-LOLBlur (Zhou et al.,
2022). Zoom in for better view.

I LLM DISCLOSURE

During the preparation of this manuscript, the authors utilized large language models (LLMs)
exclusively for proofreading and grammatical refinement. All scientific content, analysis, and
intellectual contributions remain entirely human-authored.

23


	Introduction
	Related Work
	Method
	Preliminaries: Deblurring Similarity Analysis
	General Blur Restoration Baseline
	Mixture of deblurring Experts
	Degradation-aware Pre-training

	Experimental Results
	Results on AIO-Blur
	Results on AIO-Blur-OOD
	Comparison with Task-specific Methods

	Discussion
	Conclusion
	Similarity Weights Analysis
	More details of AIO-Blur
	Implementation Details
	Experts Specialization
	Classification error of the router
	Further ablation study
	More results in OOD
	Broader impacts of DeMoE
	LLM disclosure

