
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ULORA: UNIVERSAL LOW-RANK ADAPTATION OF
DIVERSE DEEP LEARNING ARCHITECTURES

Anonymous authors
Paper under double-blind review

ABSTRACT

To train Large Language Models (LLMs) having a large number of parameters, the
Parameter-Efficient Fine Tuning (PEFT) method based on LoRA, which allows
fine-tuning with fewer parameters, is widely employed. However, these meth-
ods are primarily designed for application to Transformer architectures, which
presents challenges when attempting to apply them to models such as Mamba.
To address this limitation, this work proposes Universal LoRA (ULoRA), which
applies a Low-Rank Adapter to all deep learning models at the level of univer-
sally common blocks. ULoRA achieves generalizability by applying Low-Rank
Adapters to blocks, making it applicable to models that do not utilize Transformer
architectures. Furthermore, by grouping multiple blocks and applying a single
Low-Rank Adapter, ULoRA provides structural flexibility that allows a further
reduction in the number of parameters. This significantly reduces resource usage
and inference time, making it well-suited for on-device environments with lim-
ited resources, while only incurring a slight performance loss. Additionally, if all
blocks are grouped to use a single Low-Rank Adapter, task switching during in-
ference is enabled by computing only the adapter. Experimental results show that,
for LLaMA-3-8B, ULoRA achieves comparable performance to LoRA with only
about 60% of the parameters, while delivering up to 8% higher throughput. For
Mamba-2.8B, ULoRA outperforms LoRA with only about 20% of the parame-
ters. In scenarios with limited available resources, ULoRA can be applied using
just 4% of the parameters of LoRA, with only a 10% reduction in performance.

1 INTRODUCTION

Large Language Models (LLMs), which perform tasks such as summarization, translation, predic-
tion, and generation based on knowledge obtained from large datasets, have seen rapid advance-
ments recently in the field of Natural Language Processing (NLP). LLMs such as GPT-3 (175B)
(Brown et al. (2020)), PaLM (540B) (Chowdhery et al. (2022)), and LLaMA (70B, 400B) (Touvron
et al. (2023a), Touvron et al. (2023b), AI@Meta (2024)) have demonstrated impressive performance
across a wide range of tasks. Moreover, models like VisionTransformer (Dosovitskiy et al. (2021))
have achieved high performance in the field of computer vision. However, as the parameter size of
these models continues to grow, the economic costs associated with their training and deployment
have also increased dramatically.

To address this issue, Parameter-Efficient Fine-Tuning (PEFT) (Mangrulkar et al. (2022)) methods
have been proposed. PEFT allows fine-tuning by updating only a portion of the model parame-
ters, thus significantly reducing computational costs while still achieving comparable or equivalent
performance. A representative PEFT method is Low-Rank Adaptation (LoRA) (Hu et al. (2021)),
which adds Low-Rank Adapters to some parameters of the model and trains only the adapters, with-
out directly training the model itself. This approach can reduce the number of parameters required
for training by up to 10,000 times. Moreover, during inference, LoRA merges the adapter weights
with the model parameters, thereby eliminating any structural overhead. While LoRA significantly
reduces the number of trainable parameters by adding a simple structure, it is not applicable to all
models. Since LoRA mainly supports linear layers, it is challenging to apply it to models like Mamba
(Gu & Dao (2024)) and ResNet (He et al. (2015)).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To find a way to apply Low-Rank Adapters to all deep learning models, we analyzed the common
structural components of these models. Most deep learning models, including LLMs, use an internal
structure divided into blocks (layers). In this paper, we define the largest common structural unit
within models as the ”Outer Block” (BLO) and propose Universal LoRA (ULoRA), which applies
Low-Rank Adapters to these BLO. By dividing models into BLO and applying Low-Rank Adapters
at this level, ULoRA achieves general applicability across different models. Furthermore, ULoRA
offers structural flexibility, as it is also possible to group multiple BLO into a larger block and apply
a single Low-Rank Adapter. For instance, by grouping two BLO together, the number of BLO, and
consequently the number of adapters, is reduced by half. This reduction in the number of adapters
allows for the construction of adapters with fewer parameters compared to LoRA.

In resource-constrained environments, such as on-device models for mobile devices, ULoRA pro-
vides a significant advantage by allowing extreme reductions in parameter count, leading to consider-
able decreases in resource usage and inference time. If all BLO are grouped into a single Low-Rank
Adapter, the last hidden state remains unchanged during inference. Therefore, for task switching,
only the replaced adapter needs to be computed, resulting in substantial reductions in inference
time.

We proposed in this work, ULoRA, which applies Low-Rank Adapters—traditionally limited to
linear layers—to the largest common structure of a model, termed the BLO, making it applicable to
diverse deep learning models. The key contributions of the proposed approach are as follows:

1. Generality: ULoRA can be applied to any neural network structure that can be divided
into blocks. It is applicable not only to Transformer architectures like LLaMA-3 (AI@Meta
(2024)), but also to other architectures such as Mamba (Gu & Dao (2024)) and ResNet (He
et al. (2015)), demonstrating its broad applicability.

2. Structural Flexibility and Efficiency: ULoRA allows combining multiple BLO to apply
a single Low-Rank Adapter. This significantly reduces the number of parameters, thereby
decreasing resource usage and inference time, providing structural flexibility and efficiency.
This makes ULoRA well-suited for on-device models with limited resources.

3. Ease and Efficiency of Task Switching: FullStep, which combines all BLO into a single
Low-Rank Adapter, eliminates the need to compute the model multiple times during in-
ference. If the last hidden state of the model is known, only the new adapter needs to be
computed, significantly reducing inference time, thereby facilitating efficient task switch-
ing. This is particularly useful in on-device environments.

We performed various experiments to verify the generalizability, structural flexibility, and task-
switching ease of ULoRA. First, to evaluate its generalizability, we compare the performance of
various adapters on two models, LLaMA-3-8B and Mamba-2.8B. LLaMA-3-8B achieves compa-
rable performance to LoRA while using approximately 60% of the parameters. On Mamba-2.8B,
ULoRA achieves higher performance than LoRA with only about 20% of the parameters. Second,
to assess the structural flexibility and efficiency, we apply ULoRA to large blocks formed by group-
ing multiple smaller blocks. In LLaMA-3-8B, ULoRA shows a performance drop of about 10%
compared to LoRA but uses only 4% of the parameters, with up to an 8% improvement in through-
put. Finally, to confirm the ease of task switching, we compare the inference time of ULoRA and
LoRA by applying ULoRA with a single adapter across all blocks.

2 RELATED WORK

LoRA (Hu et al. (2021)) is one of the Parameter-Efficient Fine-Tuning (PEFT) methods that ad-
dresses computational challenges during the fine-tuning of pre-trained models. LoRA performs low-
rank decomposition on the weight matrix W ∈ Rd×d by representing it as W ∈ Rd×r × Rr×d,
allowing fine-tuning to be conducted using only a small subset of parameters. The model parameters
are frozen, and Low-Rank Adapters are attached to some of the parameters, with only the adapters
being trained. During inference, the adapter and parameter weights are simply merged, effectively
eliminating the adapter structure, and thereby preventing the introduction of any additional overhead.

Since the introduction of LoRA, various modifications and improved architectures have been pro-
posed. VeRA (Kopiczko et al. (2024)) is a vector-based random matrix adaptation method that sig-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

nificantly reduces the number of trainable parameters while maintaining performance comparable
to LoRA. This method uses a pair of low-rank matrices common across all layers, while instead
training a small scaling vector. AdaLoRA (Zhang et al. (2023)) assigns greater parameter budgets
to adapters deemed more important in the original LoRA’s Low-Rank Adapter, thus making LoRA
more adaptive by reducing the parameters allocated to less important weights. DoRA (Liu et al.
(2024a)) decomposes the pre-trained weights into two components: magnitude and direction, and
applies LoRA to update only the directional component, minimizing the number of trainable param-
eters during fine-tuning.

However, all of these LoRA variations are primarily focused on application to Transformer archi-
tectures. In contrast, Mamba (Gu & Dao (2024)) either cannot utilize LoRA or demonstrates sub-
par performance when applied. On the other hand, the Universal LoRA (ULoRA) proposed in this
paper applies Low-Rank Adapters to the largest common block structure found in deep learning
models, enabling it to be used with models that do not utilize Transformer architectures. Addition-
ally, ULoRA allows multiple blocks to be grouped and a single Low-Rank Adapter to be applied
across them; if all blocks are grouped into a single Low-Rank Adapter, only the adapter needs to be
computed during inference, thereby facilitating efficient task switching.

3 METHOD

3.1 ULORA ARCHITECTURE

ULoRA is an improved architecture over LoRA (Hu et al. (2021)), which applies Low-Rank
Adapters to the largest common block in a model. Since it is applied to block structures, ULoRA
offers general applicability even beyond Transformer architectures. It also provides structural flex-
ibility by allowing multiple blocks to be grouped together and a single Low-Rank Adapter BA to
be applied. If all blocks are grouped to use only one Low-Rank Adapter, task switching during
inference becomes more efficient since only the adapter computations are needed.

To provide a more detailed explanation, we employ LLaMA-3 (AI@Meta (2024)), which can ac-
commodate both ULoRA and LoRA, as a representative architecture. Fig. 1 shows the application
of LoRA and ULoRA to the Decoder Block (BLD) of LLaMA-3-8B. Since both the BLD and the
Attention Block (BLA) can be considered block structures, which may lead to confusion, we refer to
the largest outermost structural unit, such as the BLD, as the BLO. Blocks within the BLO, such as
the BLA, are referred to as Inner Blocks. The key difference between ULoRA and LoRA lies in the
structure to which the Low-Rank Adapter is applied. As shown in Fig. 1a, Low-Rank Adapters in
methods like LoRA, DoRA, and AdaLoRA are typically applied to components such as the Q and
V weights in BLA in the form of BQAQ and BV AV . In contrast, ULoRA applies the Low-Rank
Adapter to the BLO, specifically the BLD, as shown in Fig. 1b.

Because ULoRA is applied at the BLO level, it can add Low-Rank Adapters without needing access
to the Inner Blocks, making it generally applicable to any deep learning model that can be divided
into blocks. Furthermore, as detailed in Section 3.2, ULoRA can also be applied by considering
multiple blocks as a single large block.

Since ULoRA and LoRA apply Low-Rank Adapters to different structural levels, their computations
within the BLD also differ. The Low-Rank Adapter in LoRA is computed within the BLA, whereas
the Low-Rank Adapter in ULoRA is computed outside the BLD. Therefore, we present two equa-
tions to show the computations for both the BLA and the BLD. In the BLA as shown in Eq. 1 of
LoRA, each Low-Rank Adapter, BQAQ and BV AV , is computed and added to the target layer. In
the BLD as shown in Eq. 2, no Low-Rank Adapter is present. Since the Low-Rank Adapter compu-
tations are performed within the BLA, LoRA may face challenges if Transformer architecture is not
employed.

hBLA
= softmax

(
(Q+BQAQ)K

T

√
dk

(V +BV AV )

)
(1)

hBLO
= D(σ(G(hBLA

) ∗ U(hBLA
))) (2)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) Structure of LoRA applied to
Transformer Decoder Block.

(b) Structure of ULoRA applied to Trans-
former Decoder Block.

Figure 1: Comparison of LoRA and ULoRA architectures.

Where, D, U , and G are down, up and gate linear layers in Attention-MLP block(Vaswani et al.
(2023)), respectively. While, σ is the activation function, and ∗ denotes the element-wise multipli-
cation.

ULoRA is applied to the BLO, specifically the BLD, and therefore the value of the Low-Rank
Adapter is added after all the computations in the BLD are completed. In the ULoRA BLA as
shown in Eq. 3, no Low-Rank Adapter is present, whereas the BLD in Eq. 4 includes the Low-Rank
Adapter BA. Since the computation of the Low-Rank Adapter BA is not needed while calculating
the BLO, ULoRA can be applied to any deep learning model as long as the BLO can be defined.

hBLA
= softmax

(
QKT

√
dk

V

)
(3)

hBLO
= D(σ(G(hBLA

) ∗ U(hBLA
))) +BA (4)

Since ULoRA is applied to the BLO, it has the advantage of being applicable to deep learning
models that do not use Transformer architectures. Fig. 2 shows the application of ULoRA to ResNet
(He et al. (2015)) and Mamba (Gu & Dao (2024)). The ResNet computer vision model is divided
into Residual Blocks, which can be considered BLO and whose formula is (5). For ResNet-34,
where there are 3, 6, 4, and 3 identical Residual Blocks respectively, ULoRA can be applied by
considering these as BLO. Mamba (Gu & Dao (2024)), which is a large language model based on
the structured state space model (SSMs), can also be divided into Mamba Blocks. With 64 Mamba
Blocks, Mamba-2.8B can apply ULoRA by treating these as BLO, and the formula is (6). In the
ULoRA equation (7), Since ULoRA does not intervene in the internal computations of the BLO, it
has general applicability regardless of the internal computational method.

BLO ResNet = F(x) + x (5)

BLO mamba t = (1− σ(L(xt)))ht−1 + σ(L(xt))xt (6)

h = BLOx+∆BLOx = BLOx+BAx (7)

3.2 STEP WITH COMBINED BLOCK

Since Low-Rank Adapters are applied at the block level, the definition of a block can be further
extended. It is possible to apply ULoRA by combining multiple BLO into a single larger block,
thereby further reducing the number of parameters. In this paper, we define the approach of com-
bining multiple BLO and applying a single Low-Rank Adapter as a ”Step.” For example, when
applying 2Step ULoRA to LLaMA-3-8B, which has 32 BLDs, as shown in Fig. 3a, two BLO are
grouped together, and a Low-Rank Adapter is applied. The number of Low-Rank Adapters is the
number of BLO divided by the Step, resulting in 16 Low-Rank Adapters for the 2Step example of

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Structure of ResNet with ULoRA applied. (b) Structure of ULoRA applied to Mamba
Block.

Figure 2: Application of ULoRA to non-Transformer architectures.

LLaMA-3-8B. Applying 4Step ULoRA, as depicted in Fig. 3b, results in 8 Low-Rank Adapters. It
is also possible to apply ULoRA by grouping all BLO into one, which is defined in this paper as
”FullStep.” When FullStep ULoRA is applied, as shown in Fig. 3c, only a single Low-Rank Adapter
is used. The ability of ULoRA to reduce the number of Low-Rank Adapters makes it advantageous
for resource-constrained on-device environments.

(a) Applied in 2Step
units

(b) Applied in 4Step
units

(c) All BLO grouped to-
gether (Full-Step)

Figure 3: Structure of ULoRA with applied Steps.

3.3 TASK SWITCHING WITH FULLSTEP

Fig. 4 illustrates an example of task switching using three FullStep ULoRAs. In the forward process
of a model using FullStep ULoRA, the adapter is applied after the computation of the last hidden
layer is completed. Therefore, if the model’s last hidden state is stored during inference, task switch-
ing can be achieved by computing only the adapter. For instance, if the value obtained from applying
ULoRA1 Adapter is desired after the model’s inference, it is sufficient to add the value of ULoRA1
to the model’s last hidden state, requiring only the additional computation of ULoRA1. Similarly,
ULoRA2 and ULoRA3 can be applied by performing only their respective computations and adding
them to the last hidden state. This method is challenging to apply to autoregressive models that
predict the next token but can be a powerful method in autoencoder models or vision tasks where
different adapters must be used for each task.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 4: Structure of ULoRA in FullStep.

4 EXPERIMENTS AND RESULTS

4.1 ENVIRONMENT SETTINGS

The overall experimental environment is described including used models and datasets in this sec-
tion. Experiments were conducted using the LLaMA-3-8B and Mamba-2.8B models. LLaMA-3
(AI@Meta (2024), Dubey et al. (2024)) is an autoregressive language model by Meta AI, based
on the Transformer architecture, and supports a variety of model sizes such as 8B, 70B, and 400B.
Mamba (Gu & Dao (2024)) is a novel state space model (SSM) architecture that demonstrates ex-
cellent performance on data with high information density, such as language modeling. It is based
on a structured state space model (SSMs) and features an efficient hardware-aware design and im-
plementation.

The dataset used includes two types selected from those employed in the experiments of LoRA (Hu
et al. (2021)). The E2E Dataset (Novikova et al. (2017)) is a new dataset for training end-to-end,
data-driven natural language generation systems in the restaurant domain, which is ten times larger
than existing frequently used datasets in this area. Evaluation for E2E was conducted using five
metrics: BLEU, NIST, METEOR, ROUGE-L, and CIDEr. Detailed descriptions of the metrics used
for evaluating the models trained on these datasets are provided in Appendix 5.

The models were trained using TRL’s (von Werra et al. (2020)) SFTTrainer, and the hyperparameters
and hardware used for training and inference are summarized in the Table 6 and Table 7 in Appendix
5, respectively. The models were trained for five epochs, and the learning rate was set to 1e-5. The
batch size was set to 8, and the warmup steps were set to 500. The optimizer used was AdamW, and
the weight decay was set to 0.01. The label smoothing factor was set to 0.1, and the models were
compiled using Torch. The seed was set to 42 to ensure reproducibility.

4.2 COMPARISON WITH VARIOUS ADAPTERS

This section evaluates the general applicability of ULoRA by measuring performance using various
adapters on two models: LLaMA-3-8B and Mamba-2.8B (which does not utilize a Transformer
architecture).

The adapters compared with ULoRA includes LoRA (Hu et al. (2021)), DoRA (Liu et al. (2024a)),
and AdaLoRA (Zhang et al. (2023)). LoRA is a Low-Rank Adaptation method that significantly
reduces the number of trainable parameters for downstream tasks by freezing pre-trained model
weights and injecting learnable rank decomposition matrices into each layer of the Transformer
architecture. DoRA is a Weight-Decomposed Low-Rank Adaptation that decomposes pre-trained
weights into two components: magnitude and direction, and fine-tunes them using LoRA for the
directional component, minimizing the number of learnable parameters efficiently. AdaLoRA is an
adapter that adaptively allocates parameter budgets across weight matrices. It parameterizes the
incremental updates in the form of singular value decomposition, effectively pruning the singular
values of less important updates to reduce the parameter budget while avoiding intensive exact SVD
computations.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

For all adapters being compared, hyperparameters r = 4 and α = 32 were used, and they were
applied only to Q and V in the LoRA case. ULoRA applied the adapter to the Decoder Layer using
1Step, with r = 4 and α = 32, the same as other adapters. Since Mamba is not composed of a
Transformer architecture and does not have an Attention mechanism, adapters were applied to all
linear layers within the Mamba Block, excluding the Embedding Layer.

Table 1 presents the results of training various adapters and models using the E2E Dataset on
LLaMA-3-8B and Mamba-2.8B. On LLaMA-3, DoRA shows no significant performance improve-
ment compared to LoRA, despite the increase in parameters. ULoRA, in contrast, reduced the pa-
rameters to around 60% of LoRA’s while showing slight performance gains across all metrics, out-
performing DoRA. AdaLoRA demonstrated more than 20% performance improvement compared
to LoRA but remains applicable only to Transformer architectures. For Mamba, which does not use
Transformer architecture, ULoRA achieved over 20% performance improvement over LoRA with
only 20% of the parameters. Compared to DoRA, ULoRA has approximately 17% of the parameters
and still provides more than a 20% performance improvement. AdaLoRA also shows lower perfor-
mance than ULoRA in this case. In summary, ULoRA reduces the number of trainable parameters
without a significant performance drop, and its general applicability is advantageous as it can be
applied even without Transformer architecture.

Table 1: Performance of various adapters and models trained with the E2E Dataset

Trainable E2E
Model Adapters Parameters BLEU NIST MET ROUGE-L CIDEr
LLaMA 3 LoRA 1,703,936 0.402 6.251 0.319 0.516 0.714

AdaLoRA 1,704,192 0.540 7.738 0.431 0.657 1.813
DoRA 1,867,776 0.420 6.240 0.422 0.589 0.755
ULoRA (Ours) 1,048,576 0.435 6.424 0.429 0.580 0.821

Mamba LoRA 6,602,752 0.244 4.440 0.304 0.419 0.093
AdaLoRA 6,603,520 0.258 4.476 0.310 0.425 0.199
DoRA 7,434,240 0.268 4.762 0.322 0.440 0.135
ULoRA (Ours) 1,310,720 0.394 5.916 0.398 0.541 0.254

(a) Metrics of adapters applied to LLaMA-3-8B (b) Metrics of adapters applied to Mamba-2.8B

Figure 5: Metrics graphs of various adapters and models trained with the E2E Dataset. (The sec-
ondary axis on the right is for NIST values.)

4.3 STEP VARIATION

We evaluate the structural flexibility of ULoRA by training the model with different Step values
on the same dataset and measuring the performance. Table 2 shows the performance of ULoRA
with different Steps on LLaMA-3-8B trained with the E2E Dataset. BLD, which is the BLO of
LLaMA-3-8B, consists of 32 blocks, and the experiment was conducted using six Steps: 1, 2, 4,
8, 16, and 32, and compared against LoRA as shown in Fig. 6a. Most metrics, except for CIDEr,
do not show a sharp decline in performance even as the number of parameters decreases. BLEU
and NIST follow a similar trend, with ULoRA initially outperforming LoRA at 1Step and gradually

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

decreasing with increasing Steps, showing a noticeable drop at 32Step. MET consistently shows
better performance with ULoRA, approaching LoRA’s level at 32Step. ROUGE-L also demonstrates
superior performance for ULoRA, becoming similar to LoRA at 4Step. CIDEr drops sharply at
2Step and continues to decrease as Step increases. In summary, ULoRA offers excellent structural
flexibility, allowing for various configurations ranging from 1Step to a FullStep that combines all
BLO. The common sharp performance drop at 32Step observed across all metrics suggests that the
number of trainable parameters might be too small, prompting additional experiments in Section
4.4.

Table 2: Performance of ULoRA with different Steps

Number of Trainable E2E
Adapters Steps Adapters Parameters BLEU NIST MET ROUGE-L CIDEr
LoRA 64 1,703,936 0.402 6.251 0.319 0.516 0.714
ULoRA (Ours) 1 32 1,048,576 0.435 6.424 0.429 0.580 0.821

2 16 524,288 0.385 5.816 0.413 0.545 0.403
4 8 262,144 0.367 5.831 0.376 0.505 0.424
8 4 131,072 0.380 5.803 0.393 0.525 0.331

16 2 65,536 0.369 5.735 0.401 0.521 0.241
32 1 32,768 0.256 4.459 0.312 0.413 0.148

(a) (b)

Figure 6: Comparison of performance graphs: (a) ULoRA with different Steps, and (b) ULoRA with
a fixed Step of 32. (The secondary axis on the right is for NIST values.)

Table 3: Performance with a fixed Step of 32

Trainable E2E
Adapters r α Parameters BLEU NIST MET ROUGE-L CIDEr
ULoRA(Ours)-1Step 4 32 1,048,576 0.435 6.424 0.429 0.580 0.821
ULoRA(Ours)-16Step 4 32 65,536 0.369 5.735 0.401 0.521 0.241
ULoRA(Ours)-32Step 4 32 32,768 0.256 4.459 0.312 0.413 0.364

8 64 65,536 0.291 4.916 0.322 0.438 0.386
16 128 131,072 0.304 5.022 0.345 0.469 0.398
32 256 262,144 0.314 5.129 0.362 0.487 0.397
64 512 524,288 0.298 4.993 0.346 0.476 0.375

128 1024 1,048,576 0.315 5.090 0.356 0.487 0.392
256 2048 2,097,152 0.324 5.130 0.362 0.493 0.394

4.4 FULLSTEPS

Table 3 and Fig. 6b shows the performance of LLaMA-3-8B trained with the E2E Dataset, using
a fixed Step of 32 and varying hyperparameters. We fix the Step value and modify r and α to

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 7: Throughput (tokens/s) by Step for LLaMA-3-8B

measure the performance variation of ULoRA with changes in trainable parameters. Although all
results show lower performance compared to 16Step, the performance increases with the number
of trainable parameters and starts to converge when r = 16. The poor performance observed in the
32Step experiments in Section 4.3 seems to have resulted from an insufficient number of trainable
parameters, which prevented proper learning.

4.5 THROUGHPUT

We measured the throughput representing the number of tokens processed per unit of time for differ-
ent adapters. LLaMA-3-8B was used, and the test examples from the E2E Dataset were employed,
limiting the maximum sequence length to 1 to predict only a single token. AdaLoRA and DoRA
have lower throughput compared to LoRA, whereas our method demonstrates higher throughput,
which increases with the Step value. Compared to LoRA, throughput increases by 0.2% at 1Step,
4.1% at 2Step, and up to 8% at 32Step, achieving 99.92% of the throughput of using only the model
without any adapters. In summary, ULoRA is one of the LoRA variants that increase throughput,
with throughput most closely resembling that of the model without any adapters.

4.6 TASKSWITCHING

This section shows the measurement of the speed of Task Switching with FullStep. The LLaMA-3-
8B model was used along with test examples from the E2E Dataset. Due to the autoregressive nature
of the model, where the output of the forward pass is fed back as input, we limited the maximum
sequence length to 1, creating a scenario where only a single token is predicted. Table 4 presents
the measured Task Switching speed for LoRA and ULoRA with 32 Steps Adapter inference time is
similar for all hyperparameters. Assuming one TaskSwitching, LoRA requires two model forward,
which takes 51,084µs. ULoRA requires one model forward and two adapter forward, which does
not exceed 22,000µs for all adapters, so the time required for TaskSwitching is overwhelmingly
reduced. It takes approximately 185 numbers of TaskSwitchings for ULoRA to catch up to LoRA’s
TaskSwitching Inference Time of one run. As the number of TaskSwitchings increases, this gap
becomes larger and larger, giving ULoRA an advantage in ease and efficiency in TaskSwitching.

4.7 FREEZED TRAINABLE PARAMETERS

Fig. 5 presents the performance evaluation when varying the hyperparameters while maintaining
a constant number of trainable parameters. When using the same trainable parameters, employing
a larger number of low-rank adapters with lower steps yields superior performance. Conversely,
when using the same step value, increasing the rank r to augment the trainable parameters generally
results in improved performance; however, as illustrated in the results for LoRA and ULoRA-1Step-
8r, there are instances where performance declines. Doubling the step value necessitates doubling
the parameter size to achieve comparable performance.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: TaskSwitching Performance on LLaMA-3-8B

Model Adapter Double Triple number of
Adapter r α Forward Forward TaskSwitching TaskSwitching TaskSwitching
LoRA 4 32 25,902µs - 50184µs 75276µs 25092×n
ULoRA 4 32 20708µs 170µs 20878µs 21048µs 20708+170×n
(32Step) 8 64

16 128
32 256
64 512

128 1024

Table 5: The performance comparison between LoRA and our method for different hyperparameters

Adapters Steps r alpha traninable E2E
parameters BLEU NIST MET ROUGE-L CIDEr

LoRA 2 16 851,968 0.420 6.188 0.426 0.583 0.568
4 32 1,703,936 0.402 6.251 0.319 0.516 0.714
8 64 3,407,872 0.397 5.989 0.410 0.563 0.382

ULoRA (Ours) 1 2 16 524,288 0.398 5.885 0.407 0.549 0.280
4 32 1,048,576 0.435 6.520 0.386 0.550 0.626
8 64 2,097,152 0.408 6.032 0.414 0.553 0.383

2 4 32 524,288 0.396 5.994 0.412 0.552 0.486
8 64 1,048,576 0.399 6.121 0.406 0.533 0.466
16 128 2,097,152 0.424 6.143 0.420 0.574 0.405

4 8 64 524,288 0.391 5.978 0.409 0.519 0.322
16 128 1,048,576 0.381 5.870 0.396 0.522 0.338
32 256 2,097,152 0.399 5.987 0.413 0.539 0.343

8 16 128 524,288 0.405 5.913 0.413 0.551 0.242
32 256 1,048,576 0.382 5.895 0.399 0.512 0.347
64 512 2,097,152 0.401 5.910 0.410 0.549 0.301

16 32 256 524,288 0.390 5.897 0.405 0.535 0.263
64 512 1,048,576 0.396 5.958 0.411 0.542 0.286
128 1024 2,097,152 0.398 5.945 0.409 0.541 0.265

32 64 512 524,288 0.312 5.072 0.353 0.483 0.384
128 1024 1,048,576 0.315 5.090 0.356 0.487 0.392
256 2048 2,097,152 0.324 5.130 0.362 0.493 0.394

5 CONCLUSION

We introduced Universal LoRA (ULoRA) in this paper, a comprehensive extension of the Low-
Rank Adapter (LoRA) approach to enhance its applicability across diverse deep learning mod-
els. Traditional LoRA mainly targets linear layers in Transformer architectures, limiting its scope.
ULoRA, however, applies to the largest universally common structural unit—termed the Outer
Block—enabling its use in a variety of architectures, including Mamba and ResNet. ULoRA’s de-
sign allows multiple Outer Blocks to be managed by a single adapter, reducing trainable parameters,
resource consumption, and inference time. This makes it particularly effective for resource-limited
on-device models. The FullStep configuration, where a single adapter controls all Outer Blocks,
enables efficient task switching at inference by simply updating the adapter. Experimental results
demonstrated that ULoRA matches or exceeds the performance of methods like LoRA, AdaLoRA,
and DoRA with fewer parameters. For LLaMA-3-8B, ULoRA achieved similar performance using
60% of the parameters and provided up to 8% higher throughput. In Mamba-2.8B, ULoRA outper-
formed LoRA using just 20% of the parameters. Its adaptability was also evident across different
Step configurations, maintaining strong performance with fewer parameters. In conclusion, ULoRA
expands the applicability of parameter-efficient fine-tuning while reducing resource demands, mak-
ing it suitable for efficient inference and quick task adaptation. Future work will focus on optimiz-
ing ULoRA for autoregressive models and exploring new integrations with emerging deep learning
paradigms.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In Large Scale Kernel
Machines. MIT Press, 2007.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay,
Noam M. Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Benton C. Hutchinson, Reiner
Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke,
Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcı́a, Vedant
Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omer-
nick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz,
Erica Oliveira Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi
Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathleen S. Meier-
Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language model-
ing with pathways. 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms, 2023. URL https://arxiv.org/abs/2305.14314.

Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh, Ming-Wei Chang, Dipanjan Das, and William W.
Cohen. Handling divergent reference texts when evaluating table-to-text generation, 2019. URL
https://arxiv.org/abs/1906.01081.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale, 2021. URL https://arxiv.org/abs/2010.11929.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Jun Zhao, Wei Shen, Yuhao Zhou, Zhiheng Xi,
Xiao Wang, Xiaoran Fan, Shiliang Pu, Jiang Zhu, Rui Zheng, Tao Gui, Qi Zhang, and Xuanjing
Huang. Loramoe: Alleviate world knowledge forgetting in large language models via moe-style
plugin, 2024. URL https://arxiv.org/abs/2312.09979.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/1906.01081
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2312.09979


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,
Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha
Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda
Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Ar-
caute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang,
Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-
hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lind-
say, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Tim-
othy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vı́tor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
stable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu,
Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, and Christopher Ré. Hungry
Hungry Hippos: Towards language modeling with state space models. In International Confer-
ence on Learning Representations, 2023.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human-
annotated dialogue dataset for abstractive summarization. In Proceedings of the 2nd Workshop
on New Frontiers in Summarization. Association for Computational Linguistics, 2019. doi: 10.
18653/v1/d19-5409. URL http://dx.doi.org/10.18653/v1/D19-5409.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
URL https://arxiv.org/abs/2312.00752.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015. URL https://arxiv.org/abs/1512.03385.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527–1554, 2006.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87, 1991. doi: 10.1162/neco.1991.3.1.79.

M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the em algorithm. In Proceedings
of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan), volume 2, pp.
1339–1344 vol.2, 1993. doi: 10.1109/IJCNN.1993.716791.

Dawid J. Kopiczko, Tijmen Blankevoort, and Yuki M. Asano. Vera: Vector-based random matrix
adaptation, 2024. URL https://arxiv.org/abs/2310.11454.

Alon Lavie and Abhaya Agarwal. Meteor: an automatic metric for mt evaluation with high levels of
correlation with human judgments. In Proceedings of the Second Workshop on Statistical Machine
Translation, StatMT ’07, pp. 228–231, USA, 2007. Association for Computational Linguistics.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. pp. 10, 01 2004.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation, 2024a. URL
https://arxiv.org/abs/2402.09353.

13

https://arxiv.org/abs/2407.21783
http://dx.doi.org/10.18653/v1/D19-5409
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2310.11454
https://arxiv.org/abs/2402.09353


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
Thomas Y. Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks, 2024b. URL https:
//arxiv.org/abs/2404.19756.

Tongxu Luo, Jiahe Lei, Fangyu Lei, Weihao Liu, Shizhu He, Jun Zhao, and Kang Liu. Moelora:
Contrastive learning guided mixture of experts on parameter-efficient fine-tuning for large lan-
guage models, 2024. URL https://arxiv.org/abs/2402.12851.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

Yuren Mao, Yuhang Ge, Yijiang Fan, Wenyi Xu, Yu Mi, Zhonghao Hu, and Yunjun Gao. A survey
on lora of large language models, 2024. URL https://arxiv.org/abs/2407.11046.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xi-
angru Tang, Aadit Vyas, Neha Verma, Pranav Krishna, Yangxiaokang Liu, Nadia Irwanto, Jes-
sica Pan, Faiaz Rahman, Ahmad Zaidi, Mutethia Mutuma, Yasin Tarabar, Ankit Gupta, Tao Yu,
Yi Chern Tan, Xi Victoria Lin, Caiming Xiong, Richard Socher, and Nazneen Fatema Rajani.
DART: Open-domain structured data record to text generation. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, pp. 432–447, Online, June 2021a. Association for Computational
Linguistics. doi: 10.18653/v1/2021.naacl-main.37. URL https://aclanthology.org/
2021.naacl-main.37.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand Sivaprasad, Chiachun Hsieh,
Xiangru Tang, Aadit Vyas, Neha Verma, Pranav Krishna, Yangxiaokang Liu, Nadia Irwanto,
Jessica Pan, Faiaz Rahman, Ahmad Zaidi, Mutethia Mutuma, Yasin Tarabar, Ankit Gupta, Tao
Yu, Yi Chern Tan, Xi Victoria Lin, Caiming Xiong, Richard Socher, and Nazneen Fatema Ra-
jani. Dart: Open-domain structured data record to text generation, 2021b. URL https:
//arxiv.org/abs/2007.02871.

Jekaterina Novikova, Ondrej Dušek, and Verena Rieser. The E2E dataset: New challenges for end-
to-end generation. In Proceedings of the 18th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, Saarbrücken, Germany, 2017. URL https://arxiv.org/abs/
1706.09254. arXiv:1706.09254.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association
for Computational Linguistics, ACL ’02, pp. 311–318, USA, 2002. Association for Computa-
tional Linguistics. doi: 10.3115/1073083.1073135. URL https://doi.org/10.3115/
1073083.1073135.

Thibault Sellam, Dipanjan Das, and Ankur P Parikh. Bleurt: Learning robust metrics for text gener-
ation. In Proceedings of ACL, 2020.

Matthew Snover, Bonnie Dorr, Rich Schwartz, Linnea Micciulla, and John Makhoul. A study of
translation edit rate with targeted human annotation. In Proceedings of the 7th Conference of the
Association for Machine Translation in the Americas: Technical Papers, pp. 223–231, Cambridge,
Massachusetts, USA, August 8-12 2006. Association for Machine Translation in the Americas.
URL https://aclanthology.org/2006.amta-papers.25.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023a. URL https://arxiv.org/abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel

14

https://arxiv.org/abs/2404.19756
https://arxiv.org/abs/2404.19756
https://arxiv.org/abs/2402.12851
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://arxiv.org/abs/2407.11046
https://aclanthology.org/2021.naacl-main.37
https://aclanthology.org/2021.naacl-main.37
https://arxiv.org/abs/2007.02871
https://arxiv.org/abs/2007.02871
https://arxiv.org/abs/1706.09254
https://arxiv.org/abs/1706.09254
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/2006.amta-papers.25
https://arxiv.org/abs/2302.13971


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023b. URL https://arxiv.org/abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image
description evaluation, 2015. URL https://arxiv.org/abs/1411.5726.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
learning. https://github.com/huggingface/trl, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning, 2023. URL https://arxiv.org/abs/2303.10512.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evalu-
ating text generation with bert, 2020. URL https://arxiv.org/abs/1904.09675.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Christian M. Meyer, and Steffen Eger. Moverscore:
Text generation evaluating with contextualized embeddings and earth mover distance, 2019. URL
https://arxiv.org/abs/1909.02622.

15

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1411.5726
https://github.com/huggingface/trl
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1909.02622


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

APPENDIX: EXPERIMENTAL METRICS

1. Bilingual Evaluation Understudy Score (BLEU) (Papineni et al. (2002)) is a method
for evaluating the quality of machine translation by comparing the similarity between the
machine-generated translation and a reference human translation, based on n-grams.

2. National Institute of Standards and Technology(NIST) is a method for evaluating the
quality of text which has been translated using machine translation.

3. Metric for Evaluation of Translation with Explicit ORdering(METEOR)(Lavie &
Agarwal (2007)) is a metric for the evaluation of machine translation output. The met-
ric is based on the harmonic mean of unigram precision and recall, with recall weighted
higher than precision. It also has several features that are not found in other metrics, such
as stemming and synonymy matching, along with the standard exact word matching.

4. Recall-Oriented Understudy for Gisting Evaluation-Longest(ROUGE)(Lin (2004)) is
a set of metrics and a software package used for evaluating automatic summarization and
machine translation software in natural language processing. ROUGE-L is Longest Com-
mon Subsequence(LCS) based statistics. Longest common subsequence problem takes into
account sentence-level structure similarity naturally and identifies longest co-occurring in
sequence n-grams automatically.

5. Consensus-based Image Description Evaluation(CIDEr)(Vedantam et al. (2015)) is for
evaluating image descriptions that uses human consensus.

APPENDIX: EXPERIMENTAL PARAMETERS AND CONFIGURATIONS

Table 6: Hyperparameters for Training and Inference

Training Parameters
Floating Point BFloat16
Training Epoch 5
Learning Rate 1e-5
Batch Size 8
Warmup Steps 500
Optimizer AdamW
Weight Decay 0.01
Label Smoothing Factor 0.1
Torch Compile True
Seed 42
Inference Parameters
Beam Search 10
Max New Tokens 50
No Repeat Ngram Size 4
Length Penalty (E2E) 0.9
Length Penalty (DART) 0.8

Table 7: Hardware for Training and Inference

Training Inference
CPU i9-13900K Ryzen 5700X
RAM 128GB 128GB
VGA RTX 4090 24GB × 2 RTX 3090 24GB × 1

16


	Introduction
	Related Work
	Method
	ULoRA Architecture
	Step with Combined Block
	Task Switching with FullStep

	Experiments and Results
	Environment Settings
	Comparison with Various Adapters
	Step Variation
	FullSteps
	Throughput
	TaskSwitching
	Freezed Trainable Parameters

	Conclusion

