
Published as a conference paper at COLM 2025

LoRe: Personalizing LLMs via Low-Rank Reward Modeling

Avinandan Bose
University of Washington
FAIR at Meta

Zhihan Xiong
University of Washington

Yuejie Chi
FAIR at Meta

Simon Shaolei Du
University of Washington

Lin Xiao
FAIR at Meta

Maryam Fazel
University of Washington

Correspondence to: avibose@cs.washington.edu

Abstract

Personalizing large language models (LLMs) to accommodate diverse
user preferences is essential for enhancing alignment and user satisfac-
tion. Traditional reinforcement learning from human feedback (RLHF)
approaches often rely on monolithic value representations, limiting their
ability to adapt to individual preferences. We introduce a novel framework
that leverages low-rank preference modeling to efficiently learn and gener-
alize user-specific reward functions. By representing reward functions
in a low-dimensional subspace and modeling individual preferences as
weighted combinations of shared basis functions, our approach avoids
rigid user categorization while enabling scalability and few-shot adapta-
tion. We validate our method on multiple preference datasets, demon-
strating superior generalization to unseen users and improved accuracy in
preference prediction tasks. The code for our experiments is available at:
https://github.com/facebookresearch/LoRe.

1 Introduction

Aligning Large Language Models (LLMs) with human values is paramount for enhancing
their relatability and effectiveness. Reinforcement Learning from Human Feedback (RLHF)
(Christiano et al., 2017) is the standard approach to achieve this alignment. However,
conventional approaches often rely on monolithic value representations, which inadequately
address the diverse needs of various populations (Bakker et al., 2022; Durmus et al., 2023).

In recent years, there has been a growing advocacy for pluralistic alignment in AI systems.
Researchers (Sorensen et al., 2024; Kirk et al., 2024a; Jang et al., 2023) emphasize the im-
portance of designing AI systems that cater to the unique requirements of individuals and
groups. This paradigm shift has spurred the development of novel methods, benchmarks,
and training datasets. Nevertheless, many existing approaches depend on pre-selected
diversity-defining dimensions—such as demographics (Moon et al., 2024; Kwok et al., 2024),
personality traits (Castricato et al., 2024; Jiang et al., 2023; Serapio-Garcı́a et al., 2023; Zhu
et al., 2024), and writing styles (Han et al., 2024; Jang et al., 2023; Bai et al., 2022)—which cat-
egorize individuals into predefined groups, potentially overlooking intra-group variability.
The scarcity of large-scale preference datasets has previously hindered personalized LLM
development. However, pioneering efforts by (Kirk et al., 2024b; Zollo et al., 2024) have
facilitated the exploration of personalization methods beyond predefined user types.

Early attempts to personalize LLMs involved integrating additional inputs—typically learn-
able models that generate latent representations of user preferences based on past interac-
tions—into the design of LLMs (Li et al., 2024; Chen et al., 2024b; Woźniak et al., 2024) or
reward models (Poddar et al., 2024; Chen et al., 2024a). These strategies, however, often
need substantial individual user data or rely on categorizing users based on factors such as

1

https://github.com/facebookresearch/LoRe


Published as a conference paper at COLM 2025

demographics, personalities, etc. To address these limitations, we introduce LoRe, a novel
Low-Rank Reward Modeling framework for few-shot personalization.

LoRe leverages a structured low-rank decomposition of reward functions. This approach
allows us to model individual preferences as weighted combinations of the basis reward
functions, enabling scalable and statistically efficient adaptation with minimal user-specific
data. In contrast to prior approaches, LoRe demonstrates superior generalization capabilities
to diverse unseen users while maintaining computational efficiency suitable for real-world
deployment. By integrating seamlessly with multi-objective alignment frameworks, LoRe
supports personalized response generation without the need for extensive retraining.

2 Preliminaries

A crucial step in aligning LLMs through Reinforcement Learning from Human Feedback
(RLHF) (Christiano et al., 2017; Ouyang et al., 2022) is learning a reward function that
captures human preferences. Unlike traditional supervised fine-tuning, which relies on
explicitly labeled data, RLHF enables models to learn from human comparative judgments.
This is particularly valuable in settings where direct supervision is impractical, such as
optimizing AI systems for subjective qualities like helpfulness or coherence. In practice,
human annotators provide feedback by ranking responses to the same prompt, and this
data is used to train a reward model that assigns a numerical score to each response.

A common framework for modeling such preferences is the Bradley and Terry (1952)
(BT) model. The BT model represents preferences by assigning scalar scores/rewards to
items—where an “item” could be any decision, option, or response. Given two items i and j
with scores ri and rj, the probability that item i is preferred over item j follows:

P(i ≻ j) =
1

1 + exp(−(ri − rj))
. (1)

In the context of LLMs, the reward function maps prompt-response pairs to a scalar score,
indicating response quality. This function, typically represented as rϕ : X × Y → R, is
trained using human-labeled preference data. Here, ϕ is the reward parameterization in
the function class Φ. Specifically, for a given prompt x ∈ X , if human annotators prefer
response yc ∈ Y over yr ∈ Y , the BT model expresses the probability of this preference as:

P(yc ≻ yr|x) =
1

1 + exp (−(rϕ(x, yc)− rϕ(x, yr)))
. (2)

Given a dataset D of pairwise preference feedback consisting of independent samples,
where each sample is a triplet (x, yc, yr), and yc ∈ Y is the response preferred over yr ∈ Y
for the prompt x ∈ X drawn uniformly at random. The joint likelihood of the dataset is:

∏
(x,yc ,yr)∈D

P(yc ≻ yr|x). (3)

Assuming preferences follow the Bradley Terry Model Eq. (1), the parameters of the reward
model can be learned by minimizing the negative log-likelihood defined as:

min
ϕ∈Φ

∑
(x,yc ,yr)∈D

log
(
1 + exp

(
rϕ(x, yr)− rϕ(x, yc)

))
= min

ϕ∈Φ
∑

(x,yc ,yr)∈D
ℓ(rϕ(x, yc)− rϕ(x, yr)), (4)

where ℓ(z) = log(1 + exp(−z)) is the logistic loss function.

3 Preference Personalization using LoRe

While the BT model assumes a single underlying reward function shared across users,
real-world preferences often exhibit significant variation due to individual experiences,
biases, and cultural contexts. Next we present an overview of classical work on collaborative
ranking, which provides a way to model diverse user preferences.
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LoRe: Low-Rank Reward Modelling
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Figure 1: Typically preference data from diverse users is pooled together to train a single
reward model for everyone. LoRe introduces a more flexible approach by collaboratively
learning a shared reward basis from user data. Instead of producing a single reward, this
basis generates B latent rewards, which can be combined using a B-dimensional weight
vector unique to each user to produce personalized rewards. This allows for seamless
personalization with minimal effort. For new users, only the user weights need to be
learned from few-shot examples, while keeping the reward basis fixed, enabling an efficient
and lightweight personalized reward model.

3.1 Collaborative Ranking from Pairwise Comparisons

Collaborative ranking (Koren et al., 2009) leverages preference data from multiple users to
infer individual preferences across a large item set. Each user provides feedback on only a
few item pairs, and the goal is to reconstruct their full preference profile by utilizing shared
information across users. This approach accounts for diverse preferences, by avoiding the
need to aggregate conflicting opinions into a single reward function. Instead, it models
personalized rewards by learning structured representations of user preferences.

Consider N users and M items, where preferences are captured in a matrix P ∈ RN×M. The
ith row of P, denoted p⊤

i , represents user i’s rewards across all items. The probability of
user i preferring item c over item r is given by the BT model Eq. (1) based on the reward
difference (pi,c − pi,r). Since users provide comparisons for only a small subset of items,
recovering the full matrix P is challenging. A common solution (Lu and Negahban, 2015;
Park et al., 2015)—taking into account the similarity among users and items—assumes P is
low-rank (has rank B ≪ min{M, N}) and can be factorized as:

P = WR, (5)

where the rows of R ∈ RB×M represent a reward basis. and W ∈ RN×B contains user-specific
weights. Each user’s preference vector is then given by:

pi = w⊤
i R. (6)
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Here, w⊤
i determines how user i’s preferences combine the basis vectors in R. The objective

is to learn this low-rank matrix from a small fraction of observed pairwise comparisons,
enabling personalized and scalable reward learning.

3.2 Low-Rank Reward Modeling for LLM Alignment

Collaborative ranking, by exploiting the low-rank structure in user preferences, enables
few-shot learning on a new user even when only a handful of comparisons are available. The
idea is to fix the reward basis R and learn only a low dimensional weight vector for this user.
The main challenge in adapting collaborative ranking to RLHF is the high dimensionality of
the item space, which consists of user prompts x ∈ X and LLM-generated responses y ∈ Y ,
forming items (x, y) ∈ X × Y . User preferences are captured through a limited number
of pairwise comparisons (x, yc) ≻ (x, yr), indicating a preference for yc over yr given x.
However, modern LLMs typically use vocabulary sizes between 32000-128000 (V) tokens
and support context windows ranging from 2048 to 2 million (K) tokens (Touvron et al.,
2023; Achiam et al., 2023), the item space scales as M = VK—rendering direct reward basis
learning R ∈ RB×M infeasible.

To address this challenge, we propose a framework that models diverse user preferences
through a set of B basis reward functions represented by the Reward Basis Rϕ : X ×Y 7→ RB.
The individual preference function for user i, pi : X ×Y → R, is defined as:

pi := w⊤
i Rϕ, (7)

where w⊤
i ∈ ∆B−1 is a normalized weight vector inherent to the user. By leveraging a

straightforward low-rank matrix factorization, we efficiently capture diverse user pref-
erences. This approach, overlooked in favor of more complex methods in prior work,
highlights the strength of collaborative ranking across diverse applications. The simplicity
of our method is a major advantage, enabling significant performance gains (see Sec. 5)
while being easy to integrate with various downstream tasks (see Sec. 3.4). The space Φ of
the learnable parameters depends on the use case and the sample size available for training.
We provide a few examples below.

• Example 1. Fine-tuning only the final layer of a pre-trained reward model (Ziegler et al.,
2019): Standard transformer-based models output a single scalar reward. To modify
the reward model to output a B-dimensional representation, we learn a simple linear
transformation on top of the embeddings generated by the pre-final layer, denoted as
e : X ×Y 7→ RD, while keeping other layers frozen. The reward basis is then defined as:

Rϕ(x, y) = Ae(x, y), (8)

where A ∈ RB×D is a learnable matrix that projects e(x, y) into a B-dimensional space.

• Example 2. Similar to Example 1, we modify the pre-trained reward model to output a
B-dimensional representation by applying a learnable transformation to the embeddings
from the pre-final layer. Instead of using a linear transformation, we train a shallow
multi-layer perceptron (MLP) fϕ on top of these frozen embeddings (Wang et al., 2024):

Rϕ(x, y) = fϕ(e(x, y)), (9)

where ϕ are the parameters of the MLP. This allows for more expressive transformations
while keeping the earlier layers of the reward model frozen.

• Example 3. Fine-tuning earlier layers with LoRA (Low-Rank Adaptation) (Hu et al.,
2021): Instead of keeping the earlier layers frozen, we can allow them to be fine-tuned
in a parameter-efficient way using LoRA. As in the previous examples, we first modify
the pre-trained reward model to output a B-dimensional representation by applying
a learnable transformation to the embeddings from the pre-final layer. However, in
addition to learning a transformation on top of these embeddings, we also fine-tune the
transformer’s earlier layers by introducing low-rank adaptation matrices.
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3.3 The LoRe Workflow

In this section, we outline the LoRe workflow in full generality. The specific choices made
for our experiments are discussed in Section 5.

Collecting User Preference Data: We assume access to preference feedback data from seen
users, denoted by the set Useen. Each user provides a set of labeled pairs of responses,
denoted as Di = {(x, yc, yr)}, where x is the input, and yc and yr are the chosen and rejected
options, respectively. The training dataset Dtrain is the collection of Di of all users in Useen.

Jointly Learning Basis Reward and User Preference Weights: Assuming that the preference
for each user follows the BT Model with their personalized reward function pi, the learning
problem boils down to the following maximum likelihood estimation problem:

min
ϕ:Φ,{wi∈∆B−1}i∈Useen

∑
i∈Useen

1
|Di| ∑

(x,yc ,yr)∈Di

ℓ(w⊤
i (Rϕ(x, yc)− Rϕ(x, yr))), (10)

where ℓ(·) is the logistic loss function as described in Eq. (4).

Once the learner has learned these parameters, they are interested in generalizing to new
prompt queries by the users in Useen, as well as being able to adapt to preferences of new
users denoted by the set Uunseen.

Few Shot Learning for New Users (Unseen User Generalization): This type of generaliza-
tion involves predicting well for users whose preference data was not part of the training
data at all, i.e., completely new users with unseen preferences. These users are termed as
unseen users denoted by the set Uunseen. These users have few interaction data points, that
is termed as Dfewshot, and this is used to few-shot learn these users’ preferences {wi}i∈Uunseen
by optimizing Eq. (11).

For any user i ∈ Uunseen with few feedback samples denoted by Di ∈ Dfewshot, we estimate
their preference wnew ∈ ∆B−1, keeping the reward basis Rϕ fixed from Eq. (10) as follows:

wnew = argmin
w∈∆B−1

∑
(x,yc ,yr)∈Di

ℓ(w⊤(Rϕ(x, yc)− Rϕ(x, yr))). (11)

3.4 Personalized Response Generation via Steerable Multi-Objective Alignment

Recently, there has been a growing interest in Multi-Objective Alignment (MOA) in LLMs.
Formally, let Rϕ : X ×Y → RB represent B reward functions for different (often conflicting)
objectives. For instance, one objective may favor detailed explanations, while another
prioritizes conciseness. The goal is to generate responses with varying emphasis, dictated
by a weight vector w ∈ RB, yielding the reward function w⊤Rϕ. A naive approach would
be to train a language model for every possible w, but this becomes infeasible as the space
of w is infinite.

Prior work (Wu et al., 2023; Zhou et al., 2023; Rame et al., 2024; Jang et al., 2023; Shi et al.,
2024) demonstrates that it is possible to learn only B language models corresponding to
these B reward functions and still generate responses for any arbitrary weight w at inference
time. However, these works assume known reward models (using off-the-shelf reward models
for observable objectives like harmlessness, conciseness, etc.) and provided preference weights.

In personalization, objectives are often latent and subjective, requiring learning rather than
explicit specification. Furthermore, preferences are inherently subjective and can be difficult
to articulate, making it challenging for users to specify precisely what weights they want.
Modeling personalized rewards as linear combinations of basis functions enables adaptation
to users’ implicit preferences. Our research is orthogonal yet complementary to this line of
work, enabling seamless integration into advances in multi-objective alignment.
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4 Related Work and Contributions

Personalized Reward Learning from Human Feedback: This line of research typically
captures diversity in user preferences in one of the following ways: 1.Explicitly categorize
users based on observable traits (e.g., demographics, personality traits) and train separate
reward models for each category (Jiang et al., 2023; Zhu et al., 2024; Bose et al., 2024).
This approach is inherently limited in granularity and struggles with cases where user
preferences do not align neatly with predefined categories. 2. Learn per-user reward
models by conditioning on latent representations of user preferences (Poddar et al., 2024;
Chen et al., 2024a; Lee et al., 2024). These methods require significant data for each user and
do not generalize well to new users with limited feedback. We elaborate on two of these
methods next.

Personalized reward modeling for pluralistic alignment (PAL) : (Chen et al., 2024a) assume
that the latent preference of each user is modeled by an unknown ideal point zi ∈ RD. They
propose two methods to represent these ideal points:

PAL-A: In this approach, the ideal points factorize as zi = Qwi, where Q ∈ RD×B represents
B prototype ideal points and wi ∈ ∆B−1 represents weights over these prototypes for user
i. Given a pre-trained embedding function e : X × Y 7→ RD, the reward for user i for a
prompt response pair (x, y) ∈ X × Y is given by the Euclidean distance square between
e(x, y) and Qwi in a learnable representation space defined by function fθ : RD 7→ Rd (a
shallow MLP with parameters θ):

pi(x, y) := ∥ fθ(e(x, y))− fθ(Qwi)∥2
2. (12)

The learnable parameters are θ, Q, {wi}i∈Useen . This method aims to generalize to unseen
users by covering the user space with the prototype matrix.

PAL-B: Here, the user ideal point is a function of the prompt, expressed as zi(x) =
Gϕ(e(x))wi. The personalized reward function is defined as:

pi(x, y) := zi(x)⊤ fθ(e(y)) = w⊤
i G⊤

ϕ (e(x)) fθ(e(y)), (13)

where Gϕ : RD 7→ Rd × RK and fθ : RD 7→ Rd. Mathematically, PAL-B is a special case
of Eq. (7) where Rϕ(x, y) := G⊤

ψ (e(x)) fθ(e(y)). This decomposition of Rϕ is not novel to
PAL-B and has already appeared in a prior work (Wang et al., 2024).

Variational Preference Learning (VPL) (Poddar et al., 2024): The latent preference of each
user is denoted by zi ∈ RD, which is the output of an encoder function Qθ : Di 7→ RD, that
maps the user preference data Di to a latent code. Given a pre-trained embedding function
e : X ×Y 7→ RD, the reward for user i for a prompt response pair (x, y) ∈ X ×Y is given
by a learnable function Rϕ : R2D 7→ R, as:

pi(x, y) := Rϕ(e(x, y); Qθ(Di)). (14)

The noise in the latent space encourages the reward model to learn over the entire latent
space, which encourages the production of meaningful rewards for unseen users, with the
learnable parameters being those of Rϕ and Qθ .

Personalized Response Generation: Following the idea of Direct Preference Optimization
(DPO) (Rafailov et al., 2024), which learns a response generation policy (a language model)
without explicitly learning a reward function, recent approaches directly model personalized
responses. Li et al. (2024) use an encoder to generate latent user embeddings, conditioning
a language model on them via DPO. Chen et al. (2024b) personalizes responses through
user-specified prompts, while Woźniak et al. (2024) incorporates user information as input
features. Other works explore limited personalization settings, such as multiple-choice
questions (Zhao et al., 2023), explicit human corrections (Shaikh et al., 2024), and few-shot
adaptation with synthetic users (Singh et al., 2025). In Appendix A, we show that the core
idea of LoRe naturally extends to response generation without explicit reward learning too.
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Evaluating personalized response generation is particularly challenging. Unlike reward
learning, where user data can be held out for validation, there is no access to users in offline
datasets to label their preferences on newly-generated responses. Instead, evaluations rely
on heuristic LLM-based evaluators, which are typically trained using monolithic Bradley-
Terry reward models assuming a single global ranking of responses, failing to capture
diverse user preferences. Hence, as discussed in Panickssery et al. (2024); Dong et al. (2024),
these models reinforce bias; favoring dominant preference patterns while undervaluing
minority preferences and struggle with ambiguous or tied preferences, leading to systematic
misalignment with real user satisfaction.

Contributions We state our contributions and how we overcome limitations in prior work:

1. Latent Basis Reward Functions for Personalized Alignment LoRe introduces a struc-
tured approach to personalization by learning a set of primitive reward functions (basis
functions) that span the space of individual reward models. Each user’s preference is rep-
resented as a weighted combination of these basis functions, enabling smooth adaptation
without requiring predefined user categories or extensive per-user data.

2. Decoupled Learning for Efficient and Generalizable Adaptation LoRe separates the
learning of basis reward functions from user-specific weights, enabling rapid few-shot
personalization. Once the basis functions are learned, a new user’s preferences can be
captured with only a small number of interactions, making it practical for real-world
deployment. By capturing the underlying structure of user preferences, LoRe generalizes
effectively to unseen users with minimal data. Unlike latent-code-based methods like VPL
or PAL that require separate modules for inferring user representations, LoRe directly
learns a compact basis, reducing the number of learnable parameters and improving
both efficiency and generalization.

3. Scalability to Large and Diverse User Populations Unlike approaches that either as-
sume homogeneous reward models (BT) or struggle with scalability (PAL, VPL), LoRe
maintains strong performance on large-scale personalization tasks. The low-rank decom-
position reduces computational overhead while preserving expressiveness (cf. Sec. 5).

4. Integration with Multi-Objective Alignment for Response Generation LoRe naturally
extends to personalized response generation by leveraging its basis reward functions.
Unlike PAL and VPL, which require additional policy networks to generate responses,
our method integrates seamlessly with steerable multi-objective alignment frameworks.

5. Bridging the Gap Between Explicit Categorization and Per-User Models Many per-
sonalization methods either cluster users into predefined categories (demographics,
personality types) or train separate models for each user. LoRe avoids these extremes by
learning a flexible, data-efficient representation of user preferences that adapts without
requiring extensive individual data.

By combining structured reward decomposition, scalable adaptation, and efficient integra-
tion with response generation, LoRe offers a principled and practical approach to personal-
ized RLHF, addressing key limitations of prior methods while enabling new capabilities.

5 Experiments

Evaluation Metrics: We evaluate the reward model’s accuracy on unseen response pairs for
both seen and unseen users:

1
|D̃i|

∑
(x,yc ,yr)∈D̃i

I[w⊤
i (Rϕ(x, yc)− Rϕ(x, yr)) > 0], (15)

where I[·] is the indicator function, equal to 1 if the condition holds and 0 otherwise.

We define four dataset splits: Dtrain contains labeled preference data from seen users Useen
used to train the reward basis, Dseen

test evaluates generalization to new response pairs for seen
users, Dfewshot provides a small set of labeled data for unseen users Uunseen, and Dunseen

test
assesses generalization to new users. We evaluate:

1. Seen Accuracy: Generalization to new response pairs for seen users using Dseen
test .
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PersonalLLM
Setting Very Diverse (α = 0.001) Moderately Diverse (α = 0.01) Near Uniform (α = 0.1)
Method Seen Unseen Overall Seen Unseen Overall Seen Unseen Overall

ref 78.4 ± 1.2 76.1 ± 1.5 77.3 ± 1.3 78.1 ± 1.4 77.8 ± 1.6 77.9 ± 1.5 82.7 ± 1.0 83.7 ± 1.1 83.2 ± 1.0
BT 86.3 ± 1.0 86.4 ± 1.3 86.4 ± 1.1 87.8 ± 1.2 87.2 ± 1.4 87.5 ± 1.3 93.2 ± 0.9 93.1 ± 1.0 93.2 ± 0.9

VPL 86.4 ± 1.3 86.5 ± 1.2 86.5 ± 1.3 93.9 ± 1.1 84.1 ± 1.5 89.0 ± 1.3 92.0 ± 1.0 92.8 ± 0.8 92.4 ± 0.9
PAL 85.0 ± 1.3 86.5 ± 1.2 85.7 ± 1.3 86.1 ± 1.1 87.1 ± 1.5 86.6 ± 1.3 91.7 ± 1.0 91.8 ± 0.8 91.7 ± 0.9
LoRe 94.3 ± 0.9 93.3 ± 1.0 93.8 ± 0.9 94.6 ± 0.8 93.6 ± 1.1 94.1 ± 0.9 96.0 ± 0.7 96.1 ± 0.8 96.0 ± 0.7

Table 1: Using PersonalLLM we generate 1000 seen users and 1000 unseen users. In
particular, we use 45 examples per seen user and 9 few-shot examples per unseen user.

2. Unseen Accuracy: Generalization to new response pairs for unseen users on Dunseen
test ,

where user preferences are learned from few-shot examples in Dfewshot.

3. Few-shot Ability: Accuracy on Dunseen
test upon varying the number of examples in Dfewshot.

Baselines: We use a pre-trained reward model (Liu et al., 2024) to generate fixed embeddings
e(x, y) ∈ RD, where D = 4096. We compare against 1) Reference Model (Liu et al.,
2024), 2) BT (monolithic reward model, applying a learnable linear mapping from fixed
embeddings e(x, y) to a scalar reward), 3) VPL (Poddar et al., 2024), 4) PAL (Chen et al.,
2024a) (both using their respective architectures over the same fixed embeddings e(x, y)),
and 5) LoRe (applying a learnable linear transformation on e(x, y) to map embeddings
to RB (corresponding to Example 1 in Sec. 3.2). A detailed description of all baselines is
presented in Appendix B.1.

Semi-synthetic Preference Dataset: The PersonalLLM dataset (Zollo et al., 2024) contains
10,402 prompts, each with responses from eight top LLMs (e.g., GPT-4o, Claude 3 Opus,
Mixtral8x22B). Each response is scored by 10 reward models from Reward Bench, built on
popular base models such as Llama3, Mistral, and Gemma, with diverse preferences. Given
a prompt x and response y, the reward vector is R(x, y) ∈ R10. The dataset is split into 9,402
training and 1,000 test prompts.

Synthetic users are generated by sampling a preference vector w ∼ Dirichlet(α) and com-
puting response scores as w⊤R(x, y). We vary α in the range {0.1, 0.01, 0.001}, where a
larger α results in more uniform preferences and a smaller α leads to more discrete user
types. We then categorize users as follows: 1. Very Diverse (α = 0.001): Aligning closely
with one of the 10 reward models. 2. Moderately diverse (α = 0.01): A balance between
specific and broad preferences. 3. Near Uniform (α = 0.1): The most uniform preferences.

For each user, we store the highest/lowest scored responses and simulate 1000 seen and
1000 unseen users. Each seen user gets 45 prompts from the training set Dtrain, while each
unseen user gets 9 prompts to form Dfewshot. All 1000 test prompts form Dseen

test ,Dunseen
test to

test the performance of the learnt models.

Reddit TLDR
Setting 100 examples per seen user 150 examples per seen user
Method Seen Unseen Overall Seen Unseen Overall

ref 56.3 ± 1.3 57.3 ± 1.4 56.8 ± 1.2 56.3 ± 1.2 57.3 ± 1.5 56.8 ± 1.3
BT 60.0 ± 1.4 60.0 ± 1.2 60.0 ± 1.3 63.2 ± 1.1 64.3± 1.3 63.7 ± 1.2

VPL 63.6 ± 1.3 62.1 ± 1.4 62.9 ± 1.2 63.4 ± 1.3 62.7 ± 1.2 63.1 ± 1.3
PAL 64.1 ± 1.1 64.9 ± 1.5 64.5 ± 1.2 64.4 ± 1.3 63.8 ± 1.2 64.1 ± 1.3
LoRe 65.0 ± 1.1 66.2 ± 1.2 65.6 ± 1.1 66.2 ± 1.0 66.7 ± 1.1 66.5 ± 1.0

Table 2: We split Reddit TLDR into 20 seen and 20 unseen
users, with 50 few-shot examples per unseen user. We vary the
number of examples per seen user to learn the reward basis.

Summarization Task on
Real Users: We use the
TLDR dataset, where each
comparison consists of a
Reddit post, two sum-
maries, and the worker ID
who annotated it (Stiennon
et al., 2020). After filter-
ing out workers with fewer
than 50 annotations, we
retain 40 workers. They
are split into two equal
groups of 20, correspond-
ing to Useen and Uunseen.
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Each worker has an average of 4,000 labeled pairs, which are evenly divided into a training
set and a test set. To construct Dtrain, we randomly sample {100, 150} pairs from each
seen user’s training data. For unseen users, we randomly select 50 examples from their
training data to form Dfewshot. Evaluation is conducted on the full set of labeled test samples,
corresponding to Dseen

test and Dunseen
test .

Real-World Preference Dataset with a Large and Diverse User Base The PRISM dataset
(Kirk et al., 2024b) is a comprehensive resource for LLM feedback analysis, featuring 1,500
participants from 75 countries. It provides fine-grained feedback on both contextual and
stated preferences, collected from 8,011 live conversations across 21 different LLMs.

After filtering out users with fewer than six dialogues, we randomly split the remaining
participants into two equal groups, resulting in |Useen| = |Uunseen| = 643 users, with each
user averaging seven dialogues. For each user, half of their interactions are used for training
(Dtrain,Dfewshot), which informs reward model learning and the preferences of unseen users.
The remaining interactions are reserved for evaluation (Dseen

test ,Dunseen
test ).

We repeat each experiment 20 times with different random splits, reporting the mean and
standard deviation in Tables 1, 2, and 3. To further analyze the scalability of the few-
shot adaptation phase, we vary the number of few-shot samples and plot the average
performance across 20 runs in Figure 2.

PRISM
Method Seen Unseen Overall

ref 58.8 ± 1.1 57.3 ± 1.2 58.0 ± 1.0
BT 64.0 ± 1.0 61.0 ± 1.2 62.5 ± 1.1

VPL 64.6 ± 1.0 58.2 ± 1.2 61.4 ± 1.1
PAL 70.8 ± 1.0 59.0 ± 1.2 64.92 ± 1.1
LoRe 71.0 ± 0.9 71.0 ± 1.0 71.0 ± 0.8

Table 3: We split PRISM into 643
seen and 643 unseen users. On aver-
age there are only 3.84 examples per
seen and 3.87 examples per unseen
user, making generalization to un-
seen users challenging for baselines.

Analysis In the PersonalLLM dataset, as diversity
decreases, all methods improve, but LoRe consis-
tently achieves the best performance across all set-
tings. VPL and PAL, which are personalization base-
lines, struggle to remain competitive when the num-
ber of users is large, as seen in both PersonalLLM and
PRISM. Their performance is often close to BT, which
does not personalize at all, indicating a lack of scala-
bility. However, when the number of users is smaller,
as in the Reddit TLDR dataset, both VPL and PAL
perform well, further reinforcing their limitations
in scaling to larger personalization tasks. Addition-
ally, VPL exhibits signs of overfitting, performing
well on seen users but significantly worse on unseen
users, highlighting its inability to generalize effec-
tively. In contrast, LoRe consistently outperforms
all other methods, demonstrating strong scalability,

generalization, and adaptability across varying levels of personalization diversity.

We also analyze the dependence of few-shot examples on unseen accuracy in Figure 2. The
BT and ref models are not capable of personalization to new users and hence demonstrate
the same performance throughout. We observe that VPL and PAL do not change their
performance much either as number of few shot examples increase. We found that the
high-dimensional latent codes do not change significantly for both VPL and PAL as the
number of few-shot examples increased. For LoRe, the unseen accuracy steadily increases
across all datasets, as the number of examples increases.

6 Conclusion and Future Work

We introduced LoRe, a novel framework for personalizing LLMs via Low-Rank Reward
Modeling. Our approach improves RLHF personalization by leveraging a structured de-
composition of reward functions, enabling efficient adaptation to diverse user preferences
with minimal data. Extensive evaluations demonstrated LoRe’s superior generalization to
seen and unseen users while maintaining scalability and efficiency. Compared to baseline
methods, LoRe consistently achieved better unseen user adaptation and preference predic-
tion accuracy. It remains effective even as the number of users increases, breaking a key
limitation in prior work. Future directions include extending LoRe to online RLHF with
explorative data collection.
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Figure 2: We vary the number of few-shot samples and repeat each experiment 20 times,
randomly subsampling different examples in each run. The plot reports the average per-
formance (unseen accuracy) along with standard deviations. Notably, VPL, which infers
the latent code from few-shot examples without the ability to relearn it, shows limited
improvement as the number of examples increases. While PAL exhibits some gains, our
algorithm’s performance improves significantly faster in comparison.
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A LoRe directly for language generation

A language model is a policy network that assigns the likelihood of a response y ∈ Y , given
prompt x ∈ X denoted by πθ : X 7→ ∆|Y|−1. Given a reward function rϕ : X ×Y 7→ R and
a reference policy πref (typically obtained by supervised finetuning a pre-trained model),
the objective is to learn a policy πθ that maximizes the KL-regularized reward maximization
problem:

θ∗ = arg max
θ∈Θ

Ex∼D,y∼πθ(·|x)[rϕ(x, y)− βDKL(πθ(y|x)||πref(y|x)]. (16)

Rafailov et al. (2024) shows that the optimal policy for the KL-regularized reward maximiza-
tion problem satisfies

πθ∗(y|x) =
πref(y|x)

Zϕ(x)
exp

(
rϕ(x, y)

β

)
=⇒ rϕ(x, y) = β log

πθ∗(y|x)
πref(y|x)

+ βZϕ(x), (17)

where Zϕ(x) is a normalization factor. Since there is a direct correspondence between
the reward function rϕ and the optimal policy that maximizes the KL-regularized reward,
Rafailov et al. (2024) proposes Direct Preference Optimization (DPO), which directly learns
the policy πθ∗ without first learning reward model rϕ on offline preference data. Then,
by using this closed-form expression for rϕ(x, y) and applying minimizing negative log-
likelihood to the Bradley-Terry model, we can obtain

min
ϕ∈Φ

∑
(x,yc ,yr)∈D

ℓ(rϕ(x, yc)− rϕ(x, yr))

= min
θ∈Θ

∑
(x,yc ,yr)∈D

ℓ

(
β log

πθ(yc|x)
πref(yc|x)

− β log
πθ(yr|x)

πref(yr|x)

)
(by Eq. (17).)

Learning a Policy Basis: Instead of first learning a reward basis function Rϕ : X ×Y 7→ RB,
it is equivalent to learning (fine-tuning) B basis policies {πθi : X 7→ ∆|Y|−1}i∈[B], which
produces B likelihoods, each corresponding to the optimal policy for each of the latent
reward dimensions.

Conditioned on a prompt x, and a pair of responses (y, ỹ), the probability of a user with
preference weights w ∈ ∆B−1 of choosing y over ỹ under the Bradley-Terry model can be
written as:

P[y ≻ ỹ|x] = 1
1 + exp

(
−w⊤ (Rϕ(x, y)− Rϕ(x, ỹ)

))
=

1

1 + exp
(
−β ∑j∈[B] w(j)

(
log

πθj
(y|x)

πref(y|x)
− log

πθj
(ỹ|x)

πref(ỹ|x)

)) , (by Eq. (17).)

where w(j) is the jth entry of the vector w. Analogous to Eq. (10), given a dataset of offline
preferences, the parameters θ and {wi}i∈Useen can be learnt by plugging in the negative
log-likelihood loss as

min
{θj :Θ}j∈[B] ,{wi∈∆B−1}i∈Useen

∑
i∈Useen

1
|Di| ∑

(x,yc ,yr)∈Di

ℓ

 ∑
j∈[B]

w(j)
i

(
β log

πθj (yc|x)
πref(yc|x)

− β log
πθj (yr |x)
πref(yr |x)

) . (18)

For a new user, θ is frozen, and only the user weight wnew is estimated using few-shot
examples:

wnew = argmin
w∈∆B−1

∑
(x,yc ,yr)∈Di

ℓ

 ∑
j∈[B]

w(j)

(
β log

πθj(yc|x)
πref(yc|x)

− β log
πθj(yr|x)
πref(yr|x)

) . (19)
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B Additional Details on Experiments

Evaluation Metrics For any user i ∈ Useen ∪ Uunseen (seen or unseen) we evaluate the
performance of the learned reward basis Rϕ and preferences wi, on their unseen pairs of
responses D̃i (ie. data not present in Dtrain or Dfewshot) as the fraction of responses the learnt
reward model classified correctly, defined formally as:

1
|D̃i|

∑
(x,yc ,yr)∈D̃i

I[w⊤
i (Rϕ(x, yc)− Rϕ(x, yr)) > 0]. (20)

To test how well the learnt parameters generalize, we consider the following:

1. Generalizing to Unseen Pairs of Responses for Seen Users (Seen Accuracy): This type
of generalization involves predicting well for new pairs of responses for users whose
preferences have already been learned from the training data. We do so by evaluating
the learnt model’s (ϕ, {wi}i∈Useen from Eq. (10)) classification accuracy (via Eq. (20)) on
Dseen

test which contains the seen users’ labels on prompts and response pairs that are not
present in the training dataset Dtrain.

2. Generalizing to New Users (Unseen Accuracy): This type of generalization involves
predicting well for users whose data was not part of the training data Dtrain, i.e., com-
pletely new users with unseen preferences. These users are termed as unseen users
Uunseen. These users come with few labelled data points, that is termed as Dfewshot, and
this is used to few-shot learn these users’ preferences {wi}i∈Uunseen by optimizing Eq. (11),
keeping ϕ fixed. We evaluate the learnt preference weights’ accuracy (via Eq. (20)) on
Dunseen

test which contains the unseen users’ labels on prompts and response pairs that are
not present in the training dataset Dfewshot.

3. Performance as the number of dialogs increases for few-shot estimation: It is natural
that a new user gradually builds up feedback data on a LLM server. So far we were
working in the setup where the LLM has already collected some feedback for the user
based on some conversations, and see how the estimated preferences generalizes to
future conversations. We consider how the performance varies as the LLM provider
builds up multiple conversations with users. We do so by increasing the dataset size for
Di ∈ Dfewshot while learning wi via Eq. (11) for all i ∈ Uunseen.

B.1 Architecture of Baselines and Training Hyperparameters

Functional Form of Reward Basis Function (LoRe): For all our experiments, we use a
pre-trained reward model (Liu et al., 2024) to output embeddings of dimension D = 4096,
which we denote as e : X ×Y 7→ RD. We keep this embedding function frozen and learn a
linear transformation on top of these fixed embeddings. The reward basis function is thus
defined as:

Rϕ(x, y) = Ae(x, y), (21)

where A ∈ RB×D is a learnable matrix, representing the linear transformation applied to
the pre-trained embeddings. By keeping the embedding function fixed and only learning
the linear transformation, we can effectively adapt the pre-trained reward model to user
preferences from specific datasets while leveraging its rich feature representations.

Hyperparameters: A is learned by using Adam (Kingma, 2014) on Eq. (10) with learning
rate 0.5. For few-shot adaptation, we use Adam with learning rate 0.1 on Eq. (11).

The number of basis B is selected from {2, 5, . . . , 50} through cross validation on a held out
validation set.

Experimental Setup for baselines: We follow the exact training code, model architecture,
and hyperparameters as described in the original implementations of PAL (Chen et al.,
2024a) and VPL (Poddar et al., 2024), and run them on our benchmark datasets without
modification. Detailed hyperparameter settings for PAL and VPL are listed in Table 4 and
Table 5, respectively.
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Table 4: The training hyperparameter setting of PAL (Chen et al., 2024a).

Hyperparameters Values
B (Number of prototypes) selected through cross validation from {2, 5, 10, . . . , 50}
Batch size 4
Projectors mlp-2layer-geul-dropout0
Learning rate of projectors 1e-4
Learning rate of user weights 5e-3
Weight decay of projectors 0.01
Weight decay of user weights 0.0
Dimension of preference embedding 512

Table 5: Hyperparameters for VPL (Poddar et al., 2024).

Hyperparameter Value
Pair Encoder Architecture 2 layer MLP with LeakyReLU
Hidden Dimension 512
Latent Dimension 512
Learning rate 1.0000 × 10−4

Learning rate scheduler Cosine with 3% warmup steps
Batch size 32
Optimizer AdamW (with weight decay = 0.001)

Parameter Efficiency of LoRe As shown in Table 6 and Figure 3, LoRe is significantly more
lightweight in terms of total trainable parameters compared to PAL and VPL. While PAL
and VPL rely on large MLP architectures and per-user latent representations, LoRe uses only
a simple linear projection on frozen embeddings, combined with a small set of basis-user
interactions. This design leads to a much more compact model, especially as the number of
users increases, enabling scalable personalization without compromising effectiveness.

Table 6: Scaling of Total Trainable Parameters for VPL, PAL, and LoRe. Here, N is the
number of seen users and B refers to the number of prototypes in PAL, and number of basis
(rank) in LoRe.

Method Architecture Details Parameter Count
VPL 2 layer MLP on frozen embeddings 4096 × 512 + 512 × 512 + 512
PAL 2 layer MLP on frozen embeddings 4096 × 512 + 512 × 512 + 4096 × B + B × N

(B prototypes)
LoRe Linear Transformation on frozen embeddings B × 4096 + B × N

(B basis)
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Figure 3: Trainable parameter count vs. number of seen users (log scale). LoRe scales
significantly more efficiently than PAL and VPL as the number of users increases. Unlike
VPL and PAL, which rely on large MLPs and high-dimensional prototype representations,
LoRe uses a lightweight linear projection with shared basis vectors, resulting in dramatically
fewer parameters while retaining personalization capabilities.
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