Revisiting LRP: Positional Attribution as the Missing Ingredient for Transformer Explainability

Yarden Bakish Tel-Aviv University **Itamar Zimerman** Tel-Aviv University

Hila Chefer Tel-Aviv University

Lior Wolf Tel-Aviv University

Abstract

The development of effective explainability tools for Transformers is a crucial pursuit in deep learning research. One of the most promising approaches in this domain is Layer-wise Relevance Propagation (LRP), which propagates relevance scores backward through the network to the input space by redistributing activation values based on predefined rules. However, existing LRP-based methods for Transformer explainability entirely overlook a critical component of the Transformer architecture: its positional encoding (PE), resulting in violation of the conservation property, and the loss of an important and unique type of relevance, which is also associated with structural and positional features. To address this limitation, we reformulate the input space for Transformer explainability as a set of position-token pairs. This allows us to propose specialized theoretically-grounded LRP rules designed to propagate attributions across various positional encoding methods, including Rotary, Learnable, and Absolute PE. Extensive experiments with both fine-tuned classifiers and zero-shot foundation models, such as LLaMA 3, demonstrate that our method significantly outperforms the state-of-the-art in both vision and NLP explainability tasks. Our code is publicly available.

https://github.com/YardenBakish/PE-AWARE-LRP

Introduction

Explainable AI (XAI) is increasingly vital in deep learning (DL), where models often achieve remarkable performance but operate as opaque "black boxes" [7, 16]. This lack of transparency reduces trust, limits user engagement, and complicates troubleshooting, thereby restricting the use of DL in applications where decision-making transparency is essential. Consequently, developing XAI techniques for DL models has become an important research domain [29]. This task, however, is challenging, due to the inherent complexity of these models, which cannot be easily represented by simple functions.

Transformer-based architectures, which have become dominant in DL, present additional challenges for explainability due to their large scale, often containing billions of parameters. To address this, researchers have developed various attribution methods specifically designed for Transformers [14, 2, 3, 1]. Among these, model-specific XAI techniques have gained prominence, providing explanations based on the model's parameters, internal representations, and overall architecture.

The most effective model-specific XAI techniques, and the current state-of-the-art for Transformer explainability, are LRP-based, such as [2]. LRP is a well-established attribution technique that explains a model's predictions by propagating relevance scores backward through the network, redistributing activation values based on predefined propagation rules. Unlike gradient-based methods, which often suffer from issues like vanishing gradients or numerical instabilities, LRP provides a more stable and precise way to trace how information flows through each layer.

Recently, several refinements have been proposed to improve the stability and faithfulness of LRP rules for Transformers, leading to more robust and reliable interpretability techniques. Notable examples include [3] and [2], which introduce custom rules for propagating LRP through attention mechanisms, layer normalization, and other key components. Despite these advancements, we identify a critical gap in this extensive line of work: all existing LRP-based methods for Transformers overlook the need for PEaware LRP rules and do not propagate attribution through positional encoding. This omission results in the loss of a key aspect of relevancy related to positional concepts, limiting the ability to provide faithful and comprehensive explanations.

To mitigate this problem, we propose Positional-Aware LRP (PA-LRP), a novel



Figure 1: (a) Explainability heatmaps of Attention-LRP (AttnLRP) [2], which is the state-of-the-art LRP for transformer explainability. (b) The LRP heatmap obtained from the positional part that is ignored by the existing LRP methods, including AttnLRP. The relevancy captured by the PE component of the transformer is less sparse and captures more of the object.

technique that significantly improves upon previous methods through two fundamental modifications: (i) Reformulating the input space of the Transformer explainability problem to incorporate positional information. Instead of relying solely on the vocabulary space, we define the input space as a set of position-token pairs. (ii) Introducing the first LRP rules specifically designed to propagate relevance across standard positional encoding (PE) layers, including learned PE, Rotary PE [33], and others. To enhance stability and faithfulness, our rules are further improved through techniques such as reparameterization of PE layers, linearization, and defining an appropriate sink for positional relevance to ensure that position-associated information is properly absorbed, which we validate to be crucial for precise propagation. Moreover, we provide a complementary theoretical analysis to prove that our rules do not violate the conservation property.

Our main contributions consist of the following: (i) We identify a critical gap in current LRP-based XAI techniques for Transformers: they overlook the attribution of positional encodings (PE). This omission results in a violation of the conservation property for input-level PE, as shown in Lemma 3.1, and leads to unfaithful heatmaps when handling positional features, as demonstrated in Lemma 3.3. We empirically validate that this omission is a critical limitation by significantly outperforming existing methods, and demonstrating that in certain cases, assigning relevance to PE alone can surpass standard SoTA Transformer explainability techniques, showing that this signal is significant, as shown in Tables 3–5 and Figure 3. A Additionally, the obtained signal is complementary and distinct from the non-positional signal, better capturing spatial, positional, and structural relationships, as shown in Figure 1 (ii) We introduce PA-LRP, a theoretically grounded and PE-aware technique for assigning relevance in Transformers. PA-LRP significantly outperforms previous methods across both fine-tuned classifiers and zero-shot foundation models, in both NLP and vision tasks, on multiple models such as LLaMA 3, DeiT, and others. (iii) Providing an open-source and user-friendly implementation of our method, along with demos and practical examples, to facilitate adoption by the broader research and practitioner community.

2 Background and Related Work

In this section, we describe the scientific context for discussing LRP-based Transformer explainability, along with the necessary terminology and symbols needed to describe our method.

2.1 Positional Encoding in Transformers

Transformer-based [37] architectures rely on self-attention, which computes contextual relationships between tokens using:

$$\operatorname{Attention}(X) = \operatorname{Softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V \tag{1}$$

where, $K = XW_K$, $Q = XW_Q$, $V = XW_V$ represent key, query, and value matrices respectively, d_k is the embedding dimension, and W_Q , W_K , W_V are learnable linear projection matrices.

This attention mechanism is duplicated over several "heads" and is wrapped by standard DL peripherals such as Layer Normalization, FFNs, and skip connections, forming the core structure of a Transformer model by:

$$X' = \text{LayerNorm}(X + \text{Attention}(X)), \quad X'' = \text{LayerNorm}(X' + \text{FFN}(X'))$$
 (2)

where FFN applies a two-layer linear transformation with activations in the middle.

Transformers operate on sets of tokens rather than ordered sequences, making them permutation-invariant by design. Unlike architectures with built-in order sensitivity such as RNNs [21, 23], Transformers require explicit positional encoding (PE) to capture sequence structure. PE can be introduced at different stages of the model: it can be added to token embeddings at the input layer, as seen in learnable PE and sinusoidal PE [37], or integrated within the attention mechanism at each layer, as employed in Rotary PE (RoPE) [33] and Alibi [26]. The key insight of this paper is that while PE is well known for its important role in the forward pass [17], its crucial role in propagation-based XAI methods, such as LRP, has been largely overlooked, leading to violations of conservation and the loss of significant relevance, which often carries distinctive positional and structural meanings.

Learnable PE. Learnable PE represents positions as trainable parameters, allowing the model to learn position representations directly from data. This approach offers flexibility and adaptability.

Sinusoidal PE. Sinusoidal PE, introduced in the original Transformer model [37], encodes positions using sine and cosine functions with different non-trainable frequencies. Because it is based on absolute positions, it is less effective in tasks where relative positional information is more important.

Rotary PE (**RoPE**). RoPE [33] incorporates positional information by rotating token embeddings in a structured manner, enabling the model to naturally encode relative positions. Specifically, each key and query vector is transformed using a per-position block-diagonal rotation matrix. Unlike learnable or sinusoidal PEs, RoPE encodes relative positional relationships through the multiplication of rotation matrices. Due to its effectiveness, many popular LLMs, including SAM2 [28],Pythia [12], LLaMA [36], Qwen [10], Gemma [35], and others are built on top or RoPE.

Other PE techniques, such as ALiBi [26] and relative PEs [31, 27], are described in Appendix A.

2.2 Model-Specific XAI and LRP

Methods for explaining neural models have been extensively studied in the context of DNNs, particularly in NLP [6, 39] and computer vision [30]. A widely adopted strategy for this task is the use of model-specific techniques, which exploit the internal architecture and parameters of neural models to generate explanations. One notable method in this category is LRP [8], which propagates relevance scores, denoted by $\mathcal{R}(\cdot)$, backwards through the network by redistributing activation values. Propagation relies on predefined rules and interactions between tokens.

LRP. LRP is an evolution of gradient-based methods, such as Input \times Gradient [32, 9], which often suffer from issues like numerical instabilities and gradient shattering [11]. LRP enhances backpropagation rules by enforcing two key principles: (i) the conservation property, which ensures that the total relevance is preserved across layers. Namely, for a layer M, where Y = M(X), the relevance of the output $\mathcal{R}(Y)$ is equal to the relevance of the input $\mathcal{R}(X)$. (ii) The prevention of numerical instabilities during propagation. To achieve these goals, LRP rules are often derived from the Deep Taylor Decomposition principle [25], redistributing relevance scores at each layer based on the first-order Taylor expansion of the layer's function.

2.3 XAI for Transformers

The first model-specific XAI methods for Transformers were based on attention maps [13, 15], leveraging attention scores to quantify the contribution of each token to others across layers. Building on this approach, Abnar and Zuidema [1] introduced the attention rollout technique, which aggregates attention matrices across multiple layers to provide a more holistic explanation. However, Jain and

Wallace [22] later demonstrated that attention-based techniques can be misleading, as attention scores do not always correlate with gradient-based feature importance measures or actual model behavior. To address these limitations, Chefer et al. [14]. developed a hybrid XAI method that combines LRP scores with attention maps, marking a breakthrough in the field by improving attribution fidelity.

Purely LRP-based XAI methods for Transformers were first introduced in [38] and later refined by Ali et al. [3], who developed custom LRP rules tailored for LayerNorm and attention layers to preserve conservation properties and ensure numerical stability. More recently, Achtibat et al. [2] further improved this approach by designing more faithful propagation rules for self-attention, achieving state-of-the-art performance in Transformer explainability. To the best of our knowledge, this represents the most advanced technique in the field and serves as our primary baseline.

Interestingly, despite extensive research in this area, none of these approaches propagate relevance through PE layers. This omission leads to a loss of significant relevance associated with positional and structural features, ultimately resulting in less faithful and holistic attributions.

3 Method

In this section, we describe our PE-aware LRP rules. We first revise the input space used in the Transformer explainability problem in Section 3.1. Then, building upon this formulation, we define our custom LRP rules in Section 3.2 and 3.3. Finally, in Section 3.4 we provide theoretical analysis of our method, showing that our PE-aware LRP rules are theoretically grounded.

3.1 Reformulating the Vocabulary Space

To comprehensively attribute positional information, we must define a **sink** that absorbs position-associated relevance. To achieve this, we reformulate the explainability problem for Transformers. Given an embedding matrix $E \in \mathbb{R}^{|V| \times D}$, where |V| is the number of tokens in the vocabulary V, and D is the embedding size, previous methods traditionally define the input space $\mathcal S$ as

$$\mathcal{S} = \{ E_i \mid E_i \in \mathbb{R}^D \}, \tag{3}$$

where E_i is the *i*-th row of the embedding matrix E.

In contrast, we reformulate the input space in the following manner:

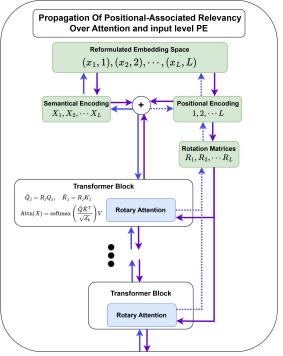


Figure 2: Visualization of our method for propagating PE-associated relevance. Blue arrows indicate the forward path, while purple arrows represent the LRP propagation rules. Dashed arrows denote custom position-aware rules defined in our method.

$$S = \{ (E_i, P_{j,1}, P_{j,2}, \cdots, P_{j,K}) \mid E_i \in \mathbb{R}^D, j \in [L], k \in [K], P_{j,i} \in \mathbb{R}^{D'} \}$$
(4)

where L is the sequence length, D' is the dimension of the positional embeddings, and K is the number of layers. Thus, in our formulation, each token in the input space consists of two ingredients: one representing the per-layer positional embedding $P_{j,k}$ for all layers $k \in [K]$, and the other representing the semantic embedding E_i .

We define a separate sink for positional relevance at each attention layer to ensure that the omission of certain positional features in one layer does not obscure or override essential features and relevance captured in other layers, and to validate that important positional attributions are not discarded.

Building upon the formulation of Eq. 4, the next two sections define LRP rules that enable stable propagation of relevance from standard positional encoding techniques to $j \in [L]$: Section 3.2 discusses input-level PE, while Section 3.3 covers attention-level PE.

3.2 LRP-rules for Input Level PE

We begin with the simplest form of positional encoding—learnable PE—and then demonstrate that other input-level PEs can be reparameterized in a similar manner. For brevity, we assume that P_j is a vector rather than a matrix, namely $P_j = P_{j,1}$. We also tie the embedding dimensions of both the semantical and positional vectors (D = D').

Learnable PE. This layer learns positional information during training through an embedding matrix $P \in \mathbb{R}^{L \times D}$ where D represents the embedding dimension of positional information, and L denotes the maximum sequence length. For each sample, the positional and semantic embeddings are summed to obtain the final input representation. Formally, the combined embedding for the token at position j with token index i is given by $P_J + E_i$. Thus, we can propagate relevance from the input of the first transformer block $\mathcal{R}(z_i)$, to the positional component P_j of token j by using the standard LRP epsilon rule for addition [2]:

PA-LRP for input-level PE :
$$\mathcal{R}(P_j) = P_j \frac{\mathcal{R}(z_i)}{P_j + E_i + \epsilon}$$
 (5)

Sinusoidal PE. This method encodes position information via a unique vector of sine and cosine values constructed by:

Sinusoidal PE(j)[2i] =
$$\sin\left(\frac{j}{10000^{\frac{2i}{D}}}\right)$$
, Sinusoidal PE(j)[2i+1] = $\cos\left(\frac{j}{10000^{\frac{2i}{D}}}\right)$ (6)

Thus, the values derived from Eq. 6 can be used to reparameterize the embedding matrix E, replacing the learned vectors with their corresponding sine and cosine values. Such reparameterization eliminates the need to propagate gradients through non-linear functions such as sine and cosine, improving efficiency and stability.

3.3 LRP-rules for Attention-level PE

For attention-level PE, we focus on describing the PA-LRP rules for RoPE [33] as a representative example. For the derivation of the PA-LRP rules for ALiBi [26], we refer the reader to Appendix B. At each layer k, RoPE modifies the queries (Q) and keys (K) matrices before computing the attention scores. This modification is done by multiplying each key and query vector by a position-dependent rotation matrix $R_{j,k} \in \mathbb{R}^{D \times D}$ where $j \in [L]$. The rotation matrix is a block-diagonal matrix defined as follows:

$$\forall j \in [L], k \in [K] : R_{j,k} = \begin{bmatrix} \cos \theta_j^{(1)} & -\sin \theta_j^{(1)} & \dots & 0 & 0\\ \sin \theta_j^{(1)} & \cos \theta_j^{(1)} & \dots & 0 & 0\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & \dots & \cos \theta_j^{(D/2)} & -\sin \theta_j^{(D/2)}\\ 0 & 0 & \dots & \sin \theta_j^{(D/2)} & \cos \theta_j^{(D/2)} \end{bmatrix}$$
(7)

where each rotation angle $\theta_j^{(m)}$ is defined as $\theta_j^{(m)}=j\omega_m$, where $\omega_i=10000^{\frac{D}{2(m-1)}}$.

Note that in RoPE, as in other attention-level positional encodings, the positional information is represented by a matrix $R_{j,k}$. Accordingly, we assume: $P_{j,k} = \operatorname{Flattening}(R_{j,k})$, $D' = D^2$. Thus, we can propagate relevance from $\mathcal{R}(R_{j,k})$ to $\mathcal{R}(P_{j,k})$ by unflattening the relevance.

Now, a key remaining step is to define how relevance should be propagated to R_j . The RoPE computation is executed before computing the attention scores, transforming the per-position queries and keys are as follows:

$$\forall j \in [L] : \tilde{\mathbf{Q}}_j = R_j \mathbf{Q}_j, \quad \tilde{\mathbf{K}}_j = R_j \mathbf{K}_j, \quad \text{Rotary Attention}(X) = \text{Softmax}\left(\frac{\tilde{\mathbf{Q}}\tilde{\mathbf{K}}^T}{\sqrt{d_k}}\right) V. \quad (8)$$

Our formulation builds on top of AttnLRP [2], which propagates relevance over the queries \tilde{Q} and keys \tilde{K} , resulting in their corresponding relevance scores $\mathcal{R}(\tilde{Q}), \mathcal{R}(\tilde{K})$. To propagate relevance

from these matrices to the rotation matrices R_j , we apply the standard uniform-LRP rule for matrix multiplication separately to each key and query, then summing both terms to produce a final attribution map per- attention layer, as follows:

$$\forall j \in [L] : \mathcal{R}(R_j) = \frac{1}{2}\mathcal{R}(\tilde{\boldsymbol{Q}_j}) + \frac{1}{2}\mathcal{R}(\tilde{\boldsymbol{K}_j})$$
(9)

Up to this point, we have described the PA-LRP rules for a single attention layer. However, transformer-based models stack M transformer blocks. Thus, we interpret the positional information as a vector that is passed from the input to all attention blocks via a semi-skip connection mechanism, as illustrated in Figure 2. This interpretation explains why without propagating relevance across PE layers, some of the relevance is lost, leading to unfaithful explanations that ignore position-associated aspects. Consequently, positional relevance from all layers is aggregated according to the LRP addition rule, similar to skip connections.

Overall Method. Our PA-LRP rules allow us to assign relevance to the positional part of the input space. For the non-positional part, we use the same rules as defined in AttnLRP [2]. Finally, we aggregate the relevance scores by summing their corresponding absolute values across feature dimensions, similar to previously proposed methods. It is worth noting that although our rules are built on top of the AttnLRP framework, they are not limited to it. Our input-level PE rules can be decoupled and applied to any LRP method, while the attention-level PE rules can be integrated with alternative formulations, as long as they propagate relevance through the attention matrices and preserve the connection between PE and the computational graph.

As a result, similar to other LRP methods, our approach can produce explainability maps with computational efficiency comparable to a single backward pass. We further clarify that although our method introduces several modifications in the forward path and input space, it does not require any changes to the transformer itself. Instead, these modifications propose an equivalent forward path that allows us to better define the propagation rules.

3.4 Theoretical Analysis

To support our PA-LRP rules, we now provide theoretical evidence demonstrating that they satisfy the key LRP criteria. First, the following two lemmas prove that our proposed LRP rules satisfy the conservation property.

Lemma 3.1. For input-level PE transformers, the conservation property is violated when disregarding the positional embeddings' relevancy scores.

Lemma 3.2. For attention-level PE transformers, our PE-LRP rules satisfy the conservation property.

Next, we present a lemma based on a key example illustrating that existing methods exhibit low faithfulness. In particular, we show that within simplified settings, LRP yields unfaithful explanations when the task relies heavily on positional features, such as predicting the number of tokens.

Lemma 3.3. For attention-level PE transformers, current LRP attribution rules achieve low faithfulness, especially when considering positional features.

The proofs and examples are detailed in Appendix E.

4 Experiments

To assess the effectiveness of our PA-LRP rules, we perform a comprehensive set of experiments across both Vision and NLP domains. First, in Section 4.1, we conduct experiments in the Vision domain using DeiT, including perturbation and segmentation tests. Next, in Section 4.2, we perform perturbation tests, ablation study, and conservation analysis in NLP. Test results are reported in each subsection, whereas the complete statistical analysis, including variance measures and paired t-test scores, is provided in Appendix I.

We begin by describing our baselines, ablation variant, and evaluation metrics:

Baseline and Ablation Variant. Our primary baseline for comparison is AttnLRP [2], as it represents the SoTA in general transformer XAI, and our method builds on top of it for non-positional

components. The key distinction between our approach and this baseline (as well as other LRP-based methods) is our ability to attribute relevance to positional information. Our composite approach that balances both positional and non-positional relevance is denoted as PA-LRP, or 'ours'. Additionally, to isolate the effect of the positional encoding, we introduce an ablation variant denoted by 'PE Only', which directly measures the relevance assigned to positional components at the input space using our custom attribution rules.

Although empirical evaluation of attribution methods is inherently challenging, we validate our PA-LRP method using perturbation and segmentation tests. Below, we describe these metrics:

Perturbation Tests. Perturbation tests are split into two metrics: positive and negative perturbations, which differ in the order in which pixels or tokens are masked. In positive perturbation, pixels or tokens are masked in descending order of relevance. An effective explanation method identifies the most influential regions, leading to a noticeable drop in the model's score (measured in comparison to the predicted or target class) as these critical areas are gradually removed. In negative perturbation, masking begins with the least relevant elements and progresses toward more important ones. A reliable explanation should keep the model's prediction stable, demonstrating robustness even when unimportant components are masked.

Following [3, 41], in both Vision and image domains, the final metric is quantified using the Area-Under-Curve (AUC), capturing model accuracy relative to the percentage of masked pixels or tokens, from 10% to 90%. For further technical details, see Appendix H.

Segmentation Tests. For attribution methods in vision, segmentation tests are a set of evaluations used to assess the quality of a model's ability to distinguish foreground from background in an image.

These tests compare the labeled segmentation image, which indicates whether each pixel belongs to the background or the foreground, with the explainability map after it has been binarized using a thresholding technique. Then, several metrics are computed over both images: (i) Pixel Accuracy: The percentage of correctly classified pixels, measuring how well the predicted segmentation aligns with the ground truth. (ii) Mean Intersection-over-Union (mIoU): The ratio of the intersection to the union of the predicted and ground-truth segmentation maps, averaged across all images. (iii) Mean Average Precision (mAP): A metric that considers precision and recall trade-offs at different thresholds, providing a robust assessment of segmentation quality.

4.1 Results for Vision Transformers

For vision models, we present both quantitative and qualitative analysis.

Qualitative Analysis. For qualitative analysis, we visualize the explainability maps obtained from our method, the AttnLRP [2] baseline, and the ablation variant that focuses exclusively on PE-associated relevance denoted by PE Only. Additional examples with larger images are presented in appendix C.

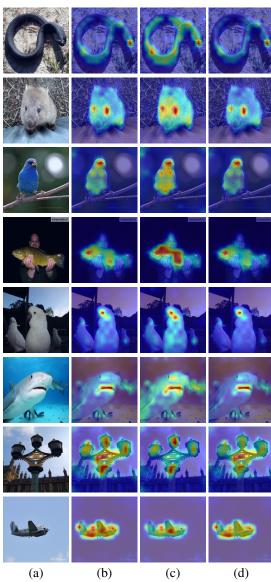


Figure 3: Results of different explanation methods for DeiT. (a) Input image. (b) PA-LRP (ours), which includes PE attribution. (c) PE only LRP, (d) AttnLRP [2], which does not attribute relevancy to PE.

Figure 3 presents a comparative visualization of these maps. The results reveal three notable trends. (i) Effectiveness of PE-associated relevance: The maps from the ablation variant perform at the same level as the AttnLRP baseline. This finding highlights the strength of our method in identifying important signals that previous works have overlooked, underscoring the importance of our PA-LRP rules. (ii) The uniqueness of PE-associated relevance: The attributed signal derived solely from positional-associated relevance captures unique relationships, exhibiting clearer spatial and structural patterns. In particular, relevance is distributed across the entire object, especially in the snake, bird, and shark examples. In contrast, the baseline method, which does not propagate relevance through PEs, produces a sparser pattern that does not focus on the entire object but instead is highly selective to specific patches. One possible explanation is that positional-associated relevance better captures concepts related to position, structure, order, and broader regions within the image. (iii) The importance of balancing: It is evident that the maps obtained from the PE-associated method and the baseline are complementary, and their combination, extracted via our approach, provides the most robust explanations.

Quantitative Analysis. Here, we present our quantitative results through perturbation and segmentation tests.

Perturbation Tests in Vision. The results for perturbation tests are shown in Table 1, where we compare our method against the attention LRP baseline. Experiments are conducted using three model sizes: Tiny, Small, and Base.

Notably, our method outperforms the baseline by a significant margin. For instance, in negative perturbation of the predicted class, our method improves the performance by an average of 3.97 points across the three model sizes. However, in positive perturbation, our method lags behind the baseline in half of the cases, though by a small margin of at most 1.2 points.

Table 1: Perturbation Tests for DeiT Variants on ImageNet. AUC results for predicted class. Higher (lower) is better for negative (positive).

M. Size	Method	Negati	ve ↑	Positive ↓		
		Predicted	Target	Predicted	Target	
Base	AttnLRP	52.185	47.516	10.784	8.032	
Base	Ours	54.970	50.174	9.918	9.237	
Small	AttnLRP	50.662	45.105	10.511	9.761	
Small	Ours	53.482	47.948	9.135	8.477	
Tiny	AttnLRP	43.832	37.499	2.796	2.503	
Tiny	Ours	50.1241	42.567	3.579	3.214	

Segmentation Tests in Vision. As for segmentation tests, the empirical analysis in Tab. 2 clearly demonstrates that our method outperform the AttnLRP [2] baseline. In particular, our method improves over the baseline by 1% points in Pixel Accuracy, and 2% points in mIoU (Mean Intersection over Union). These results further highlight the importance of positionally associated relevance in effectively capturing spatial relationships and representing entire objects more accurately.

Table 2: Segmentation performance of DeiT variants on ImageNet segmentation [20]. Higher is better.

M. Size	Method	Pixel Acc. ↑	mIoU ↑
Base	AttnLRP	72.204	50.100
Base	Ours	72.698	51.400
Small	AttnLRP	72.114	50.000
Small	Ours	73.060	51.700
Tiny	AttnLRP	74.815	52.850
Tiny	Ours	76.613	55.920

In our experiments, we followed the same guidelines reported as optimal in AttnLRP [2], specifically, a combination of the ϵ -rule and the γ -rule. We report additional quantitative results in Appendix J, extending our method to the α - β propagation rule.

4.2 Results in NLP

For experiments in the NLP domain, we first present results for perturbation tests, including an ablation study, followed by an assessment of the conservation property. For our tests, we adopt settings defined in [4, 41, 5]. To demonstrate the general superiority of our method beyond LRP-based approaches, we extend our evaluation to additional XAI techniques: Integrated Gradients (IG) [34] and Slalom [24] for classification tasks, and IG [34] and SHAP [18] for zero-shot settings. We note that SHAP is significantly more computationally involved, allowing us to evaluate this method only for smaller context-sized inputs. We present qualitative results in Appendix. D.

Table 3: **Perturbation Tests in NLP.** Evaluation of LLaMa-2 7B and Tiny-LLaMa, finetuned on IMDB, on pruning and generation perturbation tasks. AttnLRP [2] is the LRP baseline. The metrics used are AUAC (area under activation curve, higher is better) and AU-MSE (area under the MSE, lower is better).

Model	Method	Generation		Pro	uning
		AUAC ↑	AU-MSE↓	AUAC ↑	AU-MSE↓
LLaMa-2 7B	IG	0.556	24.473	0.556	24.438
LLaMa-27B	Slalom	0.606	18.375	0.636	7.315
LLaMa-27B	AttnLRP	0.779	7.629	0.777	6.548
LLaMa-27B	PE Only	0.771	6.792	0.771	6.823
LLaMa-2 7B	Ours	0.796	6.521	0.790	6.325
Tiny-LLaMa-2 7B	IG	0.637	13.745	0.636	13.770
Tiny-LLaMa-2 7B	Slalom	0.611	15.408	0.608	15.666
Tiny-LLaMa-2 7B	AttnLRP	0.803	8.065	0.792	4.030
Tiny-LLaMa-2 7B	PE Only	0.788	3.918	0.788	3.947
Tiny-LLaMa-2 7B	Ours	0.806	4.915	0.805	4.082

Perturbation Tests for Finetuned Models. We conduct perturbation tests on two LLMs, finetuned on the IMDB classification dataset: LLaMa 2-7B [36], and Tiny-LLaMa [40]. The results presented in Table 3 demonstrate that our method achieves better scores than the LRP baseline across all metrics and models. In particular, our approach improves the AU-MSE score in the generation scenario by 14.5% for LLaMa 2-7B and 51.41% for Tiny-LLaMa. To examine the effect of quantization on attributions, we provide additional results for a quantized version of LLaMa 2-7B in Appendix K.

Perturbation Tests in Zero-Shot Settings We use LLaMa 3-8B [19] to evaluate explainability performance in zero-shot setting. The results presented in Table 4 showcase the superiority of our method across all metrics. (i) **Multiple-Choice Question Answering (MCQA):** our approach improves, on both generation and pruning scenarios, the AUAC score by approximately 3.2%, and AU-MSE score by approximately by 7.7%. (ii) **Next Token Prediction:** our approach improves the AUAC score by approximately 0.5% on both generation and pruning scenarios, and AU-MSE score by approximately by 3% on both scenarios. In contrast to MCQA, the Wikipedia dataset consists relatively long texts, making shifts in relevancy distributions less critical to the model's prediction.

Ablation. We conduct perturbation tests for the method that attributes solely positional-associated relevance. The results are presented in the second, fourth, and sixth rows of Table 3, and second row of Table 5. Surprisingly, this method produces results similar to the AttnLRP baseline, demonstrating the importance of PE-associated relevance, which carries a significant part of the signal. In particular, this variant achieves the best score on the AU-MSE metric for Tiny-LLaMA, reducing the error by 50% compared to AttnLRP [2]. Moreover, in Table 4, we ablate the contribution of our multi-sink approach, which is designed to prevent the loss of positional relevance. We evaluate explainability performance for binary classification of LLaMa-2-7B, using the same perturbation metrics, and report that the multi-sink approach improves the results by 7%.

Table 4: **Ablation Study:** Analyzing the contribution of the multi-sink mechanism via perturbation tests in NLP. The evaluation was conducted on LLaMa-2-7B using the IMDB dataset.

Method	Gen	eration	Pruning		
	AUAC ↑	AU-MSE↓	AUAC ↑	AU-MSE↓	
Ours	0.796	6.521	0.790	6.325	
w/o Multi-Sink	0.759	7.124	0.758	7.158	

Table 5: **Perturbation Tests in NLP** (**Zero-Shot**). Evaluation of LLaMa-3 8B in zero-shot on generation and pruning perturbation tasks for both multiple-choice question answering and Next-Token Prediction (NTP) settings. Metrics reported are AUAC (area under activation curve, higher is better) and AU-MSE (area under MSE, lower is better). "AttnLRP" refers to the LRP baseline [2]. 'G' for generation and 'P' for pruning.

Multiple-Choice Question Answering						Next Token	Prediction	
Method	G. AUAC↑	G. AU-MSE↓	P. AUAC ↑	P. AU-MSE ↓	G. AUAC↑	G. AU-MSE↓	P. AUAC ↑	P. AU-MSE ↓
SHAP	0.291	141.757	0.282	147.229	-	-	-	_
IG	0.351	119.984	0.339	123.212	0.481	40.681	0.481	40.750
AttnLRP	0.365	66.399	0.354	68.856	0.559	41.704	0.559	42.003
PE Only	0.374	61.014	0.364	63.141	0.557	40.538	0.556	40.800
Ours	0.377	61.285	0.368	63.424	0.562	40.474	0.561	40.735

5 Discussion: The Role of Attributing PEs

Our theoretical and empirical analysis suggests that both semantic and positional relevance are complementary, and combining them is essential to provide precise explanations. LRP-type attribution creates pixel-level heatmaps, but can we characterize and identify which *concepts* are attributed mainly by positional relevance versus semantic relevance?

We may expect, for example, that objects that are usually placed in specific contexts (boats on water, airplanes in the sky) would display a more significant PE component. Much of this position context is relative. RoPE, for example, captures relative position through the matrix multiplication of two position-dependent rotation matrices, which plays a fundamental role in capturing spatial features in vision tasks (e.g., objects spanning across multiple patches) and when modeling relationships between words in the same sentence in NLP. In such cases, our PA-LRP rules can effectively attribute positional features, that are largely ignored by standard LRP methods.

6 Conclusions

This paper explores the importance of assigning LRP scores to positional information, a crucial component of Transformers and LLMs. Our theoretical and empirical analysis demonstrates that positional-associated relevance carries a unique type of significance and can drastically improve XAI methods for attention models.

Regarding limitations, we emphasize that our work focuses on designing new custom LRP rules to propagate relevance through PEs, leveraging the insight that this aspect has been previously overlooked. However, we do not extend this insight to redesign or systematically revisit existing LRP rules. Such a redesign could offer an opportunity to empirically and theoretically establish improved LRP rules for attention mechanisms and Transformer models.

7 Acknowledgments

This work was supported by a grant from the Tel Aviv University Center for AI and Data Science (TAD). This research was also supported by the Ministry of Innovation, Science & Technology ,Israel (1001576154) and the Michael J. Fox Foundation (MJFF-022407).

References

- [1] Samira Abnar and Willem Zuidema. Quantifying attention flow in transformers. In *Proceedings* of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2020.
- [2] Reduan Achtibat, Sayed Mohammad Vakilzadeh Hatefi, Maximilian Dreyer, Aakriti Jain, Thomas Wiegand, Sebastian Lapuschkin, and Wojciech Samek. Attnlrp: attention-aware layer-wise relevance propagation for transformers. In *Proceedings of the 41st International Conference on Machine Learning*, pages 135–168, 2024.
- [3] Ameen Ali, Thomas Schnake, Oliver Eberle, Grégoire Montavon, Klaus-Robert Müller, and Lior Wolf. Xai for transformers: Better explanations through conservative propagation. In *International conference on machine learning*, pages 435–451. PMLR, 2022.
- [4] Ameen Ali, Idan Schwartz, Tamir Hazan, and Lior Wolf. Video and text matching with conditioned embeddings. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pages 1565–1574, 2022.
- [5] Ameen Ali, Itamar Zimerman, and Lior Wolf. The hidden attention of mamba models. *arXiv* preprint arXiv:2403.01590, 2024.
- [6] Leila Arras, Grégoire Montavon, Klaus-Robert Müller, and Wojciech Samek. Explaining recurrent neural network predictions in sentiment analysis. In *Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis*, pages 159–168, 2017.
- [7] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador García, Sergio Gil-López, Daniel Molina, Richard Benjamins, et al. Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai. *Information fusion*, 58:82–115, 2020.
- [8] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller, and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. *PloS one*, 10(7):e0130140, 2015.
- [9] D Baehrens, T Schroeter, S Harmeling, M Kawanabe, K Hansen, and K-R Müller. How to explain individual classification decisions. *Journal of Machine Learning Research*, 2010.
- [10] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.
- [11] David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, and Brian McWilliams. The shattered gradients problem: If resnets are the answer, then what is the question? In *International conference on machine learning*, pages 342–350. PMLR, 2017.
- [12] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O'Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al. Pythia: A suite for analyzing large language models across training and scaling. In *International Conference on Machine Learning*, pages 2397–2430. PMLR, 2023.
- [13] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 9650–9660, 2021.
- [14] Hila Chefer, Shir Gur, and Lior Wolf. Transformer interpretability beyond attention visualization. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 782–791, 2021.
- [15] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does bert look at? an analysis of bert's attention. In *Proceedings of the 2019 ACL Workshop BlackboxNLP:* Analyzing and Interpreting Neural Networks for NLP, page 276. Association for Computational Linguistics, 2019.

- [16] Arun Das and Paul Rad. Opportunities and challenges in explainable artificial intelligence (xai): A survey. *arXiv preprint arXiv:2006.11371*, 2020.
- [17] Philipp Dufter, Martin Schmitt, and Hinrich Schütze. Position information in transformers: An overview. *Computational Linguistics*, 48(3):733–763, 2022.
- [18] Daniel Fryer, Inga Strümke, and Hien Nguyen. Shapley values for feature selection: The good, the bad, and the axioms, 2021. URL https://arxiv.org/abs/2102.10936.
- [19] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
- [20] Matthieu Guillaumin, Daniel Küttel, and Vittorio Ferrari. Imagenet auto-annotation with segmentation propagation. *International Journal of Computer Vision*, 110:328 348, 2014. URL https://api.semanticscholar.org/CorpusID:1005559.
- [21] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural computation*, 9(8): 1735–1780, 1997.
- [22] Sarthak Jain and Byron C Wallace. Attention is not explanation. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pages 3543–3556, 2019.
- [23] Michael I Jordan. Serial order: A parallel distributed processing approach. In *Advances in psychology*, volume 121, pages 471–495. Elsevier, 1997.
- [24] Tobias Leemann, Alina Fastowski, Felix Pfeiffer, and Gjergji Kasneci. Attention mechanisms don't learn additive models: Rethinking feature importance for transformers, 2025. URL https://arxiv.org/abs/2405.13536.
- [25] Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek, and Klaus-Robert Müller. Explaining nonlinear classification decisions with deep taylor decomposition. *Pattern recognition*, 65:211–222, 2017.
- [26] Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables input length extrapolation. In *International Conference on Learning Representations*.
- [27] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. *Journal of machine learning research*, 21(140):1–67, 2020.
- [28] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images and videos. *arXiv preprint arXiv:2408.00714*, 2024.
- [29] Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller. Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. arXiv preprint arXiv:1708.08296, 2017.
- [30] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In *Proceedings of the IEEE international conference on computer vision*, pages 618–626, 2017.
- [31] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations. arXiv preprint arXiv:1803.02155, 2018.
- [32] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through propagating activation differences. In *International conference on machine learning*, pages 3145–3153. PMLR, 2017.
- [33] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

- [34] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks, 2017. URL https://arxiv.org/abs/1703.01365.
- [35] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.
- [36] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.
- [37] A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.
- [38] Elena Voita, Rico Sennrich, and Ivan Titov. Analyzing the source and target contributions to predictions in neural machine translation. In *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pages 1126–1140, 2021.
- [39] Tingyi Yuan, Xuhong Li, Haoyi Xiong, Hui Cao, and Dejing Dou. Explaining information flow inside vision transformers using markov chain. In *eXplainable AI approaches for debugging and diagnosis.*, 2021.
- [40] Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small language model. *arXiv preprint arXiv:2401.02385*, 2024.
- [41] Itamar Zimerman, Ameen Ali Ali, and Lior Wolf. Explaining modern gated-linear RNNs via a unified implicit attention formulation. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=wnT8bfJCDx.

A Background for Additional PEs

In this appendix, we introduce additional PEs beyond those presented in Section 2.

Relative Positional Bias (RPB). Similar to Alibi, RPB [27] modifies the attention scores by introducing a learnable bias term that depends on the relative distance between query and key tokens. For a query at position i and a key at position j, the attention scores are adjusted as follows:

$$A_{i,j} = A_{i,j} + B(|i-j|) \tag{10}$$

where B(i-j) is a learned bias function that depends only on the relative position difference (i-j), rather than the absolute positions.

Attention with Linear Biases (**ALiBi**). ALiBi [26] is a positional encoding method designed to help transformers generalize to longer sequences when trained on shorter ones. Instead of using explicit positional embeddings, ALiBi modifies attention scores directly by introducing a learned linear bias that penalizes attention weights based on token distance.

Specifically, for a query token at position j, Alibi adjusts the attention scores as follows:

$$A'_{i,j} = A_{i,j} + m(|i-j|) \tag{11}$$

where m is a learned or predefined slope that controls how quickly attention strength decays with distance. Different attention heads can use different slopes, enabling some heads to focus more on local interactions while others capture long-range dependencies.

B PA-LRP Rules for Alibi

Recall the main modification in the ALiBi computation:

$$A'_{i,j} = A_{i,j} + P_{i,j}$$
, where $P_{i,j} = m(|i-j|)$ (12)

Adopting the same approach presented for RoPE, given the relevancy scores of $A'_{i,j}$, denoted by $\mathcal{R}(A'_{i,j})$, we define specialized rules to propagate relevancy from $A'_{i,j}$ to the positional terms of ALiBi at each layer, namely, indices i and j. We begin by distributing the relevancy scores between $A_{i,j}$ and $P_{i,j}$, using the standard ϵ -rule for addition, giving us:

$$\mathcal{R}(P_{i,j}) = P_{i,j} \frac{\mathcal{R}(A'_{i,j})}{A_{i,j} + P_{i,j} + \epsilon}$$

$$\tag{13}$$

We proceed to propagate the relevancy scores $\mathcal{R}(P_{i,j})$ to the positional encoding i and j in a similar fashion to our rules for RoPE. We make the following observations: (i) m is a constant, resulting in 100% of the relevancy to propagate from $P_{i,j}$ to |i-j|. (ii) Since we are using auto-regressive models, we get that i>j, allowing us to ignore the absolute value function (iii) The standard ϵ -rule for addition applies the same of subtraction, as we can express i-j as i+(-j), and also $-j=(-1)\cdot j$, and since -1 is constant, we propagate the entire relevancy to j. That gives us:

$$\mathcal{R}(i) = i \frac{\mathcal{R}(P_{i,j})}{i + (-j) + \epsilon}, \quad \mathcal{R}(j) = \mathcal{R}(-j) = j \frac{\mathcal{R}(P_{i,j})}{i + (-j) + \epsilon}$$
(14)

From hereon we adhere to our PA-LRP rules, aggregating the relevance scores of the positional terms across all layers as employed in Section 3.3.

C Visualizations - Images

In addition to Figure 3, we provide more examples in Figures 4 - 6. As previously explained, PE-associated relevance better highlights the entire object, and overcomes the issue of over-consideration of the foreground, where extremely high relevancy scores are produced for patches which are more concerned with semantics or common patterns, like a bird's beak in the first row in Figure 5.

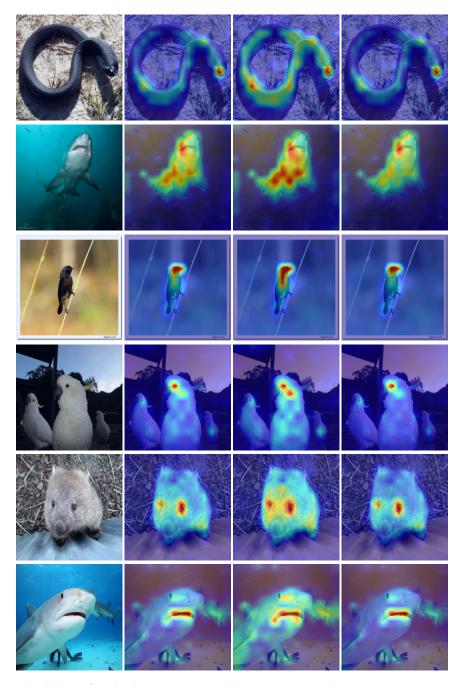


Figure 4: **Additional Qualitative Results In Vision.** Results of different explanation methods for DeiT. (a) The input image. (b) PA-LRP (ours), which include PE relevancy attribution. (c) PE only LRP, (d) AttnLRP [2], which does not attribute relevancy to PE.

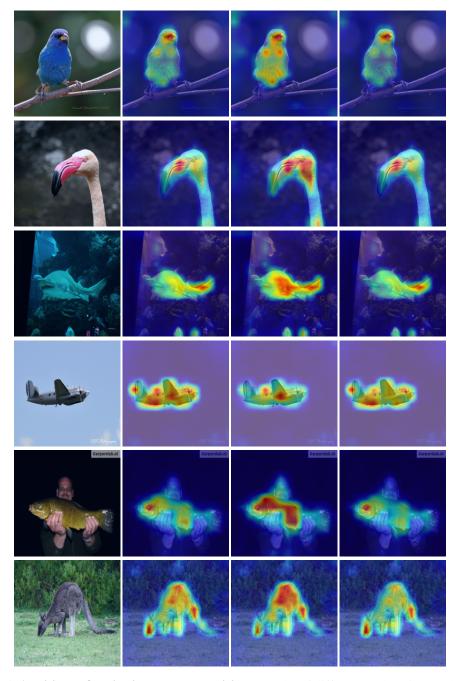


Figure 5: **Additional Qualitative Results In Vision.** Results of different explanation methods for DeiT. (a) The input image. (b) PA-LRP (ours), which include PE relevancy attribution. (c) PE only LRP, (d) AttnLRP [2], which does not attribute relevancy to PE.

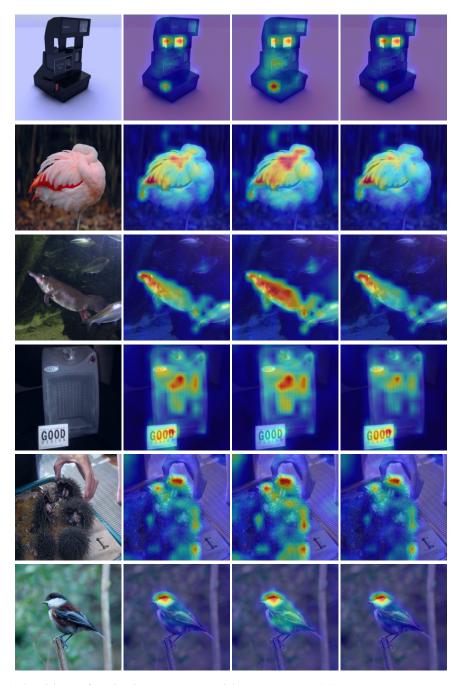


Figure 6: **Additional Qualitative Results In Vision.** Results of different explanation methods for DeiT. (a) The input image. (b) PA-LRP (ours), which include PE relevancy attribution. (c) PE only LRP, (d) AttnLRP [2], which does not attribute relevancy to PE.

D Visualizations - Text

We present qualitative results for NLP in Figure 7. It can be seen that our method demonstrates better results in highlighting tokens crucial for prediction, along with their surrounding context, emphasizing it's superiority to draw relevancy based on both semantics and positionally. In (b) we see that the amount of artifacts is reduced drastically, with more relevancy channeled to the tokens essential for prediction ("They should have been giving a tribute to Branagh for bringing us one of the greatest films of all time").

Great just great! The West Coast got " Dir ty " Harry Cal la han , the East Coast got Sh ark y . B urt Reyn olds plays Sh ark y in " Sh ark y 's Machine " and I enjoyed every minute of it. Play ing a ma ver ick n arc ot ics cop in Atlanta , G A is just what everyone wants . Instead of susp ension , he 's sent to vice squad . Like in the D irty Harry mov ies or any other cop mov ies , the captain is always going to be the j erk . When I was a kid , I was curious what that movie meant " Sh ark y 's Machine ". Well I knew who played Sh ark y , I wonder what his machine was . It was his GROUP of fellow c ops . After un cover ing the murder , he goes all out to find the per p . When it turns out to be a big time mob b oss , Sh ark y doesn 't play around . When he gets the other prost itute into safety , Sh ark y f ights back hard and good despite losing a finger to the th ug . And I also like the part where the bad gets blow n out of the building through a plate glass window . That was the B OM B ! R andy C raw ford 's " St reet Life" really put the movie in the right m ood , and the movie itself is really a great hit to me , AL WA YS! R ating 4 out of 5 stars

Great just great! The West Coast got " Dir ty " Harry Cal la han , the East Coast got Sh ark y . B urt Reyn olds plays Sh ark y in " Sh ark y 's Machine " and I enjoyed every minute of it. Play ing a ma ver ick n arc ot ics cop in Atlanta , G A is just what everyone wants . Instead of susp ension , he 's sent to vice squad . Like in the D irty Harry mov ies or any other cop mov ies , the captain is always going to be the j erk . When I was a kid , I was curious what that movie meant " Sh ark y 's Machine ". Well I knew who played Sh ark y , I wonder what his machine was . It was his GROUP of fellow c ops . After un cover ing the murder , he goes all out to find the per p . When it turns out to be a big time mob b oss , Sh ark y doesn 't play around . When he gets the other prost itute into safety , Sh ark y f ights back hard and good despite losing a finger to the th ug . And I also like the part where the bad gets blow n out of the building through a plate glass window . That was the B OM B!R andy C raw ford 's "St reet Life" really put the movie in the right m ood , and the movie itself is really a great hit to me , AL WA YS! R ating 4 out of 5 stars!

Great just great! The West Coast got " Dir ty " Harry Cal la han, the East Coast got Sh ark y. B urt Reyn olds plays Sh ark y in " Sh ark y's Machine " and I enjoyed every minute of it. Play ing a ma ver ick n arc ot ics cop in Atlanta, G A is just what everyone wants. Instead of susp ension, he's sent to vice squad. Like in the D irty Harry mov ies or any other cop mov ies, the captain is always going to be the jerk. When I was a kid, I was curious what that movie meant " Sh ark y's Machine". Well I knew who played Sh ark y, I wonder what his machine was. It was his GROUP of fellow c ops. After un cover ing the murder, he goes all out to find the per p. When it turns out to be a big time mob b oss, Sh ark y doesn't play around. When he gets the other prost itute into safety, Sh ark yf ights back hard and good despite losing a finger to the thug. And I also like the part where the bad gets blow n out of the building through a plate glass window. That was the B OM B!R andy C raw ford's "St reet Life" really put the movie in the right mood, and the movie itself is really a great hit to me, AL WA YS R ating 4 out of 5 stars

(a)

I went to see Ham let because I was in between jobs . I figured 4 hours would be great , I 've been a fan of Bran agh; Dead Again, Henry V . I was completely over wh el med by the direction, acting, cinemat ography that this film captured . Like other reviews the 4 hours passes swift ly . Bran agh doesn't play Ham let, he is Ham let, he was born for this. When I watch this film I'm constantly trying to find fault s, I've looked at the go of s and haven't noticed them. How he was able to move the camera in and out of the Hall with all the mirror s is a mystery to me . This movie was shot in 70 mil. It's a shame that Columbia hasn't released a W ides creen version of this on V HS . I own a DVD player, and I'd take this over T itan ic any day. So Columbia if you're listening put this film out the way it should be watched. And I don't know what happened at the O sc ars. This should have swe pt Best Picture, Best A ctor, Best Direction, best cinemat ography. What films were they watching? I felt sorry for Bran agh at the O sc ars when he did a t ribute to Shakespeare on the screen. They should have been giving a t ribute to Bran agh for bringing us one of the greatest films of all time.

I went to see Ham let because I was in between jobs . I figured 4 hours would be great , I 've been a fan of Bran agh; Dead Again , Henry V . I was completely over wh el med by the direction , acting , cinemat ography that this film captured . Like other reviews the 4 hours passes swift ly . Bran agh doesn 't play Ham let , he is Ham let , he was born for this . When I watch this film I 'm constantly trying to find fault s , I 've looked at the go of s and haven 't noticed them . How he was able to move the camera in and out of the Hall with all the mirror s is a mystery to me . This movie was shot in 70 mil . It 's a shame that Columbia hasn 't released a W ides creen version of this on V HS . I own a DVD player , and I 'd take this over T itan ic any day . So Columbia if you 're listening put this film out the way it should be watched ! And I don 't know what happened at the O sc ars . This should have swe pt Best Picture , Best A ctor , Best D irection , best cinemat ography . What films were they watching ? I felt sorry for Bran agh at the O sc ars when he did a t ribute to Shakespeare on the screen . They should have been giving a t ribute to Bran agh for bringing us one of the greatest films of all time.

I went to see Ham let because I was in between jobs . I figured 4 hours would be great , I 've been a fan of Bran agh; Dead Again, Henry V . I was completely over whel med by the direction, acting, cinemat ography that this film captured . Like other reviews the 4 hours passes swift ly . Bran agh doesn't play Ham let, he is Ham let, he was born for this. When I watch this film I'm constantly trying to find fault s, I've looked at the go of s and haven't noticed them. How he was able to move the camera in and out of the Hall with all the mirror s is a mystery to me. This movie was shot in 70 mil. It's a shame that Columbia hasn't released a Wides creen version of this on V HS. I own a DVD player, and I'd take this over T itan ic any day. So Columbia if you're listening put this film out the way it should be watched! And I don't know what happened at the O sc ars. This should have swe pt Best Picture, Best A ctor, Best Direction, best cinemat ography. What films were they watching? I felt sorry for Bran agh at the O sc ars when he did a t ribute to Shakespeare on the screen. They should have been giving a t ribute to Bran agh for bringing us one of the greatest films of all time.

(b)

Figure 7: **Qualitative Results in NLP.** Both groups (a) and (b) present results from different explanation methods for the same example obtained from the IMDB benchmark. In each group, the first row represents the AttnLRP baseline, followed by the PE-only variant in the middle, and finally, our maps at the end.

E Proofs of Lemmas

Lemma 3.1. For input-level PE transformers, the conservation property is violated when disregarding the positional embeddings' relevancy scores.

Proof of Lemma 3.1. Let Z be our input representation to the first transformer layer, such that Z = P + E, where P and E are the token and positional embeddings, respectively. Let L be the number of layers in our transformer. Following the conservation property, the sum of the relevancy scores at any given layer l should uphold:

$$\sum \mathcal{R}^{(L)} = \sum \mathcal{R}^{(l)} = \sum \mathcal{R}^{(0)} = \sum R_Z = \sum (\mathcal{R}_E + \mathcal{R}_P)$$
 (15)

When ignoring \mathcal{R}_P , we get the final relevancy attribution map \mathcal{R}_{input} , such that:

$$\sum \mathcal{R}^{(l)} = \sum (\mathcal{R}_E + \mathcal{R}_P) \neq \mathcal{R}_E = \mathcal{R}_{input}$$
 (16)

directly violating the conservation property rule

Lemma 3.2. For attention-level PE transformers, our PE-LRP rules satisfy the conservation property.

Proof of Lemma 3.2. Let M be the number of layers in our Transformer, and L the sequence length. We denote $\mathcal{R}^{(l)}$ as the relevancy score of the output at layer l. Beginning with $\mathcal{R}^{(M)}$ as the the model's output propagating relevancy backwards to achieve the final explanation map for the input embeddings R_E , we assume that the standard LRP method does not violate conservation, i.e:

$$\forall l \in [M]: \quad \mathcal{R}^{(M)} = \mathcal{R}^{(l)} = \mathcal{R}_E \tag{17}$$

Recall that for our PE-LRP formulation, we achieve the final explanation map by summing together the semantic attribution \mathcal{R}_E , achieved by the standard LRP rules, and the positional relevancy $\mathcal{R}_P^{(l)}$ distributed across the absorbing sinks at each attention layer $l \in [M]$, giving us the final relevancy map $R_E + \sum_l \mathcal{R}_P^{(l)}$. We aim to prove the following:

$$\mathcal{R}^{(M)} = \mathcal{R}_E + \sum_{l} \mathcal{R}_P^{(l)} \tag{18}$$

Each attention layer in the transformer is computed using rotary attention:

$$\forall j \in [L] : \tilde{\mathbf{Q}}_j = R_j \mathbf{Q}_j, \quad \tilde{\mathbf{K}}_j = R_j \mathbf{K}_j, \quad \text{Rotary Attention}(X) = \text{Softmax}\left(\frac{\tilde{\mathbf{Q}}\tilde{\mathbf{K}}^T}{\sqrt{d_k}}\right) V. \quad (19)$$

Notice that any computation in this layer which involves more than one tensor, is a matrix multiplication function. Adopting the existing baseline, we use the uniform relevance propagation rule, distributing the relevancy evenly between components. Thus, the relevancy scores of Q, K, V, P, with P denoting the rotation matrix, is equal, and added together to the relevancy of the attention layer's output. The absorbing sink mechanism results in the following:

$$\mathcal{R}^{(0)} = \mathcal{R}_E, \quad \forall l \in [M]: \quad \mathcal{R}^{(l)} = \mathcal{R}^{(l-1)} + \mathcal{R}_P^{(l)}$$
 (20)

Following this recursion we would get the exact same result as Eq. 18

Lemma 3.3. For attention-level PE transformers, current LRP attribution rules achieve low faithfulness, especially when considering positional features.

Proof of Lemma 3.3. We define a basic learning problem which relies solely on positional features, proving that existing LRP-based explanation methods which don't propagate relevance through positional encodings, will not produce faithful explanations. Let us assume we use an auto-regressive transformer model (e.g GPT), with a single causal self-attention with Alibi PE, and the Value projection replaced by an affine transformation (instead of a linear layer). Also, for brevity, let us consider scalar input tokens with sequence length of L=2, denoted by x_1,x_2 . The final model uses the following keys (K), queries (Q), and values (V):

$$\forall i \in [1, 2]: Q_i = W_Q X_i, \quad , K_i = W_K X_i, \quad V_i = W_V X_i + b$$
 (21)

We apply the Alibi self-attention mechanism, and obtain the final output $O = (O_1, O_2)$:

$$A(i,j) = \frac{Q_i K_j}{\sqrt{d}} + m_h(i-j), \quad m_h = 1, \quad O_2 = A_{2,1} V_1 + A_{2,2} V_2$$
 (22)

To prevent the semantic representation from affecting the prediction, an optimal solution to this problem will assign zeros to W_Q, W_K , namely: $Q = K = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. For the Value projection, we assume: $V = W_v + b$, with $W_v = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $b \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

Relevance propagation. Following our settings, we get:

$$A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
, giving us: $Attention(Q, K, V) = A \times V = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} b$ (23)

For the backwards relevancy propagation, the relevancy scores of Attention are distrusted between A and V based on the standard Gradient \times Input. Regardless, we now consider how relevancy scores of both terms \mathcal{R}_V , \mathcal{R}_{score} are propagated back to the input x.

- $\mathcal{R}_V \to \mathcal{R}_x$. recall that W_v are assigned with zeros. Given that the fundamental ϵ -LRP rule for affine transformations ignores the bias term completely and uses the weights W_v as a measure of weighting the relevancy scores, we get that zero relevancy scores are produced for both tokens.
- R_A → R_x. Following the standard LRP rules, the positional terms would be considered
 a constant, and therefor, 100% of the distribution would be directed to the queries and keys.
 Given that W_Q, W_K are assigned with zeros, we again get zero relevancy scores being
 propagated to x.

Given that the relevancy scores propagated back from the attention layer are all assigned with zeros, we will get a final attribution map of zeroes, indicating the same level of impact for all tokens. This of course, yields an unfaithful explanation. In contrast, our method makes positional terms attributable, maintaining relevancy scores that would otherwise be zeroed out due to existing rules.

F Conservation Percentage Results

We measure the sum of relevance for DeiT model at different capacities: Tiny, Small, and Base. The figure provides clear visualization for the violation of the conservation property, with PE relevancy constituting 16.75%, 22.39%, and 9.22% out of the total relevancy for Tiny, Small, and Base DeiT models, respectively.

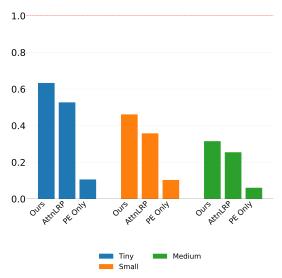


Figure 8: We assess both the positional relevance and the non-positional relevance for DeiT models at different capacities, visualizing the violation of conservation rule, with high non-negligible ratio between the entire relevance in the models 'ours' and positional-associated relevance 'PE Only'.

G Experiments Compute Resources

All experiments were conducted using the PyTorch framework on publicly available datasets and executed on a single NVIDIA H100-80GB HBM3 GPU, running for at most 12 hours.

H Experimental Setup

PyTorch is used for conducting all of our experiments. We note that while exploring optimal rules for PE-LRP through theoretical analysis or grid search could further improve our empirical results, we deliberately chose not to perform hyperparameter tuning for our PE-LRP rules in order to neutralize the impact of hyperparameter search.

We provide the number of randomly chosen samples used for perturbation evaluation, for each dataset:

Imagenet: 12,500 samplesARC-Easy: 5,200 samples

Wiki-text: 5,000IMDB: 5,000

I Statistical Analysis

We have added comprehensive statistical analyses, including variance measures and paired t-tests, for the empirical experiments. For the paired t-tests, we compare each baseline with our method, where each paired comparison is performed on the classification accuracy for each sample across all perturbation steps. We report the full results in Tables 6–8.

Table 6: **Perturbation Tests in NLP.** Evaluation of LLaMa-2 7B and Tiny-LLaMa, finetuned on IMDB, on pruning and generation perturbation tasks. AttnLRP [2] is the LRP baseline. The metrics used are AUAC (area under activation curve, higher is better) and AU-MSE (area under the MSE, lower is better).

Model	Method	Gene	ration	Pru	ning
		AUAC ↑	AU-MSE↓	AUAC ↑	AU-MSE↓
LLaMa-2 7B	IG	0.556 ± 0.03	24.473 ± 0.30	0.556 ± 0.03	24.438 ± 0.30
		(P:0.00,T:24.28)	(P:0.00,T:-37.49)	(P:0.00,T:24.46)	(P:0.00,T:24.46)
LLaMa-2 7B	Slalom	0.606 ± 0.03	18.375 ± 0.28	0.636 ± 0.03	7.315 ± 0.27
		(P:0.00,T:20.91)	(P:0.00,T:-28.64)	(P:0.00,T:17.82)	(P:0.00,T:-27.63)
LLaMa-2 7B	AttnLRP	0.779 ± 0.05	7.629 ± 0.28	0.777 ± 0.05	6.548 ± 0.30
		(P:0.02,T:2.29)	(P:0.00,T:-13.31)	(P:0.00,T:6.47)	(P:0.00,T:-12.18)
LLaMa-2 7B	PE Only	0.771 ± 0.03	6.792 ± 0.20	0.771 ± 0.03	6.823 ± 0.20
LLaMa-2 7B	Ours	$\textbf{0.796} \pm \textbf{0.03}$	$\textbf{6.521} \pm \textbf{0.19}$	$\textbf{0.790} \pm \textbf{0.03}$	$\textbf{6.325} \pm \textbf{0.19}$
Tiny-LLaMa-2 7B	IG	0.637 ± 0.03	13.745 ± 0.24	0.636 ± 0.03	13.770 ± 0.24
		(P:0.00,T:29.25)	(P:0.00,T:-33.88)	(P:0.00,T:29.98)	(P:0.00,T:-34.54)
Tiny-LLaMa-2 7B	Slalom	0.611 ± 0.03	15.408 ± 0.26	0.608 ± 0.03	15.666 ± 0.26
		(P:0.00,T:22.03)	(P:0.00,T:-30.86)	(P:0.00,T:20.67)	(P:0.00,T:-31.20)
Tiny-LLaMa-2 7B	AttnLRP	0.803 ± 0.05	8.065 ± 0.26	0.792 ± 0.05	4.030 ± 0.22
		(P:0.00,T:0.57)	(P:0.00,T:-29.47)	(P:0.01,T:2.49)	(P:0.00,T:1.1)
Tiny-LLaMa-2 7B	PE Only	0.788 ± 0.03	$\textbf{3.918} \pm \textbf{0.16}$	0.788 ± 0.03	$\textbf{3.947} \pm \textbf{0.16}$
Tiny-LLaMa-2 7B	Ours	$\textbf{0.806} \pm \textbf{0.03}$	4.915 ± 0.15	$\textbf{0.805} \pm \textbf{0.15}$	4.082 ± 0.05

Table 7: **Perturbation Tests in NLP** (**Zero-Shot**). Evaluation of LLaMa-3 8B in zero-shot on generation and pruning perturbation tasks for both multiple-choice question answering and Next-Token Prediction (NTP) settings. Metrics reported are AUAC (area under activation curve, higher is better) and AU-MSE (area under MSE, lower is better). "AttnLRP" refers to the LRP baseline [2]. 'G' for generation and 'P' for pruning.

Multiple-Choice Question Answering					Next Token	Prediction		
Method	G. AUAC ↑	G. AU-MSE↓	P. AUAC ↑	P. AU-MSE↓	G. AUAC ↑	G. AU-MSE↓	P. AUAC ↑	P. AU-MSE ↓
SHAP	0.291 ± 0.04	141.757 ± 0.71	0.282 ± 0.04	147.229 ± 0.71	=	=	=	-
IG	0.351 ± 0.02	119.984 ± 0.50	0.339 ± 0.02	123.212 ± 0.50	0.481 ± 0.04	40.681 ± 0.59	0.481 ± 0.04	40.750 ± 0.58
	(P:0.00,T:4.46)	(P:0.00,T:-64.09)	(P:0.00,T:4.22)	(P:0.00,T:-63.63)	(P:0.00,T:16.45)	(P:0.78,T:-0.05)	(P:0.00,T:16.46)	(P:0.96,T:-0.05)
AttnLRP	0.365 ± 0.04	66.399 ± 0.56	0.354 ± 0.04	68.856 ± 0.57	0.559 ± 0.04	41.704 ± 0.58	0.559 ± 0.04	42.003 ± 0.58
	(P:0.00,T:4.84)	(P:0.00,T:-9.79)	(P:0.00,T:5.43)	(P:0.00,T:-10.33)	(P:0.06,T:1.90)	(P:0.00,T:-21.24)	(P:0.06,T:1.87)	(P:0.00,T:-21.47)
PE Only	0.374 ± 0.04	61.014 ± 0.47	0.364 ± 0.04	63.141 ± 0.47	0.557 ± 0.04	40.538 ± 0.58	0.556 ± 0.04	40.800 ± 0.58
	(P:0.01,T:2.51)	(P:0.01,T:2.60)	(P:0.01,T:2.69)	(P:0.00,T:2.85)	(P:0.00,T:11.74)	(P:0.00,T:-3.30)	(P:0.00,T:11.27)	(P:0.00,T:-3.20)
Ours	0.377 ± 0.04	61.285 ± 0.47	0.368 ± 0.04	63.424 ± 0.47	0.562 ± 0.58	40.474 ± 0.34	0.561 ± 0.04	40.735 ± 0.58

Table 8: Perturbation Tests for DeiT Variants on ImageNet. AUC results for predicted class. Higher (lower) is better for negative (positive).

M. Size	Method	Nega	tive ↑	Positive ↓		
		Predicted	Target	Predicted	Target	
Base	AttnLRP	52.185 ± 0.03 (P:0.00,T:20.60)	47.516 ± 0.01 (P:0.00,T:14.63)	10.784 ± 0.01 (P:0.00,T:-9.20)	8.032 ± 0.00 (P:0.00,T:7.78)	
Base	Ours	54.970 ± 0.03	$\textbf{50.174} \pm \textbf{0.02}$	$\textbf{9.918} \pm \textbf{0.03}$	9.237 ± 0.02	
Small	AttnLRP	50.662 ± 0.03 (P:0.00,T:22.20)	45.105 ± 0.02 (P:0.00,T:17.73)	10.511 ± 0.03 (P:0.00,T:-16.35)	9.761 ± 0.02 (P:0.00,T:-14.22)	
Small	Ours	$\textbf{53.482} \pm \textbf{0.03}$	$\textbf{47.948} \pm \textbf{0.02}$	$\textbf{9.135} \pm \textbf{0.03}$	$\textbf{8.477} \pm \textbf{0.02}$	
Tiny	AttnLRP	43.832 ± 0.03 (P:0.00,T:53.15)	37.499 ± 0.02 (P:0.00,T:45.70)	2.796 ± 0.03 (P:0.00,T:22.36)	2.503 ± 0.02 (P:0.00,T:20.69)	
Tiny	Ours	50.1241 ± 0.03	$\textbf{42.567} \pm \textbf{0.02}$	3.579 ± 0.03	3.214 ± 0.02	

The results demonstrate that all differences reported in the paper are statistically significant, as verified using paired t-tests. We observe p < 0.03 figures across all experiments, with most p-values lower than 10^{-4} . The variance is consistently low, and paired t-tests yield small p-values, while t-scores are aligned with performance trends.

J Perturbation Test for Vision Transformer: EpslionGamma vs. AlphaBeta

To evaluate the robustness of our method against other LRP-based rules (Tab. 9), we conduct additional perturbation experiments for the vision transformer, comparing the settings adopted by AttnLRP [2], which are considered optimal and utilize a mix between the γ and ϵ rules, with the well-adopted α - β propagation rule, adopted in various prominent XAI papers (e.g. [14]).

Table 9: Perturbation Tests for DeiT Variants on ImageNet, comparing γ - ϵ , and α - β LRP rules, for AttnLRP [2] and our method.

M. Size	Method	Negati	ive ↑	Positiv	ve↓
		Predicted	Target	Predicted	Target
Base	AttnLRP (α, β)	44.612	40.542	9.172	8.515
Base	AttnLRP (ϵ, γ)	52.185	47.516	10.784	8.032
Base	Ours (α, β)	61.974	55.237	43.557	39.499
Base	Ours (ϵ, γ)	54.970	50.174	9.918	9.237
Small	AttnLRP (α, β)	45.698	40.890	9.822	9.048
Small	AttnLRP (ϵ, γ)	50.662	45.105	10.511	9.761
Small	Ours (α, β)	62.963	55.114	33.651	30.158
Small	Ours (ϵ, γ)	53.482	47.948	9.135	8.477
Tiny	AttnLRP (α, β)	31.297	26.962	11.301	9.891
Tiny	AttnLRP (ϵ, γ)	43.832	37.499	2.796	2.503
Tiny	Ours (α, β)	56.925	46.835	29.049	24.468
Tiny	Ours (ϵ, γ)	50.1241	42.567	3.579	3.214

The results demonstrate that using the settings presented in AttnLRP [2] (ϵ, γ) provides the optimal performance for both methods. We underline that while the alpha-beta rule manages to achieve higher performance for negative perturbation for our method, it is accompanied by a drastic tradeoff with positive perturbations, which implies that the attribution map is coupled with high level of noise.

K Perturbation Test for Quantized Large Language Transformer

To evaluate the robustness of our method on quantized models (Tab. 10), we conduct additional perturbation experiments for a quantized version of LLaMa 2-7B , finetuned on the IMDB classification dataset.

Table 10: **Perturbation Tests in NLP.** Evaluation of quantized LLaMa-2 7B, finetuned on IMDB, on pruning and generation perturbation tasks. AttnLRP [2] is the LRP baseline. The metrics used are AUAC (area under activation curve, higher is better) and AU-MSE (area under the MSE, lower is better).

Model	Method	Generation		Pruning	
		$AUAC \uparrow$	$\text{AU-MSE}\downarrow$	$AUAC \uparrow$	AU-MSE↓
LLaMa-2 7B Quantized	AttnLRP	0.774	11.348	0.767	10.067
LLaMa-2 7B Quantized	PE Only	0.758	10.730	0.758	10.774
LLaMa-2 7B Quantized	Ours	0.785	10.137	0.778	9.685

The results presented in Table 10 demonstrate that quantization does not affect the effectiveness of our method, which consistently outperforms the baseline. In particular, our approach improves the AU-MSE score in the generation scenario by 10.6%.

L Broader Impacts

Our work proposes a novel XAI technique that enhances the explainability of transformer models. XAI plays a critical role in ensuring the safe and responsible deployment of machine learning systems, particularly in high-stakes domains such as healthcare, finance, and law. It helps users and researchers understand, trust, and effectively audit model decisions. In particular, XAI facilitates the detection of biases, identification of failure modes, and debugging of unintended behaviors. By providing more

accurate and faithful explanations for transformer-based models, our method contributes to greater transparency and accountability in DL systems. For all of those reasons, we believe this work will positively impact both the research community and practical applications by enabling safer and more interpretable use of powerful language models.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: The papers not including the checklist will be desk rejected. The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:

- You should answer [Yes], [No], or [NA].
- [NA] means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.
- Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a proper justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or "we were unable to find the license for the dataset we used"). In general, answering "[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

- Delete this instruction block, but keep the section heading "NeurIPS Paper Checklist",
- Keep the checklist subsection headings, questions/answers and guidelines below.
- Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The paper points, in the abstract and introduction, at a critical gap in existing LRP-based explanation methods for transformers, where positional embeddings are not made attributable to the model's final output. The paper's main contributions encompass analyzing this discrepancy 1, proposing new specialized rules for attributing positional information 3, and providing qualitative and empirical results 3.4,4.1, 4.2, as well as theoretical foundation 3.4, which establish that it is impossible to achieve faithful explanation without positionalassociated relevance.

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- · The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In the Conclusions section 6, we explain that while our work focuses on designing new custom rules for positional relevancy, we did not systematically examined or redesigned existing propagation rules to be optimal specifically for this kind of relevance (e.g. examining different rules for adding the positional-associated relevance across all blocks).

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: In Appendix E, we provide high-quality proofs for the three lemmas presented in the article 3.4 to ground our contributions theoretically, explaining in detail our assumptions for each claim.

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Regardless of the code and data provided, the implementation detailed are fully disclosed and discussed in 3.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide an open-source implementation of our method to facilitate adoption by the broader research community.

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).

- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Regardless of the code and data provided, all details necessary to understand the results derived from our explanation methods are provided.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper proposes novel explanation methods, and for all experiments, we report the number of examples and datasets used, which are standard in the domain for assessing statistical significance.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: In Appendix G, we specify compute resources used to run the experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We did our best to follow the code of ethics, including anonymizing our names in the paper and code.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: Yes. See Appendix L

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.

 If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Our paper builds upon open-source models, papers, and assets with appropriate licenses.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: We provide an open-source repository alongside the paper, containing new tools for explaining transformers, specifically designed for modern LLMs that use attention-level positional encoding. The code is provided with clear instructions and is well-documented.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent)
 may be required for any human subjects research. If you obtained IRB approval, you
 should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: NA

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.