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Abstract

The development of effective explainability tools for Transformers is a crucial
pursuit in deep learning research. One of the most promising approaches in this
domain is Layer-wise Relevance Propagation (LRP), which propagates relevance
scores backward through the network to the input space by redistributing activa-
tion values based on predefined rules. However, existing LRP-based methods for
Transformer explainability entirely overlook a critical component of the Trans-
former architecture: its positional encoding (PE), resulting in violation of the
conservation property, and the loss of an important and unique type of relevance,
which is also associated with structural and positional features. To address this
limitation, we reformulate the input space for Transformer explainability as a set of
position-token pairs. This allows us to propose specialized theoretically-grounded
LRP rules designed to propagate attributions across various positional encoding
methods, including Rotary, Learnable, and Absolute PE. Extensive experiments
with both fine-tuned classifiers and zero-shot foundation models, such as LLaMA
3, demonstrate that our method significantly outperforms the state-of-the-art in
both vision and NLP explainability tasks. Our code is publicly available.

O https://github.com/YardenBakish/PE-AWARE-LRP

1 Introduction

Explainable AI (XAI) is increasingly vital in deep learning (DL), where models often achieve
remarkable performance but operate as opaque “black boxes” [7, |L6]. This lack of transparency
reduces trust, limits user engagement, and complicates troubleshooting, thereby restricting the use
of DL in applications where decision-making transparency is essential. Consequently, developing
XALI techniques for DL models has become an important research domain [29]]. This task, however,
is challenging, due to the inherent complexity of these models, which cannot be easily represented by
simple functions.

Transformer-based architectures, which have become dominant in DL, present additional challenges
for explainability due to their large scale, often containing billions of parameters. To address this,
researchers have developed various attribution methods specifically designed for Transformers [14} 2|
3L 11]]. Among these, model-specific XAl techniques have gained prominence, providing explanations
based on the model’s parameters, internal representations, and overall architecture.

The most effective model-specific XAl techniques, and the current state-of-the-art for Transformer
explainability, are LRP-based, such as [2]. LRP is a well-established attribution technique that
explains a model’s predictions by propagating relevance scores backward through the network,
redistributing activation values based on predefined propagation rules. Unlike gradient-based methods,
which often suffer from issues like vanishing gradients or numerical instabilities, LRP provides a
more stable and precise way to trace how information flows through each layer.
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Recently, several refinements have been
proposed to improve the stability and
faithfulness of LRP rules for Transform-
ers, leading to more robust and reliable
interpretability techniques. Notable ex-
amples include [3] and [2], which intro-
duce custom rules for propagating LRP
through attention mechanisms, layer nor-
malization, and other key components.
Despite these advancements, we identify
a critical gap in this extensive line of
work: all existing LRP-based methods for
Transformers overlook the need for PE- (b)

aware LRP rules and do not propagate Figure 1: (a) Explainability heatmaps of Attention-LRP
attribution through positional encoding. (AttnLRP) [2], which is the state-of-the-art LRP for trans-
This omission results in the loss of a key  former explainability. (b) The LRP heatmap obtained
aspect of relevancy related to positional  from the positional part that is ignored by the existing
concepts, limiting the ability to provide LRP methods, including AttnLRP. The relevancy cap-
faithful and comprehensive explanations. tured by the PE component of the transformer is less
sparse and captures more of the object.

To mitigate this problem, we propose
Positional-Aware LRP (PA-LRP), a novel
technique that significantly improves upon previous methods through two fundamental modifications:
(i) Reformulating the input space of the Transformer explainability problem to incorporate positional
information. Instead of relying solely on the vocabulary space, we define the input space as a
set of position-token pairs. (ii) Introducing the first LRP rules specifically designed to propagate
relevance across standard positional encoding (PE) layers, including learned PE, Rotary PE [33]],
and others. To enhance stability and faithfulness, our rules are further improved through techniques
such as reparameterization of PE layers, linearization, and defining an appropriate sink for positional
relevance to ensure that position-associated information is properly absorbed, which we validate to
be crucial for precise propagation. Moreover, we provide a complementary theoretical analysis to
prove that our rules do not violate the conservation property.

Our main contributions consist of the following: (i) We identify a critical gap in current LRP-based
XAI techniques for Transformers: they overlook the attribution of positional encodings (PE). This
omission results in a violation of the conservation property for input-level PE, as shown in Lemma
and leads to unfaithful heatmaps when handling positional features, as demonstrated in Lemma

We empirically validate that this omission is a critical limitation by significantly outperforming
existing methods, and demonstrating that in certain cases, assigning relevance to PE alone can surpass
standard SoTA Transformer explainability techniques, showing that this signal is significant, as shown
in Tables [3}-[5]and Figure[3] A Additionally, the obtained signal is complementary and distinct from
the non-positional signal, better capturing spatial, positional, and structural relationships, as shown in
Figure T] (ii) We introduce PA-LRP, a theoretically grounded and PE-aware technique for assigning
relevance in Transformers. PA-LRP significantly outperforms previous methods across both fine-
tuned classifiers and zero-shot foundation models, in both NLP and vision tasks, on multiple models
such as LLaMA 3, DeiT, and others. (iii) Providing an open-source and user-friendly implementation
of our method, along with demos and practical examples, to facilitate adoption by the broader research
and practitioner community.

2 Background and Related Work

In this section, we describe the scientific context for discussing LRP-based Transformer explainability,
along with the necessary terminology and symbols needed to describe our method.

2.1 Positional Encoding in Transformers

Transformer-based architectures rely on self-attention, which computes contextual relationships
between tokens using:

T
Attention(X') = Softmax (?/Ic% ) 14 e))



where, K = XWg,Q = XWq,V = XWy represent key, query, and value matrices respectively,
dj, is the embedding dimension, and Wq, Wi, Wy, are learnable linear projection matrices.

This attention mechanism is duplicated over several “heads” and is wrapped by standard DL pe-
ripherals such as Layer Normalization, FFNs, and skip connections, forming the core structure of a
Transformer model by:

X' = LayerNorm (X + Attention(X)), X" = LayerNorm (X' + FFN(X")) )
where FFN applies a two-layer linear transformation with activations in the middle.

Transformers operate on sets of tokens rather than ordered sequences, making them permutation-
invariant by design. Unlike architectures with built-in order sensitivity such as RNNs [21} 23],
Transformers require explicit positional encoding (PE) to capture sequence structure. PE can be
introduced at different stages of the model: it can be added to token embeddings at the input layer,
as seen in learnable PE and sinusoidal PE [37], or integrated within the attention mechanism at
each layer, as employed in Rotary PE (RoPE) [33]] and Alibi [26]. The key insight of this paper
is that while PE is well known for its important role in the forward pass [17], its crucial role in
propagation-based XAI methods, such as LRP, has been largely overlooked, leading to violations
of conservation and the loss of significant relevance, which often carries distinctive positional and
structural meanings.

Learnable PE. Learnable PE represents positions as trainable parameters, allowing the model to
learn position representations directly from data. This approach offers flexibility and adaptability.

Sinusoidal PE. Sinusoidal PE, introduced in the original Transformer model [37], encodes posi-
tions using sine and cosine functions with different non-trainable frequencies. Because it is based on
absolute positions, it is less effective in tasks where relative positional information is more important.

Rotary PE (RoPE). RoPE [33] incorporates positional information by rotating token embeddings
in a structured manner, enabling the model to naturally encode relative positions. Specifically, each
key and query vector is transformed using a per-position block-diagonal rotation matrix. Unlike
learnable or sinusoidal PEs, RoPE encodes relative positional relationships through the multiplication
of rotation matrices. Due to its effectiveness, many popular LLMs, including SAM?2 [28]],Pythia [[12],
LLaMA [36], Qwen [10], Gemma [33]], and others are built on top or RoPE.

Other PE techniques, such as ALiBi [26] and relative PEs [31,[27]], are described in Appendix @

2.2 Model-Specific XAI and LRP

Methods for explaining neural models have been extensively studied in the context of DNNS, par-
ticularly in NLP [6l [39] and computer vision [30]. A widely adopted strategy for this task is the
use of model-specific techniques, which exploit the internal architecture and parameters of neural
models to generate explanations. One notable method in this category is LRP [8]], which propagates
relevance scores, denoted by R(-), backwards through the network by redistributing activation values.
Propagation relies on predefined rules and interactions between tokens.

LRP. LRP is an evolution of gradient-based methods, such as Input x Gradient [32] [9], which
often suffer from issues like numerical instabilities and gradient shattering [11]. LRP enhances
backpropagation rules by enforcing two key principles: (i) the conservation property, which ensures
that the total relevance is preserved across layers. Namely, for a layer M, where Y = M (X)), the
relevance of the output R(Y") is equal to the relevance of the input R(X). (ii) The prevention of
numerical instabilities during propagation. To achieve these goals, LRP rules are often derived from
the Deep Taylor Decomposition principle [25], redistributing relevance scores at each layer based on
the first-order Taylor expansion of the layer’s function.

2.3 XAI for Transformers

The first model-specific XAI methods for Transformers were based on attention maps [13}, [15]],
leveraging attention scores to quantify the contribution of each token to others across layers. Building
on this approach, Abnar and Zuidema [1] introduced the attention rollout technique, which aggregates
attention matrices across multiple layers to provide a more holistic explanation. However, Jain and



Wallace [22]] later demonstrated that attention-based techniques can be misleading, as attention scores
do not always correlate with gradient-based feature importance measures or actual model behavior.
To address these limitations, Chefer et al. [[14]]. developed a hybrid XAI method that combines LRP
scores with attention maps, marking a breakthrough in the field by improving attribution fidelity.

Purely LRP-based XAI methods for Transformers were first introduced in [38]] and later refined
by Ali et al. [3], who developed custom LRP rules tailored for LayerNorm and attention layers
to preserve conservation properties and ensure numerical stability. More recently, Achtibat et al.
[2]] further improved this approach by designing more faithful propagation rules for self-attention,
achieving state-of-the-art performance in Transformer explainability. To the best of our knowledge,
this represents the most advanced technique in the field and serves as our primary baseline.

Interestingly, despite extensive research in this area, none of these approaches propagate relevance
through PE layers. This omission leads to a loss of significant relevance associated with positional
and structural features, ultimately resulting in less faithful and holistic attributions.

3 Method
Propagation Of Positional-Associated Relevancy
. . . Over Attention and input level PE
In this section, we describe our PE-aware

LRP rules. We first revise the input space T AR e
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S={Ei| Ei RD}7 ) Figure 2: Visualization of our method for propagat-
ing PE-associated relevance. Blue arrows indicate
the forward path, while purple arrows represent the
LRP propagation rules. Dashed arrows denote custom
In contrast, we reformulate the input space position-aware rules defined in our method.

in the following manner:

where E; is the ¢-th row of the embedding
matrix E.

S={(Ei,Pj1,Pja,--,Pix)| E; € R, j € [L],k € [K], P;; € R”'} “)

where L is the sequence length, D’ is the dimension of the positional embeddings, and K is the
number of layers. Thus, in our formulation, each token in the input space consists of two ingredients:
one representing the per-layer positional embedding P; ;, for all layers k € [K], and the other
representing the semantic embedding E;.

We define a separate sink for positional relevance at each attention layer to ensure that the omission of
certain positional features in one layer does not obscure or override essential features and relevance
captured in other layers, and to validate that important positional attributions are not discarded.

Building upon the formulation of Eq. ] the next two sections define LRP rules that enable stable
propagation of relevance from standard positional encoding techniques to j € [L]: Section
discusses input-level PE, while Section [3.3|covers attention-level PE.



3.2 LRP-rules for Input Level PE

We begin with the simplest form of positional encoding—learnable PE—and then demonstrate that
other input-level PEs can be reparameterized in a similar manner. For brevity, we assume that P; is a
vector rather than a matrix, namely P; = P; ;. We also tie the embedding dimensions of both the
semantical and positional vectors (D = D’).

Learnable PE. This layer learns positional information during training through an embedding

matrix P € RY*P where D represents the embedding dimension of positional information, and L
denotes the maximum sequence length. For each sample, the positional and semantic embeddings are
summed to obtain the final input representation. Formally, the combined embedding for the token at
position j with token index ¢ is given by P; + FE;. Thus, we can propagate relevance from the input
of the first transformer block R(z;), to the positional component P; of token j by using the standard
LRP epsilon rule for addition [2]:

R(2i)

PA-LRP for input-level PE : R(P;) = P; Pt B e
j + Eite

&)

Sinusoidal PE. This method encodes position information via a unique vector of sine and cosine
values constructed by:

Sinusoidal PE(j)[2i] = sin ( J : > ,  Sinusoidal PE(j)[2i + 1] = cos <]> (6)

100005 100005

Thus, the values derived from Eq.[6|can be used to reparameterize the embedding matrix F, replacing
the learned vectors with their corresponding sine and cosine values. Such reparameterization elimi-
nates the need to propagate gradients through non-linear functions such as sine and cosine, improving
efficiency and stability.

3.3 LRP-rules for Attention-level PE

For attention-level PE, we focus on describing the PA-LRP rules for RoPE [33]] as a representative
example. For the derivation of the PA-LRP rules for ALiBi [26]], we refer the reader to Appendix [B]
At each layer k, RoPE modifies the queries (Q) and keys (K) matrices before computing the attention
scores. This modification is done by multiplying each key and query vector by a position-dependent
rotation matrix R; , € RP*P where j € [L]. The rotation matrix is a block-diagonal matrix defined
as follows:

cos 9;1) —sin 9;1) e 0 0
sin 9;1) cos 0§1) e 0 0
Vjel[ll,ke[K]:Rj,= : : : : 7
0 0 ... COS QED/Z) —sing!P/?
0 0 ... sin 9§-D/2) cos 9§-D/2)

where each rotation angle 9§m) is defined as 9;7") = jwpm, Where w; = 100007717,
Note that in RoPE, as in other attention-level positional encodings, the positional information is
represented by a matrix R . Accordingly, we assume: P;j = Flattening(R; ), D' = D?. Thus,
we can propagate relevance from R (R ;) to R(P; k) by unflattening the relevance.

Now, a key remaining step is to define how relevance should be propagated to R;. The RoPE
computation is executed before computing the attention scores, transforming the per-position queries
and keys are as follows:

~ ~ VKT
Viel[ll:Q; =R;Q;, K;=R;K,;, Rotary Attention(X) = Softmax (Q\/di ) V. ®)
k

Our formulation builds on top of AttnLRP [2], which propagates relevance over the queries Q and
keys K, resulting in their corresponding relevance scores R(Q),R(K). To propagate relevance




from these matrices to the rotation matrices I?;, we apply the standard uniform-LRP rule for matrix
multiplication separately to each key and query, then summing both terms to produce a final attribution
map per- attention layer, as follows:

Vi € L) RIR)) = 5R(Qy) + 3RK;) ©)

Up to this point, we have described the PA-LRP rules for a single attention layer. However,
transformer-based models stack M transformer blocks. Thus, we interpret the positional infor-
mation as a vector that is passed from the input to all attention blocks via a semi-skip connection
mechanism, as illustrated in Figure[2| This interpretation explains why without propagating relevance
across PE layers, some of the relevance is lost, leading to unfaithful explanations that ignore position-
associated aspects. Consequently, positional relevance from all layers is aggregated according to the
LRP addition rule, similar to skip connections.

Overall Method. Our PA-LRP rules allow us to assign relevance to the positional part of the
input space. For the non-positional part, we use the same rules as defined in AttnLRP [2]. Finally,
we aggregate the relevance scores by summing their corresponding absolute values across feature
dimensions, similar to previously proposed methods. It is worth noting that although our rules are
built on top of the AttnLRP framework, they are not limited to it. Our input-level PE rules can
be decoupled and applied to any LRP method, while the attention-level PE rules can be integrated
with alternative formulations, as long as they propagate relevance through the attention matrices and
preserve the connection between PE and the computational graph.

As a result, similar to other LRP methods, our approach can produce explainability maps with
computational efficiency comparable to a single backward pass. We further clarify that although our
method introduces several modifications in the forward path and input space, it does not require any
changes to the transformer itself. Instead, these modifications propose an equivalent forward path
that allows us to better define the propagation rules.

3.4 Theoretical Analysis

To support our PA-LRP rules, we now provide theoretical evidence demonstrating that they satisfy
the key LRP criteria. First, the following two lemmas prove that our proposed LRP rules satisfy the
conservation property.

Lemma 3.1. For input-level PE transformers, the conservation property is violated when disregarding
the positional embeddings’ relevancy scores.

Lemma 3.2. For attention-level PE transformers, our PE-LRP rules satisfy the conservation property.

Next, we present a lemma based on a key example illustrating that existing methods exhibit low
faithfulness. In particular, we show that within simplified settings, LRP yields unfaithful explanations
when the task relies heavily on positional features, such as predicting the number of tokens.

Lemma 3.3. For attention-level PE transformers, current LRP attribution rules achieve low faithful-
ness, especially when considering positional features.

The proofs and examples are detailed in Appendix [E]

4 Experiments

To assess the effectiveness of our PA-LRP rules, we perform a comprehensive set of experiments
across both Vision and NLP domains. First, in Section@ we conduct experiments in the Vision
domain using DeiT, including perturbation and segmentation tests. Next, in Section we perform
perturbation tests, ablation study, and conservation analysis in NLP. Test results are reported in each
subsection, whereas the complete statistical analysis, including variance measures and paired t-test
scores, is provided in Appendix [I}

We begin by describing our baselines, ablation variant, and evaluation metrics:

Baseline and Ablation Variant. Our primary baseline for comparison is AttnLRP [2], as it
represents the SOoTA in general transformer XAl, and our method builds on top of it for non-positional



components. The key distinction between our approach and this baseline (as well as other LRP-based
methods) is our ability to attribute relevance to positional information. Our composite approach that
balances both positional and non-positional relevance is denoted as PA-LRP, or *ours’. Additionally,
to isolate the effect of the positional encoding, we introduce an ablation variant denoted by PE Only’,
which directly measures the relevance assigned to positional components at the input space using our
custom attribution rules.

Although empirical evaluation of attribution methods is inherently challenging, we validate our
PA-LRP method using perturbation and segmentation tests. Below, we describe these metrics:

Perturbation Tests. Perturbation tests are split into two metrics: positive and negative perturbations,
which differ in the order in which pixels or tokens are masked. In positive perturbation, pixels or
tokens are masked in descending order of relevance. An effective explanation method identifies the
most influential regions, leading to a noticeable drop in the model’s score (measured in comparison
to the predicted or target class) as these critical areas are gradually removed. In negative perturbation,
masking begins with the least relevant elements and progresses toward more important ones. A
reliable explanation should keep the model’s prediction stable, demonstrating robustness even when
unimportant components are masked. P

Following [3l [41]], in both Vision and im-
age domains, the final metric is quantified us-
ing the Area-Under-Curve (AUC), capturing
model accuracy relative to the percentage of
masked pixels or tokens, from 10% to 90%.
For further technical details, see Appendix [H]

Segmentation Tests. For attribution meth-
ods in vision, segmentation tests are a set of
evaluations used to assess the quality of a
model’s ability to distinguish foreground from
background in an image.

These tests compare the labeled segmentation
image, which indicates whether each pixel
belongs to the background or the foreground,
with the explainability map after it has been bi-
narized using a thresholding technique. Then,
several metrics are computed over both im-
ages: (i) Pixel Accuracy: The percentage
of correctly classified pixels, measuring how
well the predicted segmentation aligns with
the ground truth. (ii) Mean Intersection-over-
Union (mloU): The ratio of the intersection
to the union of the predicted and ground-truth
segmentation maps, averaged across all im-
ages. (iii) Mean Average Precision (mAP):
A metric that considers precision and recall
trade-offs at different thresholds, providing a
robust assessment of segmentation quality.

4.1 Results for Vision Transformers

For vision models, we present both quantita-
tive and qualitative analysis.

Qualitative Analysis. For qualitative anal-
ysis, we visualize the explainability maps ob-
tained from our method, the AttnLRP [2]] base-
line, and the ablation variant that focuses ex-
clusively on PE-associated relevance denoted
by PE Only. Additional examples with larger
images are presented in appendix [C}

(a) (b) (© (d)
Figure 3: Results of different explanation methods
for DeiT. (a) Input image. (b) PA-LRP (ours), which
includes PE attribution. (c) PE only LRP, (d) At-
tnLRP [2]], which does not attribute relevancy to PE.
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Figure [3| presents a comparative visualization of these maps. The results reveal three notable trends.
(i) Effectiveness of PE-associated relevance: The maps from the ablation variant perform at the
same level as the AttnLRP baseline. This finding highlights the strength of our method in identifying
important signals that previous works have overlooked, underscoring the importance of our PA-LRP
rules. (ii) The uniqueness of PE-associated relevance: The attributed signal derived solely from
positional-associated relevance captures unique relationships, exhibiting clearer spatial and structural
patterns. In particular, relevance is distributed across the entire object, especially in the snake,
bird, and shark examples. In contrast, the baseline method, which does not propagate relevance
through PEs, produces a sparser pattern that does not focus on the entire object but instead is highly
selective to specific patches. One possible explanation is that positional-associated relevance better
captures concepts related to position, structure, order, and broader regions within the image. (iii) The
importance of balancing: It is evident that the maps obtained from the PE-associated method and
the baseline are complementary, and their combination, extracted via our approach, provides the most
robust explanations.

Quantitative Analysis. Here, we present our quantitative results through perturbation and segmen-
tation tests.

Perturbation Tests in Vision. The results for perturbation tests are shown in Table[I] where we
compare our method against the attention LRP baseline. Experiments are conducted using three
model sizes: Tiny, Small, and Base.

Notably, our method outperforms the baseline by a significant margin. For instance, in negative
perturbation of the predicted class, our method improves the performance by an average of 3.97
points across the three model sizes. However, in positive perturbation, our method lags behind the
baseline in half of the cases, though by a small margin of at most 1.2 points.

Table 1: Perturbation Tests for DeiT Variants on ImageNet. AUC results for predicted class. Higher
(lower) is better for negative (positive).

M. Size Method Negative 1 Positive |
Predicted Target Predicted Target

Base AttnLRP 52.185 47516 10.784 8.032
Base Ours 54.970 50.174 9918 9.237

Small AttnLRP 50.662 45.105 10.511 9.761
Small Ours 53482 47948 9.135 8477

Tiny AtnLRP 43.832 37499 2.796 2.503
Tiny Ours  50.1241 42.567 3.579 3.214

Segmentation Tests in Vision. As for segmentation tests, the empirical analysis in Tab. 2] clearly
demonstrates that our method outperform the AttnLRP [2] baseline. In particular, our method
improves over the baseline by 1% points in Pixel Accuracy, and 2% points in mIoU (Mean Intersection
over Union). These results further highlight the importance of positionally associated relevance in
effectively capturing spatial relationships and representing entire objects more accurately.

Table 2: Segmentation performance of DeiT variants on ImageNet segmentation [20]]. Higher is
better.

M. Size Method Pixel Acc. T mloU 1

Base AttnLRP 72.204 50.100
Base Ours 72.698 51.400

Small AtmLRP  72.114 50.000
Small Ours 73.060 51.700

Tiny AtnLRP  74.815 52.850
Tiny Ours 76.613 55.920




In our experiments, we followed the same guidelines reported as optimal in AttnLRP [2], specifically,
a combination of the e-rule and the ~-rule. We report additional quantitative results in Appendix [J]
extending our method to the «-/3 propagation rule.

4.2 Results in NLP

For experiments in the NLP domain, we first present results for perturbation tests, including an
ablation study, followed by an assessment of the conservation property. For our tests, we adopt
settings defined in [4} 41} 5]. To demonstrate the general superiority of our method beyond LRP-based
approaches, we extend our evaluation to additional XAl techniques: Integrated Gradients (IG) [34]]
and Slalom [_24] for classification tasks, and IG [34] and SHAP [18] for zero-shot settings. We note
that SHAP is significantly more computationally involved, allowing us to evaluate this method only
for smaller context-sized inputs. We present qualitative results in Appendix. [D}

Table 3: Perturbation Tests in NLP. Evaluation of LLaMa-2 7B and Tiny-LLaMa, finetuned on
IMDB, on pruning and generation perturbation tasks. AttnLRP [2] is the LRP baseline. The metrics
used are AUAC (area under activation curve, higher is better) and AU-MSE (area under the MSE,
lower is better).

Model Method Generation Pruning
AUAC 1 AU-MSE | AUAC1 AU-MSE |
LLaMa-2 7B IG 0.556 24.473 0.556 24.438

LLaMa-2 7B Slalom  0.606 18.375 0.636 7.315
LLaMa-27B  AttnLRP 0.779 7.629 0.777 6.548
LLaMa-2 7B PE Only 0.771 6.792 0.771 6.823
LLaMa-2 7B Ours 0.796 6.521 0.790 6.325

Tiny-LLaMa-2 7B IG 0.637 13.745 0.636 13.770
Tiny-LLaMa-2 7B Slalom  0.611 15.408 0.608 15.666
Tiny-LLaMa-2 7B AttnLRP  0.803 8.065 0.792 4.030
Tiny-LLaMa-2 7B PE Only  0.788 3.918 0.788 3.947
Tiny-LLaMa-2 7B Ours 0.806 4915 0.805 4.082

Perturbation Tests for Finetuned Models. We conduct perturbation tests on two LLMs, finetuned
on the IMDB classification dataset: LLaMa 2-7B [36]], and Tiny-LLaMa [40]]. The results presented
in Table[3]demonstrate that our method achieves better scores than the LRP baseline across all metrics
and models. In particular, our approach improves the AU-MSE score in the generation scenario
by 14.5% for LLaMa 2-7B and 51.41% for Tiny-LLaMa. To examine the effect of quantization on
attributions, we provide additional results for a quantized version of LLaMa 2-7B in Appendix

Perturbation Tests in Zero-Shot Settings We use LLaMa 3-8B [[19] to evaluate explainability
performance in zero-shot setting. The results presented in Table 4] showcase the superiority of
our method across all metrics. (i) Multiple-Choice Question Answering (MCQA): our approach
improves, on both generation and pruning scenarios, the AUAC score by approximately 3.2%, and
AU-MSE score by approximately by 7.7%. (ii) Next Token Prediction: our approach improves the
AUAC score by approximately 0.5% on both generation and pruning scenarios, and AU-MSE score
by approximately by 3% on both scenarios. In contrast to MCQA, the Wikipedia dataset consists
relatively long texts, making shifts in relevancy distributions less critical to the model’s prediction.

Ablation. We conduct perturbation tests for the method that attributes solely positional-associated
relevance. The results are presented in the second, fourth, and sixth rows of TableE], and second row
of Table[5] Surprisingly, this method produces results similar to the AttnLRP baseline, demonstrating
the importance of PE-associated relevance, which carries a significant part of the signal. In particular,
this variant achieves the best score on the AU-MSE metric for Tiny-LLaMA, reducing the error by
50% compared to AttnLRP [2]. Moreover, in Table E], we ablate the contribution of our multi-sink
approach, which is designed to prevent the loss of positional relevance. We evaluate explainability
performance for binary classification of LLaMa-2-7B, using the same perturbation metrics, and report
that the multi-sink approach improves the results by 7%.



Table 4: Ablation Study: Analyzing the contribution of the multi-sink mechanism via perturbation
tests in NLP. The evaluation was conducted on LLaMa-2-7B using the IMDB dataset.

Method Generation Pruning
AUAC T AU-MSE | AUAC 1 AU-MSE |
Ours 0.796 6.521 0.790 6.325

w/o Multi-Sink  0.759 7.124 0.758 7.158

Table 5: Perturbation Tests in NLP (Zero-Shot). Evaluation of LLaMa-3 8B in zero-shot on
generation and pruning perturbation tasks for both multiple-choice question answering and Next-
Token Prediction (NTP) settings. Metrics reported are AUAC (area under activation curve, higher is
better) and AU-MSE (area under MSE, lower is better). “AttnLRP” refers to the LRP baseline [2].
"G’ for generation and "P’ for pruning.

Multiple-Choice Question Answering Next Token Prediction
Method G. AUAC1 G.AU-MSE| P.AUACT P.AU-MSE | G.AUAC?T G.AU-MSE| P.AUAC?T P.AU-MSE |
SHAP 0.291 141.757 0.282 147.229 - - -
1G 0.351 119.984 0.339 123.212 0.481 40.681 0.481 40.750
AttnLRP 0.365 66.399 0.354 68.856 0.559 41.704 0.559 42.003
PE Only 0.374 61.014 0.364 63.141 0.557 40.538 0.556 40.800
Ours 0.377 61.285 0.368 63.424 0.562 40.474 0.561 40.735

5 Discussion: The Role of Attributing PEs

Our theoretical and empirical analysis suggests that both semantic and positional relevance are
complementary, and combining them is essential to provide precise explanations. LRP-type attribution
creates pixel-level heatmaps, but can we characterize and identify which concepts are attributed
mainly by positional relevance versus semantic relevance?

We may expect, for example, that objects that are usually placed in specific contexts (boats on water,
airplanes in the sky) would display a more significant PE component. Much of this position context
is relative. RoPE, for example, captures relative position through the matrix multiplication of two
position-dependent rotation matrices, which plays a fundamental role in capturing spatial features
in vision tasks (e.g., objects spanning across multiple patches) and when modeling relationships
between words in the same sentence in NLP. In such cases, our PA-LRP rules can effectively attribute
positional features, that are largely ignored by standard LRP methods.

6 Conclusions

This paper explores the importance of assigning LRP scores to positional information, a crucial
component of Transformers and LLMs. Our theoretical and empirical analysis demonstrates that
positional-associated relevance carries a unique type of significance and can drastically improve XAI
methods for attention models.

Regarding limitations, we emphasize that our work focuses on designing new custom LRP rules
to propagate relevance through PEs, leveraging the insight that this aspect has been previously
overlooked. However, we do not extend this insight to redesign or systematically revisit existing LRP
rules. Such a redesign could offer an opportunity to empirically and theoretically establish improved
LRP rules for attention mechanisms and Transformer models.
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A Background for Additional PEs

In this appendix, we introduce additional PEs beyond those presented in Section 2]

Relative Positional Bias (RPB). Similar to Alibi, RPB [27] modifies the attention scores by
introducing a learnable bias term that depends on the relative distance between query and key tokens.
For a query at position ¢ and a key at position j, the attention scores are adjusted as follows:

Aij=Aij+ B(li — jl) (10)

where B(i — j) is a learned bias function that depends only on the relative position difference (i — ),
rather than the absolute positions.

Attention with Linear Biases (ALiBi). ALiBi [26] is a positional encoding method designed to
help transformers generalize to longer sequences when trained on shorter ones. Instead of using
explicit positional embeddings, ALiBi modifies attention scores directly by introducing a learned
linear bias that penalizes attention weights based on token distance.

Specifically, for a query token at position j, Alibi adjusts the attention scores as follows:
Aiy = Aig +m(li = jl) (1

where m is a learned or predefined slope that controls how quickly attention strength decays with
distance. Different attention heads can use different slopes, enabling some heads to focus more on
local interactions while others capture long-range dependencies.

B PA-LRP Rules for Alibi

Recall the main modification in the ALiBi computation:

A= Aij+ Py, where P, j = m([i — j|) (12)
Adopting the same approach presented for RoPE, given the relevancy scores of A} ;» denoted by
R(A] ;), we define specialized rules to propagate relevancy from A; ; to the positional terms of
ALiB1 at each layer, namely, indices ¢ and 5. We begin by distributing the relevancy scores between
A; ; and P; ;, using the standard e-rule for addition, giving us:

R(45;)

R(Pij) = Pijo— 5
1,] 3

(13)

We proceed to propagate the relevancy scores R(P; ;) to the positional encoding ¢ and j in a similar

fashion to our rules for ROPE. We make the following observations: (i) m is a constant, resulting in

100% of the relevancy to propagate from P; ; to |i — j|. (ii) Since we are using auto-regressive models,

we get that ¢ > j, allowing us to ignore the absolute value function (iii) The standard e-rule for

addition applies the same of subtraction, as we can express i — j as ¢ + (—75), and also —j = (—1) - j,

and since —1 is constant, we propagate the entire relevancy to j. That gives us:

N R(Pi , N . R(Piy

R(0) =i () = R(-g) = L)

i () +e it () +e

From hereon we adhere to our PA-LRP rules, aggregating the relevance scores of the positional
terms across all layers as employed in Section [3.3]

(14)

C Visualizations - Images

In addition to Figure 3] we provide more examples in Figures |- [6] As previously explained, PE-
associated relevance better highlights the entire object, and overcomes the issue of over-consideration
of the foreground, where extremely high relevancy scores are produced for patches which are more
concerned with semantics or common patterns, like a bird’s beak in the first row in Figure@
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Figure 4: Additional Qualitative Results In Vision. Results of different explanation methods for
DeiT. (a) The input image. (b) PA-LRP (ours), which include PE relevancy attribution. (c) PE only
LRP, (d) AttnLRP [2], which does not attribute relevancy to PE.
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Figure 5: Additional Qualitative Results In Vision. Results of different explanation methods for
DeiT. (a) The input image. (b) PA-LRP (ours), which include PE relevancy attribution. (c) PE only
LRP, (d) AttnLRP [2], which does not attribute relevancy to PE.
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Figure 6: Additional Qualitative Results In Vision. Results of different explanation methods for
DeiT. (a) The input image. (b) PA-LRP (ours), which include PE relevancy attribution. (c) PE only
LRP, (d) AttnLRP [2], which does not attribute relevancy to PE.



D Visualizations - Text

We present qualitative results for NLP in Figure (/] It can be seen that our method demonstrates
better results in highlighting tokens crucial for prediction, along with their surrounding context,
emphasizing it’s superiority to draw relevancy based on both semantics and positionally. In (b) we
see that the amount of artifacts is reduced drastically, with more relevancy channeled to the tokens
essential for prediction ("They should have been giving a tribute to Branagh for bringing us one of
the greatest films of all time").
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88 Great just great ! The WeSt Coast got " Dir ty " Harry Cal la han , the East Coast got Sh ark y . B urt Reyn
olds plays Sh ark y in " Sh ark y * s Machine " and I enjoyed every minute of it . Play ing a ma ver ick n arc ot
ics cop in Atlanta, G A is just what everyone wants . Instead of susp ension , he * s sent to vice squad . Like in
the D irty Harry mov ies or any other cop mov ies , the captain is always going to be the j erk . When I was a
kid , I was curious what that movie meant " Sh ark y * s Machine ". Well I knew who played Sh ark y , I wonder
what his machine was . It was his GROUP of fellow ¢ ops . After un cover ing the murder , he goes all out to
find the per p . When it turns out to be a big time mob b oss , Sh ark y doesn ’ t play around . When he gets the
other prost itute into safety , Sh ark y f ights back hard and good despite losing a finger to the th ug . And I also
like the part where the bad gets blow n out of the building through a plate glass window . That was the B OM
B ! R andy C raw ford > s " St reet Life " really put the movie in the right m ood , and the movie itself is really
a great hit to me , AL WA YS | R ating 4 out of 5 stars |
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88 I went to see Ham let because I was in between jobs . I figured 4 hours would be great , I * ve been a
fan of Bran agh ; Dead Again , Henry V . I was completely over wh el med by the direction , acting , cinemat
ography that this film captured . Like other reviews the 4 hours passes swift ly . Bran agh doesn ’ t play Ham
let , he is Ham let , he was born for this . When I watch this film I > m constantly trying to find fault s, I’ ve
looked at the go of s and haven ’ t noticed them . How he was able to move the camera in and out of the Hall
with all the mirror s is a mystery to me . This movie was shotin 7 0 mil . It * s a shame that Columbia hasn ’
t released a W ides creen version of this on V HS . I own a DVD player , and I’ d take this over T itan ic any
day . So Columbia if you ’ re listening put this film out the way it should be watched [| And I don * t know what
happened at the O sc ars . This should have swe pt Best Picture , Best A ctor , Best D irection , best cinemat
ography . What films were they watching ? I felt sorry for Bran agh at the O sc ars when he did a t ribute to
Shakespeare on the screen . They §liould have been giving a t ribute to Bran agh for bringing us one of the
greatest films of all time |
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(®)
Figure 7: Qualitative Results in NLP. Both groups (a) and (b) present results from different explanation
methods for the same example obtained from the IMDB benchmark. In each group, the first row represents the
AttnLRP baseline, followed by the PE-only variant in the middle, and finally, our maps at the end.
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E Proofs of Lemmas

Lemma 3.1. For input-level PE transformers, the conservation property is violated when disregarding
the positional embeddings’ relevancy scores.

Proof of Lemma[3.1] Let Z be our input representation to the first transformer layer, such that
Z = P+ E, where P and E are the token and positional embeddings, respectively. Let L be the
number of layers in our transformer. Following the conservation property, the sum of the relevancy
scores at any given layer [ should uphold:

ZR(L) _ ZR(l) — ZR@ = ZRZ - Z(RE +Rp) (15)

When ignoring R p, we get the final relevancy attribution map Ry, py¢, such that:

> R =D (Rg+Rp) # R = Rinput (16)
directly violating the conservation property rule O

Lemma 3.2. For attention-level PE transformers, our PE-LRP rules satisfy the conservation property.

Proof of Lemma[3.2] Let M be the number of layers in our Transformer, and L the sequence length.
We denote R() as the relevancy score of the output at layer /. Beginning with R(*) as the the
model’s output propagating relevancy backwards to achieve the final explanation map for the input
embeddings R, we assume that the standard LRP method does not violate conservation, i.e:

Vie[M]: RM =RO =Ry (17)

Recall that for our PE-LRP formulation, we achieve the final explanation map by summing together

the semantic attribution R g, achieved by the standard LRP rules, and the positional relevancy Rg;l.)
distributed across the absorbing sinks at each attention layer [ € [M], giving us the final relevancy

map Rp + 3, Rg). We aim to prove the following:

RO =Rp+ Y RY (18)
l

Each attention layer in the transformer is computed using rotary attention:

- . KT
Vielll:Q; =R;Q;, K;=R;K,;, Rotary Attention(X) = Softmax (?/d» ) V. 19
k

Notice that any computation in this layer which involves more than one tensor, is a matrix multi-
plication function. Adopting the existing baseline, we use the uniform relevance propagation rule,
distributing the relevancy evenly between components. Thus, the relevancy scores of Q, K,V P,
with P denoting the rotation matrix, is equal, and added together to the relevancy of the attention
layer’s output. The absorbing sink mechanism results in the following:

RO =Rg, WieM: RO=RED4LRY (20)
Following this recursion we would get the exact same result as Eq. O

Lemma 3.3. For attention-level PE transformers, current LRP attribution rules achieve low faithful-
ness, especially when considering positional features.

Proof of Lemma We define a basic learning problem which relies solely on positional features,
proving that existing LRP-based explanation methods which don’t propagate relevance through
positional encodings, will not produce faithful explanations. Let us assume we use an auto-regressive
transformer model (e.g GPT), with a single causal self-attention with Alibi PE, and the Value
projection replaced by an affine transformation (instead of a linear layer). Also, for brevity, let us
consider scalar input tokens with sequence length of L = 2, denoted by x, 5. The final model uses
the following keys (K), queries (@), and values (V):

Vie[l,2]: Qi=WqoX;, ,Ki=WgX; Vi=WyX;+b (21)
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We apply the Alibi self-attention mechanism, and obtain the final output O = (01, O2):

. K .
A(i,j) = Q\/g'j +mp(i—j), mp=1, Oz=A1Vi+ As5V> (22)

To prevent the semantic representation from affecting the prediction, an optimal solution to this

problem will assign zeros to Wg, Wi, namely: Q = K = <8) For the Value projection, we

assume: V = W, + b, with W,, = (8> ,b# <8)
Relevance propagation. Following our settings, we get:

A= ((1) 8) , giving us:  Attention(Q, K, V) =AxV = <(1) 8) b (23)
For the backwards relevancy propagation, the relevancy scores of Attention are distrusted between
A and V based on the standard Gradient x Input. Regardless, we now consider how relevancy scores
of both terms Ry, Rscore are propagated back to the input .

* Ry — R,. recall that W, are assigned with zeros. Given that the fundamental e-LRP
rule for affine transformations ignores the bias term completely and uses the weights W, as
a measure of weighting the relevancy scores, we get that zero relevancy scores are produced
for both tokens.

* Ra — Ry;. Following the standard LRP rules, the positional terms would be considered
a constant, and therefor, 100% of the distribution would be directed to the queries and keys.
Given that Wq, Wi are assigned with zeros, we again get zero relevancy scores being
propagated to x.

Given that the relevancy scores propagated back from the attention layer are all assigned with zeros,
we will get a final attribution map of zeroes, indicating the same level of impact for all tokens. This of
course, yields an unfaithful explanation. In contrast, our method makes positional terms attributable,
maintaining relevancy scores that would otherwise be zeroed out due to existing rules. O

21



F Conservation Percentage Results

We measure the sum of relevance for DeiT model at different capacities: Tiny, Small, and Base. The
figure provides clear visualization for the violation of the conservation property, with PE relevancy
constituting 16.75%, 22.39%, and 9.22% out of the total relevancy for Tiny, Small, and Base DeiT
models, respectively.
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Figure 8: We assess both the positional relevance and the non-positional relevance for DeiT models at different
capacities, visualizing the violation of conservation rule, with high non-negligible ratio between the entire
relevance in the models “ours’ and positional-associated relevance "PE Only’.

G Experiments Compute Resources

All experiments were conducted using the PyTorch framework on publicly available datasets and
executed on a single NVIDIA H100-80GB HBM3 GPU, running for at most 12 hours.

H Experimental Setup

PyTorch is used for conducting all of our experiments. We note that while exploring optimal rules for
PE-LRP through theoretical analysis or grid search could further improve our empirical results, we
deliberately chose not to perform hyperparameter tuning for our PE-LRP rules in order to neutralize
the impact of hyperparameter search.

We provide the number of randomly chosen samples used for perturbation evaluation, for each dataset:

* Imagenet: 12,500 samples
* ARC-Easy : 5,200 samples
e Wiki-text: 5,000

IMDB: 5,000
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I Statistical Analysis

We have added comprehensive statistical analyses, including variance measures and paired t-tests,
for the empirical experiments. For the paired t-tests, we compare each baseline with our method,
where each paired comparison is performed on the classification accuracy for each sample across all
perturbation steps. We report the full results in Tables [6H8]

Table 6: Perturbation Tests in NLP. Evaluation of LLLaMa-2 7B and Tiny-LLaMa, finetuned on
IMDB, on pruning and generation perturbation tasks. AttnLRP [2] is the LRP baseline. The metrics
used are AUAC (area under activation curve, higher is better) and AU-MSE (area under the MSE,
lower is better).

Model Method Generation Pruning
AUAC 1 AU-MSE | AUAC 1 AU-MSE |
LLaMa-2 7B IG 0.556 £ 0.03 24.473 +£0.30 0.556 £0.03 24.438 £0.30
(P:0.00,T:24.28)  (P:0.00,T:-37.49)  (P:0.00,T:24.46) (P:0.00,T:24.46)
LLaMa-2 7B Slalom 0.606 £ 0.03 18.375 4+ 0.28 0.636 £0.03 7.315+£0.27
(P:0.00,T:20.91)  (P:0.00,T:-28.64)  (P:0.00,T:17.82)  (P:0.00,T:-27.63)
LLaMa-27B  AttnLRP 0.779 £ 0.05 7.629+0.28 0.777 £0.05 6.548 £0.30
(P:0.02,T:2.29) (P:0.00,T:-13.31) (P:0.00,T:6.47) (P:0.00,T:-12.18)
LLaMa-27B  PE Only 0.771 +£0.03 6.792 +0.20 0.771£0.03 6.823 £0.20
LLaMa-2 7B Ours 0.796 + 0.03 6.521 £+ 0.19 0.790 + 0.03 6.325 £ 0.19
Tiny-LLaMa-2 7B IG 0.637 £ 0.03 13.745 £ 0.24 0.636 £0.03 13.770 £ 0.24
(P:0.00,T:29.25)  (P:0.00,T:-33.88)  (P:0.00,T:29.98)  (P:0.00,T:-34.54)
Tiny-LLaMa-2 7B Slalom 0.611 +£0.03 15.408 £ 0.26 0.608 £0.03 15.666 & 0.26
(P:0.00,T:22.03)  (P:0.00,T:-30.86)  (P:0.00,T:20.67)  (P:0.00,T:-31.20)
Tiny-LLaMa-2 7B AttnLRP 0.803 £ 0.05 8.065 + 0.26 0.792 £0.05 4.030 £0.22
(P:0.00,T:0.57) (P:0.00,T:-29.47) (P:0.01,T:2.49) (P:0.00,T:1.1)
Tiny-LLaMa-2 7B PE Only 0.788 £ 0.03 3.918 £ 0.16 0.788 £ 0.03 3.947 £ 0.16
Tiny-LLaMa-2 7B Ours 0.806 + 0.03 4.915+£0.15 0.805 £ 0.15 4.082 £0.05

Table 7: Perturbation Tests in NLP (Zero-Shot). Evaluation of LLaMa-3 8B in zero-shot on
generation and pruning perturbation tasks for both multiple-choice question answering and Next-
Token Prediction (NTP) settings. Metrics reported are AUAC (area under activation curve, higher is
better) and AU-MSE (area under MSE, lower is better). “AttnLRP” refers to the LRP baseline [2].
"G’ for generation and "P’ for pruning.

Multiple-Choice Question Answering

Next Token Prediction

Method G. AUAC 1 G. AU-MSE | P. AUAC 1 P. AU-MSE | G. AUAC 1 G. AU-MSE | P. AUAC 1 P. AU-MSE |
SHAP 0.291 4+ 0.04 141.757 £ 0.71 0.282 £ 0.04 147.229 £ 0.71 - - -

1G 0.351 +£0.02 119.984 4 0.50 0.339 +0.02 123.212 4+ 0.50 0.481 4 0.04 40.681 +0.59 0.481 £ 0.04 40.750 £ 0.58
(P:0.00,T:4.46)  (P:0.00,T:-64.09)  (P:0.00,T:4.22)  (P:0.00,T:-63.63) (P:0.00,T:16.45)  (P:0.78,T:-0.05)  (P:0.00,T:16.46)  (P:0.96,T:-0.05)

AttnLRP  0.365 +0.04 66.399 + 0.56 0.354 £0.04 68.856 + 0.57 0.559 +0.04 41.704 £ 0.58 0.559 £ 0.04 42.003 £0.58
(P:0.00,T:4.84)  (P:0.00,T:-9.79)  (P:0.00,T:5.43)  (P:0.00,T:-10.33)  (P:0.06,T:1.90)  (P:0.00,T:-21.24)  (P:0.06,T:1.87)  (P:0.00,T:-21.47)

PE Only 0.374 £0.04 61.014 + 0.47 0.364 £ 0.04 63.141 + 0.47 0.557 4 0.04 40.538 £ 0.58 0.556 £ 0.04 40.800 £ 0.58
(P:0.01,T:2.51) (P:0.01,T:2.60) (P:0.01,T:2.69) (P:0.00,T:2.85)  (P:0.00,T:11.74) ~ (P:0.00,T:-3.30)  (P:0.00,T:11.27)  (P:0.00,T:-3.20)

Ours 0.377 + 0.04 61.285 + 0.47 0.368 + 0.04 63.424 4+ 0.47 0.562 + 0.58 40.474 + 0.34 0.561 + 0.04 40.735 + 0.58
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Table 8: Perturbation Tests for DeiT Variants on ImageNet. AUC results for predicted class. Higher
(lower) is better for negative (positive).

M. Size Method Negative 1 Positive |
Predicted Target Predicted Target

Base AttnLRP 52.185 4+ 0.03 47.516 £ 0.01 10.784 £ 0.01 8.032 + 0.00

(P:0.00,T:20.60) (P:0.00,T:14.63) (P:0.00,T:-9.20) (P:0.00,T:7.78)
Base Ours 54.970 £ 0.03 50.174 £ 0.02 9.918 + 0.03 9.237 £0.02
Small AttnLRP 50.662 = 0.03 45.105 £ 0.02 10.511 £ 0.03 9.761 £ 0.02

(P:0.00,T:22.20) (P:0.00,T:17.73) (P:0.00,T:-16.35)  (P:0.00,T:-14.22)
Small Ours 53.482 + 0.03 47.948 + 0.02 9.135 +0.03 8.477 £ 0.02
Tiny AttnLRP 43.832 £ 0.03 37.499 £ 0.02 2.796 + 0.03 2.503 £+ 0.02

(P:0.00,T:53.15) (P:0.00,T:45.70) (P:0.00,T:22.36) (P:0.00,T:20.69)
Tiny Ours 50.1241 £ 0.03 42.567 + 0.02 3.579 £0.03 3.214 £0.02

The results demonstrate that all differences reported in the paper are statistically significant, as
verified using paired t-tests. We observe p < 0.03 figures across all experiments, with most p-values
lower than 10~%. The variance is consistently low, and paired t-tests yield small p-values, while

t-scores are aligned with performance trends.
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J Perturbation Test for Vision Transformer: EpslionGamma vs. AlphaBeta

To evaluate the robustness of our method against other LRP-based rules (Tab. E]), we conduct additional
perturbation experiments for the vision transformer, comparing the settings adopted by AttnLRP [2],
which are considered optimal and utilize a mix between the «y and € rules, with the well-adopted a-3
propagation rule, adopted in various prominent XAl papers (e.g. [14]).

Table 9: Perturbation Tests for DeiT Variants on ImageNet, comparing ~y-¢, and o-3 LRP rules, for AttnLRP 2]
and our method.

M. Size Method Negative 1 Positive |
Predicted Target Predicted Target

Base AttnLRP (o, ) 44.612 40.542 9.172  8.515
Base AtnLRP (¢,v) 52.185 47.516 10.784 8.032
Base Ours (¢, 5) 61.974 55.237 43.557 39.499
Base Ours (¢, ) 54.970 50.174 9918 9.237

Small AtnLRP (o, ) 45.698 40.890 9.822  9.048
Small AttnLRP (¢,7) 50.662 45.105 10.511 9.761
Small Ours (¢, 5) 62.963 55.114 33.651 30.158
Small Ours (€,7) 53.482 47948 9.135 8477

Tiny AtnLRP (¢, 8) 31.297 26962 11.301 9.891
Tiny AttnLRP (¢,v) 43.832 37499 2.796 2.503
Tiny Ours (a, B) 56.925 46.835 29.049 24.468
Tiny Ours (€, 7) 50.1241 42.567 3.579 3.214

The results demonstrate that using the settings presented in AttnLRP [2] (¢, v) provides the optimal
performance for both methods. We underline that while the alpha-beta rule manages to achieve higher
performance for negative perturbation for our method, it is accompanied by a drastic tradeoff with
positive perturbations, which implies that the attribution map is coupled with high level of noise.

K Perturbation Test for Quantized Large Language Transformer

To evaluate the robustness of our method on quantized models (Tab. ['1;0]), we conduct additional per-
turbation experiments for a quantized version of LLaMa 2-7B , finetuned on the IMDB classification
dataset.

Table 10: Perturbation Tests in NLP. Evaluation of quantized LLaMa-2 7B, finetuned on IMDB, on pruning
and generation perturbation tasks. AttnLRP [2] is the LRP baseline. The metrics used are AUAC (area under
activation curve, higher is better) and AU-MSE (area under the MSE, lower is better).

Model Method Generation Pruning
AUAC 1 AU-MSE | AUACT AU-MSE |
LLaMa-2 7B Quantized AtnLRP 0.774 11.348 0.767 10.067
LLaMa-2 7B Quantized PE Only 0.758 10.730 0.758 10.774

LLaMa-2 7B Quantized  Ours 0.785 10.137 0.778 9.685

The results presented in Table [I0]demonstrate that quantization does not affect the effectiveness of
our method, which consistently outperforms the baseline. In particular, our approach improves the
AU-MSE score in the generation scenario by 10.6%.

L Broader Impacts

Our work proposes a novel XAl technique that enhances the explainability of transformer models.
XAl plays a critical role in ensuring the safe and responsible deployment of machine learning systems,
particularly in high-stakes domains such as healthcare, finance, and law. It helps users and researchers
understand, trust, and effectively audit model decisions. In particular, XAl facilitates the detection of
biases, identification of failure modes, and debugging of unintended behaviors. By providing more
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accurate and faithful explanations for transformer-based models, our method contributes to greater
transparency and accountability in DL systems. For all of those reasons, we believe this work will
positively impact both the research community and practical applications by enabling safer and more
interpretable use of powerful language models.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", it is perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper points, in the abstract and introduction, at a critical gap in existing
LRP-based explanation methods for transformers, where positional embeddings are not made
attributable to the model’s final output. The paper’s main contributions encompass analyzing
this discrepancy [T] proposing new specialized rules for attributing positional information [3]
and providing qualitative and empirical results as well as theoretical foundation
[3.4] which establish that it is impossible to achieve faithful explanation without positional-
associated relevance.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In the Conclusions section [6] we explain that while our work focuses on
designing new custom rules for positional relevancy, we did not systematically examined or
redesigned existing propagation rules to be optimal specifically for this kind of relevance
(e.g. examining different rules for adding the positional-associated relevance across all
blocks).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: In Appendix [E] we provide high-quality proofs for the three lemmas pre-
sented in the article [3.4]to ground our contributions theoretically, explaining in detail our
assumptions for each claim.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
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4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Regardless of the code and data provided, the implementation detailed are
fully disclosed and discussed in[3]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide an open-source implementation of our method to facilitate adoption
by the broader research community.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Regardless of the code and data provided, all details necessary to understand
the results derived from our explanation methods are provided.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper proposes novel explanation methods, and for all experiments, we
report the number of examples and datasets used, which are standard in the domain for
assessing statistical significance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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8.

10.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In Appendix |G| we specify compute resources used to run the experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We did our best to follow the code of ethics, including anonymizing our names
in the paper and code.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Yes. See Appendix [[]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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11.

12.

13.

14.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our paper builds upon open-source models, papers, and assets with appropriate
licenses.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide an open-source repository alongside the paper, containing new tools
for explaining transformers, specifically designed for modern LLMs that use attention-level
positional encoding. The code is provided with clear instructions and is well-documented.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human

16.

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: NA
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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