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Overcoming Vocabulary Constraints with Pixel-level Fallback
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Abstract

Subword tokenization requires balancing com-
putational efficiency and vocabulary coverage,
which often leads to suboptimal performance
on languages and scripts not prioritized dur-
ing training. We propose to augment pre-
trained language models with a vocabulary-
free encoder that generates input embeddings
from text rendered as pixels. Through experi-
ments on English-centric language models, we
demonstrate that our approach substantially
improves machine translation performance
and facilitates effective cross-lingual trans-
fer, outperforming tokenizer-based methods.
Furthermore, we find that pixel-based repre-
sentations outperform byte-level approaches
and standard vocabulary expansion. Our ap-
proach enhances the multilingual capabilities
of monolingual language models without ex-
tensive retraining and reduces decoding la-
tency via input compression.

1. Introduction
Subword tokenization is an intrinsic part of the mod-
ern language modeling pipeline (Schuster & Nakajima,
2012; Sennrich et al., 2016; Kudo, 2018). Tokenizers are
trained to strike a balance between computational effi-
ciency and vocabulary coverage. While larger tokenizer
vocabularies offer better input coverage, the expanded
embedding matrix significantly increases resource re-
quirements. Consequently, language models typically
adopt a moderate-sized vocabulary optimized for repre-
sentational efficiency on the training corpus. Byte-level
BPE (Wang et al., 2019; Radford et al., 2019) addresses
the open vocabulary-problem, allowing, in principle, for
the processing of any text without loss of information.
However, fine-grained tokenization, down to the level of

1Anonymous Institution, Anonymous City, Anonymous
Region, Anonymous Country. Correspondence to: Anony-
mous Author <anon.email@domain.com>.
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bytes, can lead to suboptimal performance, a problem
particularly pronounced for languages and scripts that
are underrepresented or absent from the training data
(Muller et al., 2021; Rust et al., 2021; Pfeiffer et al.,
2021).

The effectiveness of most large language models is con-
strained to English and a few high-resource languages
(Touvron et al., 2023b; Jiang et al., 2023; Gemma Team
et al., 2024), limiting the benefits of modern language
technology for millions of users worldwide (van Esch
et al., 2022). Meanwhile, English-centric language
models possess latent linguistic capabilities applicable
across languages (Brinkmann et al., 2025). A viable
alternative to costly training on massive, multilingual
data is thus to adapt pretrained English-centric mod-
els to new languages, leveraging their knowledge and
capabilities (Peters et al., 2019).

Various approaches have been explored to extend lan-
guage models to new languages and scripts, each with
its drawbacks. Vocabulary expansion requires addi-
tional training to align new tokens with existing pa-
rameters (Wang et al., 2020; Chau et al., 2020; Lin
et al., 2024), potentially at the cost of catastrophic
forgetting (McCloskey & Cohen, 1989), especially after
post-training steps such as supervised fine-tuning (SFT)
or direct preference optimization (DPO). Adapter mod-
ules do not address the issue of suboptimal tokenization
(Pfeiffer et al., 2020; 2021; Ansell et al., 2022). Finally,
transliteration sacrifices the original representation and
relies on heuristics which may not be available for all
languages (Durrani et al., 2014; Muller et al., 2021;
J et al., 2024). All of these methods operate within
the vocabulary-based framework and as such remain
limited by its constraints.

We therefore propose augmenting the language model-
ing pipeline with a fallback network, which maps inputs
suboptimally covered by the vocabulary directly into
the embedding space of the language model (Pinter
et al., 2017; Schick & Schütze, 2019), circumventing the
tokenizer. We base our fallback network on the demon-
strated effectiveness of pixel-based language encoding
for vocabulary-free modeling where text is rendered
to an image (Salesky et al., 2021; Rust et al., 2023;
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(a) Proposed pipeline.
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(b) Pixel-based fallback network.

Figure 1. Illustration of our proposed NLP pipeline for Hindi-to-English machine translation. The decoder-only language
model is instructed, encodes the source text using the fallback network, and autoregressively generates an English translation
(left). Inside the fallback network the text is segmented into a list of words, rendered into image patches containing
character bigrams, and projected into patch embeddings zi,j . The encoder outputs single-vector word representations yi,
mapped as input embeddings to the language model (right).

Lotz et al., 2023). Unlike recent approaches focusing
on vocabulary embeddings (Gee et al., 2022; Dobler &
de Melo, 2023; Liu et al., 2024b), the fallback network
does not depend on complex heuristics or model-specific
information. It is language-agnostic by design, and can
be trained end-to-end jointly with any language model.

Since the fallback network exclusively improves input
representations without modifying the vocabulary or
output generation, we evaluate its effectiveness across
tasks involving inputs in unseen scripts. We find that
pixel-based fallback networks allow a 360M-parameter
language model to exceed the performance of a 1.7B-
parameter baseline and similarly push the 1.7B model
beyond a 3.8B one. When trained on identical data,
our pixel-based fallback network consistently outper-
forms standard vocabulary expansion and a byte-based
fallback network. Additionally, the fallback network
reduces inference time by up to 4×, particularly for
larger language models and on languages prone to over-
segmentation, by compressing input sequences. Strong
transfer effects across visually similar scripts further em-
phasize the potential of pixel-based fallback networks
for low-resource language modeling.

2. Proposed Approach
We propose to replace conventional input tokenization
for unseen scripts with input embeddings generated by
an external fallback network. Figure 1 exemplifies the
proposed modeling pipeline in the context of machine
translation with a decoder-only model. First, the lan-
guage model is instructed with a prompt, which is em-
bedded using the model’s vocabulary. Next, the source
text is rendered to an image and encoded by the fall-
back network. The concatenated representations from

both the vocabulary and the fallback network are then
passed to the decoder, which autoregressively predicts
the English translation of the source text. Although
our primary focus is on decoder-only architectures, we
also evaluate fallback networks for encoder-only models,
following the same logic of mapping inputs into the
embedding space of the language model. Importantly,
our approach treats the image-encoded source text the
same as text embeddings, without converting it into
discrete tokens (Rolfe, 2017; van den Oord et al., 2017;
Yu et al., 2024) or connecting the image encoder and
the text decoder via layers of cross-attention (Alayrac
et al., 2022; Li et al., 2023; 2024).

2.1. Fallback Network: A Vocabulary-free
Encoder

Our fallback network is based on an encoder architec-
ture that extends the Vision Transformer (ViT; Doso-
vitskiy et al., 2021) to text rendered as images, similar
to PIXEL (Rust et al., 2023). Following ViT, the ren-
dered image is split into patches x ∈ RN×(P 2· C), where
N is the number of patches, (P, P ) is the resolution
per patch, and C is the number of channels. These
image patches are then linearly projected into patch
embeddings z = xE + Epos, where E ∈ R(P 2· C)×d is
a 2D-convolutional layer with kernel size and stride of
size P , d is the latent dimension size, and Epos ∈ RN×d

are positional embeddings. Because inputs are linear se-
quences of patches rather than full 2D grids, we encode
only horizontal (1D) positional information. Finally,
the patch embeddings are processed through a stack
of Transformer layers (Vaswani et al., 2017). A final
linear layer projects the average over patch encodings
from d to the dimension of the language model input
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Overcoming Vocabulary Constraints with Pixel-level Fallback

embeddings.

The fallback network is designed to function similarly to
a vocabulary lookup, providing non-contextual embed-
dings which the language model can later contextualize.
Specifically, we (1) pretokenize inputs into words,1 (2)
encode words independently of one another, and (3)
apply average pooling over the patch encodings cor-
responding to a word to obtain a single word-level
representation yi ∈ Rd. Two key adjustments enable
the efficient handling of multiple rendered words in a
single forward pass: we concatenate the patches of indi-
vidual words into a single sequence, resetting positional
embeddings at each word boundary; and we restrict
attention so that patches only attend to other patches
within the same word.

Text Compression Average-pooling the encoder rep-
resentations leads to improved downstream efficiency
by compressing subword-level information into a sin-
gle embedding vector, shortening the input sequences
provided to the language model. This advantage is
particularly pronounced for non-Latin scripts prone to
over-segmentation with an English-centric tokenizer.
This compression effectively increases the amount of
content that can fit within a language model’s fixed
context window.

Interleaving Text and Image Representations
The flexibility of our method allows words from the in-
put text to be selectively embedded via the vocabulary
or encoded as visual representations. For instance, non-
Latin segments can be passed to the fallback network,
while Latin (ASCII) segments go through the tokenizer.
This selective encoding enables the language model to
process only those parts of the input that align with its
pretrained vocabulary, delegating more complex seg-
ments to the fallback network. We hypothesize that
interleaving modalities within sentences is particularly
advantageous for tasks involving code-switching, where
a monolingual tokenizer may suboptimally represent
parts of the input that the fallback network can be
trained to handle.

3. Experiments with Decoder-only
Models

To demonstrate the efficacy of our proposed fallback
network, we focus on the task of machine translation
from languages written in non-Latin scripts into En-
glish. Since English-centric models handle English gen-

1Splitting on whitespace is one simple pretokenization
strategy; for languages without clear word boundaries, more
appropriate segmentation methods can be utilized.

eration reliably, this setup clearly isolates the impact
of improved input representation on the downstream
task.

We conduct experiments using three decoder-only lan-
guage models, namely SmolLM2-360M, SmolLM2-1.7B,
and Phi-3-mini (3.8B parameters). These models are
all based on the same underlying architecture (Tou-
vron et al., 2023b) and finetuned for chat applications.
SmolLM2 models have a vocabulary size of 49,152,
whereas Phi-3-mini has 32,064 tokens. The linguistic
capacity of all three models is mostly restricted to En-
glish text (Allal et al., 2025; Abdin et al., 2024). We
follow the language models’ default chat template.

3.1. Data and Experimental Setup

We train the models on parallel data from the OPUS
corpus (Tiedemann, 2012) and evaluate them on the
FLORES+ benchmark (NLLB Team et al., 2022).
Specifically, we consider translations into English from
Hindi (hi), Russian (ru), Spanish (es), Thai (th),
and Ukrainian (uk).2 Additional details are provided
in Table 9 and (Appendix A). Translation quality is
measured using chrF++ (Popović, 2015), a charac-
ter n-gram F -score incorporating word unigrams and
bigrams of the hypothesis with respect to the refer-
ence translation. chrF++ is the standard primary
metric for assessing performance on FLORES bench-
marks (Goyal et al., 2022; NLLB Team et al., 2022;
Costa-jussà et al., 2024).

We render input text as images using the PangoCairo
rendering software,3 segmenting each word into patches
containing character bigrams, following Lotz et al.
(2023). Based on preliminary experiments, we apply
a sliding window with one-character overlap between
patches, analogous to overlapping frames in speech
modeling. For instance, the word Happy is segmented
into patches of: Ha , ap , pp , and py .4 We use
the Google Noto font family for comprehensive script
coverage.5 Following Salesky et al. (2023), each patch
is rendered as a 24 × 24 pixel image at 120 DPI with a
font size of 10.

We constrain the fallback network to fewer than 100M
parameters, approximately matching the embedding
layer of SmolLM2-1.7B and Phi-3-mini. Based on
preliminary experiments, we select a 92M-parameter
configuration with nlayers = 4, dmodel = 1536, and

2We word-tokenize Thai with DeepCut (Kittinaradorn
et al., 2019) for fallback network modeling.

3https://docs.gtk.org/PangoCairo
4Not illustrated in Figure 1 for simplicity.
5https://fonts.google.com/noto
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hi→en ru→en th→en
base vocab+ bytes pixels base vocab+ bytes pixels base vocab+ bytes pixels

SmolLM2-360M 53.2 48.3 53.2 56.8 53.9 53.0 55.0 56.0 36.5 34.8 46.9 48.6
SmolLM2-1.7B 56.8 54.4 57.6 59.0 57.0 56.7 57.4 57.8 40.4 39.4 50.2 52.1
Phi-3-mini 57.3 54.7 59.5 60.9 57.9 57.8 57.8 58.2 51.1 50.4 52.0 53.1

Table 1. chrF++ scores for xx→en translation after finetuning for one epoch.

nheads = 16. Section 3.6 explores alternative fallback
network configurations.

Following the standard pretrain-then-finetune
paradigm (Li et al., 2020), training proceeds in two
stages: first, we pretrain the randomly initialized
fallback network while freezing the language model,
aligning the fallback network features to the language
model (Peters et al., 2019; Kumar et al., 2022; Ren
et al., 2023); next, we perform joint finetuning on
the downstream task. During finetuning, we apply
parameter-efficient updates using Weight-Decomposed
Low-Rank Adaptation (DoRA; Liu et al., 2024a),
employing reduced rank for the decoder and full rank
for the fallback network. The maximum sequence
length of the fallback network is 529 patches. The
learning rate is linearly warmed up to 3 × 10−4 during
the first 10% of training, followed by cosine decay to
3 × 10−5. Additional experimental details are provided
in Table 10 (Appendix A). Results for all experiments
are averaged over three runs. Standard deviations are
reported in Appendix B.

3.2. Competing Methods

We evaluate the pixel-based fallback network (pixels)
against default model tokenization (base), vocabulary
expansion (vocab+), and a byte-based fallback net-
work (bytes).

Vocabulary Expansion To improve the language
coverage of the language model, we train a new to-
kenizer and merge it into the original one, V+ =
Vbase ∪ Vnew. Specifically, we train another byte-level
BPE tokenizer with a vocabulary size of 32k on either
Hindi, Russian, or Thai. This results in expanded vo-
cabulary sizes falling between the typical 30k-60k range
of monolingual models (Brown et al., 2020; Touvron
et al., 2023a) and the 100k+ token range of multilingual
models (BigScience Workshop et al., 2023; Chowdhery
et al., 2023; Dubey et al., 2024). This adds approxi-
mately 25M parameters to SmolLM2-360M, 50M pa-
rameters to SmolLM2-1.7B, and 90M parameters to
Phi-3-mini. Following common practice, we randomly
initialize the new vocabulary embeddings (Choi et al.,

2024; Yamaguchi et al., 2024). Training is done in two
stages, with the new embeddings being pretrained in a
first stage, followed by a stage of model finetuning, for
a fair comparison to the fallback network.

Byte-based Fallback Network Vocabulary-free
modeling can alternatively be achieved by represent-
ing text at the byte level (Xue et al., 2022; Yu et al.,
2023; Kallini et al., 2025), decomposing inputs into a
discrete set of 256 embeddings. Unlike byte-level BPE,
which uses byte sequences as subword units, treating
text atomically as individual bytes enables complete
vocabulary coverage without a large embedding matrix.
However, byte-based modeling significantly increases
sequence lengths, as each character may require multi-
ple bytes depending on its Unicode encoding (Libovický
et al., 2022). For instance, the source text shown in
Figure 1 occupies six image patches but requires 59
bytes to represent. For byte-based fallback encoding,
the maximum sequence length of the fallback network
is therefore extended to 2048 bytes, significantly in-
creasing GPU memory requirements.

To compare pixels to bytes as basis for vocabulary-free
encoding, we train parallel fallback networks differing
only in input modality and corresponding embedding
layers.6 Conceptually, this sets up a key trade-off for
the fallback network: byte-level inputs yield longer
sequences drawn from a discrete input space, whereas
pixel-based inputs produce shorter sequences character-
ized by a continuous representation. This comparison
also quantifies the benefit to the language model de-
rived from the added encoder capacity of the fallback
network.

3.3. Machine Translation Results

Translation performances after one epoch of pretraining
and finetuning are shown in Table 1. We observe that
pixel-based representations (pixels) consistently out-
perform the other methods, including the byte-based
fallback network (bytes), with differences exceeding

6The embedding layer within the fallback network com-
prises 13M parameters for pixel-based encoding and 11M
parameters for byte-based encoding.
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Only uk→en ru→en then uk→en es→en then uk→en th→en then uk→en
Steps base* bytes* pixels* base bytes pixels base bytes pixels base bytes pixels

SmolLM2-360M
10 18.8 11.7 13.3 21.1 25.6 31.2 18.9 15.0 14.6 19.9 14.6 13.5
50 23.3 12.9 13.4 24.5 34.2 40.2 23.3 16.8 20.9 23.5 16.8 18.0

100 26.0 15.4 15.2 26.8 39.2 44.4 25.9 19.3 29.8 25.9 18.6 25.0
1000 38.9 19.3 41.6 40.1 49.6 52.6 39.1 46.1 50.6 39.3 42.5 49.1

SmolLM2-1.7B
10 35.7 5.3 8.3 39.8 30.1 35.9 36.5 15.1 14.9 36.5 14.9 15.2
50 42.2 14.7 14.3 44.0 39.6 45.5 42.6 17.0 22.9 41.5 17.3 20.9

100 43.8 15.8 15.8 45.9 44.0 48.9 44.1 20.7 34.2 43.7 19.8 30.4
1000 51.2 27.0 46.9 52.1 53.2 55.7 51.1 48.9 53.2 51.5 46.7 52.4

Phi-3-mini
10 43.3 9.5 11.3 44.4 30.3 12.4 41.6 14.1 13.0 43.9 13.3 12.7
50 49.8 15.3 14.9 49.1 46.8 51.1 48.5 20.6 29.0 49.2 18.5 26.1

100 51.2 17.0 15.7 50.8 50.3 53.8 50.2 31.3 44.2 50.7 27.2 41.7
1000 56.6 36.1 54.5 56.6 57.5 58.8 55.8 55.4 57.3 56.1 54.0 56.9

Table 2. chrF++ scores on uk→en translation after k training steps, starting from weights initially trained on xx→en.
The “Only uk→en” setting involves no prior training.

multiple run-to-run standard deviations (Table 14). Vo-
cabulary expansion (vocab+) falls below even default
tokenizer modeling (base), likely due to insufficient
training to effectively integrate the newly added vo-
cabulary tokens in this setup (Yamaguchi et al., 2024;
Zhao et al., 2024). The SmolLM2-360M model par-
ticularly benefits from the fallback network, showing
improvements ranging from 2 to 12 points. Notably,
pixel-augmented SmolLM2-360M surpasses the larger
SmolLM2-1.7B baseline on th→en (48.6 vs. 40.4), a
trend also evident between SmolLM2-1.7B and Phi-3-
mini (52.1 vs. 51.1).

3.4. Cross-lingual Transfer Results

To evaluate how effectively pixel-based representations
facilitate positive language transfer (Conneau et al.,
2020; Chau et al., 2020; Pfeiffer et al., 2021), particu-
larly relevant for low-resource scenarios, we pretrain the
fallback networks on 11M samples of ru→en, es→en,
or th→en, and subsequently finetune on uk→en for
k steps, where the number of steps simulates con-
straints on available training data. As a comparison,
we follow the same procedure for continued training of
the language model embedding matrix. We compare
performance to default modeling without continued
embedding training (base*) and setups without fall-
back network pretraining (pixels*, bytes*). We omit
comparisons to vocabulary expansion due to its non-
competitive effectiveness in Section 3.3.

Table 2 shows that integrating a pixel-based fallback
network generally yields the strongest transfer effects,
particularly benefiting the SmolLM2-360M model. We
attribute this improvement to the ViT’s convolutional
layer, which embeds inputs directly at the pixel level
and enables updates to all encoder parameters at each
training step. This promotes cross-lingual transfer as
the fallback network can exploit shared visual cues
among languages (Rahman et al., 2023; Salesky et al.,
2023), and most notably so with pretraining on Russian,
which uses the same script as Ukrainian (Cyrillic.)
Positive transfer for bytes with Russian likely arises
from the overlap in byte sequences encoding Cyrillic
characters.

3.5. Cross-task Transfer Results

Beyond machine translation, we evaluate the potential
of transfer across tasks by adapting a fallback network
pretrained for hi→en machine translation (from Sec-
tion 3.3) to topic classification on the 10 languages from
the SIB200 dataset (Adelani et al., 2024) written in
the Devanagari script. Since pixel-based augmentation
consistently outperformed the byte-based alternative in
prior experiments, we now focus exclusively on pixels.
See Table 11 (Appendix A) for experimental details.

Table 3 compares test set accuracies from finetuning
the three language models with default tokenization
(base) and with our fallback network (pixels). We
find that augmenting Phi-3-mini results in reduced
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base pixels
SmolLM2-360M

Hindi 41.0 78.1
Avg. Deva. 40.1 65.1

SmolLM2-1.7B
Hindi 70.8 77.0
Avg. Deva. 70.0 72.2

Phi-3-mini
Hindi 72.5 70.3
Avg. Deva. 69.3 45.6

Table 3. Topic classification.

performance, potentially due to the fallback network
overfitting during its machine translation pretraining.
The SmolLM2 models, on the other hand, consistently
benefit from the augmentation, especially so on the
Hindi articles.

3.6. Efficiency Analysis

We observe that the relative computational overhead
during training, introduced by the fallback network,
varies with model scale and decreases for larger models
(Table 4, based on experiments in Section 3.3). Al-
though the first generation step incurs increased com-
putational cost (measured in FLOPs), subsequent steps
reuse cached fallback encodings. Crucially, for a similar
number of generated tokens (“Gen len”), the shorter
input sequences from fallback network compression sig-
nificantly reduce total sequence-level inference time,
particularly for Phi-3-mini and on Thai. On the FLO-
RES+ dev set, the fallback network leads to average
compression ratios for Hindi, Russian, and Thai of 5.1,
4.7, and 8.6, respectively, relative to the SmolLM2 tok-
enizer, and 5.1, 2.2, and 5.1 relative to the Phi-3-mini
tokenizer.

To address the higher relative overhead incurred by the
SmolLM2 models, we evaluate performance after ma-
chine translation pretraining on hi→en for one epoch
using scaled-down fallback network configurations (Ta-
ble 5). Even at reduced capacity, the fallback networks
largely retain their performance, indicating that the
demonstrated benefits of pixel-augmented modeling are
achievable at a reduced cost.

4. Interleaving Images and Text
The flexibility to interleave visual and textual repre-
sentations is broadly relevant in multimodal scenarios
such as multi-image applications and visual storytelling
(Li et al., 2025). To explore this flexibility within our
proposed framework, we evaluate performance on a

machine translation task involving Hindi-English code-
switched source text and English target text from
Tarunesh et al. (2021). When interleaving representa-
tions, ASCII text is embedded using the vocabulary,
while all other segments are delegated to the hi→en
pretrained fallback network from Section 3.3. We com-
pare the performance of interleaved modeling against
default tokenization and uni-modal pixel processing,
with which the entire input sequence is encoded by
the fallback network. See Table 12 (Appendix A) for
experimental details.

Results Table 6 shows that the fallback network
again offers considerable gains over tokenization. Yet,
mixing input modalities (pixelsH#) at best leads to the
same performance as encoding the entire input via the
fallback network (pixels). While the majority of the
code-switched source text is indeed in Hindi (75%), this
result raises questions about how compatible the two
latent representation spaces are. Intuitively, handling
English text via the tokenizer should be easier than
having the fallback network learning a new language,
especially given the limited amount of training data.
We next explore this observation.

Modality Gap We hypothesize that a disconnect
between the latent spaces of images and text limits ef-
fective utilization of both modalities within a sequence.
We therefore train a linear classifier on the FLORES+
dev set to distinguish Hindi words encoded by the
hi→en fallback network from English words embedded
by the vocabulary. The classifier achieves perfect ac-
curacy on a held-out subset, indicating fully disjoint
latent spaces (Wang & Isola, 2020; Shi et al., 2023).
Additionally, we measure the distance between the cen-
ters of these spaces (Liang et al., 2022), ||µI − µT ||2.
For SmolLM2-360M this distance is 40.7.

While it is unclear whether narrowing this gap would
lead to better downstream performance (Al-Jaff, 2023;
Yaras et al., 2024; Fahim et al., 2025), as the gap might
arise from learning dynamics rather than representation
quality, we propose new pretraining strategies aimed
at better aligning image and text representations to
facilitate effective mixed-modality modeling: mixing
input representations during pretraining of the fallback
network and employing an auxiliary loss based on word
alignments.7

Pretraining on Modality-switched Data We ex-
plore two distinct pretraining strategies on the hi→en

7All fallback networks in this section share the same
initialization, as initial randomness could affect the repre-
sentation space (Liang et al., 2022).
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Train (s) Gen (s) Gen len FLOPs
SmolLM2 360M

hi→en 1.74 0.96 0.97 1.41
ru→en 1.76 0.98 0.98 1.41
th→en 1.75 0.61 0.88 1.41

SmolLM2 1.7B
hi→en 1.42 0.92 1.00 1.09
ru→en 1.43 0.97 1.00 1.09
th→en 1.42 0.68 0.93 1.09

Phi-3-mini
hi→en 1.18 0.36 0.98 1.05
ru→en 1.19 0.40 1.00 1.05
th→en 1.19 0.26 0.98 1.05

Table 4. Metric ratios (pixels/base).

nparams nlayers dmodel nheads hi→en
SmolLM2 360M

92M 4 1536 16 43.8
65M 6 960 12 43.1
27M 2 960 12 41.5

SmolLM2 1.7B
92M 4 1536 16 51.8
51M 4 1024 16 50.8
31M 2 1024 16 50.1

Table 5. Fallback network configurations. Performance is
measured as hi→en translation quality after one epoch of
pretraining when only updating the network parameters.

base pixelsH# pixels
SmolLM2-360M 32.7 43.3 43.3
SmolLM2-1.7B 42.3 45.8 45.8
Phi-3-mini 44.9 45.9 47.8

Table 6. chrF++ scores on Hindi–English code-switched
data. “H#” indicates mixed-input-modality sequences.

machine translation data. (1) We obtain word align-
ments between source and target text in the hi→en
data and use those to synthesize code-switched data
with the methodology outlined in Jalili Sabet et al.
(2020), based on XLM-Rlarge (Conneau et al., 2020),
matching the downstream Hindi-English ratio of 75:25
(synthesized). (2) We extend the former approach by
adding modality-indicating prefix tokens (Wang et al.,
2024; Nguyen et al., 2025; Tschannen et al., 2025) to
explicitly mark segment modality (prefix).

Auxiliary Alignment Loss Related work has found
explicit signals to aid the alignment of untied embed-
ding spaces (Minixhofer et al., 2024). We therefore
propose to include an auxiliary training objective dur-
ing pretraining that forces the fallback network h(wk)
to mimic the vocabulary embeddings ewk

for aligned
words (Pinter et al., 2017)

Lalign = 1
n

n∑
k=1

||h(wk) − ewk
||22 .

Based on the word alignments from pretraining
with modality-switched data, we combine Lalign with
the cross entropy loss LCE to obtain the new loss
(alignment).

L = LCE + Lalign .

∥µI − µT ∥2 pixelsH#

synthesized 77.3 42.5
prefix 126.8 37.4
alignment 2.6 38.4

Table 7. Distance between latent-space centers and down-
stream performance on mixed-modality sequences. All
experiments use SmolLM2-360M.

Results Using Alignment Strategies Table 7
shows that none of the proposed strategies outperform
the baseline from Table 6 (43.3). In all settings, we
again find that a linear classifier can perfectly separate
the two modalities. Notably, pretraining and finetun-
ing with prefix tokens (prefix) reduces the distance
between centers (2.6 vs. 40.7) but leads to substan-
tially worse performance. These findings indicate that
neither simple alignment strategies nor reducing latent-
space distance alone effectively improves performance
or bridges the latent spaces. Future work could explore
more sophisticated methods for effectively interleaving
text and image representations.

5. Experiments with Encoder-only
Models

To explore whether the benefits of a pixel-based fall-
back network generalize to different architectures, we
experiment with BERT (Devlin et al., 2019), which un-
like BPE-based models suffers from out-of-vocabulary
constraints on unseen scripts (Rust et al., 2021). By-
passing the tokenizer with a fallback network avoids
potential [UNK] token substitution and thereby loss
of information. Specifically, we augment BERTbase
with a 24M-parameter pixel-based fallback network.8
We evaluate on named entity recognition in Indic lan-

8nlayers = 4, dmodel = 768, and nheads = 12.
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|θ| bn gu hi kn ml mr or pa ta te Avg.
mBERTbase 179M 77.5 78.7 79.7 76.5 78.6 79.1 23.8 68.1 67.5 79.5 70.9
BERTbase 110M 62.2 24.3 62.5 25.7 32.0 65.7 23.8 13.1 15.2 26.8 35.1
BERT+pixels* 134M 69.8 73.5 74.9 71.1 71.0 76.5 24.6 65.8 51.6 73.1 65.2
BERT+pixels 134M 66.8 72.7 – 72.4 72.8 75.3 26.4 63.7 57.3 71.8 64.4
BERTlarge 340M 62.6 24.3 63.7 25.6 31.8 66.5 22.7 13.6 15.3 25.8 35.2
BERT [UNK]% 9.4% 85.6% 14.8% 81.0% 79.5% 11.4% 85.8% 85.4% 62.7% 80.6% 59.6%
mBERT [UNK]% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 85.8% 0.2% 0.0% 0.0% 8.6%

Table 8. Test set F1 scores for BERT models on Naamapadam. |θ| denotes parameter count. The bottom two rows report
the proportion of [UNK] tokens for BERT and mBERT.

guages from the Naamapadam dataset (Mhaske et al.,
2023),9 a semantic sequence-level classification task.
The models are fully finetuned, encoding the entire
input via the fallback network. We compare perfor-
mance with a randomly initialized fallback network
(BERT+pixels*) and after pretraining on the Hindi
portion of the dataset (BERT+pixels).

Table 8 shows that integrating a fallback net-
work substantially alleviates BERT’s representational
limitations, outperforming the equally constrained
BERTlarge. For these tasks, pretraining the fallback
network provides no additional benefit, likely because
finetuning on enough data sufficiently adapts these
smaller models to a comparatively simpler task than
open-ended text generation (Liang et al., 2023). How-
ever, BERT+pixels*, while competitive, does not sur-
pass the multilingual mBERT, which was pretrained
on 104 languages. We observe a significant correlation
between the proportion of [UNK] tokens and the gap
in performance between BERT and BERT+pixels*.10

These findings reinforce that pixel-based fallback net-
works provide an effective approach to overcoming the
vocabulary constraints of monolingual models in multi-
lingual scenarios.

6. Related Work
In multilingual modeling, computational constraints
often prohibit adequately representing a large num-
ber of languages (Conneau et al., 2020; Rust et al.,
2021). Such vocabulary constraints result in lower
downstream performance for languages underrepre-
sented during pretraining (Bostrom & Durrett, 2020;
Toraman et al., 2023; Fujii et al., 2023). Recent ap-
proaches to vocabulary-free NLP typically fall into one
of two categories: byte-based or pixel-based methods.

9We exclude Assamese since its run-to-run variance
across all models exceeds that of the other languages by
more than an order of magnitude.

10Pearson correlation r = 0.67, p < 0.05.

While overlapping byte sequences are not necessarily se-
mantically related (Choi et al., 2024; Cui et al., 2024),
shared sequences can enhance robustness and facili-
tate cross-lingual transfer via parameter sharing (Xue
et al., 2022). De Souza et al. (2024) rely on bytes
for quantifying also the language-agnostic component
to cross-lingual transfer. To alleviate the overhead
from modeling non-Latin characters as bytes (Arnett
et al., 2024), patch-based and dynamic token-merging
strategies can improve the computational efficiency
(Yu et al., 2023; Kallini et al., 2024). As a promis-
ing outlook, ByteLatent Transformer (Pagnoni et al.,
2024) and EvaByte (Zheng et al., 2025) demonstrate
comparable performance to subword LLMs.

Recent advances in pixel-based language modeling have
demonstrated visual language understanding through
pixels alone (Lee et al., 2023), and that a single encoder
can effectively handle both text and image modalities
(Tschannen et al., 2023). Our work builds upon the
concept of a general-purpose pixel-based language en-
coder introduced in PIXEL (Rust et al., 2023). Lotz
et al. (2023) further explored text rendering strategies
for PIXEL to reduce input redundancy, while recent
efforts by Chai et al. (2024) and Tai et al. (2024) in-
vestigated autoregressive pretraining directly on pixel
representations, with Chai et al. (2024) finding benefits
to multimodal over unimodal (text or image) pretrain-
ing. Additionally, Salesky et al. (2021; 2023) trained
encoder-decoder models for machine translation using
pixels as inputs. In contrast, our approach enables
pretrained and post-trained language models to ben-
efit from pixel-based modeling without altering the
underlying language model weights.

7. Conclusion
We introduced a fallback network that alleviates the
vocabulary constraints of monolingual language models
in multilingual settings by encoding text as pixels. Our
experiments show that pixel-based encodings outper-
form default tokenization, standard vocabulary expan-
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sion, and byte-based methods, resulting in improved
performance, shorter input sequences, and faster decod-
ing compared to modeling without a fallback network.
Notably, a pixel-augmented 360M-parameter model
can surpass an unmodified 1.7B-parameter baseline
on machine translation. Our fallback network also
enables effective cross-task transfer, and cross-lingual
transfer based on visual similarities between scripts.
Interleaving text and image representations is an ex-
citing direction and future work could explore more
sophisticated methods for effectively and seamlessly
mixing modalities within a sequence.

Impact Statement
This paper presents a method to enhance the multilin-
gual capabilities of existing English-centric language
models by representing text written in non-Latin scripts
as images. Our work aims to make powerful language
technologies more accessible and effective for a wider
range of languages, especially those currently under-
served by modern AI. By enabling models to process
languages without needing to be retrained with mas-
sive multilingual datasets, this approach could lower
the barrier for developing NLP tools for low-resource
languages, benefiting millions of users worldwide.
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Coavoux, M., Singh, M., Jiang, M. T.-J., Vu, M. C.,
Jauhar, M. A., Ghaleb, M., Subramani, N., Kassner,
N., Khamis, N., Nguyen, O., Espejel, O., de Gibert,
O., Villegas, P., Henderson, P., Colombo, P., Amuok,
P., Lhoest, Q., Harliman, R., Bommasani, R., López,
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A. Training Details

Language ISO 639-1 Language Family Script
Bengali bn Indo-Aryan Bengali
English en Indo-European Latin
Gujarati gu Indo-European Gujarati
Hindi hi Indo-European Devanagari
Kannada kn Dravidian Kannada
Malayalam ml Dravidian Malayalam
Marathi mr Indo-European Devanagari
Oriya or Indo-European Oriya
Punjabi pa Indo-European Gurmukhi
Russian ru Indo-European Cyrillic
Spanish es Indo-European Latin
Tamil ta Dravidian Tamil
Telugu te Dravidian Telugu
Thai th Kra-Dai Thai
Ukrainian uk Indo-European Cyrillic

Table 9. Overview of languages used in our experiments.

Pretrained language model weights are downloaded from Hugging Face.11,12,13

11https://huggingface.co/HuggingFaceTB/SmolLM2-360M-Instruct
12https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct
13https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
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Parameter Value
Optimizer AdamW (Loshchilov & Hutter, 2019; Kingma & Ba, 2015)
Adam β (0.9; 0.999)
Adam ϵ 1 × 10−8

Weight decay 0.0
Dropout probability 0.0
Maximum source length 256
Maximum target length 256
Learning rate schedule Cosine Decay (Loshchilov & Hutter, 2017)
Warmup ratio 10%
Peak learning rate 3 × 10−4

Minimum learning rate 3 × 10−5

Batch size SmolLM2: 256; Phi-3-mini: 512
Number of training samples in 1 epoch Hindi: 14M, Russian: 14M, Spanish: 14M, Thai: 11M
(DoRA) Rank r 32
(DoRA) α 64
(DoRA) dropout 0.05
(DoRA) Modules Q, K, V, O and fallback network or LM embedding matrix
Beam size 2
Length penalty 1.0
Repetition penalty 1.0
Temperature 1.0
Top-K sampling 50
Top-P sampling 1.0

Table 10. Parameters and their values for the machine translation experiments in Section 3.3 and 3.4. The top section
covers training and the bottom covers inference.

Parameter Value
Batch size 64
Max number of epochs 10
Early stopping ✓

Table 11. Parameters and their values for the topic classification experiments in Section 3.5. Only the batch
size and and number of epochs are different from the experiments in Section 3.3 and 3.4. We apply early
stopping to check for convergence before the maximum number of epochs. We instruct the models using
the template: Would you classify the topic of this article as "science/technology", "travel", "politics",
"sports", "health", "entertainment", or "geography"? {INPUT}.

Parameter Value
Batch size 64
Epochs 2 (342 steps)

Table 12. Parameters and their values for the code-switching experiments in Section 4. Only the batch size and and number
of epochs are different from the experiments in Section 3.3 and 3.4.
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Parameter Value
Optimizer AdamW
Adam β (0.9; 0.999)
Adam ϵ 1 × 10−8

Weight decay 0.0
DoRA dropout 0.05
Maximum sequence length 192
Learning rate schedule Linear Decay
Warmup steps 1000
Learning rate 3 × 10−4

Batch size 64
Max number of training samples 100,000
Max steps 15,000
Eval steps 500
Early stopping ✓

Table 13. Parameters and their values for the NER experiments in Section 5.
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B. Detailed Experimental Results
Standard deviations are reported using subscript notation.

hi→en ru→en th→en
base vocab+ bytes pixels base vocab+ bytes pixels base vocab+ bytes pixels

SmolLM2-360M 53.20.36 48.30.26 53.20.13 56.80.49 53.90.12 53.00.17 55.00.12 56.00.18 36.50.22 34.80.05 46.90.41 48.60.18
SmolLM2-1.7B 56.80.15 54.40.41 57.60.08 59.00.10 57.00.13 56.70.17 57.40.08 57.80.09 40.40.18 39.40.04 50.20.10 52.10.16
Phi-3-mini 57.30.14 54.70.22 59.50.13 60.90.20 57.90.13 57.80.03 57.80.11 58.20.12 51.10.26 50.40.32 52.00.37 53.10.35

Table 14. Copy of Table 1 including standard deviations.

Only uk→en ru→en then uk→en es→en then uk→en th→en then uk→en
Steps base bytes* pixels* base bytes pixels base bytes pixels base bytes pixels

SmolLM2-360M
10 18.80.18 11.71.61 13.30.25 21.10.23 25.60.16 31.20.18 18.90.63 15.00.05 14.60.16 19.90.16 14.60.21 13.50.21
50 23.30.14 12.90.36 13.40.35 24.50.29 34.20.10 40.20.17 23.30.18 16.80.11 20.90.06 23.50.03 16.80.13 18.00.09

100 26.00.15 15.40.20 15.20.11 26.80.09 39.20.06 44.40.07 25.90.14 19.30.11 29.80.07 25.90.18 18.60.11 25.00.25
1000 38.90.16 19.30.13 41.60.91 40.10.15 49.60.08 52.60.08 39.10.46 46.10.38 50.60.18 39.30.50 42.50.32 49.10.32

SmolLM2-1.7B
10 35.70.31 5.31.29 8.30.31 39.80.28 30.10.13 35.90.11 36.50.37 15.10.22 14.90.09 36.50.20 14.90.13 15.20.17
50 42.20.25 14.70.28 14.30.60 44.00.37 39.60.29 45.50.11 42.60.31 17.00.03 22.90.22 41.50.01 17.30.06 20.90.03

100 43.80.26 15.80.27 15.80.29 45.90.07 44.00.10 48.90.13 44.10.42 20.70.36 34.20.10 43.70.48 19.80.18 30.40.13
1000 51.20.27 27.00.26 46.90.17 52.10.18 53.20.40 55.70.15 51.10.34 48.90.03 53.20.13 51.50.32 46.70.07 52.40.12

Phi-3-mini
10 43.30.04 9.50.57 11.30.54 44.40.25 30.31.01 12.40.98 41.60.02 14.10.33 13.00.54 43.90.41 13.30.40 12.70.50
50 49.80.16 15.30.05 14.90.08 49.10.42 46.80.34 51.10.29 48.50.33 20.60.23 29.00.96 49.20.09 18.50.18 26.10.29

100 51.20.12 17.00.09 15.70.56 50.80.28 50.30.33 53.80.29 50.20.16 31.30.21 44.20.24 50.70.16 27.21.09 41.70.06
1000 56.60.17 36.10.52 54.50.09 56.60.03 57.50.13 58.80.21 55.80.15 55.40.16 57.30.16 56.10.21 54.00.14 56.90.15

Table 15. Copy of Table 2 including standard deviations.

base pixels
SmolLM2-360M

Hindi 41.02.32 78.13.19
Avg. Deva. 40.1 65.1

SmolLM2-1.7B
Hindi 70.80.75 77.01.30
Avg. Deva. 70.0 72.2

Phi-3-mini
Hindi 72.51.30 70.31.72
Avg. Deva. 69.3 45.6

Table 16. Copy of Table 3 including standard deviation.
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base pixelsH# pixels
SmolLM2-360M 32.70.06 43.30.08 43.30.22
SmolLM2-1.7B 42.30.09 45.80.24 45.80.33
Phi-3-mini 44.90.10 45.90.17 47.80.17

Table 17. Copy of Table 6 including standard deviations.

||µI − µT ||2 pixelsH#

synthesized 77.3 42.50.37
prefix 126.8 37.40.02
alignment 2.6 38.40.16

Table 18. Copy of Table 7 including standard deviations.

|θ| bn gu hi kn ml mr or pa ta te Avg.
mBERTbase 179M 77.51.12 78.70.74 79.71.02 76.51.27 78.60.16 79.10.77 23.82.34 68.10.50 67.50.10 79.50.76 70.9
BERTbase 110M 62.20.42 24.30.70 62.50.56 25.71.31 32.00.57 65.70.63 23.82.36 13.10.62 15.20.88 26.80.32 35.1
BERT+24M* 134M 69.81.01 73.51.13 74.90.10 71.11.33 71.01.25 76.50.32 24.62.44 65.80.59 51.62.20 73.12.74 65.2
BERT+24M 134M 66.81.01 72.70.60 – 72.40.09 72.80.72 75.30.86 26.41.00 63.70.88 57.30.15 71.80.62 64.4
BERTlarge 340M 62.60.60 24.30.79 63.70.43 25.61.67 31.80.43 66.51.65 22.70.41 13.60.24 15.30.68 25.80.06 35.2
BERT [UNK]% 9.4% 85.6% 14.8% 81.0% 79.5% 11.4% 85.8% 85.4% 62.7% 80.6% 59.6%
mBERT [UNK]% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 85.8% 0.2% 0.0% 0.0% 8.6%

Table 19. Copy of Table 8 including standard deviations.
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