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Abstract

We introduce a novel framework for decentralized projection-free optimization, extending
projection-free methods to a broader class of upper-linearizable functions. Our approach
leverages decentralized optimization techniques with the flexibility of upper-linearizable
function frameworks, effectively generalizing optimization of traditional DR-submodular
functions, which captures the ‘diminishing return’ property. We obtain the regret of
O(T 1−θ/2) with communication complexity of O(T θ) and number of linear optimization
oracle calls of O(T 2θ) for decentralized upper-linearizable function optimization, for any
0 ≤ θ ≤ 1. This approach allows for the first results for monotone up-concave optimization
with general convex constraints and non-monotone up-concave optimization with general
convex constraints. Further, the above results for first order feedback are extended to zeroth
order, semi-bandit, and bandit feedback.

1 Introduction

Modern machine learning systems, from multi-agent robotics to distributed sensor networks, increasingly rely
on decentralized optimization to handle streaming data and objectives that evolve over time (Li et al., 2002;
Xiao et al., 2007; Mokhtari et al., 2018). A prominent challenge in these systems is the online optimization of
non-convex functions that exhibit a “diminishing returns (DR)” property, a characteristic formally captured
by DR-submodularity. For instance, in power network reconfiguration (Mishra et al., 2017), distributed
controllers across a smart grid must cooperatively adjust network switches to minimize system-wide power
loss. This scenario is inherently decentralized: each controller uses local data, like power flow and voltage
levels, to adjust its own switches, and communicates with its immediate neighbors to coordinate their actions
toward the global goal of minimizing system-wide power loss. This communication involves exchanging
proposed adjustments and local states, which are then aggregated using a weight matrix that determines the
influence of each neighbor’s input. This weight matrix is predetermined by the physical characteristics of the
power network itself, such as the impedance of the power lines and the underlying network topology. The
problem is also online because the optimal switch configuration must be continually updated to adapt to
unpredictable shifts in consumer power demand and intermittent generation from renewable sources. The
optimization task, which is to maximize power loss reduction, exhibits a diminishing returns property: the
first few switch adjustments may yield substantial improvements, but the marginal benefit of each subsequent
reconfiguration tends to decrease. This frames the problem as the maximization of a DR-submodular objective
whose parameters change over time, making a decentralized, online solution essential. Such formulations also
emerge in a wide array of other applications, including dynamic pricing, recommendation systems, inventory
management, and mean-field variational inferences (Bian et al., 2019; Aldrighetti et al., 2021; Ito & Fujimaki,
2016; Hassani et al., 2017; Mitra et al., 2021; Gu et al., 2023). In all these scenarios, agents must cooperate
to maximize a global objective, often with limited communication and time-varying objective functions. To
provide a unified solution for these scenarios, our work addresses γ-weakly up-concave functions, a class
that generalizes both concave and DR-submodular functions.1 The parameter γ allows for a relaxation of
this condition, with standard DR-submodular functions corresponding to the special case where γ = 1. We
introduce these notions formally in Section 3.1.

1It is well-known that any DR-submodular function is up-concave, i.e., concave along positive directions.
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Existing methods for online continuous DR-submodular optimization often fall into two broad categories:
projection-based and projection-free. The first category, projection-based strategies (Chen et al., 2018b; Zhang
et al., 2022), ensure that each decision remains within the feasible set by computing a Euclidean projection
in each round, which requires solving quadratic program. The second category, projection-free techniques
(Chen et al., 2018a;b; Zhang et al., 2019; Liao et al., 2023), replace projection operation with an efficient
linear optimization oracle to update decisions. For many complex sets common in machine learning, the
projection step is intractable for online settings, and the computational cost of an LOO is often orders of
magnitude lower than that of a projection (Hazan et al., 2016; Braun et al., 2022). For instance, Braun et al.
(2022) has shown in Table 1.1 that for problems constrained to a nuclear norm ball, projection requires a
full singular value decomposition, whereas a linear program only requires finding the top singular vector
pair, which is a much faster operation. Empirically, in our specific scenerio, Table 2 in Zhang et al. (2023)
has shown that their projection-free algorithms are up to 6 times faster in practice than a projection-based
counterpart for decentralized DR-submodular maximization, which motivate our paper’s focus on developing
a novel, projection-free framework.

However, in the decentralized realm, existing works in this area (Zhu et al., 2021; Zhang et al., 2023; Liao
et al., 2023) often either achieve sub-optimal regret guarantees or require too much communication, and they
are all restricted to narrow subclasses of functions, such as monotone 1-weakly up-concave (DR-submodular)
functions over convex sets containing the origin, leaving a significant gap in the literature. Recently, the
theoretical landscape was broadened by Pedramfar & Aggarwal (2024a), which introduced “upper-linearizable
functions”, a more general class that includes and extends DR-submodular and concave functions. This
framework unifies optimization for various settings, including monotone and non-monotone up-concave
functions over general convex sets along with monotone up-concave functions over convex sets containing
the origin, and considers diverse feedback types. However, the analysis and algorithms for this powerful
upper-linearizable optimization framework has so far been confined to centralized settings, where a single
agent has access to all information.

This paper bridges that critical gap by introducing the first framework for decentralized, online optimiza-
tion of upper-linearizable functions. Our primary objective is to develop projection-free algorithms
that are not only computationally efficient by avoiding projections but are also tailored for the communi-
cation constraints inherent in decentralized networks. By extending the analysis from the centralized to
the decentralized setting, we provide the first optimization results for several important problem classes,
including online monotone and non-monotone up-concave maximization over general convex domains in
the decentralized realm. For monotone DR submodular functions over convex sets containing the origin,
with first order full-information feedback, which is the premise of prior works, this paper gives an algorithm
that achieves a regret of O(T 1−θ/2)with a communication complexity of O(T θ) and O(T 2θ) calls to a linear
optimization oracle, where θ ∈ [0, 1] is a parameter that allows for an explicit trade-off between regret and
communication overhead. Furthermore, our framework is versatile, enabling us to derive new results for
various feedback models, including full-information, semi-bandit, and bandit settings, which were previously
unexplored for decentralized DR-submodular optimization.

We also summarize our contributions and technical novelties of this work in details as follows.

1. A General Framework for Decentralized Online Optimization of Upper-Linearizable Functions:
we introduce the first framework for decentralized, online optimization for the broad class of upper-
linearizable functions. This function class is a generalization of up-concave (including DR-submodular
and concave) functions, providing a significant leap over prior works that were restricted to monotone
1-weakly up-concave (i.e., DR-submodular) functions over convex set containing the origin under first-order
full-information feedback (See Table 1). Our framework unifies the analysis of various settings, including
monotone and non-monotone γ-weakly up-concave functions over various convex sets – by treating them
as specific instances of the upper-linearizable class.

2. An Efficient Algorithm for the General Framework with a Principled Trade-off: In section 4, we
propose a single, versatile algorithm, DROCULO (Alg. 1), for the general class of upper-linearizable functions.
The algorithm operates with either semi-bandit or first-order full-information feedback, depending on the
structure of the specific function class being optimized. It achieves an explicit trade-off between statistical
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Table 1: Decentralized Online Up-concave Maximization Algorithms Comparison

F Set Feedback Reference Appx. (α) logT (α-Regret) logT (Communication) logT (LOO calls) Range of θ

M
on

ot
on

e

0
∈

K ∇F
full information

DMFW (Zhu et al., 2021) 1 − e−1 1/2 5/2 5/2 -
Mono-DMFW (Zhang et al., 2023) 1 − e−1 4/5 1 1 -

DOBGA (Zhang et al., 2023) 1 − e−1 1/2 1 − -
DPOBGA (Liao et al., 2023) 1 − e−1 3/4 1/2 1 -

Theorem 2 1 − e−γ 1 − θ/2 θ 2θ [0, 1]
semi-bandit Theorem 4 1 − e−γ 1 − θ/2 θ 2θ [0, 2/3]

F
full information Theorem 5 1 − e−γ 1 − θ/4 θ 2θ [0, 1]

bandit Theorem 6 1 − e−γ 1 − θ/4 θ 2θ [0, 4/5]

ge
n

er
al ∇F semi-bandit Theorem 2 γ2/(1 + γ2) 1 − θ/2 θ 2θ [0, 1]

F bandit Theorem 3 γ2/(1 + γ2) 1 − θ/4 θ 2θ [0, 1]

N
on

-M
on

o

ge
n

er
al ∇F

full information Theorem 2 (1 − p)/4 1 − θ/2 θ 2θ [0, 1]
semi-bandit Theorem 4 (1 − p)/4 1 − θ/2 θ 2θ [0, 2/3]

F
full information Theorem 5 (1 − p)/4 1 − θ/4 θ 2θ [0, 1]

bandit Theorem 6 (1 − p)/4 1 − θ/4 θ 2θ [0, 4/5]

Table 1 compares the results for different decentralized online up-concave maximization algorithms. ∇F refers to
first-order query oracle while F refers to zeroth-order query oracle. α refers to the approximation coefficient for the
regret. The prior works only investigated monotone 1-weakly up-concave functions (i.e., only DR-submodular functions)
over convex set containing the origin, while our results apply to γ-weakly up-concave functions for different scenarios,
hence the differences in α. Here p := minz∈K ∥z∥∞. Communication refers to the total number of communications,
and LOO calls refers to the total number of calls to the Linear Optimization Oracle. The results hold for any θ in the
range specified in the last column. Note that DOBGA is projection-based and requires prjection oracle, while all
others are projection-free and utilize linear optimization oracle.
Notably, all prior works are confined to a very narrow subclass of functions: monotone 1-weakly up-concave (i.e., DR-
submodular) functions over convex sets containing the origin. In contrast, our framework provides the first guarantees
for a much broader range of problems, including general γ-weakly, non-monotone functions, and optimization over
general convex domains. It also introduces a flexible trade-off between regret and communication via the parameter θ.
Even when specialized, our results are highly competitive: setting θ = 1

2 matches the state-of-the-art projection-free
method (DPOBGA), while θ = 1 matches the regret of the best projection-based method (DOBGA).

performance and resource efficiency: for any parameter θ ∈ [0, 1], it attains a regret of O(T 1−θ/2) with
a communication complexity of O(T θ) (Theorem 2). Even when applied to up-concave maximization,
this provides the first results for several general classes, including monotone and non-monotone γ-weakly
up-concave functions over various convex domains.

3. Extension to Different Feedback for Up-Concave Subclasses: In section 5, we demonstrate the
practical utility of our framework by applying it to prominent up-concave subclasses. This specialization
allows us to develop the first algorithms for these classes under restrictive feedback settings (Alg. 2-5). By
extending meta-algorithmic techniques by (Pedramfar & Aggarwal, 2024a) from centralized to decentralized
setting, we design specialized solutions for:

• monotone γ-weakly up-concave functions over general convex sets (Case B.1): We provide Alg. 2 for
the restrictive bandit feedback setting.

• monotone up-concave functions over convex sets containing the origin (Cases B.2) & non-monotone
up-concave functions over general convex sets (Cases B.3): We introduce a series of novel extensions
for semi-bandit (Alg. 3), zeroth-order full-information (Alg. 4), and bandit feedback (Alg. 5).

• In total, our framework yields 10 algorithms for up-concave maximization (two for Case B.1, four for
Case B.2, and four for Case B.3), 9 of which are the first results in their respective feedback settings.

Technical Novelty

1. We note that previous works on decentralized DR-submodular optimization assumed monotone 1-weakly
DR-submodular functions with 0 ∈ K. Thus, we needed a non-trivial approach to extend the setup to
include non-monotonicity of the function, γ-weakly DR-submodular functions, and general convex set
constraints. This is done using the notion of upper-linearizable functions, allowing us to obtain the first
results for (i) monotone γ-weakly up-concave functions with general convex sets, (ii) monotone γ-weakly
up-concave functions over convex sets with 0 ∈ K, and (iii) non-monotone up-concave functions with
general convex sets.
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2. We proved that the framework proposed by Pedramfar & Aggarwal (2024a) which was proposed for and
examined in the centralized setting, can be extended to the decentralized setting with proper adaptations.
The notion of regret changes in the decentralized setting, where we have to consider the average of loss
function among all agents instead of just one function, as is the case in a the centralized setting. Note that
the changes in the definition of online optimization between centralized and decentralized optimization
makes applications of meta-algorithms used in Pedramfar & Aggarwal (2024a) non-trivial. The centralized
version have no notion of communication between nodes and it requires nuance in how one goes about
applying meta-algorithms designed for centralized setting to base algorithms that are decentralized.

3. In the cases of monotone functions over convex sets containing the origin and non-monotone functions, the
main algorithm, i.e., DDROCULO, requires first order full-information feedback. In the centralized setting,
the SFTT meta-algorithm, described in Pedramfar & Aggarwal (2024a), is designed to convert the such
algorithms into algorithms only requiring semi-bandit feedback. However, this algorithm does not directly
work in the decentralized setup. We design Algorithms 3 and 5 using the idea of SFTT meta-algorithm.
The challenge here is to ensure that the SFTT blocking mechanism interacts properly with the existing
blocking mechanism of the base algorithm.

The remainder of this paper is organized as follows. In Section 2, we review related work. In Section 3,
we establish the necessary preliminaries, including our notation, problem formulation, and key definitions
for upper-linearizable functions. In Section 4, we present our main algorithm, DROCULO, with its theoretical
guarantees for the general upper-linearizable class. In Section 5, we extend this framework by developing
specialized algorithms for prominent subclasses of up-concave functions under various feedback settings,
including semi-bandit and bandit feedback. All detailed proofs are deferred to the appendices.

2 Related Works

Decentralized Online Convex Optimization: Zinkevich et al. (2010) presented a decentralized primal-
dual gradient method using local communication and dual averaging over static networks, and achieved Õ(

√
T )

regret for Lipschitz losses, yet it assumed static connectivity and full gradient access, limiting adaptability in
dynamic settings. Yan et al. (2012) extended this via distributed projected gradient descent across agents
with standard communication steps, proving regret bounds O(n5/4ρ−1/2

√
T ) for convex functions, but it

suffered from polynomial dependence on n and spectral gap ρ. Nedić et al. (2015) proposed ODA-C and
ODA-PS, incorporating Nesterov-style dual-averaging on static and dynamic graphs, achieving similar O(

√
T )

regret; still, its performance degrades in heterogeneous or rapidly changing networks. Wan et al. (2024)
introduced AD-FTGL with online accelerated communication, tightening regret to Õ(n ρ−1/4

√
T ) for convex

losses, and proved matching lower bounds—closing gaps in earlier algorithms’ dependence on ρ and n.

Upper-Linearizable Function and its Online Algorithm: In late 2024, Pedramfar & Aggarwal (2024a)
introduced the concept of upper-linearizable functions, a class that generalizes up-concavity (concavity and
DR-submodularity) across various settings, including both monotone and non-monotone cases over different
convex sets. They also explored projection-free algorithms in centralized settings for these setups. Additionally,
they proposed several meta-algorithms that adapt the feedback type, converting full-information queries to
trivial queries and transitioning from first-order to zeroth-order feedback. Pedramfar & Aggarwal (2024a)
demonstrated the generality of this class of functions by showing that it includes (i) monotone γ-weakly
up-concave functions over general convex sets (Case B.1), (ii) monotone γ-weakly up-concave functions over
convex sets containing the origin (Case B.2), and (iii) non-monotone up-concave optimization over general
convex sets (Case B.3). The details of these functions are provided in Appendix B for completeness, and
Lemma 4, 5, 7 demonstrate how these prominent up-concave functions are upper-linearizable. However,
the framework of ‘Upper-Linearizable functions’ is not restricted to these three examples. While these
functions are central to contemporary research in submodular optimization, the ‘Upper-Linearizable’ concept
is relatively new, and its full scope is a subject for future exploration.

Decentralized Online DR-Submodular Maximization: Prior works in decentralized online DR-
submodular maximization have largely followed two algorithmic paths. One path, rooted in the Frank-Wolfe
method, was initiated by the Decentralized Meta-Frank-Wolfe (DMFW) algorithm from Zhu et al. (2021),
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which achieved an O(
√

T ) regret but at a high communication cost of O(T 5/2). This limitation was later
addressed by by the Mono-DMFW from Zhang et al. (2023), which improved regret to O(T 4/5) while reducing
communication complexity to O(T ). The other path leverages boosting gradient ascent, introduced with the
projection-based DOBGA algorithm from Zhang et al. (2023), which obtained an O(T 1/2) regret with O(T )
communication. The principles of this method were subsequently adapted to a projection-free context by
Liao et al. (2023) in their DPOBGA algorith, reporting O(T 3/4) regret with O(T 1/2) communication.

Notably, these prior works were confined to maximizing monotone DR-submodular functions over convex
sets containing the origin. This setting, corresponding to 1-weakly up-concave functions, restricts all prior
methods to the same 1− 1/e approximation ratio, and represents a special instance of the general problem
classes we address (Appendix B.2).

In this paper, we present algorithms for optimizing upper-linearizable functions, achieving a regret bound of
O(T 1−θ/2), in first order feedback case, and O(T 1−θ/4), in zeroth order feedback case, with a communication
complexity of O(T θ) and number of LOO calls of O(T 2θ). In first order full-information case, for θ = 1, we
show that the regret and the communication complexity matches the best known projection-based algorithm
in Zhang et al. (2023) and for θ = 1/2, the results match that in Liao et al. (2023) in the special case of
monotone 1-weakly DR-submodular functions with the convex set containing the origin.

3 Preliminaries

3.1 Notations and Definitions

This paper considers a decentralized setting involving N agents connected over a network represented by an
undirected graph G = (V, E), where V = {1, · · · , N} is the set of nodes, and E ⊆ V × V is the set of edges.
Each agent i ∈ V acts as a local decision maker and can communicate only with its neighbors, defined as
Ni = {j ∈ V | (i, j) ∈ E} ∪ {i}. To model the communication between agents, we introduce a non-negative
weight matrix A = [ai,j ] ∈ RN×N

+ , which is supported on the graph G. The matrix A is symmetric and doubly
stochastic, with ai,j > 0 only if (i, j) ∈ E or i = j. Since A⊤ = A and A1 = 1, where 1 denotes the vector of
all ones, 1 is the largest eigenvalue of A with 1 being the eigenvector. When agent i communicates with its
neighbors Ni, it exchanges a local state vector si based on the weight matrix A = {aij}. In other words, each
agent i receives the weighted average of the local states of its neighbors, i.e.,

∑
j∈Ni

aijsj . It is common to
assess decentralized optimization algorithms using the total number of communications with respect to total
rounds T , which is denoted as “communication” in Table 1. These are formally captured in Assumption 1.
Assumption 1. We assume that the communication weight matrix A is symmetric and doubly stochastic,
whose second largest eigenvalue, λ2, is strictly less than 1.

Remark 1. As mentioned, A dictates how information is shared and averaged across the network, and its
largest eigenvalue is always 1. The rate of convergence, however, is captured by the second-largest eigenvalue,
λ2, which reflects the network’s connectivity. A smaller λ2 implies a better-connected network and faster
convergence. Assumption 1 is standard in decentralized optimization literature (Zhu et al., 2021; Zhang et al.,
2023; Liao et al., 2023). If it were violated (i.e. λ2 = 1), the network would be disconnected, composed of at
least two isolated sub-groups of agents that cannot communicate with each other. In such a scenario, a global
agreement is impossible, and the algorithm would fail to find a solution for the network-wide objective.

A set K⊆Rd is convex if ∀x, y ∈ K and ∀α ∈ [0, 1], we have αx + (1 − α)y ∈ K. For a constrained set
K, we denote the radius of the set as R ≜ max ∥x∥,∀x ∈ K. For two vectors x, y ∈ K, we say x ≤ y if
every element in x is less than or equal to the corresponding element in y. Given a set K, we define a
function class F as a subset of all real-valued functions over K. For a set K ⊆ Rd, we define its affine hull
aff(K) to be the set of αx + (1 − α)y for all x, y ∈ K and α ∈ R. The relative interior of K is defined as
relint(K) := {x ∈ K | ∃r > 0,Br(x) ∩ aff(K) ⊆ K}. Assumptions of the feasible set K 2 is given as follows.
Assumption 2. We assume the feasible set K is convex and compact with radius R, i.e., R = maxx∈K ∥x∥.

2In our setting, at each round, every agent i selects a decision from a common feasible set K ⊆ Rd, which we refer to as the
action set. The detailed problem setting is given below in Section 3.3.
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Given 0 < γ ≤ 1, we say a differentiable function f : K → R is γ-weakly up-concave if it is γ-weakly concave
along positive directions. Specifically if, ∀x ≤ y∈K, we have

γ (⟨∇f(y), y− x⟩) ≤ f(y)− f(x) ≤ 1
γ

(⟨∇f(x), y− x⟩) . (1)

A differentiable function f : K → R is called γ-weakly continuous DR-submodular if ∀x ≤ y, we have
∇f(x) ≥ γ∇f(y). It follows that any γ-weakly continuous DR-submodular functions is γ-weakly up-concave.
Note that DR-submodular functions are a special case of up-concave functions, though the term “DR-
submodular” is more common. For generality, this paper will use the broader “up-concave” term, as our
results for this class apply directly to DR-submodular functions. In subsequent sections, we will demonstrate
that these up-concave functions are prominent examples of the broader upper-linearizable class.

Given a DR-submodular function, even the maximization problem in the centralized offline setup is NP-hard.
For example, when f is a monotone continuous DR-submodular function and K ⊆ [0, 1]d contains the origin,
finding a point x ∈ K such that f(x) is optimal is NP-hard. More generally, for any ϵ > 0, finding any
point x ∈ K such that f(x) is at least (1− e−1 + ϵ) times the optimal value is NP-hard. (See Proposition 3
in Bian et al. (2017)). However, there are polynomial times algorithms that achieve the ratio of 1− e−1. The
ratio with this property is referred to as the optimal approximation ratio, in this case being 1− e−1. In the
three settings considered in this paper, (in the special case of γ = 1) the approximation ratios for monotone
function over convex sets containing the origin and non-monotone functions over general convex sets are
known to be optimal.(See Bian et al. (2017); Mualem & Feldman (2023)) In the case of monotone functions
over general convex sets (when γ = 1), the approximation ratio of 1/2 is the best known in the literature so
far and it is conjectured to be optimal (See Pedramfar et al. (2023)).

Given a function f : K → R, we define a query oracle Q for f to be a function on K that takes a point of
query w, and returns a noisy response o. We say Q is a first order oracle if ∀w ∈ K,Q(w) is a random vector
in Rd such that E[Q(w)] = ∇f(w). We say Q is a zeroth order oracle if ∀w ∈ K,Q(w) is a random variable
in R such that E[Q(w)] = f(w). The role of Q is to provide us information about the function f ; in other
words, the only way we obtain information about f is by querying Q.

3.2 Upper-Linearizable Functions

Recently, Pedramfar & Aggarwal (2024a) proposed the notion of upper-linearizable function, which generalizes
the notion of up-concave and DR-submodular. The function class F is upper-linearizable if there exists
g : F ×K → Rd, h : K → K, and constant 0 < α ≤ 1 and β > 0 such that ∀x, y ∈ K,∀f ∈ F :

αf(y)− f(h(x)) ≤ β (⟨g(f, x), y− x⟩) . (2)

As mentioned in the Section 2 with details in Appendix B, Pedramfar & Aggarwal (2024a) has demonstrated
that three common objectives in the submodular optimization communities are upper-linearizable:

(i) monotone γ-weakly up-concave functions with general convex sets (Case B.1),
(ii) monotone γ-weakly up-concave functions over convex sets with 0 ∈ K (Case B.2), and
(iii) non-monotone up-concave functions with general convex sets (Case B.3).

In Appendix B, we also provide the corresponding α, β, h(·) and g(·) mapping, and their linearizable query
oracles. As we will see later on, given an upper-linearizable function class F , the constant α corresponds to
the approximation ratio of our algorithms when the objective functions are in F ; specifically, it serves as the
approximation coefficient for the regret.

When optimizing upper-linearizable functions, we assume that an oracle G is provided, which we call
linearizable query oracle, that returns an unbiased estimate of g(f, x). We refer to Appendix B for examples
of such oracles for the three cases of upper-linearizable functions.

We note that the function h allows us to consider more general functions. For example, h(·) takes identity
function for case B.1 and case B.2, while h(x) = x+x̄

2 for some constant x̄ ∈ K for case B.3. A detailed
discussion on the role of the function h is presented in Appendix A.
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As mentioned, the framework of ‘upper-linearizable functions’ is not limited to these examples, although they
are the most well-known function classes to submodular optimization community. The ‘upper-linearizable’
framework is a recent development, and it is anticipated that further applications will be identified as the
concept matures.

3.3 Problem Formulation

In a decentralized setting, given a function class F , the adversary chooses a sequence of objective functions
ft,i ∈ F and the corresponding query oracles Qt,i, for round t ∈ [T ] and agent i ∈ [N ]. Note that the
query oracle is the only way the agent can get any information on the objective function. In tth round,
agent i selects a pair of points x̂i

t, wi
t ∈ K, plays x̂i

t, queries the provided oracle at wi
t, and observes oracle

response oi
t = Qt,i(wi

t). 3. The agent i may communicate a local state vector si
t with its neighbors Ni as per

Section 3.1, i.e., each agent i receives the weighted average of the local states of its neighbors
∑

j∈Ni
aijsj

t .

We say the queries are trivial if wi
t = x̂i

t, otherwise we say they are non-trivial. Note that in the three
up-concave functions we mention in Related Works with details in Appendix B, case B.1 has trivial queries
while case B.2 and B.3 have non-trivial queries, with Algorithm 7 determining the point of query for case B.2
and Algorithm 8 for case B.3, respectively.

The goal for each agent i is to optimize the aggregate function over the network over time:
∑T

t=1

∑N

j=1 ft,j(xi
t)

(Zhu et al., 2021; Zhang et al., 2023). For any approximation coefficient 0 < α ≤ 1, we define the α-regret for
agent i to be:

Ri
α := α max

u∈K

1
N

T∑
t=1

N∑
j=1

ft,j(u)− 1
N

T∑
t=1

N∑
j=1

ft,j(x̂i
t).

Remark 2. As per our earlier discussion in Section 3.1, if we set α = 1, obtaining a sublinear α-regret even the
offline centralized version of the problem could be NP-hard. Thus, the goal is to find the highest α possible
and minimize the α-regret for such a choice of α. As shown in Pedramfar & Aggarwal (2024a), if a function
class is upper-linearizable with constant α (as per Equation 2), then there are algorithms obtaining sub-linear
α-regret in the corresponding offline (and online) optimization problems. In Cases B.2 and B.3, (in the case
γ = 1) the optimal approximation coefficient for the offline problem is known (See Bian et al. (2017); Mualem
& Feldman (2023)) and the function classes in B.2 and B.3 are upper-linearizable with these approximation
coefficients. Moreover, for case B.1, the function class is linearizable with the coefficient γ2/(1 + cγ2) which is
the best known approximation coefficient for the corresponding offline optimization problem. 4 Thus, among
the results in this work for Cases B.1-B.3, it is only for the case B.1 where a higher approximation coefficient
is not yet theoretically ruled out.

We say the agent takes semi-bandit feedback if the adversary provides first-order oracle and the agents have
trivial queries. More formally, the query oracle returns a noisy response with mean of ∇ft,i(x̂i

t). Similarly,
we say the agent takes bandit feedback if the oracle is zeroth-order and the agents have trivial queries, i.e.,
the query oracle returns a noisy response with mean of ft,i(x̂i

t). If any agent has non-trivial queries, we say
the agent requires full-information feedback. More formally, first-order full-information feedback returns a
noisy response with mean of ∇ft,i(wi

t) and similar for zeroth-order, ft,i(wi
t).

3.4 Set Oracles

The action set is a given convex set K. However, the way such a set is given could be quite complicated. For
example, it could be given as intersection of hyperplanes, or balls, or by some more complicated equations.
Naturally, obtaining information about K depends on the way it is characterized. In order to abstract away

3In general, the agent may query more than one point; in other words, it selects an action point xi
t and a sequence of points

(wi
t)j for j ∈ [k] for some k ≥ 1 which may depend on t and i. However, in all algorithms considered in this paper, agents only

require a single query.
4In fact, as mentioned earlier, at least in the case c = γ = 1, this coefficient is conjectured to be optimal. (See Pedramfar

et al. (2023))
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this complexity, the notion of set oracle is defined. Besides some general information given at the beginning,
the only way the algorithm may obtain information about K is through such a set oracle. The most common set
oracles considered in the literature are linear optimization oracle (LOO) and projection oracle. As mentioned
in Section 1, projection oracles could be computationally costly since such an oracle minimizes Euclidean
distance, which is a quadratic optimization problem. To avoid problems caused by projection oracle, we use
an infeasible projection oracle which is implemented using an LOO, and we introduce these concepts formally
in the following.

A projection oracle OP takes any point x ∈ Rd as input and returns the unique point in K that is closest
to x with respect to the Euclidean norm, formally computing OP (K, x) := arg minu∈K ∥x− u∥2. This oracle
is central to projection-based algorithms, which ensure feasibility by projecting iterates back onto the set K.
A linear optimization oracle (OLO) takes a linear objective, defined by a vector x ∈ Rd, as input and
returns a point in K that maximizes this objective. In other words, for any given x ∈ Rd, the oracle solves
the problem OLO(K, x) := arg maxu∈K⟨x, u⟩. This oracle is the core of projection-free methods, which avoid
costly quadratic projection problems by instead solving a sequence of linear problems over the feasible set.

Given a set K ⊆ Rd, we define a point ỹ ∈ Rd to be the infeasible projection of y ∈ Rd onto set K, if ∀z ∈ K
we have ∥ỹ− z∥2 ≤ ∥y− z∥2. Given a set K and an error tolerance parameter ϵ, we define an infeasible
projection oracle OIP to be an algorithm that takes a pair of points x ∈ K and y ∈ Rd, returns a pair
of points x′ ∈ K and ỹ ∈ Rd, where y′ is an infeasible projection of y unto set K, and ∥x′ − ỹ∥2 ≤ 3ϵ.
Specifically, we look at infeasible projection oracles implemented through linear optimization oracles. We also
introduce a useful lemma derived from (Liao et al., 2023) for the infeasible projection oracles.
Lemma 1 (Lemma 1 in Liao et al. (2023)). Let B be the unit ball centered at the origin. There exists an
algorithm OIP referred to as infeasible projection oracle over any convex set K ⊆ RB (where RB means a ball
with radius R), which takes the set K, a pair of points (x0, y0) ∈ K ×Rn, and an error tolerance parameter ϵ
as the input, and can output

(x, ỹ) = OIP (x0, y0, ϵ)

such that (x, ỹ) ∈ K × RB, ∥x − ỹ∥2 ≤ 3ϵ, and ∀z ∈ K, ∥ỹ − z∥2 ≤ ∥y0 − z∥2. Moreover, such an oracle
OIP can be implemented with total LOO calls bounded by⌈

27R2

ϵ
− 2
⌉

max
(

1,
∥x0 − y0∥2(∥x0 − y0∥2 − ϵ)

4ϵ2 + 1
)

. (3)

4 Main Result for Decentralized Online Upper-Linearizable Optimization

In this section, we introduce our main algorithm, DecentRalized Online Continuous Upper-Linearizable
Optimization (DROCULO, like Dracula), which is a projection-free method designed for the broad class of
upper-linearizable functions. The theoretical analysis that establishes the performance guarantees of our
method relies on the following standard assumptions. Note that these assumptions apply specifically to the
general analysis in this section; assumptions for the specialized cases in Section 5 will be introduced therein.
Assumption 3. All objective functions ft,i ∈ F : K → R are M1-Lipschitz continuous, differentiable, and
upper-linearizable with α, β, g and h as defined in Equation 2. We also assume that g(f, x) is L1-Lipschitz
with respect to the second term x.
Note that it is common assumption in the literature (Liao et al., 2023; Fazel & Sadeghi, 2023; Zhang et al.,
2022; 2024) for the underlying up-concave function to be smooth. In the three examples of upper-linearizable
functions we considered, the smoothness of the underlying up-concave function implies Assumption 3 (See
Lemma 6, Lemma 8).
Assumption 4. Given the upper-linearizable function class F , The linearizable query oracle G access each
ft,i ∈ F through a first-order query oracle Q such that its response for an input xi

t is an unbiased estimate of
g(ft,i, xi

t), i.e., E[G(xi
t)] = g(ft,i, xi

t). We further assume that the responses oi
t of the linearizable query oracle

G are bounded by G, i.e., ∥oi
t∥ = ∥G(xi

t)∥ ≤ G.
Note that Assumption 4 holds for the three examples of upper-linearizable functions detailed in Appendix B
(see Algorithms 7 and 8). The linearizable query oracle G serves as an abstraction layer. For a given input xi

t,

8
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G determines the appropriate point wi
t to query the underlying first-order oracle Q to produce the required

unbiased estimate of g(ft,i, xi
t). Thus, Assumption 4 is satisfied for these cases if the underlying first-order

query oracle is bounded.

4.1 Algorithm

The DROCULO algorithm is presented in Algorithm 1. Without loss of generality we assume that T mod K = 0.
It operates by partitioning the time horizon T into T/K blocks, namely Tm = {(m− 1)K + 1, . . . , mK} for
block 1 ≤ m ≤ T/K, where K is the block size. Each agent i maintains a local state vector si

m constituted of
a decision variable xi

m ∈ K and an auxiliary variable ỹi
m for the infeasible projection, which are initialized to

a common point c ∈ K (line 2).

The algorithm proceeds in blocks (line 3). For each block m, all agents perform the following steps in
parallel. At each time step t within block m, agent i plays the action x̂i

t = h(xi
m) (line 6), where h(·) is the

transformation map associated with the upper-linearizable function class. Note that the action played, x̂i
t,

may differ from the agent’s internal decision variable, xi
m. The agent then queries the linearizable oracle G at

xi
m to obtain a response oi

t (line 7). The specific query point wi
t is handled internally by the oracle G to

produce an unbiased estimate of g(ft,i, xi
m).

At the end of each block, agent i communicates its local state si
m = (xi

m, ỹi
m) with its immediate neighbors

Ni, i.e., it receives an aggregated state vector (
∑

j∈Ni
aijxj

m,
∑

j∈Ni
aijỹj

m) (line 9). This information is
used to compute an intermediate variable yi

m+1 (line 10), which incorporates a scaled average η
∑

t∈Tm
oi

t =
ηK

( 1
K

∑
t∈Tm

oi
t

)
of the oracle responses from the block. Note that this averaging is the main purpose of

the blocking mechanism as it allows us to reduce the variance of the estimates obtained from the query
oracle. Finally, the agent updates its decision and auxiliary variables for the next block, (xi

m+1, ỹi
m+1), by

performing an infeasible projection using the oracle OIP with an error tolerance ϵ (line 11).

Algorithm 1 DecentRalized Online Continuous Upper-Linearizable Optimization - DROCULO
1: Input: decision set K, horizon T , block size K, step size η, error tolerance ϵ, number of agents N , weight

matrix A = [aij ], transformation map h(·), linearizable query oracle G
2: Set xi

1 = ỹi
1 = c ∈ K for any i = 1, · · · , N

3: for m = 1, · · · , T/K do
4: for each agent i = 1, · · · , N in parallel do
5: for t ∈ Tm = {(m− 1)K + 1, . . . , mK} do
6: Play x̂i

t = h(xi
m)

7: Query the linearizable query oracle G at xi
m and get response oi

t = G(xi
m)

8: end for
9: Communicate local state si

m = (xi
m, ỹi

m) with its neighbors Ni

10: yi
m+1 ←

∑
j∈Ni

aijỹj
m + η

∑
t∈Tm

oi
t

11: (xi
m+1, ỹi

m+1)← OIP (K,
∑

j∈Ni
aijxj

m, yi
m+1, ϵ)

12: end for
13: end for

4.2 Result and Analysis

We will provide the key results for the proposed algorithm, including the regret, communication complexity,
and the number of total LOO calls used by the proposed algorithm. The result is given in Theorem 1.

Theorem 1. Given Assumptions 1, 2, 3, 4, Algorithm 1 ensures that the α-regret for agent i is bounded as

9
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E
[
Ri

α

]
≤ β

[
2R2

η
+ 18ϵT

ηK
+ 7ηT KG2 + 13T G

√
3ϵ

]
+ β

1 − λ2

(
12ϵT

ηK
+ 9ηT KG2 + 12T G

√
3ϵ

)
+ (G + 2L1R)(N1/2 + 1)β

(
3
√

2ϵ + (3ηKG + 2
√

3ϵ)
1 − λ2

)
.

Further, the communication complexity is O(T/K). Finally, the number of LOO calls are upper bounded as
27T R2

ϵK

(
8.5 + 5.5 K2η2G2

ϵ + K4η4G4

ϵ2

)
. In particular, if we set ϵ = K2η2G2, then we have

E
[
Ri

α

]
= O

(
1
η

+ ηTKG2
)

,

and the number of LOO calls is O( T
ϵK ).

Proof. The detailed proof of Theorem 1 is provided in the Appendix. For the completeness of argument, we
provide a high-level outline of proof for the regret bound and the communication complexity.

Regret: Note that instead of a 1-weakly DR-submodular function which has the nice property of
∇f(x) ≥ f(y),∀x ≤ y, we are dealing with upper linearizable functions, a much more generalized function
class that includes any function that satisfies αf(y)− f(h(x)) ≤ β (⟨g(f, x), y− x⟩) for some functional g,
function h, and constants 0 < α ≤ 1 and β > 0 as previously described, of which 1-weakly DR-submodular
function is an instance.
As is common to bound regret of convex algorithm with first order linear approximation (Orabona, 2019), we
bound the regret using the inner product of the distance in action space and g function space to approximate
the function value, with the help of law of iterated expectation. Let x∗ ∈ argmaxu∈K

1
N

∑T
t=1
∑N

i=1 ft,i(u)
denote the optimal action, we have

E[Rj
α] = 1

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[
αft,i(x∗) − ft,i(h(xj

m))
]

≤ β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[
⟨x∗ − xj

m, g̃t,i(xj
m)⟩
]

Rearranging terms to better leverage the communication structure of the decentralized network, we have:

1
β
E[Rj

α] ≤ E

[
1
N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

⟨x∗ − xi
m, g̃t,i(xi

m)⟩

]

+ E

[
1
N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

⟨xi
m − xj

m, g̃t,i(xi
m)⟩

]
(4)

+ E

[
1
N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

⟨x∗ − xj
m, g̃t,i(xj

m) − g̃t,i(xi
m)⟩

]

Let the three parts in Equation (4) be respectively P1, P2, P3. Through exploitation of properties of the
loss functions and domain, the update rule (line 10) and the infeasible projection operation (line 11) in
Algorithm 1, we obtain the upper bound of the expectation of each part:

10
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E [P1] ≤ R2

η
+ 18ϵT

ηK
+ 7ηT KG2 + 13T G

√
3ϵ

+ 1
1 − λ2

(
12ϵT

ηK
+ 9ηT KG2 + 12T G

√
3ϵ

)
E [P2] ≤ G(N1/2 + 1)

(
3
√

2ϵ + 3ηKG + 2
√

3ϵ

1 − λ2

)
E [P3] ≤ 2L1R(N1/2 + 1)

(
3
√

2ϵ + 3ηKG + 2
√

3ϵ

1 − λ2

)
Adding P1, P2, P3, we obtain the upper bound for α-regret for agent i as given in the statement of the
Theorem.
LOO calls: Based on Lemma 1 for the infeasible projection oracle, we have the number of LOO calls for
agent i in block m as:

li
m = 27R2

ϵ
max

(
1

4ϵ2 (∥yi
m+1 −

∑
j∈Ni

aijxj
m∥2)(∥yi

m+1 −
∑
j∈Ni

aijxj
m∥2 − ϵ) + 1, 1

)
(5)

Through exploitation of the update rule (line 10) and the infeasible projection operation (line 11) in
Algorithm 1, we have ∥∥∥∥∥yi

m+1 −
∑
j∈Ni

aijxj
m

∥∥∥∥∥
2

≤ 2η2K2G2 + 6ϵ (6)

Substituting (6) to (5), we obtain the total LOO calls,
∑T/K

m=1 li
m, as in the statement of the Theorem.

With appropriate selection of parameters block size K, update step η, and infeasible projection error tolerance
ϵ, we have final results for the main Algorithm 1 in Theorem 2. Motivated by the trade-off between block size
and the time complexity, we introduce a hyper parameter θ, through which users adjust block size accordingly,
allowing resilience against practical communication limitations.
Theorem 2. For Theorem 1, choosing K = T 1−θ, η = 1√

KT
, and ϵ = K2η2, we get that for each agent i the

E
[
Ri

α

]
= O(T 1−θ/2) (7)

Further, the communication complexity is O(T θ) and the number of LOO calls is O(T 2θ).

We note that in the special case of θ = 1, there will be no block effect, and we achieve a regret of O(
√

T ),
with a communication complexity of O(T ) and number of LOO calls of O(T 2). Further, in the special case of
θ = 1/2, we achieve a regret of O(T 3/4), with a communication complexity of O(

√
T ) and number of LOO

calls of O(T ).

5 Extension to Different Feedback for Up-Concave (DR-Submodular) Optimization

In Section 4, we presented DROCULO, a general algorithm for decentralized online optimization of upper-
linearizable functions. The analysis assumed access to a linearizable query oracle G built upon a first-order
oracle. However, this assumption may not hold in settings with more limited feedback, such as semi-bandit or
bandit scenarios. This section extends our framework to address these settings for three prominent classes of
up-concave functions, which are instances of the upper-linearizable class (detailed in Appendix B). We present
a series of new algorithms that adapt DROCULO to handle diverse feedback types. These algorithms provide
the first known results for these function classes in their respective feedback settings. Notably, while prior
work such as Liao et al. (2023) has addressed monotone up-concave functions over convex sets containing the
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origin, it was restricted to the 1-weakly up-concave case. Our results apply to the more general γ-weakly
up-concave, and consider other settings including monotone and non-monotone, general convex set and convex
set containing the origin.

The structure of this section results from the nature of the query required by the base algorithm. Section 5.1
addresses monotone up-concave optimization over general convex sets (Case B.1), where DROCULO requires
only trivial queries (semi-bandit feedback). Section 5.2 addresses the other two cases (B.2 and B.3), where
DROCULO requires non-trivial queries (full-information feedback). To achieve these extensions, we adapt the
meta-algorithms from Pedramfar & Aggarwal (2024a) to the decentralized context. Similar to Section 4, we
introduce assumptions about up-concave functions we consider for our extension algorithms. Assumption 3
will reduce to Assumption 3*, and Assumption 4 will reduce to Assumption 4*.
Assumption 3*. We assume all γ-weakly up-concave (as defined in Equation 1) objective functions are
continuous, differentiable, Lipschitz continuous, and smooth.
Assumption 4*. Given the objective functions, we assume the query oracles, whether zeroth-order or
first-order, are bounded.

5.1 Monotone up-concave optimization over general convex set (B.1)

For monotone up-concave functions over a general convex set(Case B.1), the transformation map h(·) is the
identity function. Consequently, the linearizable query oracle G queries the first-order oracle at the point of
action (wi

t = x̂i
t), which constitutes a trivial query. This implies that for Case B.1, Algorithm 1 operates

under semi-bandit feedback. To handle the more restrictive bandit feedback (when zeroth-order instead of
first-order oracle is provided), we adapt the Semi-bandit To Bandit (STB) meta-algorithm from Pedramfar &
Aggarwal (2024b) to develop Algorithm 2.

Before detailing steps in Algorithm 2, we introduce several mathematical notations that are being used by
the STB meta-algorithm. Recall we have defined affine hull and relative interior of set K in Section 3. We
choose a point c ∈ relint(K) and a real number r > 0 such that aff(K) ∩ Br(c) ⊆ K. Then, for any shrinking
parameter 0 ≤ δ < r, we define K̂δ := (1 − δ

r )K + δ
r c. For a function f : K → R defined on a convex set

K ⊆ Rd, its δ-smoothed version f̂δ : K̂δ → R is given as

f̂δ(x) := Ez∼aff(K)∩Bδ(x)[f(z)] = Ev∼L0∩B1(0)[f(x + δv)],

where L0 = aff(K)− x, for any x ∈ K, is the linear space that is a translation of the affine hull of K and v is
sampled uniformly at random from the k = dim(L0)-dimensional ball L0 ∩ B1(0). Thus, the function value
f̂δ(x) is obtained by “averaging” f over a sliced ball of radius δ around x. For a function class F over K, we
use F̂δ to denote {f̂δ | f ∈ F}. We will drop the subscript δ when there is no ambiguity.

The important property of this notion is that it allows for construction of a one-point gradient estimator.

Specifically, it is known5 that

∇f̂δ(x) = k

δ
Ev∼L0∩S1 [f(x + δv)].

This allows us to convert Algorithm 1 to allow for zeroth order feedback. Specifically, we run Algorithm 1
on functions f̂t,i instead of ft,i and when it requires an unbiased estimate of the gradient of f̂t,i(x), we use
ft,i(x + δv) where v is sampled uniformly from L0 ∩ S1. More generally, if we have access to ot,i, an unbiased
estimate of ft,i(x + δv), then k

δ ot,i is an unbiased estimate of ∇f̂t,i(x). If the zeroth order oracle, from which
ot,i is sampled, is bounded by B0, then we see that this new one-point gradient estimator of ∇f̂t,i(x) is
bounded by G′ := k

δ B0. Therefore, if we set ϵ = K2η2(G′)2, we may use Theorem 1 to see that the regret is
bounded by O

(
1
η + ηTK(G′)2

)
, and the number of LOO calls is O( T

ϵK ). However, it should be noted that

5When k = d and therefore L0 = Rd, this equality is well known, e.g. see Nemirovskĭi & ÍÙdin (1983); Flaxman et al. (2005).
The more general case where k ≤ d may be found in Remark 4 in Pedramfar et al. (2023).
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the functions f̂t,i are defined over Kδ and this regret is computed against the best point in Kδ which can be
O(δ) away from the best point in K. Hence, we see that

E
[
Ri

α

]
= O

(
1
η

+ ηTK(G′)2 + δT

)
= O

(
1
η

+ ηTKδ−2 + δT

)
.

Putting these results together, we obtain the following result, with detailed discussion and proof in Appendix D.

Algorithm 2 Bandit Algorithm for Case B.1
1: Input: decision set K, horizon T , block size K, step size η, error tolerance ϵ, number of agents N , weight

matrix A = [aij ], transformation map h(·), smoothing parameter δ ≤ α, shrunk set K̂δ, linear space L0,
zeroth order oracle Q

2: Let k = dim(L0)
3: Set xi

1 = ỹi
1 = c ∈ K̂δ for any i = 1, · · · , N

4: for m = 1, · · · , T/K do
5: for each node i = 1, · · · , N in parallel do
6: for t = (m− 1)K + 1, . . . , mK do
7: Sample vi

t ∈ S1 ∩ L0 uniformly
8: Play x̂i

t = h(xi
m) + δvi

t

9: Query the oracle Q at x̂i
t and get response oi

t

10: Let oi
t ← k

δ oi
tvi

t

11: end for
12: Communicate xi

m and ỹi
m with neighbors

13: yi
m+1 ←

∑
j∈Ni

aijỹj
m + η

∑
t∈Tm

oi
t

14: (xi
m+1, ỹi

m+1)← OIP

(
K̂δ,

∑
j∈Ni

aijxj
m, yi

m+1, ϵ

)
15: end for
16: end for

Theorem 3. For Case B.1, under Assumption 1, 2, 3*, 4*, if we set ϵ = K2η2δ−2, then Algorithm 2 ensures
a regret bound of

E
[
Ri

α

]
= O

(
1
η

+ ηTKδ−2 + δT

)
,

with at most O( T
ϵK ) LOO calls and O(T/K) communication complexity. In particular, if we set K = T 1−θ,

δ = T −θ/4 and η = δ√
KT

, we see that E
[
Ri

α

]
= O(T 1−θ/4) with at most O(T 2θ) LOO calls and O(T θ)

communication complexity.
Remark 3. Our approach to gradient estimation from zeroth-order feedback relies on the one-point gradient
estimator (Flaxman et al., 2004). An alternative, common in the bandit optimization literature (Agarwal
et al., 2010; Shamir, 2017), is to use a two-point estimator, which queries the function at two points (e.g.,
f(x+δv) and f(x−δv)) to construct a finite-difference approximation of the true gradient. While a two-point
estimator can provide a better estimate of the gradient, it requires access to an exact value oracle, which is
often an impractical assumption. If an exact value oracle is available, one could use an approach similar to
Pedramfar & Aggarwal (2024a, Algorithm 7) to develop a counterpart of Algorithm 2 using the two-point
gradient estimator. Note that such an algorithm will not be bandit, as it requires two queries per timestep.
However, we may use arguments similar to Pedramfar & Aggarwal (2024a, Corollary 5) to see that such an
algorithm has the same order of regret as the first-order algorithm it is based on. In other words, we obtain a
regret bound with the same order as Theorem 2.

5.2 Monotone up-concave optimization over convex set containing the origin (Appendix B.2) and
Non-monotone up-concave optimization over general convex set (Appendix B.3)

We now consider monotone up-concave optimization over convex sets containing the origin (Case B.2) and
non-monotone up-concave optimization over general convex sets (Case B.3). In both cases, the linearizable
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query oracle G must query the first-order query oracle at a point wi
t that is different from the action

point x̂i
t = h(xi

m). This constitutes a non-trivial query, meaning that Algorithm 1 requires first-order
full-information feedback for these function classes. The remainder of this section will introduce algorithms
that extend our framework to handle other feedback settings for these two cases, including semi-bandit,
zeroth-order full-information, and bandit feedback.

5.2.1 Semi-bandit Feedback

As established, Algorithm 1 requires first order full-information feedback for Case B.2 and Case B.3. To
handle semi-bandit feedback (when first-order query oracle only allow trivial queries), we use the “Stochastic
Full-information To Trivial query” (SFTT) meta-algorithm from Pedramfar & Aggarwal (2024a). The key
challenge lies in composing the SFTT blocking mechanism with the existing block structure of DROCULO and
its inter-node communication protocol. The resulting method is presented in Algorithm 3.

Let L ≥ 1 be an integer. The main idea here is to consider the functions (f̄q,i)1≤q≤T/L,1≤i≤N where
f̄q,i = 1

L

∑qL
t=(q−1)L+1 ft,i. We want to run Algorithm 1 against this sequence of functions. To do this, we

need to construct unbiased estimates of the gradient of f̄q,i. This can be achieved by considering a random
permutation t′

1, · · · , t′
L of (q− 1)L + 1, · · · , qL and picking ft′

1,i. Since we want an algorithm with semi-bandit
feedback, at time-step t′

1 we select the point where the original algorithm, i.e., Algorithm 1, needed to query.
In the other L − 1 time-steps within this block, we pick the action that Algorithm 1 wants to take and
ignore the returned value of the query function. Thus, at one time-step per each block of length L, we
have no control over the regret, which adds O(T/L) to the total regret. In the remaining time-steps, the
behavior is similar to Algorithm 1, with each action repeated L − 1 times. We note that we are running
Algorithm 1 against f̄q,i with a horizon of T ′ := T/L. Hence, using the discussion above and Theorem 1, if
we set ϵ = K2η2G2, then we see that the regret is bounded by E

[
Ri

α

]
= (L− 1)O

(
1
η + ηT ′KG2

)
+ O

(
T
L

)
,

the number of LOO calls is O( T ′

ϵK ), and the communication complexity is bounded by O(T ′/K). The key
result is summarized in Theorem 4, and the detailed discussion and proof can be found in Appendix E.

Theorem 4. For Case B.2 and B.3, under Assumption 1, 2, 3*, 4*, if we set ϵ = K2η2G2, then Algorithm
3 ensures a regret bound of

E
[
Ri

α

]
= O

(
L

η
+ ηTKG2 + T

L

)
.

with at most O( T
ϵKL ) LOO calls and O( T

KL ) communication complexity. In particular, if 0 ≤ θ ≤ 2/3 and we
set K = T 1−3θ/2, L = T θ/2, and η = T θ−1, we see that E

[
Ri

α

]
= O(T 1−θ/2) with at most O(T 2θ) LOO calls

and O(T θ) communication complexity.

5.2.2 Zeroth-order Full-information Feedback

To adapt DROCULO for zeroth-order full-information feedback, where only function values can be queried, we
employ a strategy analogous to the one in Section 5.1. Specifically, we adapt the “First Order To Zeroth
Order” (FOTZO) meta-algorithm from Pedramfar & Aggarwal (2024a).

The core of this method is function smoothing. Instead of operating on the original functions ft,i, the
algorithm operates on their smoothed versions, f̂t,i. This allows us to construct a one-point gradient estimator.
By querying the function value at a randomly perturbed point wi

t + δvi
t, we can obtain an unbiased estimate

of the gradient ∇f̂t,i(wi
t). This estimated gradient can then be used in place of the true gradient required

by the original DROCULO algorithm. The resulting procedure is detailed in Algorithm 4. The introduction
of the smoothing parameter δ affects the regret analysis, adding terms dependent on δ to account for the
approximation error. A full analysis and proof are provided in Appendix F, leading to the regret bound
stated in Theorem 5.
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Algorithm 3 Semi-Bandit Algorithm for Case B.2 and B.3
1: Input: decision set K, horizon T , DROCULO block size K, step size η, error tolerance ϵ, number of agents

N , weight matrix A = [aij ], map h(·), SFTT block size L > 1, first-order oracle Q
2: Set xi

1 = ỹi
1 = c ∈ K for any i = 1, · · · , N

3: for m = 1, · · · , T
LK do

4: for each node i = 1, · · · , N in parallel do
5: for q = (m− 1)K + 1, · · · , mK do
6: Play x̂i

q = h(xi
m)

7: For B.2, we sample z as described in Lemma 5 and for B.3, we sample z as described in Lemma 7
8: For case B.2, let wi

q = z ∗ xi
m and for case B.3, let wi

q = z
2 ∗ (xi

m − u) + u {u is a given constant}
9: Sample t′

q uniformly from {(q − 1)L + 1, . . . , qL}
10: for t = (q − 1)L + 1, . . . , qL do
11: if t = t′

q then
12: Play the action zi

t = wi
q

13: Query the oracle Q at wi
q and get response oi

q

14: else
15: Play the action zi

t = x̂i
q

16: end if
17: end for
18: end for
19: Communicate xi

m and ỹi
m with neighbors

20: yi
m+1 ←

∑
j∈Ni

aijỹj
m + η

mK∑
q=(m−1)K+1

oi
q

21: (xi
m+1, ỹi

m+1)← OIP (K,
∑

j∈Ni

aijxj
m, yi

m+1, ϵ)

22: end for
23: end for

Theorem 5. For Case B.2 and B.3, under Assumption 1, 2, 3*, 4*, if we set ϵ = K2η2δ−2, then Algorithm
4 ensures a regret bound of

E
[
Ri

α

]
= O

(
1
η

+ ηTKδ−2 + δT

)
,

with at most O( T
ϵK ) LOO calls and O(T/K) communication complexity. In particular, if we set K = T 1−θ,

δ = T −θ/4 and η = δ√
KT

, we see that E
[
Ri

α

]
= O(T 1−θ/4) with at most O(T 2θ) LOO calls and O(T θ)

communication complexity.

Similar to Remark 3, if an exact value oracle for the objective function is available, one can develop an
counterpart of Algorithm 4 using two-point query instead of one-point query, and obtain a regret at the same
order of Theorem 2.

5.2.3 Bandit Feedback

Finally, to design an algorithm that can operate under bandit feedback (i.e., zeroth-order, trivial queries)
for case B.2 and B.3, we combine the strategies from the preceding two subsections. The process involves a
two-step adaptation of the original DROCULO algorithm. First, we apply the FOTZO meta-algorithm to handle
zeroth-order feedback, resulting in Algorithm 4. Second, we apply the SFTT meta-algorithm to Algorithm 4
to convert its non-trivial queries into trivial ones. The resulting method, presented in Algorithm 5, effectively
applies the SFTT blocking mechanism to the smoothed-function approach of Algorithm 4. The analysis of this
composite algorithm must therefore account for error terms from both adaptations: the function smoothing
(parameterized by δ) and the SFTT blocking (parameterized by L). This leads to the final regret bound
presented in Theorem 6, with a detailed proof available in Appendix G.
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Algorithm 4 Zeroth-order Full-information Algorithm for Case B.2 and B.3
1: Input: decision set K, horizon T , DROCULO block size K, step size η, error tolerance ϵ, number of agents

N , weight matrix A = [aij ], map h(·), smoothing parameter δ ≤ α, shrunk set K̂δ, linear space L0,
zeroth-order query oracle Q

2: Let k = dim(L0)
3: Set xi

1 = ỹi
1 = c ∈ K̂δ for any i = 1, · · · , N

4: for m = 1, · · · , T/K do
5: for each node i = 1, · · · , N in parallel do
6: for t = (m− 1)K + 1, . . . , mK do
7: Play h(xi

m)
8: Sample vi

t ∈ S1 ∩ L0 uniformly
9: For case B.2, let wi

q = z ∗ xi
m and for case B.3, let wi

q = z
2 ∗ (xi

m − u) + u
10: Query the oracle Q at wi

t + δvi
t and get response oi

t

11: Let oi
t ← k

δ oi
tvi

t

12: end for
13: Communicate xi

m and ỹi
m with neighbors

14: yi
m+1 ←

∑
j∈Ni

aijỹj
m + η

∑
t∈Tm

oi
t

15: (xi
m+1, ỹi

m+1)← OIP (K̂δ,
∑

j∈Ni

aijxj
m, yi

m+1, ϵ)

16: end for
17: end for

Theorem 6. For Case B.2 and B.3, under Assumption 1, 2, 3*, 4*, if we set ϵ = K2η2δ−2, then Algorithm
5 ensures a regret bound of

E
[
Ri

α

]
= O

(
L

η
+ ηTKδ−2 + δT + T

L

)
,

with at most O( T
ϵKL ) LOO calls and O( T

KL ) communication complexity. In particular, if 0 ≤ θ ≤ 4/5 and
we set K = T 1−5θ/4, δ = T −θ/4, L = T θ/4, and η = T θ/2−1, we see that E

[
Ri

α

]
= O(T 1−θ/4) with at most

O(T 2θ) LOO calls and O(T θ) communication complexity.

6 Conclusions

In this paper, we presented a decentralized, projection-free approach to optimizing upper-linearizable functions,
which extends the analysis of classical DR-submodular and concave functions. By incorporating projection-free
methods, our framework provides efficient regret bounds of O(T 1−θ/2), in first order feedback case, O(T 1−θ/4),
in zeroth order feedback case, with a communication complexity of O(T θ) and number of linear optimization
oracle calls of O(T 2θ) for suitable choices of 0 ≤ θ ≤ 1, making it scalable for large decentralized networks.
This illustrates a tradeoff between the regret and the communication complexity. The versatility of our
approach allows it to handle a variety of feedback models, including full information, semi-bandit, and
bandit settings. This is the first known result that provides such generalized guarantees for monotone and
non-monotone up-concave functions over general convex sets. Finally, an important next step is the empirical
validation of our theoretical guarantees to explore the practical performance of our framework in real-world
scenarios.
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q = wi

q + δvi
q

11: Sample t
′

q uniformly from {(m− 1)KL + (q − 1)L + 1, . . . , (m− 1)KL + qL}
12: for t = (m− 1)KL + (q − 1)L + 1, . . . , (m− 1)KL + qL do
13: if t = t

′

q then
14: Play the action zt = ŵi
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A From concavity to upper-linearizability

In this section, we provide an alternative definition of upper-linearizability to further clarify the connection
between this notion and that of concavity.

We start with a definition. Let F be a class of functions over a convex set K ⊆ Rd and let L be a functional
such that, for any f ∈ F and x ∈ K, Lf,x is an affine map over Rd. Let us call such a functional L a linear
assignment for F .
Lemma 2. A continuously differentiable function class F consists only of concave functions if and only if it
has a linear assignment L such that, for all f ∈ F and x, y ∈ K, we have

Lf,x(x) = f(x) and Lf,x(y) ≥ f(y).

Proof. We provide the proof for the case where dim(K) = d, the more general case is similar.

If f is concave, then we may choose the linear assignment Lf,x(y) := f(x) + ⟨∇f(x), y− x⟩. The fact that
Lf,x(y) ≥ f(y) for all y ∈ K follows from the definition of concavity.

On the other hand, if such a linear assignment exists for f ∈ F , then we have

f(y) ≤ Lf,x(y) = Lf,x(0) + Lf,x(y)− Lf,x(0).

Since Lf,x is affine, the expression Lf,x(y)− Lf,x(0) is linear. Therefore, there is a vector A ∈ Rd such that
Lf,x(y)− Lf,x(0) = ⟨A, y⟩. Thus

f(y) ≤ Lf,x(y) = Lf,x(x) + (Lf,x(y)− Lf,x(0))− (Lf,x(x)− Lf,x(0)) = f(x) + ⟨A, y− x⟩.

Therefore, by setting h = y− x and u = h
∥h∥ ∈ Sd, we see that

f(x + h)− f(x)− ⟨∇f(x), h⟩
∥h∥ ≤ ⟨A−∇f(x), h⟩

∥h∥ = ⟨A−∇f(x), u⟩.

If we keep u fixed and take the limit ∥h∥ → 0, the left-hand side of the above expression tends to zero, while
the right-hand side remains constant. Thus, we see that

⟨A−∇f(x), u⟩ ≥ 0.

If x ∈ relint(K), then there exists a d-dimensional ball around x that is contained in K. Thus, the above
inequality holds for any choice of u. In particular, it also holds for −u, which implies that ⟨A−∇f(x), u⟩ = 0,
for all u ∈ Sd. Hence, we conclude that A = ∇f(x). Therefore, for all x ∈ relint(K), we have

Lf,x(y) = Lf,x(x) + (Lf,x(y)− Lf,x(0))− (Lf,x(x)− Lf,x(0)) = f(x) + ⟨∇f(x), y− x⟩,

Hence f(y) ≤ f(x) + ⟨∇f(x), y− x⟩ for all x ∈ relint(K) and y ∈ K. Since f is continuously differentiable,
this inequality holds for all x, y ∈ K and therefore f is concave.

Now we may phrase the definition of upper-linearizability in a way that is similar to the above lemma. We
can also see clearly why such function classes are called "upper-linearizable".
Lemma 3. A function class F is called upper-linearizable if and only if it has a linear assignment L such
that, for all f ∈ F and x, y ∈ K, we have

Lf,x(x) = 1
α

f(h(x)) and Lf,x(y) ≥ f(y),

for some function h : K → K and some α ∈ (0, 1].

The proof is clear from the definition.
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B Up-concave Functions are Linearizable

In this section, we provide for completeness that three cases of common up-concave functions can be formulated
as upper-linearizable functions, and we give the exact query algorithm to obtain estimates of g functions. We
further show that g given by these algorithms is Lipschitz-continuous, if f is L-smooth.

B.1 Monotone Up-concave optimization over general convex set

Following Lemma 1 by Pedramfar & Aggarwal (2024a), we note that monotone up-concave optimization over
general convex set can be formulated as an online maximization by quantization algorithm with trivial query
G(x) = x.
Lemma 4 (Pedramfar & Aggarwal (2024a)). Let f : [0, 1]d → R be a non-negative monotone γ-weakly
up-concave function with curvature bounded by c. Then, for all x, y ∈ [0, 1]d, we have

γ2

1 + cγ2 f(y)− f(x) ≤ γ

1 + cγ2 (⟨∇f(x), y− x⟩),

where ∇f is the gradient of f .

Algorithm 6 BQM: Boosted Query Oracle for Monotone up-concave functions over general convex sets
1: Input: First order query oracle Q, point x
2: Return: the output of the first-order query oracle Q at x

B.2 Monotone up-concave optimization over convex set containing the origin

Following Lemma 2 by Pedramfar & Aggarwal (2024a), we note that monotone up-concave optimization over
convex set containing the origin can be formulated as an online maximization by quantization algorithm with
non-trivial query G = BQM0, which is described in Algorithm 7.
Lemma 5 (Pedramfar & Aggarwal (2024a)). Let f : [0, 1]d → R be a non-negative monotone γ-weakly
up-concave differentiable function and let F : [0, 1]d → R be the function defined by

F (x) :=
∫ 1

0

γeγ(z−1)

(1− e−γ)z (f(z ∗ x)− f(0))dz.

Then F is differentiable and, if the random variable Z ∈ [0, 1] is defined by the law

∀z ∈ [0, 1], P(Z ≤ z) =
∫ z

0

γeγ(u−1)

1− e−γ
du, (8)

then we have E [∇f(Z ∗ x)] = ∇F (x). Moreover, we have

(1− e−γ)f(y)− f(x) ≤ 1− e−γ

γ
⟨∇F (x), y− x⟩.

Algorithm 7 BQM0: Boosted Query Oracle for Monotone up-concave functions over convex sets containing the origin
1: Input: First order query oracle Q, point x
2: Sample z ∈ [0, 1] according to Equation (8) in Lemma 5
3: Return: the output of the first-order query oracle Q at z ∗ x

In this case, g = ∇F (x), h(x) = Id. Further, if f is smooth, g is Lipschitz continuous, as shown in the
following Lemma.
Lemma 6 (Theorem 2(iii), Zhang et al. (2022)). If f is L-smooth and satisfies other assumptions of Lemma
5, F is L′-smooth, where L′ = L γ+e−γ −1

γ(1−e−γ ) , i.e., ∇F (x) is L′-Lipschitz continuous.
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B.3 Non-monotone up-concave optimization over general convex set

Following Lemma 3 by Pedramfar & Aggarwal (2024a), we note that non-monotone up-concave optimization
over general convex set can be formulated as an online maximization by quantization algorithm with non-trivial
query G = BQN, as described in Algorithm 8.

Lemma 7 (Pedramfar & Aggarwal (2024a)). Let f : [0, 1]d → R be a non-negative non-monotone continuous
up-concave differentiable function and let x ∈ K. Define F : [0, 1]d → R as the function

F (x) :=
∫ 1

0

2
3z(1− z

2 )3

(
f
(z

2 ∗ (x− x) + x
)
− f(x)

)
dz,

Then F is differentiable and, if the random variable Z ∈ [0, 1] is defined by the law

∀z ∈ [0, 1], P(Z ≤ z) =
∫ z

0

1
3(1− u

2 )3 du, (9)

then we have E
[
∇f

(Z
2 ∗ (x− x) + x

)]
= ∇F (x). Moreover, we have

1− ∥x∥∞

4 f(y)− f

(
x + x

2

)
≤ 3

8 ⟨∇F (x), y− x⟩.

Algorithm 8 BQN: Boosted Query Algorithm for non-monotone up-concave functions over general convex sets
1: Input: First order query oracle Q, point x
2: Sample z ∈ [0, 1] according to Equation 9
3: Return: the output of first-order query oracle Q at z

2 ∗ (x− x) + x

In this case, g = ∇F (x), h(x) : x 7→ xt+x
2 . Further, if f is L-smooth, g is Lipschitz continuous, as given in

the following Lemma.

Lemma 8 (Theorem 18, Zhang et al. (2024)). If f is L-smooth, L1-Lipschitz and f satisfies assumptions in
Lemma 7, ∇F (x) is 1

8 L-smooth and 3
8 L1-Lipschitz continuous.

C Proof of Theorem 1

Suppose for agent i at round t, we denote the output of G(xi
m) as g̃t,i(xi

m). Let x∗ =
argmaxu∈K

1
N

∑T
t=1
∑N

i=1 ft,i(u), Tm = {(m− 1)K + 1, · · · , mK}. By the definition of α-regret for agent j,
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we have

E[Rj
α] = 1

N

T∑
t=1

N∑
i=1

E
[
αft,i(x∗)− ft,i(h(xj

t ))
]

= 1
N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[
αft,i(x∗)− ft,i(h(xj

m))
]

(a)
≤ β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[
⟨x∗ − xj

m, gt,i(xj
m)⟩
]

(b)= β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[
⟨x∗ − xj

m,E
[
g̃t,i(xj

m)|xj
m

]
⟩
]

(c)= β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[
E
[
⟨x∗ − xj

m, g̃t,i(xj
m)⟩|xj

m

]]
(d)= β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[
⟨x∗ − xj

m, g̃t,i(xj
m)⟩
]

(e)= E

 β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

⟨x∗ − xi
m, g̃t,i(xi

m)⟩︸ ︷︷ ︸
:=P1

+ E

 β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

⟨xi
m − xj

m, g̃t,i(xi
m)⟩︸ ︷︷ ︸

:=P2



+ E

 β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

⟨x∗ − xj
m, g̃t,i(xj

m)− g̃t,i(xi
m)⟩︸ ︷︷ ︸

:=P3

 (10)

where step (a) is because ft,i’s are upper linearizable, step (b) is because g̃t,i(·) is unbiased, step (c) is due to
the linearity of conditional expectation, step (d) is due to law of iterated expectation, and step (e) rewrites
(x∗ − xj

m) as [(x∗ − xi
m) + (xi

m − xj
m)] and g̃t,i(xj

m) as [(g̃t,i(xj
m)− g̃t,i(xi

m)) + g̃t,i(xi
m)].

As illustrated in step (e) in Equation 10, total regret can be divided into three parts, P1, P2, P3, and we provide
upper bound for each of these three parts with proof in the following sections, C.2, C.3, C.4, respectively. In
Section C.1, we introduce some auxiliary variables and lemmas that are useful to the following proof.

C.1 Auxiliary variables and lemmas

In this section, we introduce some auxiliary variables and lemmas to better present the proof of bound for
each of the three parts of the total regret presented in Equation 10.

Let yi
1 = ỹi

m = c, for any i ∈ [N ], since Algorithm 1 would only generate yi
m for m = 2, · · · , T/K. Let

ri
m = ỹi

m − yi
m for any i ∈ [N ] and m ∈ [T/K]. For any m ∈ [T/K], we denote the averages by:

x̄m =
∑N

i=1 xi
m

N
, ȳm =

∑N
i=1 yi

m

N
, ŷm =

∑N
i=1 ỹi

m

N
, and r̄m =

∑N
i=1 ri

m

N
.

There are two lemmas that would be useful to the proofs, and we provide proof of each of these in the
following appendices.
Lemma 9. For any i ∈ [N ] and m ∈ [T/K], Algorithm 1 ensures

∥ri
m∥ ≤ 2

√
3ϵ + 2ηKG.
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Proof. See Appendix C.7 for complete proof for Lemma 9.

Lemma 10. For any i ∈ [N ] and m ∈ [T/K], Algorithm 1 ensures√√√√ N∑
i=1
∥ŷm − ỹi

m∥2 ≤
√

N(3ηKG + 2
√

3ϵ)
1− λ2

, (11)

√√√√ N∑
i=1
∥ŷm − yi

m+1∥2 ≤
√

N(3ηKG + 2
√

3ϵ)
1− λ2

, and (12)

N∑
i=1
∥xi

m − xj
m∥ ≤

(
3
√

2ϵ + (3ηKG + 2
√

3ϵ)
1− λ2

)
(N3/2 + N). (13)

Proof. See Appendix C.8 for complete proof of Lemma 10.

C.2 Bound of P1

By replacing (x∗ − xi
m) with [(x∗ − ŷm) + (ŷm − ỹi

m) + (ỹi
m − xi

m)], P1 can be decomposed as:

1
β
E [P1] = 1

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

⟨ŷm − ỹi
m, g̃t,i(xi

m))⟩+ 1
N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

⟨ỹi
m − xi

m, g̃t,i(xi
m)⟩

+ 1
N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

⟨x∗ − ŷm, g̃t,i(xi
m)⟩︸ ︷︷ ︸

:=P4

(a)
≤ G

N

 N∑
i=1

T/K∑
m=1

∑
t∈Tm

∥ŷm − ỹi
m∥+

N∑
i=1

T/K∑
m=1

∑
t∈Tm

∥ỹi
m − xi

m∥

+ P4

(b)
≤G

T/K∑
m=1

∑
t∈Tm

√√√√ 1
N

N∑
i=1
∥ŷm − ỹi

m∥2 + T
√

3ϵ

+R4

(c)
≤TG

(
3ηKG + 2

√
3ϵ

1− λ2
+
√

3ϵ

)
+R4 (14)

where step (a) follows from Cauchy-Schwartz inequality and the bound of g̃t,i(·) function, step (b) follows
from Arithmetic Mean-Quadratic Mean inequality and Lemma 1, and step (c) follows from Equation (11) in
Lemma 10.

To attain upper bound on P4, we notice that,

ȳm+1 = 1
N

N∑
i=1

yi
m+1 = 1

N

N∑
i=1

∑
j∈Ni

aijỹj
m + η

∑
t∈Tm

g̃t,i(xi
m)


(a)= 1

N

N∑
i=1

N∑
j=1

aijỹj
m + η

N

N∑
i=1

∑
t∈Tm

g̃t,i(xi
m)

(b)= ŷm + η

N

N∑
i=1

∑
t∈Tm

g̃t,i(xi
m) (15)

where step (a) is because aij = 0 for any agent j /∈ Ni, and step (b) is because A1 = 1.
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Substituting ȳm+1 using Equation (14), we have for any m ∈ [T/K],

ŷm+1 =ŷm+1 − ȳm+1 + ȳm+1

(15)= r̄m+1 + ŷm + η

N

N∑
i=1

∑
t∈Tm

g̃t,i(xi
m) (16)

because r̄m+1 = ŷm+1 − ȳm+1.

By replacing ŷm+1 with Equation (16) and then expand the equation, we have

∥ŷm+1 − x∗∥2 (16)=
∥∥∥∥∥r̄m+1 + ŷm + η

N

N∑
i=1

∑
t∈Tm

g̃t,i(xi
m)− x∗

∥∥∥∥∥
2

=∥ŷm − x∗∥2 + 2
〈

ŷm − x∗,
η

N

N∑
i=1

∑
t∈Tm

g̃t,i(xi
m)
〉

+ 2⟨ŷm − x∗, r̄m+1⟩+
∥∥∥∥∥r̄m+1 + η

N

N∑
i=1

∑
t∈Tm

g̃t,i(xi
m)
∥∥∥∥∥

2

. (17)

Following Lemma 1, we deduce that for any m ∈ [T/K],

∥ỹi
m+1 − x∗∥2 ≤ ∥yi

m+1 − x∗∥2 = ∥yi
m+1 − ỹi

m+1 + ỹi
m+1 − x∗∥2

= ∥yi
m+1 − ỹi

m+1∥2 + 2⟨yi
m+1 − ỹi

m+1, ỹi
m+1 − x∗⟩+ ∥ỹi

m+1 − x∗∥2

= ∥ri
m+1∥2 − 2⟨ri

m+1, ỹi
m+1 − x∗⟩+ ∥ỹi

m+1 − x∗∥2

where the last equality is due to the definition of ri
m+1.

Omitting ∥ỹi
m+1 − x∗∥2 on both sides and moving ⟨ỹi

m+1 − x∗, ri
m+1⟩ to the left, we have

⟨ỹi
m+1 − x∗, ri

m+1⟩ ≤
1
2∥r

i
m+1∥2. (18)

Thus, we can bound the term ⟨ŷm − x∗, r̄m+1⟩ in Equation (17) as follows

⟨ŷm − x∗, r̄m+1⟩ = 1
N

N∑
i=1
⟨ŷm − x∗, ri

m+1⟩

(a)
≤ 1

N

N∑
i=1
⟨ŷm − yi

m+1, ri
m+1⟩+ 1

N

N∑
i=1
⟨ỹi

m+1 − x∗, ri
m+1⟩

(b)
≤ 1

N

N∑
i=1
∥ŷm − yi

m+1∥∥ri
m+1∥+ 1

2N

N∑
i=1
∥ri

m+1∥2

(c)
≤ 2ηKG + 2

√
3ϵ√

N

√√√√ N∑
i=1
∥ŷm − yi

m+1∥2 + 1
2N

N∑
i=1
∥ri

m+1∥2

(d)
≤ 1

1− λ2

(
6η2K2G2 + 10ηKG

√
3ϵ + 12ϵ

)
+ 2

(
η2K2G2 + 2ηKG

√
3ϵ + 3ϵ

)
(19)

where step (a) replaces ŷm−x∗ as (ŷm−yi
m+1)+(yi

m+1−ỹi
m+1)+(ỹi

m+1−x∗) and omits ⟨yi
m+1−ỹi

m+1, ri
m+1⟩ ≤

0, step (b) is due to Cauchy-Schwartz inequality and Equation (18), step (c) comes from Lemma 9 and
Arithmetic Mean-Quadratic Mean inequality, and step (d) follows from Equation 11 in Lemma 10.
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Also, we can bound the last term in Equation (17) as follows∥∥∥∥∥r̄m+1 + η

N

N∑
i=1

∑
t∈Tm

g̃t,i(xi
m)
∥∥∥∥∥

2
(a)
≤2∥r̄m+1∥2 + 2

∥∥∥∥∥ η

N

N∑
i=1

∑
t∈Tm

g̃t,i(xi
m)
∥∥∥∥∥

2

(b)
≤ 2

N

N∑
i=1
∥ri

m+1∥2 + 2Kη2

N

N∑
i=1

∑
t∈Tm

∥g̃t,i(xi
m)∥2

(c)
≤8
(√

3ϵ + ηKG
)2

+ 2η2K2G2

=24ϵ + 10η2K2G2 + 16ηKG
√

3ϵ (20)

where both step (a) and step (b) utilize Cauchy-Schwartz inequality and step (c) is due to Lemma 9 and the
bound of g̃t,i(·) functions.

Substitute Equation (19) and Equation (20) into Equation (17) and taking expectation on both sides, we
have

E
[
∥x∗ − ŷm+1∥2] ≤ E

[
∥x∗ − ŷm∥2]− 2η

N

N∑
i=1

∑
t∈Tm

E
[
⟨x∗ − ŷm, g̃t,i(xi

m)⟩
]

+ 1
1− λ2

(
12η2K2G2 + 20ηKG

√
3ϵ + 24ϵ

)
+
(

14η2K2G2 + 24ηKG
√

3ϵ + 36ϵ
)

.

(21)

Moving terms to different sides in Equation (21), we have

E [P4] = 1
N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[
⟨x∗ − ŷm, g̃t,i(xi

m)⟩
]

(21)
≤

T/K∑
m=1

[
E
[
∥ŷm − x∗∥2]− E

[
∥ŷm+1 − x∗∥2]

2η

]

+ T

K

[
18ϵ

η
+ 7ηK2G2 + 12KG

√
3ϵ

]
+ T

K

[
1

1− λ2

(
6ηK2G2 + 10KG

√
3ϵ + 12ϵ

η

)]
(a)
≤ 2R2

η
+ 18ϵT

ηK
+ 7ηTKG2 + 12TG

√
3ϵ

+ 1
1− λ2

(
12ϵT

ηK
+ 6ηTKG2 + 10TG

√
3ϵ

)
(22)

where the last inequality is due to E
[
∥ŷT/K+1 − x∗∥2] ≥ 0 and ∥ŷ1 − x∗∥2 ≤ 4R2, which is derived by

combining ŷ1 = c ∈ K, x∗ ∈ K, and R = maxx∈K ∥x∥, and Cauchy-Schwarz Inequality.

Therefore, plugging the result for term E [P4] from Equation (22) into Equation (14), we have

E [P1] ≤ TGβ

(
3ηKG + 2

√
3ϵ

1− λ2
+
√

3ϵ

)
(23)

+ 2βR2

η
+ 18βϵT

ηK
+ 7βηTKG2 + 12TGβ

√
3ϵ

+ β

1− λ2

(
12ϵT

ηK
+ 6ηTKG2 + 10TG

√
3ϵ

)
(24)
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C.3 Bound of P2

Next, we bound P2 in (10)

E [P2] (10)= β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

⟨xi
m − xj

m, g̃t,i(xi
m)⟩

(a)
≤ β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

∥xi
m − xj

m∥∥g̃t,i(xi
m)∥

(b)
≤ Gβ

N

T/K∑
m=1

∑
t∈Tm

N∑
i=1
∥xi

m − xj
m∥

(c)
≤ Gβ(N1/2 −+1)

(
3
√

2ϵ + 3ηKG + 2
√

3ϵ

1− λ2

)
. (25)

where step (a) is due to Cauchy-Schwartz inequality, step (b) follows from the bound of g̃t,i(·) functions, and
step (c) uses the inequality (13) in Lemma 10.

C.4 Bound of P3

Recall that gt,i(·) are L1-Lipschitz continuous, i.e.,

∥gt,i(xj
m)− gt,i(xi

m)∥ ≤ L1∥xi
m − xj

m∥.

Thus, we have

E [P3] (10)= β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E⟨x∗ − xj
m, g̃t,i(xj

m)− g̃t,i(xi
m)⟩

(a)= β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[〈

x∗ − xj
m,E

[
g̃t,i(xj

m)|xj
m

]
− E

[
g̃t,i(xi

m)|xi
m

]〉]
(b)= β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[
⟨x∗ − xj

m, gt,i(xj
m)− gt,i(xi

m)⟩
]

(c)
≤ β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[
∥x∗ − xj

m∥∥gt,i(xj
m)− gt,i(xi

m)∥
]

(d)
≤ L1β

N

N∑
i=1

T/K∑
m=1

∑
t∈Tm

E
[
∥x∗ − xj

m∥∥xi
m − xj

m∥
]

(e)
≤ 2L1Rβ

N
E

T/K∑
m=1

∑
t∈Tm

N∑
i=1
∥xi

m − xj
m∥


(f)
≤ 2L1Rβ(N1/2 + 1)

(
3
√

2ϵ + 3ηKG + 2
√

3ϵ

1− λ2

)
(26)

where step (a) and (b) is due to the law of iterated expectations, step (c) comes from Cauchy-Schwartz
inequality, step (d) follows from continuity of gt,i(·) functions, step (e) follows from the bound on K and
Cauchy-Schwartz inequality, and step (f) is due to Equation (13) in Lemma 10.
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C.5 Final Regret Bound

Plugging Equation (23), Equation (25) and Equation (26) into Equation (10), for any j ∈ [N ], we have

E
[
Rj

T,α

]
≤ 2βR2

η
+ 18ϵβT

ηK
+ 7ηβTKG2 + 13TGβ

√
3ϵ

+ β

1− λ2

(
12ϵT

ηK
+ 9ηTKG2 + 12TG

√
3ϵ

)
+ Gβ(N1/2 + 1)

(
3
√

2ϵ + (3ηKG + 2
√

3ϵ)
1− λ2

)
+ 2L1RTβ(N1/2 + 1)

(
3
√

2ϵ + (3ηKG + 2
√

3ϵ)
1− λ2

)

C.6 Number of Linear Optimization Oracle Calls

Finally, we analyze the total number of linear optimization oracle calls for each agent i. In Lemma 1, the
term R5 =

∥∥∥yi
m+1 −

∑
j∈Ni

aijxj
m

∥∥∥2
can be bounded as follows

R5 =

∥∥∥∥∥∥yi
m+1 −

∑
j∈Ni

aijxj
m

∥∥∥∥∥∥
2

(a)
≤ 2

∥∥∥∥∥∥yi
m+1 −

∑
j∈Ni

aijỹj
m

∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥
∑

j∈Ni

aijỹj
m −

∑
j∈Ni

aijxj
m

∥∥∥∥∥∥
2

(b)
≤ 2

∥∥∥∥∥η
∑

t∈Tm

g̃t,i(xi
m)
∥∥∥∥∥

2

+ 2
∑

j∈Ni

aij

∥∥ỹj
m − xj

m

∥∥2

(c)
≤ 2η2K2G2 + 6ϵ (27)

where both step (a) follows from Cauchy-Schwartz inequality, step (b) follows from Cauchy-Schwartz inequality
and Line (10) in Algorithm 1

From Equation (3) in Lemma 1, in each block m, each agent i in Algorithm 1 at most utilizes

li
m = 27R2

ϵ
max

(
∥yi

m+1 −
∑

j∈Ni
aijxj

m∥2(∥yi
m+1 −

∑
j∈Ni

aijxj
m∥2 − ϵ)

4ϵ2 + 1, 1
)

= 27R2

ϵ
max

(
R5(R5 − ϵ)

4ϵ2 + 1, 1
)

(27)
≤ 27R2

ϵ
max

(
(2η2K2G2 + 6ϵ)(2η2K2G2 + 6ϵ− ϵ)

4ϵ2 + 1, 1
)

= 27R2

ϵ

(2η2K2G2 + 6ϵ)(2η2K2G2 + 5ϵ) + 4ϵ2

4ϵ2 (28)

linear optimization oracle calls, where the last equality is due to the fact that (2η2K2G2 +6ϵ)(2η2K2G2 +5ϵ) ≥
0.

Thus, by summing Equation (28) over T
K blocks, we have that the total number of linear optimization steps

required by each agent i of Algorithm 1 is at most

T/K∑
m=1

li
m ≤

27TR2

ϵK

(
8.5 + 5.5K2η2G2

ϵ
+ K4η4G4

ϵ2

)
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C.7 Proof of Lemma 9

∥ri
m+1∥ = ∥ỹi

m+1 − yi
m+1∥

(a)
≤

∥∥∥∥∥∥ỹi
m+1 −

∑
j∈Ni

aijxj
m

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑

j∈Ni

aijxj
m − yi

m+1

∥∥∥∥∥∥
(b)
≤ 2

∥∥∥∥∥∥
∑

j∈Ni

aijxj
m − yi

m+1

∥∥∥∥∥∥ (c)= 2

∥∥∥∥∥∥
∑

j∈Ni

aijxj
m −

∑
j∈Ni

aijỹj
m − η

mK∑
t=(m−1)K+1

g̃t,i(xi
m)

∥∥∥∥∥∥
(d)
≤ 2

∑
j∈Ni

aij∥xj
m − ỹj

m∥+ 2ηKG

(e)
≤ 2
√

3ϵ + 2ηKG

where step (a) comes from triangle inequality, step (b) follows by Lemma 1, step (c) replaces yi
m+1 with

update rule described in Algorithm 1, step (d) comes from triangle inequality, and step (e) follows by Lemma
1.

Moreover, if m = 1, we can verify that

∥ri
1∥ = ∥0∥ ≤ 2

√
3ϵ + 2ηKG.

C.8 Proof of Lemma 10

To prove Lemma 10, we introduce additional auxiliary variables as follows:

x′
m = [x1

m; · · · ; xN
m] ∈ RNd, y′

m = [y1
m; · · · ; yN

m] ∈ RNd, ỹ′
m = [ỹ1

m; · · · ; ỹN
m] ∈ RNd

and

r′
m = [r1

m; · · · ; rN
m] ∈ RNd, g′

m =
mK∑

t=(m−1)K+1

[g̃t,1(x1
m); · · · ; g̃t,N (xN

m)] ∈ RNd.

According to step 10 in Algorithm 1, for any m ∈ {2, . . . , T/K}, we have

y′
m+1 = (A⊗ I)ỹ′

m + ηg′
m =

m−1∑
k=1

(A⊗ I)m−kr′
k+1 +

m∑
k=1

(A⊗ I)m−kηg′
k (29)

where the notation ⊗ indicates the Kronecker product and I denotes the identity matrix of size n× n.

In the same manner, for any m ∈ [T/K], we have

ỹ′
m+1 = r′

m+1 + y′
m+1 = r′

m+1 + (A⊗ I)ỹ′
m + ηg′

m

=
m∑

k=1
(A⊗ I)m−kr′

k+1 +
m∑

k=1
(A⊗ I)m−kηg′

k (30)

where the second equality follows the fact that r′
1 = ỹ′

1 − y′
1 = 0.

By the definition of ŷm+1, for any m ∈ [T/K], we have

[ŷm+1; · · · ; ŷm+1] =
(

11T

N
⊗ I
)

ỹ′
m+1 (31)

where the second equality comes from 1⊤A = 1⊤.
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C.8.1 Proof of Equation (11)

For any m ∈ [T/K], we have√√√√ N∑
i=1
∥ŷm+1 − ỹi

m+1∥2 (31)=
∥∥∥∥(11T

N
⊗ I
)

ỹ′
m+1 − ỹ′

m+1

∥∥∥∥
(30)=

∥∥∥∥∥
m∑

k=1

((
11T

N
−Am−k

)
⊗ I
)

r′
k+1 +

m∑
k=1

((
11T

N
−Am−k

)
⊗ I
)

ηg′
k

∥∥∥∥∥
(a)
≤

∥∥∥∥∥
m∑

k=1

((
11T

N
−Am−k

)
⊗ I
)

r′
k+1

∥∥∥∥∥+
∥∥∥∥∥

m∑
k=1

((
11T

N
−Am−k

)
⊗ I
)

ηg′
k

∥∥∥∥∥
(b)
≤

m∑
k=1

∥∥∥∥11T

N
−Am−k

∥∥∥∥ ∥∥r′
k+1
∥∥+

m∑
k=1

∥∥∥∥11T

N
−Am−k

∥∥∥∥ ∥ηg′
k∥

(c)
≤
√

N
m∑

k=1
λm−k

2 (3ηKG + 2
√

3ϵ)
(d)
≤
√

N(3ηKG + 2
√

3ϵ)
1− λ2

,

where step (a) is due to triangle inequality, and step (b) is due to Cauchy-Schwartz inequality and triangle
inequality, step (c) comes from Lemma 9 and the fact that ∀k ∈ [m], ∥11T

N −Am−k∥ ≤ λm−k
2 (see Mokhtari

et al. (2018) for details), and step (d) is due to the property of geometric series.

By noticing ŷ1 = ỹ1 = c, we complete the proof of Equation (11) in Lemma 10.

C.8.2 Proof of Equation (12)

Similarly, for any m ∈ {2, · · · , T/K}, we have√√√√ N∑
i=1
∥ŷm − yi

m+1∥2 (31)=
∥∥∥∥(11T

N
⊗ I
)

ỹ′
m − y′

m+1

∥∥∥∥
(29)=

∥∥∥∥∥
m−1∑
k=1

((
11T

N
−Am−k

)
⊗ I
)

r′
k+1 +

m−1∑
k=1

((
11T

N
−Am−k

)
⊗ I
)

ηg′
k − ηg′

m

∥∥∥∥∥
(a)
≤

∥∥∥∥∥
m−1∑
k=1

((
11T

N
−Am−k

)
⊗ I
)

r′
k+1

∥∥∥∥∥+
∥∥∥∥∥

m−1∑
k=1

((
11T

N
−Am−k

)
⊗ I
)

ηg′
k

∥∥∥∥∥+ ∥ηg′
m∥

(b)
≤

m−1∑
k=1

∥∥∥∥11T

N
−Am−k

∥∥∥∥∥∥r′
k+1
∥∥+

m−1∑
k=1

∥∥∥∥11T

N
−Am−k

∥∥∥∥ ∥ηg′
k∥+ ∥ηg′

m∥

(c)
≤
√

N

m∑
k=1

λm−k
2 (3ηKG + 2

√
3ϵ)

(d)
≤
√

N(3ηKG + 2
√

3ϵ)
1− λ2

,

where step (a) is due to triangle inequality, and step (b) is due to Cauchy-Schwartz inequality and triangle
inequality, step (c) comes from Lemma 9 and the fact that ∀k ∈ [m], ∥11T

N −Am−k∥ ≤ λm−k
2 (see Mokhtari

et al. (2018) for details), and step (d) is due to the property of geometric series.

When m = 1, ŷ1 = ỹi
1 =

∑
j∈Ni

aijỹj
1 = c. Due to Line (10) in Algorithm 1, we have√√√√ N∑

i=1
∥ŷ1 − yi

2∥2 =

√√√√√ N∑
i=1

∥∥∥∥∥∥
∑

j∈Ni

aijỹj
1 − yi

2

∥∥∥∥∥∥
2

=

√√√√ N∑
i=1

∥∥∥∥∥∑
t∈Tm

g̃t,i(xi
m)
∥∥∥∥∥

2

≤
√

NηKG.

By noticing that
√

NηKG <
√

N(3ηKG+2
√

3ϵ)
1−λ2

, we complete the proof of Equation (12).
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C.8.3 Proof of Equation (13)

For any m ∈ [T/K], we notice that

N∑
i=1
∥xi

m − xj
m∥ ≤

N∑
i=1
∥xi

m − x̄m + x̄m − xj
m∥ ≤

N∑
i=1
∥xi

m − x̄m∥+ N∥x̄m − xj
m∥

≤
(√

N + N
)√√√√ N∑

i=1
∥xi

m − x̄m∥2. (32)

Moreover, for any i ∈ [N ] and m ∈ {2, . . . , T/K}, we have

∥x̄m − xi
m∥2 ≤ ∥x̄m − ŷm + ŷm − ỹi

m + ỹi
m − xi

m∥2

(a)
≤ 3∥x̄m − ŷm∥2 + 3∥ŷm − ỹi

m∥2 + 3∥ỹi
m − xi

m∥2

(b)
≤ 3

N

N∑
j=1
∥xj

m − ỹj
m∥2 + 3∥ŷm − ỹi

m∥2 + 3∥ỹi
m − xi

m∥2

(c)
≤ 18ϵ + 3∥ŷm − ỹi

m∥2,

where step (a) utilizes Cauchy-Schwarz inequality, step (b) utilizes Cauchy-Schwarz inequality and the
definition of ŷm and x̄m, and step (c) comes from Lemma 1. When m = 1, ∥x̄1−xi

1∥2 = 0 ≤ 18ϵ+3∥ŷm−ỹi
m∥2,

which leads us to conclude that for any m ∈ [T/K],

∥x̄m − xi
m∥2 ≤ 18ϵ + 3∥ŷm − ỹi

m∥2.

Thus, for any m ∈ [T/K], we have√√√√ N∑
i=1
∥x̄m − xi

m∥2 ≤

√√√√ N∑
i=1

(18ϵ + 3∥ŷm − ỹi
m∥2)

(a)
≤ 3
√

2Nϵ +

√√√√3
N∑

i=1
∥ŷm − ỹi

m∥2

(b)
≤ 3
√

2Nϵ +
√

3N(3ηKG + 2
√

3ϵ)
1− λ2

(33)

where step (a) is due to triangle inequality and step (b) follows by Equation (11) in Lemma 10.

Finally, by substituting Equation (33) into Equation (32), for any m ∈ [T/K], we have

N∑
i=1
∥xi

m − xj
m∥ ≤ (

√
N + N)

√√√√ N∑
i=1
∥xi

m − x̄m∥2

≤
(

3
√

2ϵ + (3ηKG + 2
√

3ϵ)
1− λ2

)
(N3/2 + N).

D Bandit Feedback for Trivial Query Functions

In this section, we describe and discuss the variation of DOCLO to handle bandit feedback for functions with
trivial query oracle. The detailed implementation is given in the Algorithm 2, and here we provide proof of
Theorem 3. This algorithm requires additional input from the user: smoothing parameter δ ≤ α, shrunk set
K̂δ, linear space L0.
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Proof. Let A′ denote Algorithm 2 and A denote Algorithm 1. Let f̂t,j denote a δ-smoothed version of ft,i.
Let x∗ ∈ argmaxx∈K

∑T
t=1
∑N

j=1 ft,j(x) and x̂∗ ∈ argmaxx∈K̂δ

∑T
t=1
∑N

j=1 f̂t,j(x). Following our description
in Section 5.1, Algorithm 2 is equivalent to running Algorithm 1 on f̂t,i, a δ smoothed version of ft,i over a
shrunk set K̂δ.

By the definition of regret, we have

E
[
Ri,A′

α

]
− E

[
Ri,A

α

]
= 1

N
E

α

T∑
t=1

N∑
j=1

ft,j(x∗)−
T∑

t=1

N∑
j=1

ft,j(h(xi
t) + δvi

t)


− 1

N
E

α

T∑
t=1

N∑
j=1

f̂t,j(x̂∗)−
T∑

t=1

N∑
j=1

f̂t,j(h(xi
t))


= 1

N
E

 T∑
t=1

N∑
j=1

f̂t,j(h(xi
t))−

T∑
t=1

N∑
j=1

ft,j(h(xi
t) + δvi

t)


+α

 T∑
t=1

N∑
j=1

ft,j(x∗)−
T∑

t=1

N∑
j=1

f̂t,j(x̂∗)

 . (34)

Based on Lemma 3 proved by Pedramfar et al. (2023), we have |f̂t,j(h(xi
t))− ft,j(h(xi

t))| ≤ δM1, and f̂t,j is
M1-Lipschitz continuous as well. Thus, we have

|ft,j(h(xi
t) + δvi

t)− f̂t,j(h(xi
t))| ≤ |ft,j(h(xi

t) + δvi
t)− ft,j(h(xi

t))|+ |ft,j(h(xi
t))− f̂t,j(h(xi

t))| ≤ 2δM1.
(35)

Meanwhile, for the second part of Equation 34, we have

T∑
t=1

N∑
j=1

f̂t,j(x̂∗) = max
x̂∈K̂α

T∑
t=1

N∑
j=1

f̂t,j(x̂)

(a)
≥ −NδM1T + max

x̂∈K̂α

T∑
t=1

N∑
j=1

ft,j(x̂)

(b)= −NδM1T + max
x∈K

T∑
t=1

N∑
j=1

ft,j

((
1− δ

r

)
x + δ

r
c
)

= −NδM1T + max
x∈K

T∑
t=1

N∑
j=1

ft,j

(
x + δ

r
(c− x)

)
(c)
≥ −NδM1T + max

x∈K

T∑
t=1

N∑
j=1

(
ft,j(x)− 4δM1R

r

)

= −
(

1 + 4R

r

)
NδM1T +

T∑
t=1

N∑
j=1

ft,j(x∗)

where step (a) follows from Lemma 3 by Pedramfar et al. (2023), step (b) follows from the definition of K̂δ,
and step (c) is due to the M1-Lipschitz continuity of ft,i’s.

Putting it together with Equation 34 and Equation 35, we have

Ri,A′

α −Ri,A
α ≤ 1

N

(
2NδM1T +

(
1 + 4R

r

)
NδM1T

)
=
(

3 + 4R

r

)
δM1T.
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Thus we have

Ri,A′

α ≤ Ri,A
α +

(
3 + 4R

r

)
δM1T.

Assuming the zeroth order oracle is bounded by B0, from Line 10 of Algorithm 2 we see that the gradient
sample that is being passed to A is bounded by G = k

δ B0 = O(δ−1). Substituting results from Theorem 1,
we see that

E
[
Ri,A′

α

]
= O

(
Ri,A

α + δT
)

= O

(
1
η

+ ηTKδ−2 + δT

)
.

Since we are doing same amount of infeasible projection operation and communication operation in Algorithm
2, LOO calls and communication complexity for Algorithm 2 remains the same as Algorithm 1.

E Semi-Bandit Feedback for Non-Trivial Query Functions

To transform DOCLO into an algorithm that can handle semi-bandit feedback when we are dealing with
functions with non-trivial queries, we pass T

L as time horizon to DOCLO. In each of those T
L blocks, we consider

functions
(

f̂q,i

)
1≤q≤T/L,1≤i≤N

, where f̂q,i = 1
L

∑qL
t=(q−1)L+1 ft,i. We note that in Algorithm 3, for any x ∈ K

and 1 ≤ q ≤ T/L, we have E[ft′
q
(x)] = f̂q(x), and if ft are differentiable, E[∇ft′

q
(x)] = ∇f̂q(x). This way, the

transformed algorithm only queries once at the point of action per block, thus semi-bandit.

Proof of Theorem 4. Let A′ denote Algorithm 3 and A denote Algorithm 1. Following our description in
Section 5.2.1, Algorithm 3 is equivalent to running Algorithm 1 on f̂q,i(x) = 1

L

∑qL
t=(q−1)L+1 ft,i(x), an

average of ft,i over block q. In consistence with Algorithm 3 description, we let zi
t denote the action taken by

agent i at time-step t, whether it be x̂q, point of action selected by DOCLO, or ŷq, point of query selected by
DOCLO. Thus, the regret of Algorithm 3 over horizon T is

E
[
Ri,A

′

α,T

]
= 1

N
E

α max
u∈K

T∑
t=1

N∑
j=1

ft,j(u)−
T∑

t=1

N∑
j=1

ft,j(zi
t)


= L

N
E

α max
u∈K

1
L

T∑
t=1

N∑
j=1

ft,j(u)− 1
L

T∑
t=1

N∑
j=1

ft,j(zi
t)


= L

N
E

α max
u∈K

1
L

N∑
j=1

T/L∑
q=1

qL∑
t=(q−1)L+1

ft,j(u)− 1
L

N∑
j=1

T/L∑
q=1

qL∑
t=(q−1)L+1

ft,j(zi
t)


= 1

N
E

 N∑
j=1

T/L∑
q=1

qL∑
t=(q−1)L+1

(
ft,j(x̂i

q)− ft,j(zi
t)
)

+ L

α max
u∈K

N∑
j=1

T/L∑
q=1

f̂q,j(u)−
N∑

j=1

T/L∑
q=1

f̂q,j(x̂i
q)


(36)

Algorithm 3 ensures that in each block with a given q, there is only 1 iteration where zi
t ̸= x̂i

q, otherwise
zi

t = x̂i
q. Since ft,j are M1-Lipschitz continuous, we have |ft,j(x̂i

q)− ft,j(ŷi
t)| ≤M1|x̂i

q − ŷi
t| ≤ 2M1R where

the second equation comes from the restraint on K. Since K̂δ ⊆ K, we have maxx∈K̂δ
∥x∥ ≤ maxx∈K ∥x∥ = R.

Thus, we have

N∑
j=1

T/L∑
q=1

qL∑
t=(q−1)L+1

∣∣ft,j(x̂i
q)− ft,j(xi

t)
∣∣ ≤ N∑

j=1

T/L∑
q=1

(0 ∗ (L− 1) + 2M1R ∗ 1) = 2NTM1R

L
(37)
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The second part of Equation 36 can be seen as the regret of running Algorithm 1 against
(

f̂q,i

)
1≤q≤T/L,1≤i≤N

,

over horizon T/L instead of T . We denote it with Ri,A
α,T/L. Applying Theorem 1, we have

E
[
Ri,A

α,T/L

]
= O

(
1
η

+ ηTKG2

L

)
.

Putting together with Equation 36 and Equation 37, we have

E
[
Ri,A

′

α,T

]
≤ 2TM1R

L
+ LE

[
Ri,A

α,T/L

]
which means

E
[
Ri

α

]
= O

(
L

η
+ ηTKG2 + T

L

)
.

Based on the implementation described in Algorithm 3, it queries oracle every L iterations, and communicate
and make updates with infeasible projection operation every KL iteration. Thus, communication complexity
for Algorithm 3 is O( T

KL ), while LOO calls are O( T
ϵKL ).

F Zeroth Order Full-Information Feedback for Non-Trivial Query Functions

In this section, we describe and discuss the variation of DOCLO to handle zeroth-order full-information feedback
for functions with non-trivial query oracle. The detailed implementation is given in the Algorithm 4 table,
followed by proof of Theorem 5. Per request of FOTZO, Algorithm 4 requires additional input from the user:
smoothing parameter δ ≤ α, shrunk set K̂δ, linear space L0. In the case of non-trivial query oracle, h(·) is
not necessarily an identity function. In the following, we give proof of Theorem 5.

Proof of Theorem 5. Let A′ denote Algorithm 4 and A denote Algorithm 1. Let f̂t,j denote a δ-smoothed
version of ft,i. Let x∗ ∈ argmaxx∈K

∑T
t=1
∑N

j=1 ft,j(x) and x̂∗ ∈ argmaxx∈K̂δ

∑T
t=1
∑N

j=1 f̂t,j(x). Following
our description in Section 5.2.2, Algorithm 4 is equivalent to running Algorithm 1 on f̂t,i, a δ smoothed
version of ft,i over a shrunk set K̂δ.

By the definition of regret, we have

E
[
Ri,A′

α

]
− E

[
Ri,A

α

]
= 1

N
E

α

T∑
t=1

N∑
j=1

ft,j(x∗)−
T∑

t=1

N∑
j=1

ft,j(h(xi
t))


− 1

N
E

α

T∑
t=1

N∑
j=1

f̂t,j(x̂∗)−
T∑

t=1

N∑
j=1

f̂t,j(h(xi
t))


= 1

N
E

 T∑
t=1

N∑
j=1

f̂t,j(h(xi
t))−

T∑
t=1

N∑
j=1

ft,j(h(xi
t))


+α

 T∑
t=1

N∑
j=1

ft,j(x∗)−
T∑

t=1

N∑
j=1

f̂t,j(x̂∗)

 . (38)

Based on Lemma 3 proved by Pedramfar et al. (2023), we have |f̂t,j(h(xi
t))− ft,j(h(xi

t))| ≤ δM1 < 2δM1.

It can be shown that the second part of Equation 38 follows the same upper bound as Equation 35.

Thus, putting it together, we have for Algorithm 2, the regret
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Ri,A′

α ≤ Ri,A
α + 1

N

(
2NδM1T +

(
1 + 4R

r

)
NδM1T

)
= Ri,A

α +
(

3 + 4R

r

)
δM1T

Assuming the zeroth order oracle is bounded by B0, from Line 10 of Algorithm 4 we see that the gradient
sample that is being passed to A is bounded by G = k

δ B0 = O(δ−1). Substituting results from Theorem 1,
we see that

E
[
Ri

α

]
= O

(
1
η

+ ηTKδ−2 + δT

)
.

Since we are doing same amount of infeasible projection operation and communication operation in Algorithm 4,
LOO calls and communication complexity for Algorithm 4 remains the same as Algorithm 1.

G Bandit Feedback for Non-trivial Query Function

In this section, we extend DOCLO over functions with nontrivial query oracle to handle bandit feedback, i.e.,
trivial query and zero-order feedback. We achieve this by applying FOTZO to handle zero-order full-information
feedback, then applying SFTT to transform the algorithm into trivial queries. In the following, we provide
proof of Theorem 6.

Proof of Theorem 6. Let A′ denote Algorithm 5 and A denote Algorithm 4. Following our description in
Section 5.2.3, Algorithm 5 is equivalent to running Algorithm 4 on f̂q,i(x) = 1

L

∑qL
t=(q−1)L+1 f̂t,i(x), an average

of f̂t,i over block q, where f̂t,i is a δ-smoothed version of ft,i. In consistence with Algorithm 5 description, we
let xi

t denote the action taken by agent i at iteration t, whether it be x̂q, point of action selected by DOCLO,
or ŷq, point of query selected by DOCLO. Thus, the regret of Algorithm 5 over horizon T:

E
[
Ri,A

′

α

]
= 1

N
E

α max
u∈K

T∑
t=1

N∑
j=1

f̂t,j(u)−
T∑

t=1

N∑
j=1

f̂t,j(zi
t)


= L

N
E

α max
u∈K

1
L

T∑
t=1

N∑
j=1

f̂t,j(u)− 1
L

T∑
t=1

N∑
j=1

f̂t,j(zi
t)


= L

N
E

α max
u∈K

1
L

N∑
j=1

T/L∑
q=1

qL∑
t=(q−1)L+1

f̂t,j(u)− 1
L

N∑
j=1

T/L∑
q=1

qL∑
t=(q−1)L+1

f̂t,j(zi
t)


= 1

N
E

 N∑
j=1

T/L∑
q=1

qL∑
t=(q−1)L+1

(
f̂t,j(x̂i

q)− f̂t,j(zi
t)
)

+L

α max
u∈K

N∑
j=1

T/L∑
q=1

f̂q,j(u)−
N∑

j=1

T/L∑
q=1

f̂q,j(x̂i
q)

 (39)

Algorithm 3 ensures that in each block q, there is only 1 iteration where zi
t = ŷi

t ̸= x̂i
t, otherwise xi

t = x̂i
t.

Based on Lemma 3 proposed by Pedramfar et al. (2023), f̂t,j is M1-Lipscitz continuous if ft,i is M1-Lipscitz
continuous, i.e., |ft,j(x̂i

q) − ft,j(ŷi
t)| ≤ M1|x̂i

q − ŷi
t| ≤ 2M1R where the second equation comes from the

restraint on K. Since K̂δ ⊆ K, we have maxx∈K̂δ
∥x∥ ≤ maxx∈K ∥x∥ = R. Thus, we have

N∑
j=1

T/L∑
q=1

qL∑
t=(q−1)L+1

(
f̂t,j(x̂i

q)− f̂t,j(xi
t)
)

=
N∑

j=1

T/L∑
q=1

(0 ∗ (L− 1) + 2M1R ∗ 1) = 2NTM1R

L
(40)
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The second part of Equation 39 can be seen as the regret of running Algorithm 4 against
(

f̂q,i

)
1≤q≤T/L,1≤i≤N

,

over horizon T/L instead of T . We denote it with Ri,A
α,T/L. Applying Theorem 5, we have

E
[
Ri,A

α,T/L

]
= O

(
1
η

+ ηTKδ−2

L
+ δT

L

)
.

Putting it together with Equation 36 and Equation 37, we have

E
[
Ri,A

′

α

]
≤ 2TM1R

L
+ LE

[
Ri,A

α,T/L

]
,

which means that

E
[
Ri

α

]
= O

(
L

η
+ ηTKδ−2 + δT + T

L

)
.

Based on the implementation described in Algorithm 3, it queries oracle every L iterations, and communicate
and make updates with infeasible projection operation every KL iteration. Thus, communication complexity
for Algorithm 3 is O( T

KL ), while LOO calls are O( T
ϵKL ).
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