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Abstract

Despite advances in generative methods, accurately modeling the distribution of graphs
remains challenging primarily because of the absence of a predened or inherent unique
graph representation. Two main strategies have emerged to tackle this issue: 1) restrict-
ing the number of possible representations by sorting the nodes, or 2) using permutation-
invariant/equivariant functions, specically Graph Neural Networks (GNNs).

In this paper, we introduce a new framework named Discrete Graph Auto-Encoder (DGAE),
which leverages both strategies’ strengths and mitigates their respective limitations. In
essence, we propose a strategy in two steps. We rst use a permutation-equivariant auto-
encoder to convert graphs into sets of discrete latent node representations, each node being
represented by a sequence of quantized vectors. In the second step, we sort the sets of
discrete latent representations and learn their distribution with a specically designed auto-
regressive model based on the Transformer architecture.

Through multiple experimental evaluations, we demonstrate the competitive performances
of our model in comparison to the existing state-of-the-art across various datasets. Various
ablation studies support the interest of our method.

1 Introduction

Graph generative models are a signicant research area with broad potential applications. While most
existing models focus on generating molecules for de novo drug design, there has been interest in using
these models for tasks such as material design (Lu et al., 2020), protein design (Ingraham et al., 2019), code
programming modeling (Brockschmidt et al., 2019), semantic graph modeling in natural language processing
(Chen et al., 2018; Klawonn & Heim, 2018), or scene graph modeling in robotics (Li et al., 2017).

Despite advances in generative methods, accurately modeling the distribution of graphs remains a complex
task. The main challenge lies in the absence of predened or inherent unique graph representations. Given
a graph of n nodes, there are n! permutations, each corresponding to a distinct representation of the same
graph.

Two main strategies have emerged to tackle this issue:

1. The rst accepts multiple representations of the same graph but restricts their quantity by sorting
the nodes thanks to a heuristic such as Breadth-First Search (BFS), as in (You et al., 2018; Shi
et al., 2020; Luo et al., 2021).
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2. The alternative approach employs models that are inherently invariant to node ordering permuta-
tions. This method achieves permutation invariance through the use of Graph Neural Networks, as
in (Vignac et al., 2023; Jo et al., 2022).

Both methods have their own challenges, which we elaborate on in Section 2.

Our main contribution is introducing a new generative model designed to address this issue of multiple
graph representations. We use a permutation-equivariant auto-encoder to convert graphs into sets of node
embeddings and reconstruct graphs from sets of node embeddings. Contrary to graphs, any sorting algorithm
yields a unique representation for sets. So, we transform the sets into sequences and leverage an auto-
regressive model to learn the implicit distribution over sets.

In implementing this framework, we introduce new methods and techniques or adapt existing ones. We
enhance the node embeddings by introducing an innovative feature augmentation strategy. To ease the
modeling of the latent distribution, we remove unnecessary information and reduce the size of the latent
space by quantizing the node representations. However, for pragmatic considerations, we initially partition
the node embeddings and subsequently quantize these partitions. As a result of this sequentialization, the
latent representations form sequences spanning two dimensions: the partitions and the nodes. To model this
distribution, we introduce a novel Transformer architecture designed to take advantage of its 2-dimensional
structure.

The development and subsequent evaluation of our model yield several signicant contributions that we
summarize as follows:

• We introduce a novel generative model for graphs, leveraging a graph-to-set discrete auto-encoder
invariant to permutations.

• We develop a new Transformer architecture, the 2D-Transformer, specically designed to model
sequences across two dimensions.

• We design a new technique for graph feature augmentation, which we call p−path features.

• For the rst time, we empirically evaluate various feature augmentation strategies via an ablation
study.

• Through empirical analysis, we demonstrate the competitive performances of our model in compar-
ison to the existing state-of-the-art across various datasets.

In the following, Section 2 presents the foundational concepts and issues of graph modeling. Section 3 dis-
cusses the literature on graph generation. In Section 4, we introduce our Discrete Graph Auto-Encoder.
Lastly, Section 5 presents the experimental evaluation of our model, demonstrating its competitive perfor-
mance against baseline models for various datasets, including both simple and annotated graphs.

2 Background

In this section, we provide the necessary background about graph modeling. We dene some notations and
then review the challenges of learning graph representations, which mainly stems from the graph isomorphism
problem. Finally, we introduce Graph Neural Networks (GNN) and discuss some of their limitations.

2.1 Notation

We dene a simple (unannotated and undirected) graph as a tuple G = (V , E), where V is the set of nodes,
whose cardinality is n, and E is the set of edges between these nodes. Given two nodes νi and νj in V , we
represent the edge connecting them as ϵi,j = (νi, νj) ∈ E . For annotated graphs, we introduce two additional
functions V and E that map the nodes and the edges to their respective attributes: V (νi) = xi ∈ R

R and
E(ϵi,j) = ei,j ∈ R

S . In the case of univariate discrete attributes, the categorical attributes are one-hot
encoded, and R and S are the number of node and edge categories, respectively. We denote an annotated
graph as G = (V , E , V, E).
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2.2 Graph isomorphism

A fundamental property of graphs is their invariance with respect to the representation ordering of the
node. To put it dierently, any permutation applied to the representation ordering of the node will yield
an identical graph. Therefore, there are n! possible isomorphic representations of the same graph. In the
following, we employ the notation π(·) to indicate that we represent the graph under a specic node ordering.

The graph isomorphism problem, which consists of determining whether two graphs are identical or distinct,
follows from these possible multiple representations (Köbler et al., 1993). Algorithms that oer a unique rep-
resentation for each isomorphism are at least as expensive computationally as solving the graph isomorphism
problem1. This problem has not been proven to be solvable in polynomial time (Helfgott et al., 2017).

As a result, algorithms that uniquely sort nodes in any graph are, at least, as expensive as algorithms solving
the graph isomorphism problem.

Graph isomorphism is a signicant issue for graph generative models. Without a specic solution, generative
models must learn a new set of parameters for each permutation. Given the vast number of possible permu-
tations for each graph, this brute-force approach is unreasonable. In fact, to the best of our knowledge, no
generative model for graphs follows such a procedure.

2.3 Generative models and graph isomorphism

Previous generative models, detailed in Section 3, have predominantly pursued two strategies to deal with
the issue of ordering: sequentialization and invariance to permutation.

2.3.1 Sequentialization

The rst method aims to establish an ordering of nodes that yields a sequentialization of the graph. Most
models adopt algorithms sorting nodes in a non-unique manner. Breadth-rst search (BFS), used for instance
in (You et al., 2018; Shi et al., 2020; Luo et al., 2021), is the most common heuristic to order nodes in graph
generative models. We presume that BFS is also a convenient way of traversing the graph and works as
an inductive bias for auto-regressive models. The main drawback of BFS is that the number of potential
representations can still be considerable. In the worst case (star graph), BFS does not reduce the number
of possible representations at all.

2.3.2 Invariance to permutation

The alternative approach circumvents the issue by developing models invariant to permutation by construc-
tion. These models rely on permutation-invariant and permutation-equivariant functions. Permutation-
invariance is dened as:

f(G) = x ⇐⇒ f(π(G)) = x▷ (1)

A function f is said permutation-equivariant if:

f(π(G)) = π(f(G))▷ (2)

Notably, equivariance to permutation implies that input and output have the same cardinality. In practice,
Graph Neural Networks (GNN) entails permutation-invariance and permutation-equivariance. In the next
Section (2.4), we introduce the fundamental principles of GNNs

2.4 Graph neural networks

GNN layers are permutation-equivariant functions. Since the cardinality of the input and the output of such
function must match, GNNs are said to be ’at’2.

1The graph isomorphism problem involves determining whether two graphs are isomorphic. Establishing a unique represen-

tation for each isomorphism can be considered a way to solve the problem. If the representations match, then the graphs are

isomorphic.
2It does not mean that the dimension of each node representation, usually a vector, does not change.

3



Published in Transactions on Machine Learning Research (03/2024)

An aggregating function providing graph-level information often follows the GNNs layers. Such an aggrega-
tion with a commutative function, as summation or averaging, results in a permutation-invariant function.

2.4.1 Message Passing Neural Networks

Message Passing Neural Networks (MPNNs) (Scarselli et al., 2009) represent a prevalent class of Graph
Neural Networks (GNNs), even though other classes of GNN have gained in popularity, in particular, GNN,
where each node shares information with all the other nodes as, for instance, in (Yun et al., 2019). The core
concept underlying MPNNs involves updating the representation of each node by aggregating information
from its neighboring nodes, those with which it shares an edge. Consequently, after l layers, each node
aggregates information from its l-hop neighborhood. We refer to this l-hop neighborhood as the receptive
eld of node features. So, each layer increases the size of the receptive eld.

Message Passing Layer The update of the lth layer of an MPNN involves two steps. The rst step
computes the message:

el+1
i,j = f l

edge(x
l
i,x

l
j , e

l
ij) (3)

The second step aggregates information to compute a new node representation:

xl+1
i = f l

node



xl
i,



j∈N (i)

el+1
i,j



 (4)

In these equations, the functions f are small neural networks, the


denotes any commutative function,
and N (i) is the set of nodes connected to node i. Note that the ’message’ el+1

i,j can also be interpreted as an
edge representation and passed to the next layer. In the following, we will favor this interpretation.

Limitations MPNNs present the advantage of addressing the graph isomorphism problem but exhibit some
shortcomings. Specically, two challenges have been widely acknowledged: oversmoothing and limitation of
their expressive power.

Firstly, all node and edge features tend to the same value as the number of layers increases. We call this
phenomenon oversmoothing (Li et al., 2018-02; Oono & Suzuki, 2020). Because of it, one should limit the
depth of MPNNs to a few layers.

Secondly, MPNNs exhibit limited expressive capacities in the sense that they cannot discern specic pairs of
non-isomorphic graphs (Morris et al., 2019). Standard MPNNs are, at best, as expressive as the Weisfeiler-
Lehman (1-WL) test (Xu et al., 2019; Loukas, 2019). Consequently, they fail to detect some basic substruc-
tures (Arvind et al., 2020; Chen et al., 2020). We illustrate such failure in Appendix D.

Two strategies to enhance the expressive capability of standard MPNNs have been proposed. Developing
GNNs more powerful than MPNNs is the rst strategy (Maron et al., 2019; Vignac et al., 2020). So far,
such GNNs are computationally much more expensive and, therefore, ineective.

The second approach involves the augmentation of the node features with synthetic attributes, including
spectral embeddings, cycle counts, and the integration of random noise. The feature augmentation enhances
the ability of GNNs to capture the graph structure. Using spectral embeddings (Laplacian Positional En-
coding), cycle count, or random noise is now usual as additional synthetic features for graph generation
(Krawczuk et al., 2021; Vignac et al., 2023). We present the details about these features in appendix D. In
Section 4.1.2, we propose a new method for feature augmentation called p-path features, and in Section 5.4,
we assess experimentally the eect of the various methods on our model.
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3 Related work

In this Section, we briey review existing work on graph generative models. As exposed in Section 2,
generative models for graphs have followed two main strategies to address the graph representation issue:
sequentialization and invariance to permutation.

3.1 Sequential generation

This sequentialization serves dual purposes: it restricts the number of possible graph representations and
facilitates auto-regressive graph generation. Notably, all models following this approach are auto-regressive.
Graph canonization is computationally expensive, as discussed in Section 2. To the best of our knowledge,
GraphGen (Goyal et al., 2020) stands as the only model employing this particular strategy for generic graphs.
Most works only seek to reduce the number of graph representations by adopting a Breadth-First Search
(BFS) based method.

We can further categorize auto-regressive models into two classes. The rst class, which includes the seminal
GraphRNN (You et al., 2018), employs a recurrent framework that necessitates maintaining and updating a
global graph-level hidden state. This approach inherently introduces long-range dependencies, as proximate
nodes in graph topology can be distant in the sequential representation. The second class of auto-regressive
models sidesteps long-range dependencies by recomputing the state for the partially generated graph at each
step (Shi et al., 2020; Luo et al., 2021; Liao et al., 2019; Kong et al., 2023). Although this alleviates the
long-range dependency issues, it drastically increases the computational cost.

Furthermore, auto-regressive models, generating nodes and edges one by one, are inherently slow during the
generation phase. Generation slowness is especially true for the second class of models, as highlighted by
experimental results in Section 5.3.2 and in (Jo et al., 2022). GRANs (Liao et al., 2019) attempt to address
this speed issue by generating multiple nodes and edges simultaneously, albeit with a trade-o in generation
performance.

Models previously discussed are generic, meaning they operate independently of any specic domain knowl-
edge. However, many models are tailored to particular domains, notably in the domain of molecule gen-
eration, which represents a predominant application of graph generative modeling. Such domain-specic
models often employ canonical representations. The Canonical SMILES notation, for instance, is commonly
used to represent molecules, as in (Gómez-Bombarelli et al., 2018; Kusner et al., 2017). Recently, powerful
models representing molecules as 3D objects have emerged (Hoogeboom et al., 2022; Xu et al., 2023). While
plenty of domain-specic sequential models exist (Liu et al., 2018; Samanta et al., 2020; Jin et al., 2018;
2020; Kuznetsov & Polykovskiy, 2021; Li et al., 2018), in this work, we focus on developing a generic graph
model.

3.2 Models invariant to permutations

The second main strategy to address the multiple potential representations of a graph consists of using models
invariant to permutations. By denition, these models, also referred to as ’one-shot’, cannot be sequential.
These models implement invariance or equivariance through GNNs. They are thus insensitive to the or-
dering of the graphs during training. Various methods, such as Generative Adversarial Networks (GANs),
Normalizing Flows (NF), and diusion/score-base models, have been proposed following this strategy, each
with its merits and issues.

In GANs, a discriminator (or critic) classies (or scores) graphs between true (from the dataset) and gener-
ated, while a generator aims to maximize the error of the discriminator. MolGAN (De Cao & Kipf, 2018)
proposes to use permutation-invariant discriminator. GG-GAN (Krawczuk et al., 2021) add a permutation-
equivariant generator, and GrannGan (Boget et al., 2023) proposes to generate only the nodes and edges
attribute from sampled skeletons. However, the adversarial training is known to be unstable. MolGAN
exhibits mode collapse and low diversity. GG-GAN also suers from a lack of diversity, while GrannGAN
does not generate graphs, but only their attributes.
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Normalizing Flows are designed to learn an invertible mapping between the data distribution and a known
continuous distribution, typically the Standard Normal distribution. Both GraphNVP (Madhawa et al.,
2019) and Moow (Zang & Wang, 2020) use a two-step process, rst generating an adjacency tensor, followed
by an annotation matrix conditioned on this tensor. GNF (Liu et al., 2019) needs only one step but focuses
on generating simple graphs only.

However, we hypothesize that, even with dequantization, eciently spanning the continuous latent space
using discrete objects remains a signicant challenge. Indeed, based on their empirical evaluations, while
these models surpass the performance of GAN-based approaches, they do not model graph distributions as
eectively as auto-regressive models and those relying on diusion/score-based methods.

Diusion and score-based models gradually introduce Gaussian noise to the data and learn to denoise it for
each noise level. In graphs, some models have suggested adding Gaussian noise to the adjacency matrix
(Yang et al., 2019) and to the annotation matrix (Jo et al., 2022). By doing so, these models generate fully
connected graphs, facilitating direct information sharing among all nodes.

However, as stated in (Vignac et al., 2023), the continuous noise compromises the graph structures, leading
them to collapse into fully connected graphs. To address this concern, DiGress introduced a discrete diusion
model for graphs (Vignac et al., 2023), which integrates discrete noise to maintain a coherent graph structure
at every noise level. In practice, however, the discretization does not appear to bring signicant improvement
over GDSS.

Whether continuous or discrete, the diusion/score-based approach eectively captures the global structure
of the graph and, as of now, has produced the best results with Digress and GDSS (Jo et al., 2022) considered
as state-of-the-art. However, the extensive number of denoising steps required by these models make the
generation process comparatively slow, as shown experimentally and reported in Section 5.

3.3 Graph Auto-Encoders

Closer to our work, Kipf and Welling (Kipf & Welling, 2016) proposed a permutation-equivariant graph
auto-encoder, namely the Graph Auto-Encoder (GAE) and the Variational Graph Auto-Encoder (VGAE)
relatively long ago. However, they use it as a feature extractor for downstream tasks rather than for
generation. In fact, neither of these two models captures the interaction and dependencies between node
embeddings. One of our main contributions consists of modeling these interactions and dependencies nec-
essary for generation. On a side note, we also remark that they use a simple activated scalar product as
a decoder, which can neither capture interactions between multiple node embeddings nor decode node and
edge attributes. Like most auto-encoders in generative modeling, we use a decoder mirroring the encoder.

Lastly, GraphVAE (Simonovsky & Komodakis, 2018) adopts a distinct approach to handle the multiple
possible graph representations. A permutation-invariant encoder captures a graph-level latent representation,
losing the original node ordering in their aggregation. Then, a decoder, built using a standard feed-forward
neural network, aims to reconstruct the original graph to yield a graph in any permutation. Nevertheless,
during the training phase, the model requires aligning the original representation with its reconstructed
counterpart. This comparison necessitates an expensive graph-matching procedure with a computational
complexity of order O(n4).

Unlike GraphVAE, our auto-encoder is permutation-equivariant end-to-end. It does not to capture the graph
representation in a single vector but a in a set of node embeddings, each capturing its local neighborhood so
that we can reconstruct the graph from its set of node embeddings. Since the sequentialization of sets does
not suer the same problem as graphs, we can model the set of node embeddings as a sequence leveraging
an auto-regressive model. To sum up, we follow the permutation invariance strategy to train a graph-to-set
auto-encoder, and then we follow the sequentialization strategy to model the distribution over sets.

4 Discrete Graph To Set Auto-Encoder

In a nutshell, our approach involves a two-step strategy. The rst step is a graph auto-encoder. We encode
a graph into a set of n node embeddings. For practical reasons detailed hereunder, we partition each node
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embedding into C vectors and quantize each vector independently. Then, we decode the quantized latent
representation, aiming to recover the original graph. This rst step generates a discrete latent distribution
over sets of node embeddings, yet this latent distribution remains unknown.

In the second step, our objective is to learn this latent distribution. Rather than directly modeling a distri-
bution over sets, we transform the sets into sequences. We then leverage a model based on the Transformer
architecture to learn these sequences auto-regressively.

The rationale behind this two-step strategy stems from using permutation-equivariant functions, particularly
Message Passing Neural Networks (MPNNs), to project the graph into a latent space and decode it. This ap-
proach prevents the node ordering issue, making the computation of the reconstruction loss straightforward
without needing a matching procedure. However, as discussed in Section 2.4.1, MPNNs present inherent
limitations, such as being constrained in depth and only capturing information from their L-hop neighbor-
hood, L being the number of layers in the MPNN. Consequently, MPNNs are unable to model interactions
between distant nodes. Therefore, we introduce the second step to model the latent distribution to address
these long-range dependencies between node embeddings.

In this section, we present and motivate these two steps in detail (Sections 4.1 and 4.2), and we explicitly
explain how we perform generation (Section 4.3. The source code of our model is publicly available at
https://github.com/yoboget/dgae.

4.1 Discrete Graph Auto-Encoder

In this initial step, our primary objectives when encoding graphs are twofold. Firstly, we aim to learn node
embeddings that facilitate the accurate reconstruction of the original graph. Secondly, we strive to create a
latent distribution that is handy to learn in the second step.

To achieve this, we enhance the input graph representation with feature augmentation (Section 4.1.1).
We use a Message Passing Neural Network (MPNN) to encode graphs G into sets of node embeddings
{zh

i , ▷▷▷, z
h
n} = Zh, mapping a space over graphs to a space over sets fencoder : G → Z

h (Section 4.1.2).
Partitioning and quantizing the node embeddings results in a handy discrete latent space with known support,
facilitating the modeling of the latent distribution in the second step. Specically, we partition the node
embeddings in a sequence of C vectors zh

i = (zh
1 , ▷▷▷, z

h
C). We then quantize each vector independently

(Section 4.1.3), replacing them with their closest neighbor in a codebook. Finally, another MPNN decodes
the sets of quantized vectors Zq, also called codewords, to graphs Ĝ, formally fdecoder : Zq → G. Figure 1
visually summarizes the entire procedure.

Figure 1: Diagram of our auto-encoder. 1. The encoder is an MPNN transforming the graph into a set
of node embeddings Zh. 2. The elements of the set Zh are partitioned and quantized, producing a set of
codeword sequences Zq. 3. The decoder, an other MPNN, takes the set Zq and reconstruct the original
graph.

4.1.1 Input Graph and Feature Augmentation

As explained in Section 2.4, conventional MPNNs cannot identify certain fundamental graph substructures.
Such a shortcoming adversely impacts the information captured by the encoder. Inevitably, the node em-
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beddings miss the information the encoder fails to capture, preventing accurate reconstruction. A common
mitigation strategy involves enhancing MPNN capacities by augmenting the input features with synthetic
attributes. We employ this approach to generate more informative node embeddings, allowing for better
reconstruction performance.

Here, we propose a new augmentation scheme that aggregates information from the p-path neighborhood.
Specically, we rst create virtual edges (with a vector of zeros as attributes) between nodes that are
connected by paths of length 2 to p (the edges between adjacent nodes, i.e. connected by a path of length
1, are already represented by a vector of edge attributes). We then concatenate a synthetic p−dimensional
vector to each vector of edge attribute, whose ith entry corresponds to the number of paths of length i

connecting the two endpoints. Similarly, we augment the node features with a p−dimensional vector, whose
ith entry indicates the number of paths of length i emanating from the node. In Appendix D, we provide more
details on how we compute the path lengths as well as information about the other feature augmentation
schemes used for our experiments.

Our method presents two benets compared to other methods. First, unlike other methods, our p−path
augmentation strategy produces synthetic attributes for nodes and edges, providing richer information about
the substructures around each node. Second, the virtual edges aggregate information from a larger neigh-
borhood. The computation of the synthetic features is a unique prepossessing step. In our experiments, we
use the p−path method setting p = 3.

Our solution is related to the recent k−hop message passing presented in (Feng et al., 2022), both using the
path length information. Our proposition diers on two main points. First, we use the path information to
create synthetic features, while k−hop message passing uses this information to compute dierent message
passing functions for each path length. Second, we take into account the number of paths of length p between
2 nodes, while they only consider if there is at least one such path.

In Section 5.4, we empirically show that our method increases the reconstruction performance of our auto-
encoder the most compared to other methods.

4.1.2 Encoder

We aim to encode graphs as sets of node embeddings, where each embedding captures its local graph structure
so that we can eectively recover the original graph from these embeddings. We use an MPNN as encoder
since they are specically designed and ecient for modeling the local neighborhood of each node.

We formally dene our encoder as an L-layer MPNN whose layers follow these two equations:

el+1
i,j = bn(fedge([x

l
i,x

l
j , e

l
i,j ]) (5)

xl+1
i = bn



xl
i +



j∈N (i)

fnode([x
l
i,x

l
j , e

l
i,j ])



 , (6)

where bn stands for batch normalization (Ioe & Szegedy, 2015) and [·, ·] is the concatenation operator.
After the last layer, we discard the edge representation eLi,j and keep only the node representation so that

zh
i = xL

i ∈ R
dlatent . The complete graph latent representation is the set of all the node embedding Zh =

{zh
1 , ▷▷▷, z

h
n} where the superscript h indicates the set before quantization. The superscript q will refer to the

latent representations after quantization.

4.1.3 Discrete Latent Distributions

In the context of our auto-encoder, quantization consists of replacing a d dimensional vector by its nearest
neighbor in a learned codebook H ∈ R

m×d, m being the codebook size. By partitioning, we refer to a
simple reshaping operation, where a vector of dimension d is reshaped in C vectors of dimension d◁C. Both

8



Published in Transactions on Machine Learning Research (03/2024)

operations follow the same objectives: produce a latent distribution that is handy to model (in the second
step) and exible enough to yield good reconstruction.

Specically, the encoder outputs n node embeddings zh
i ∈ R

dlatent . So, we partition these node embed-
dings in C vectors (zh

i,1, ▷▷▷, z
h
i,C), where each zh

i,c is in R
dlatent◁C . Then, we quantize each vector inde-

pendently. We refer to the partitioned and quantized representations as the discrete latent representation
Zq = {(zq

1,1, ▷▷▷, z
q
1,C), ▷▷▷, (z

q
n,1, ▷▷▷, z

q
n,C)). Figure 2 depicts the quantization procedure. Partitioning and

quantization result in discrete latent distributions.

Figure 2: Diagram of the quantization. We represent each node embedding by C partition vectors zh
i,c.

Then, we quantize each of these vectors by replacing them with their closest neighbor from the corresponding
codebook Hc. The vectors in the codebooks are parameters learned during training.

Discrete Latent Representations The node embeddings zh
i , as they are output by the encoder, are

real-valued vectors in R
dlatent . We make two observations regarding these vectors.

First, if the original graphs have only discrete node and edge attributes, the support of this distribution is
discrete. It corresponds to all the possible subgraphs within the L-hop neighborhood, where L is the number
of encoder layers. However, enumerating the support of this discrete distribution is intractable in almost all
practical scenarios, which makes the modeling of this discrete distribution unpractical. In the continuous
case, the distribution of the node embeddings remains also unknown and challenging to model.

Second, the encoder cannot model interactions between distant nodes. By consequence, even if we could
model the distribution of each node embedding individually, the distribution over the sets of node embeddings
would remain unknown.

Both observations, i.e., the potential discrete support of the node embedding distributions and the impossible
modeling of distant nodes, make standard variational auto-encoder unappropriated for the task. More
generally, the distribution of node embeddings zh

i , as they are output by the encoder, is challenging. On
the other hand, discrete latent models have shown impressive results with both discrete and continuous data
(van den Oord et al., 2017; Razavi et al., 2019). Therefore, we leverage such a model using quantization to
produce discrete latent distributions with known support.

Quantization The quantization of the node embeddings into discrete latent representations presents many
advantages. First, discrete latent representation is a natural t for modeling discrete structures like graphs.
In particular, discrete representation prevents approximating step functions or Dirac delta functions with
neural networks, which require smooth dierentiable functions.

Quantization also enforces the codewords to follow a m−dimensional categorical distribution, where m, the
codebook size, is a hyper-parameter. Knowing that the latent vectors follow an m−dimensional categorical
distribution, we can learn their parameters in the second stage of our model.
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Moreover, quantization acts as an information bottleneck. Assuming no prior information, the information
contained in each selected codeword is I = log2(m) bits and depends only on the codebook size m. By
training the auto-encoder with a reconstruction objective, we encourage the quantization process to retain
only the most valuable information for reconstruction. Also, by reducing the codebook size, we shrink the
number of categories and, therefore, the number of parameters of the categorical distribution, making the
latent distribution easier to learn. Limiting the codebook size also reduces the risk of codebook collapse
(Kaiser et al., 2018) as observed in our experiments (See Section 5.4), favoring a better coverage of the space
and so preventing sampling from regions out of the distribution. However, restraining the information passed
to the decoder makes the reconstruction harder. As a result, there is a trade-o between the reconstruc-
tion quality and the dimensionality of the categorical distribution stemming from the codebook size. We
empirically show the eect of this trade-o in our experiments (See Section 5.4). We indeed observe that
the reconstruction loss decreases when the codebook size increases. However, larger codebook sizes do not
yield better generation performances despite better reconstruction performance. We explain this observation
because larger codebooks result in larger categorical distributions that are harder to learn.

Partitioning In practice, we often need a large discrete latent space to model each node representation
with enough exibility. We can obtain this exibility either with a single codeword with a large codebook
or with multiple codewords, each coming from a (much) smaller codebook.

Large codebooks imply high dimensional categorical distributions, which are inconvenient in practice. Specif-
ically, modeling a high-dimensional categorical distribution in the second stage of our model would require an
output layer whose size corresponds to the dimension of this distribution. Large output layers, particularly
those larger than their hidden layers, are ineective in practice. Our experiments show that our model’s
generation performance drops for the larger categorical distribution.

So, instead of representing each node embedding with a single codeword, we use multiple codewords for
each node representation. To that end, we partition the node embeddings zh

i ∈ Rdlatent in C vectors
zh
i , c ∈ Rdlatent◁C by reshaping them.

In consequence, each node embedding is represented by C partition vectors. We quantize each of these
partition vectors independently, each partition with its own codebook. In fact, in graphs, as in images,
codebooks shared across features reect an invariance assumption: the permutation invariance for graphs
and the translation invariance for images. We use dierent codebooks for the dierent partitions as we do
not assume any invariance across partitions. In other words, there is no reason to share codebooks across
partitions because the various partitions do not belong to the same feature map.

After partitioning and quantization, the latent representation of each node is a sequence of codewords. We
call dictionary the set all possible codeword arrangements. Therefore, for a xed codebook size m, the
dictionary size is M = mC . We empirically assess the eect of partitioning and present the results in Section
5.4.

Formalisation Specically, the partition function fp denes a simple reshaping operation transforming a
vector of dimension dlatent in C vectors of dimensions dlatent◁C, that is fp : Rdlatent → R

C×(dlatent◁C).

We dene the quantization function qc : R
dlatent◁C → {h1,c, ▷▷▷hm,c} as the mapping of the c-th partition of

node i, to its closest neighbor in the corresponding codebooks Hc ∈ R
m×dlatent◁C , such that:

qc(z
h
i,c) = z

q
i,c = hk,c with k = argmin

g

(||zh
i,c − hg,c||2)▷ (7)

Notably, the quantization procedure acts independently on every element in the set. It is, therefore,
permutation-equivariant.

We underline that a bijection exists between the quantized vectors and their corresponding indices in the code-
books. Therefore, the quantized vectors and their indices hold the same information. In the following, we refer
to the set of indices corresponding to the set of quantized vectors as Zq = {(zq

1,1, ▷▷▷, z
q
1,C), ▷▷▷, (z

q
n,1, ▷▷▷, z

q
n,C))

as K = {(k1,1, ▷▷▷, k1,C), ▷▷▷, (kn,1, ▷▷▷, kn,C)), where ki,c ∈ {1, ▷▷▷,m}.
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4.1.4 Decoder

After quantization, the decoder has to recover the graph structure and the node and edge attributes for
annotated graphs. Formally, it is a set-to-graph function fdecoder : Zq → G. Since we have dropped any
explicit representation of the graph (see Section 4.1.2), when we decode it, we assume a fully connected
graph among the elements of Zq. We subsequently feed the fully connected graph into an MPNN similar
to the one used as encoder but without feature augmentation. The decoder output serves as logit to model
the discrete distributions over the edges and the nodes when the graph has node attributes. We present the
implementation details in Appendix A.1.

4.1.5 Training

Our training strategy follows principles developed to train models performing quantization of the latent space
(van den Oord et al., 2017). The training objectives are simultaneously reconstruction and quantization. We
dene a reconstruction loss for the rst objective. We update the codebook vectors center using Exponential
Moving Average (EMA) as the second objective. Lastly, we add a regularization term to prevent the latent
space from growing indenitely. In the following, we present these elements and provide the implementation
details in Appendix A.2.

Reconstruction loss We train the parameters of MPNNs (encoder and decoder) to minimize the recon-
struction loss. We dene it as the expected negative log-likelihood of the graph given the set of codewords
Zq:

Lrecon▷ = −EZq ln (pθ(G|Zq)) (8)

Thanks to the auto-encoder’s permutation-equivariance, the loss computation is straightforward since the
representation order of the output corresponds to the input one.

The main diculty comes from the quantization operation, which is non-dierentiable. Therefore, no gradient
can ow back to the encoder. We circumvent this diculty by following (van den Oord et al., 2017) and
passing the gradient with respect to the codeword directly to the encoder’s output, bypassing the quantization
operation.

Vector Quantization Objective The Vector Quantization (VQ) objective updates the vector in the
codebooks. The objective function, acting as an online k-means algorithm, updates the vectors in the
codebook using EMA as proposed in (van den Oord et al., 2017). We adopt the k-mean++ initialization for
the codebooks as proposed in (Łańcucki et al., 2020).

Commitment loss Finally, nothing prevents the embeddings from taking arbitrarily large values. To
circumvent this issue, we follow again (van den Oord et al., 2017). We incorporate a commitment loss
function, which pushes the encoder outputs close to their corresponding codewords.

4.2 Modeling The Latent Distribution

The auto-encoder implicitly denes a distribution over the latent space Z
q, which translates over the space

of the corresponding sets of indices K dened in Section 4.1.3. For generation, we need to sample from one
of these distributions. So, we decide to model the distribution of indices. After sampling, we recover the
corresponding codewords from their indices.

Instead of learning a distribution over the sets of index partitions {(k1,1, ▷▷▷, k1,C), ▷▷▷, (kn,1, ▷▷▷, kn,C)), we
turn the sets into sequences by sorting them. After sorting, the sequences of indices K ∈ R

n×C have
two dimensions: the partition dimension and the node dimension. Instead of attening the sequence, we
propose a new model based on the Transformer architecture (Vaswani et al., 2017) that leverages the 2-
dimensional structure of the sequences to implement parameter sharing for computational eciency and
better generalization. We call it 2D-Transformer.
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Our main contribution concerns the attention function. Before presenting it, we rst detail the sequen-
tialization, the auto-regressive process, the input and output of our model, and recall some basics of the
Transformer architecture.

4.2.1 Sequentialization

The existence of multiple permutations carries over from the graphs to the sets in the latent space. The
multiple possible representations as well as the limitations of permutation-equivariant and permutation-
invariant functions are still an issue.

However, unlike graphs, sorting sets in a unique representation is easy. Any sorting algorithm can sort sets,
yielding a unique representation. We can then represent the latent distributions as sequences and learn them
auto-regressively.

Additionally, we remark that sorting is a specic kind of permutation. Since the decoder is permutation-
equivariant, permuting the node embeddings in the latent space only changes the representation of the
output graph but not the graph itself. So, we sequentialize the sets and learn the sequential distribution
auto-regressively.

In practice, we sort the set of index sequences K = {(k1,1, ▷▷▷, k1,C), ▷▷▷, (kn,1, ▷▷▷, kn,C)) (the indices corre-
sponding to the codewords Zq = {(zq

1,1, ▷▷▷, z
q
1,C), ▷▷▷, (z

q
n,1, ▷▷▷, z

q
n,C)), see Section 4.1.3) by increasing order

using the rst partition as the primary criterion. In case of a tie, we use the index of the second partition
as a secondary criterion, etc. We permute the set Z accordingly. We obtain sequences of indices K ∈ R

n×C

and, the corresponding sequence of codewords Z ∈ R
n×C×dlatent◁C .

Since we perform the sorting operation as a preprocessing step for the second stage of our model, there is
no backpropagation through the sorting operation.

The ordering obtained is arbitrary, but it has the advantage of being completely generic. Domain-specic
information can certainly lead to orderings that improve learning performance. We let this question open
for further domain-specic research.

Regarding notation, we remove the superscript q from the latent vector z since we only work with the selected
codewords in this second stage. Instead, we use the superscript to indicate the number of Transformer blocks
traversed so that zl

i,c correspond to the representation zi,c after l blocks.

4.2.2 Auto-regressive setup on two dimensions

Our model uses the codewords vectors Z as input to model the distribution of indices K. Formally, we have:

P ((k1,1▷▷▷, k1,C), ▷▷▷, (kn,1, ▷▷▷, kn,C)) =

n


i=1

C


c=1

P (ki,c|z<i,1, ▷▷▷, z<i,C , zi,<c), (9)

where z<i,j refers to all the vectors having the rst index smaller than i and j as second index.

We introduce the description of the inputs and outputs of our model as it should help to understand how
our auto-regressive model accesses all and only allowed positions.

For the input, we oset the rst dimension (i.e., the node dimension) by one position to predict the partition
indices of the next node, and we concatenate the known partitions of the current node to predict the next
partition. Since the number of known partitions varies, so does the size of the input vectors. Therefore, we
linearly project these vectors so that all the input vectors have the same dimension dmodel. So, we have:

z0
i,0 = W in

0 [zi−1,1, ▷▷▷, zi−1,C ], (10)

and
z0
i,c = W in

c [zi−1,1, ▷▷▷, zi−1,C , zi,1, ▷▷▷, zi,c], (11)

where the W in
c ∈ R

dmodel×(dlatent+(c◁C)dlatent) are matrices of parameters and [, ] is the concatenation opera-
tor. To obtain the vector in the rst position z1,c, we introduce a virtual node (z0,1, ▷▷▷, z0,C) made of vectors
of zeros.
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After L layers, we project the output zL
i,c and apply softmax to model the index distribution of the next

partition.

Pθ(ki,c) = softmax(fout(z
L
i,c−1))▷ (12)

We pad the sequence with an end-of-sequence token so that the sequence can take various sizes. Since we
sorted the indices in the training set, the indices lower than the last known index are out of the distribution;
for instance, p(ki,1 >= ki−1,1) = 0. Even though the auto-regressive model should learn to generate the
sequence following the order in the training set, we ease the task of our model by enforcing this constraint
with masking.

4.2.3 Transformer

The Transformer is based on attention. The attention function takes queries qi, keys ki, and values vi, all
are transformations from the corresponding representation zi. The attention output is a weighted sum of
the values, where the weights correspond to a compatibility function, such as the scalar product, between
queries and keys. The queries correspond to the aggregating position, while keys and values correspond to
aggregated positions. The original attention from (Vaswani et al., 2017) includes a scaling factor so that the
attention output is computed as:

ai =


j≤i

softmax(
qT
i kj√
dk

)vj ▷ (13)

In practice, all attention functions are computed simultaneously using matrix multiplication. Masking M

ensures that the weighted sum includes allowed positions only. We have: A = softmax(QKT

√
dk

⊙M)V . Follow-

ing the original paper (Vaswani et al., 2017), we use multi-head attention, residual connections, position-wise
fully connected feed-forward networks, and positional encoding.

2D Attention The main idea behind 2D-Transformer lies in the computation of the attention function.
Instead of computing the attention function for all the partitions, we compute it over the node embeddings
as a whole. In addition to the benets oered by transformers over other auto-regressive models, such as
the computational complexity per layer, the parallelizable computation, and the short path lengths between
long-range dependencies (Vaswani et al., 2017), our 2D-Transformer implements parameter sharing for com-
putational eciency and better generalization. So, the keys and values are computed once for the whole
node, so that we have: kl

i = f l
k(z

l
i+1,0), and vl

i = f l
v(z

l
i+1,0). One can interpret it as a form of parameter

sharing since we use the same keys and values and, therefore, the same set of parameters for all the partitions.
Nevertheless, the attention weights depend on the partition through the queries, which are dierent for each
partition, as ql

i,c = f l
q,c(z

l
i,c). In practice, the functions fk, fv, and fq are small neural networks.

Thanks to the queries, the attention score, qT
i,ckj , also depends on both dimensions. So, the main change of

our model compared to the standard Transformer appears in the attention function, which we compute as:

ai,c =


j<i

softmax(
qT
i,ckj√
dk

)vj ▷ (14)

Due to the unique key and value for the rst dimension, we compute the summation along the second
dimension by including only the previous representations (j < i). As the original Transformer, we scale the
attention score by

√
dk, where dk is the dimensionality of the vector k. The information about previous

partitions in the current node passes through the residual connections as presented hereunder.

Transformer blocks Except for the attention function, our model follows the Transformer architecture.
We compute attention in every head of every layer and use element-wise feed-forward neural network, layer
normalization, as well as residual connections:

13



Published in Transactions on Machine Learning Research (03/2024)

zl+1
i,c = LayerNorm(ãl

i,c + f l
z(ã

l
i,c), (15)

where

ãl
i,c = LayerNorm(zl

i,c + [al
i,c]

H
1 ), (16)

and where []H1 is the concatenation of the H heads. After L blocks, we take the outputs zl+1
i,c to model the

probability distribution of the next index, as described in Equation 12.

4.3 Generation

For generation, we iteratively sample from pθ(ki,c), and get the corresponding zi,c. Sequence generation
stops upon sampling the end-of-sequence token or reaching the maximum number of node embeddings nmax.
So, we can generate graphs of various sizes, and we need at most nmaxC iterations to generate an instance.

Despite the auto-regressive method, generation with our model is signicantly faster than other methods.
There are three reasons for this. First, at each iteration, the computational complexity is bounded by the
vector-matrix product qTi,cK

T , which is O(d2model), where most models require at least O(nw), where w is
the matrix multiplication exponent. Second, the length of the auto-regressive sequence for graphs usually
depends on the number of (potential) edges and is proportional to n2. Instead, our method is auto-regressive
over a sequence depending linearly on n. For the current size of the generated graphs, nC is also smaller
than the number of time steps in score-based models. We input the generated sets into the decoder and
generate the resulting graphs simultaneously. Finally, the eciency of our method allows us to keep the
size of our model small. As presented in Appendix A.3, the largest hidden dimension of our experimental
models never exceeds 256 hidden units, far from the dimension of current large models. In Section 5, we
experimentally show that our method is comparatively fast at generation.

5 Evaluation

This section presents the results of our experiments evaluating our model. We rst compare the performance
of our DGAE with baseline models, both on simple and annotated graphs. We then perform various ablation
studies to evaluate and understand our model better.

5.1 Experimental setup

We evaluate our model on both synthetic datasets and molecular datasets. In the following, we present
these datasets, the metrics used to assess the quality of generated samples, and the baseline models used for
comparison. Appendix A.3 reports the details of the models, the hyperparameters choices and the resulting
number of parameters used for the experiments. For a fair comparison, we adopt the experimental procedure
followed in (Jo et al., 2022) regarding metrics, split between training and test sets, number models and runs,
and sample sizes described hereafter.

5.1.1 Simple graphs

For simple graphs, we evaluated the performance of our model on two datasets of small graphs, namely
Ego-Small and Community-Small, with 200 and 100 graphs, respectively as well as Enzymes, a dataset of
larger graphs. In particular, we split the datasets between training and test sets with a ratio of 80%− 20%
as (Jo et al., 2022) and use the exact same split when available.

The Ego-Small dataset is constructed by extracting ego-networks from the large citeseer network, a real-world
social network. The dataset comprises 200 graphs having between 4 and 18 nodes.

The Community-Small dataset is purely synthetic. The number of nodes in each graph is uniformly sampled
from the set {12, 14, 16, 18, 20}. Each graph is divided into two communities of equal size. The probability
of edge intra-community is set to pintra = 0▷7, while the probability of edge between inter-communities is set
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to pinter = 0▷03, with the constraint of having at least one edge between communities. We use the version
of the dataset proposed by (Jo et al., 2022) containing 100 graphs.

Enzymes is a dataset containing 587 protein graphs that represent the protein tertiary structures of enzymes.
It is extracted from the BRENDA database. The graphs in this dataset are larger than in Ego-small and
Community-Small, with a node range between 10 and 125.

We employ the maximum mean discrepancy (MMD) to compare the distributions of graph statistics between
generated and test graphs (You et al., 2018). The MMDs are computed over the distributions of degrees
(deg.), clustering coecients (clust.), and the number of occurrences of orbits with up to four nodes (orbit)3.
Similar to (Jo et al., 2022), we utilize the Gaussian Earth Mover’s Distance (EMD) kernel to compute the
MMDs.

The MMDs are computed by comparing the test set to generated samples of the same size as the test set. For
Ego-Small and Community-Small, our reported results are the average of fteen runs, i.e., fteen generation
batches with the test set size used for evaluation against the test set: three runs from ve models trained
independently. For the Enzymes dataset, which contains much larger graphs, we follow (Jo et al., 2022) and
average over three runs from a single model. Due to space limitation, we report the standard deviation in
the appendix B.

5.1.2 Molecular datasets

We evaluated the performance of our model on two widely used datasets for molecule generation: Qm9
(Ramakrishnan et al., 2014) and Zinc250k (Irwin et al., 2012).

The Qm9 dataset (Ramakrishnan et al., 2014) comprises 133,885 small organic molecules with up to nine
heavy atoms, consisting of only four atom types, namely C,O,N, F . We followed the convention in previous
works and employed the kekulized version of the dataset with three edge types (single, double, and triple).

The Zinc250k dataset is a subset of the Zinc database (Irwin et al., 2012) that includes 250,000 molecules
with up to 38 heavy atoms of nine types. We also used the kekulized representation of this dataset.

We used the test sets provided by (Jo et al., 2022). The metrics are calculated over 10,000 samples from
training and test sets when needed.

Traditionally, molecule generation was evaluated through three metrics: validity, uniqueness, and novelty.
We argue that these metrics are unsuitable for evaluating the generative graph models.

Recent works mostly use valency corrections, bringing the validity rate to 100%. Consequently, this metric
has become uninformative. Uniqueness and novelty primarily indicate potential mode collapse and over-
tting, respectively. Since most models, including ours, achieve a high score, these metrics provide little
information for evaluation. Therefore, we do not use these metrics for evaluation. Nonetheless, we report
them in the Appendix B for completeness.

Instead, we use the Fréchet ChemNet Distance (FCD) (Preuer et al., 2018) and the Neighborhood subgraph
pairwise distance kernel (NSPDK) MMD (Costa & Grave, 2010) metrics. As highlighted in (Jo et al., 2022)
’FCD and NSPDK MMD are salient metrics that assess the ability to learn the distribution of the training
molecules, measuring how close the generated molecules lie to the distribution’. FCD assesses the generated
molecules in chemical space, while NSPDK MMD evaluates the distribution of the graph structures.

In addition to FCD and NSPDK metrics, we also include the validity rate without correction as a supplemen-
tary evaluation metric. This metric calculates the fraction of valid molecules without any valency correction
or edge resampling, and we employ the version that allows for formal charges as in (Jo et al., 2022).

3We remind that an orbit is the equivalence class of nodes of a graph under the action of its automorphisms. Less formally,

it is a set of nodes that are structurally similar. In Figure 13 of appendix D, the nodes with the same color belong to the same

orbit
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5.2 Baseline models

We present the results of six baseline models in our experiments for simple graphs: three sequential and
three permutation-equivariant models. The rst model, GraphRNN (You et al., 2018), is an RNN-based
auto-regressive model and is the paper that introduced the experiments and metrics we use. The second
model, GraphDF (Luo et al., 2021), is a discrete ow-based model, and GraphARM (Kong et al., 2023) is
the recent diusion-based sequential model. The third and fourth models are one-shot continuous diusion
models, namely EDP-GNN (Yang et al., 2019) and GDSS (Jo et al., 2022). EDP-GNN is initially designed
for simple graphs, while GDSS can generate both simple and annotated graphs. Finally, DiGress (Vignac
et al., 2023) is a discrete diusion model.

In addition to these models, we randomly sample the same number of graphs from the training set as in the
test set to use as a baseline. It gives us the distance between two random samples from the true distribution.
Models under this baseline indicate that the generated sample overts the test set. We report the average
MMDs between the test set and 15 random samples drawn from the training set.

For molecular graphs, we also present the results of six baseline models. We utilize GraphAF, GraphDF
(Luo et al., 2021) and GraphARM. Additionally, we compare our model against MoFlow (Zang & Wang,
2020), a one-shot ow-based model, EDP-GNN (Yang et al., 2019) a score-based model adapted by (Jo et al.,
2022) to handle annotated graphs, GDSS(Jo et al., 2022), another score-based model and DiGress (Vignac
et al., 2023), a discrete diusion model. We take the results from (Jo et al., 2022) for all baselines except
GraphARM and DiGress taken from (Kong et al., 2023).

As discussed in Section 3, there are models specically designed for graph generation using dierent types
of representation. In particular, some recent models, such as E(3) Equivariant Diusion Model (EDM)
and Geometric Latent Diusion Models (GEOLDM) leverage diusion models representing molecules as 3D
coordinates point clouds. These models predict the connections between atoms post hoc based on the distance
between atoms. Compared to our experiments, these models use additional domain-knowledge information,
particularly the atom positions. So, they must use datasets including this information, such as Qm9, but
excluding Zinc250k. Moreover, they use specic metrics such as atom and molecule stability. Conversely,
they do not report specic metrics for graphs such as NSPDK. Consequently, the only point of comparison
is the validity rate on QM9. On this metric, EMD and GEOLDM obtain close and comparable results with
the models used as baselines for our experiment with 91.9% and 93.8%, respectively.

5.3 Results

This section reports a quantitative evaluation of the experiments. We provide visualization of the generated
graphs in Appendix C.

We give the evaluation results on Ego-Small and Community-Small datasets in Table 1. In the case of
Ego-Small, which is a relatively small and straightforward dataset, we observe that our model matches the
scores obtained with random samples from the training set. GDSS and DiGress (Jo et al., 2022; Vignac
et al., 2023) also reaches this level (or better!) on all metrics. Therefore, this dataset does not allow to
discriminate between the best models.

On the Community-Small dataset, our model presents the best average results compared to baseline models.
Table 2 presents the results on the Enzymes datasets. Again, our model outperforms baseline models on
average.

5.3.1 Molecular graphs

As presented in Table 3, DiGress outperforms other models over all metrics in the QM9 dataset. However, it
performs much worst on the larger molecules of the Zinc250k dataset. Except DiGress on QM9, our DGAE
model exhibits superior performance to all other models regarding FCD and NSPDK metrics, frequently
surpassing them by a substantial margin. However, we observe that it is slightly under the best models
regarding the validity without correction metric while remaining competitive. These results suggest that,
compared to baseline models, our model performs better at capturing global graph features as reported
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Table 1: MMDs distances based on degrees (deg.), clustering coecients (clust.), and the number of occur-
rences of orbits with four nodes (orbit) and their averages (avg.) on datasets of small, simple graphs.

Ego-Small Community-Small
Model Deg.↓ Clust.↓ Orbit↓ Avg↓ Deg.↓ Clust.↓ Orbit↓ Avg↓

Training set 0.022 0.043 0.0062 0.024 0.015 0.026 0.0032 0.015

Auto-reg.
GraphRNN 0.090 0.220 0.003 0.104 0.080 0.120 0.040 0.080
GraphDF 0.04 0.13 0.01 0.060 0.06 0.12 0.03 0.070
GraphARM 0.019 0.017 0.010 0.015 0.034 0.082 0.004 0.040

One-shot
EDP-GNN 0.052 0.093 0.007 0.051 0.053 0.144 0.026 0.074
GDSS 0.021 0.024 0.007 0.017 0.045 0.086 0.007 0.046
DiGress 0.015 0.029 0.005 0.016 0.047 0.041 0.026 0.038

Ours DGAE 0.021 0.041 0.007 0.023 0.032 0.062 0.0046 0.033

Table 2: MMDs distances based on degrees (deg.), clustering coecients (clust.), and the number of occur-
rences of orbits with up to four nodes (orbit) and their averages (avg.) on the Enzymes dataset.

Enzymes
Model Deg.↓Clust.↓Orbit↓ Avg↓

Training set 0.004 0.021 0.001 0.008

Auto-reg.
GraphRNN 0.017 0.062 0.046 0.042
GraphDF 1.503 1.061 0.202 0.922
GraphARM 0.029 0.054 0.015 0.033

One-shot
EDP-GNN 0.052 0.093 0.007 0.051
GDSS 0.026 0.061 0.009 0.032
DiGress 0.004 0.083 0.002 0.030

Ours DGAE 0.020 0.051 0.003 0.025
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by the FCD and the NSPDK metrics on larger molecules. It remains competitive at capturing the local
node-edge interactions necessary to generate valid molecules, even though some baseline models are better
in this respect.

Table 3: MMD distances based Neighborhood subgraph pairwise distance kernel (NSPDK) and Fréchet
ChemNet Distance on the Qm9 and Zinc250k datasets.

Qm9 Zinc
Model NSPDK↓FCD↓Valid. %↑NSPDK↓FCD↓Valid. %↑

auto-reg.
GraphAF 0.021 5.53 74.4 0.044 16.0 68.5
GraphDF 0.064 10.92 93.88 0.177 33.5 90.6

One-shot
MoFlow 0.017 4.47 91.4 0.046 20.9 63.1
EDP-GNN 0.005 2.68 47.5 0.049 16.7 83.0
GDSS 0.003 2.90 95.7 0.019 14.7 97.0
DiGress 0.0005 0.36 99.0 0.082 23.1 91.0

Ours DGAE 0.0015 0.86 92.0 0.007 4.4 77.9

5.3.2 Generation time

Finally, we use the Zinc dataset to assess our model’s generation time. We compare it against the best
auto-regressive model (Luo et al., 2021) and the best one-shot models GDSS and DiGress (Jo et al., 2022;
Vignac et al., 2023). We compute the clock time to generate 1000 graphs in the rdkit format on one GeForce
RTX 3070 GPU and 12 CPU cores. We report the result in Table 4.

Our model not only presents very high performances at modeling graph distribution, but it is also several
orders of magnitude faster at generation than the baseline models .

Table 4: Generation time in seconds to generate 1000 graphs with models trained on molecular datasets .

Time (s)
Models Qm9 ↓ Zinc ↓

GraphDF 3791.67 3859.23
GDSS 28.07 300.44
DiGress 54.01 799.43

DGAE (Ours) 0.33 1.80

5.4 Ablation study

We run two types of ablation studies. First, we empirically observe the eect of the various types of data
augmentation. We then evaluate the eect of the codebooks and partition size. For all the ablation studies,
we use the Zinc250k dataset, which is by far the largest dataset used for the experiments (regarding the
number of graphs).

5.4.1 Graph Features Augmentation

Numerous feature augmentation strategies for graphs have been proposed to overcome the inherent con-
straints of GNNs (see Section 4.1.2 and 2.4). Using such feature augmentations for graph generation has
become a prevalent practice. However, we are not aware of any work evaluating these methods in generative
modeling. The primary objective of these auxiliary features is to enhance the identication of graph fea-
tures. A convenient way of evaluating a model’s capability of capturing graph features and substructures is
by assessing its reconstruction accuracy. Thus, we evaluate the methods for synthetic graph feature methods
based on their reconstruction performance.
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Therefore, we have conducted a comparative analysis of several feature augmentation techniques, including
spectral embedding, cycle counts, random features, and our p-paths method. The impact of each augmen-
tation is evaluated independently against a scenario where no augmentation is applied. Further, we assess
the impact of omitting one method compared to the combined use of all techniques. In gure 3, we report
the reconstruction loss over 20 epochs.

Figure 3: Left: The eect of each feature augmentation scheme on the reconstruction loss compared to the
absence of feature augmentation. Right: The eect of removing each feature augmentation scheme compared
to using all of them. The lines represent the average over three runs, and the shaded area is the standard
deviation.

When used alone, the reconstruction loss curves suggest that the spectral embedding and our p-paths method
dramatically improve the reconstruction loss. Conversely, the cycle count and random feature techniques
demonstrate negligible, if any, eects. Upon removal of a single method, the performance degradation
is most noticeable in the absence of our p-path method. The eect is also evident for the random and
spectral features. Conversely, the cycle count contributes marginally, if at all, to the overall eect. We
conclude that our feature augmentation method is eective at enhancing MPNN as a feature extractor on
the node neighborhood, showing competitive performance against the computationally expensive method
using spectral features.

In table 5, we present the impact of the feature augmentation on the pre-processing time and the training
times. We measure the pre-processing time, i.e., the time to transform the dataset stored as a numpy
object to a pytorch-geometric dataset, including the augmented features. We also compute the time for 1000
training iterations, i.e., 1000 parameter updates. For both, we compare our p− path method alone against
the dataset without feature augmentation and with the spectral feature. We report the clock time measured
on the Zinc250k dataset with one GeForce RTX 3070 GPU and 12 CPU cores.

Table 5: Pre-processing and training time for some feature augmentation methods in seconds. We compute
the training time over 1000 training iterations.

Time (s)
Methods Pre-processing ↓ Training ↓

No augmentation 74.81 38.19
Spectral feature 151.22 38.09

P−path feature (ours) 231.18 38.71

We observe that the pre-processing time for our p−path scheme is signicantly slower than the pre-processing
without feature augmentation and the method based on spectral features. Nevertheless, the method remains
short in comparison to the training time of graph generative models, which typically spans hours, if not
days. Regarding the training, all methods are very close, our p−path being marginally slower.
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5.4.2 Inuence of Codebook Sizes and Partitioning

This section evaluates the impact of varying the codebook and partitioning sizes. We rst evaluate their
eect on dictionary usage. We then study the eects on the autoencoder training and the prior training,
given that the size of the codebook and the partitioning determine both the length of the auto-regressive
sequence (nC) and the dimensionality of the categorical distribution4 (m+1). For these experiments run on
the Zinc250k dataset, we compare ten congurations for various codebook size m and number of partition
C, representing three sizes of possible codeword sequences M : 2561 = 162 = 44, 10241 = 322 ≈ 103, and
40961 = 642 = 163 = 84.

We rst analyze the dictionary usage, reporting the normalized perplexity. The perplexity is a measure of the
dictionary usage computed as eH(P (zq

i
)), where H(P (zq

i )) is the entropy over the dictionary likelihood. The
closer the distribution is to the uniform distribution, the higher the perplexity. The maximum of perplexity
corresponds to the dictionary size M . To compare various dictionary sizes, we use the normalized perplexity
1
M
eH(P (zq

i
)). We present the result in Figure 4. We see that the normalized perplexity slightly decreases as

the dictionary size increases. We also see that using a single large codebook, in this case, a single codebook
of size 4096, leads to codebook collapse.

Figure 4: eect of the codebook size and the partitioning on the dictionary usage. We report the normalized
perplexity averaged over three runs. The black lines indicate the standard deviations.

We then assess the impact of the codebook size m, the number of partitions C, and the dictionary size (i.e.,
the number of possible codeword sequences M = mC) on the reconstruction loss of the auto-encoder. We
analyze the same ten congurations. For comparison, we also include an experiment without quantization.
We then selected the best reconstruction loss on the test set (calculated after each epoch) and reported the
average across three runs. Figure 5 depicts the outcome. Our ndings suggest that the number of possible
sequences is critical, particularly when small (256 in our experiment). Conversely, the absence of quantization
yields almost perfect reconstruction (so that its representation in Figure 5 is barely perceptible). However,
the benets of increasing the number of possible sequences become limited once its number surpasses a
certain threshold. In this experiment, the advantage of increasing the number of possible sequences from
1024 to 4096 is unclear. Likewise, the partitioning eects become signicant when the number of possible
sequences is low, with smaller partitions proving more benecial. However, the impact decreases with larger
numbers of possible sequences. In our experiments, we do not see any eect when increasing the number of
possible sequences to 4096. In Appendix C, we present similar gures reporting node and edge error rates.
With a dictionary size larger than 256, we reach close to perfect reconstruction, with both error rates lying
below 0.001 for almost all congurations.

4The ’+1’ refers to the end-of-sequence token
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We nally observe the eect on generation. We do not present the result without quantization because
our 2D-Transformer requires quantized vectors for training. Therefore, our model is not able to perform
generation without quantization. We report here the NSPDK metric, but the FCD, reported in Appendix
C, presents similar results. The benets of a large number of arrangements and a small number of partitions
vanish. The most signicant observation is the poor result form = 4096 and C = 1. We assume that the drop
in performance comes from codebook collapse observed in Figure 4, which results in a high probability of
sampling indices out of the distribution. All the other settings result in comparable NSPDK values, which are
lower than those of the baseline models. We also observe that the conguration with two partitions (C = 2)
and a codebook size of m = 32 presents slightly better generation metrics than the other congurations.

Figure 5: eect of the codebook size and the partitioning on reconstruction (left) and generation (right). We
report the best reconstruction loss and the best NSPDK averaged over three runs. The black lines indicate
the standard deviations.

6 Conclusion

Our work introduces DGAE, a powerful generative model for graphs in two stages. In the rst stage, we
leverage an auto-encoder, mapping graphs to sets and recovering graphs from sets. We use permutation-
equivariant functions to prevent the diculties caused by the multiple possible representations of graphs. In
the second stage, we sort the sets into sequences and learn them auto-regressively. In its present stage, we
do not see any ethical concerns with our model.

Our model achieves excellent performance at learning graph distributions. Our empirical evaluation shows
that it is competitive with the best baseline models. Moreover, our model is an order of magnitude faster at
generation than competitive baseline models.

Implementing our model, we introduce two innovative techniques: a new feature augmentation method and
a new Transformer architecture for sequential data over two dimensions.

However, our model also presents some limitations. First, our model requires two stages of training. This
makes the hyperparameter tuning complicated, particularly for hyperparameters that inuence both training
stages, such as the number of partitions C or the codebook size m, for instance. Second, our model cannot
perform conditional generation yet. We hypothesize that conditioning the auto-regressive model might be
sucient. Nevertheless, the elaboration and validation of conditional generation remain topics for future
investigation.

Lastly, addressing the challenge of scaling models to accommodate larger graphs is a prevalent concern
in generative modeling, one that our model does not currently tackle. We have evaluated our model on
graphs with up to 125 nodes. Adapting our model to handle larger graphs would raise challenges related
to computation, memory, and overall model performance. This is another line of research open for further
exploration.
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Distinct from the two predominant approaches in current literature, i.e., the fully sequential and the fully
permutation-equivariant methods, our generative model for graphs introduces an innovative and competitive
framework. We view its present limitations as promising opportunities for future research.
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