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ABSTRACT

Spatial reasoning, the ability to ground language in 3D understanding, remains a persistent
challenge for Vision-Language Models (VLMs). We identify two fundamental bottlenecks:
inadequate 3D understanding capabilities stemming from 2D-centric pre-training, and rea-
soning failures induced by redundant 3D information. To address these, we first construct a
Minimal Sufficient Set (MSS) of information before answering a given question: a compact
selection of 3D perception results from expert models. We introduce MSSR (Minimal
Sufficient Spatial Reasoner), a dual-agent framework that implements this principle. A
Perception Agent programmatically queries 3D scenes using a versatile perception toolbox
to extract sufficient information, including a novel SOG (Situated Orientation Grounding)
module that robustly extracts language-grounded directions. A Reasoning Agent then
iteratively refines this information to pursue minimality, pruning redundant details and
requesting missing ones in a closed loop until the MSS is curated. Extensive experiments
demonstrate that our method, by explicitly pursuing both sufficiency and minimality, signif-
icantly improves accuracy and achieves state-of-the-art performance across two challenging
benchmarks. Furthermore, our framework produces interpretable reasoning paths, offering
a promising source of high-quality training data for future models. Source code will be
made publicly available.

1 INTRODUCTION

Spatial reasoning—the ability to perceive and reason about object relationships in 3D space—is a cornerstone
of general intelligence and a critical prerequisite for deploying AI in the physical world, from robotics to
AR/VR (Cheng et al., 2024a; Kim et al., 2024). While modern VLMs (OpenAI, 2024; DeepMind, 2025) have
achieved remarkable success, they still consistently fail on spatial reasoning tasks (Yang et al., 2025b; Li
et al., 2025a). In this work, we diagnose this critical gap by identifying two fundamental bottlenecks:

Inadequate 3D perception. Trained predominantly on 2D data, VLMs lack geometric priors and thus
struggle to perceive 3D information like layout, orientation, and depth (Ma et al., 2023; 2024b).

Redundancy degrades reasoning. 3D environments are information-dense. Naively aggregating all percepts
floods the context with weakly relevant details, potentially diluting attention (Liu et al., 2023) and encouraging
shortcut heuristics (Xiao et al., 2024)—ultimately degrading performance (Fig. 1).

In the face of these two challenges, cognitive science offers a compelling insight: humans navigate complex
scenes not by exhaustively processing all sensory data, but by constructing task-specific, minimal mental
models (Tversky, 1991). Based on the mental models, they then selectively attend to the details needed to
make a decision, and incrementally update the mental models as required (Byrne & Johnson-Laird, 1989;
Johnson-Laird, 2010). This principle is formalized in statistics by the Minimal Sufficient Statistic (Lehmann &
Casella, 1998), which captures all relevant information from a sample in the most compressed form possible.
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Non-minimal Set:
yaw(chair)≈+90°
window position
office desk is in front of chair
notebook and mug on desk 
Reasoning:
Desk is in front of chair, as chair
typically faces desk...No.

Q. Is the chair facing the window?
Heuristic Shortcuts Attention Dilution

Q. Is the chair between the desk and the 
window?

Reasoning:
Desk is on the right, chair near to the door. 
There is no direct line from this...No.

Non-minimal Set:
position (chair, desk, window) 
chair near to the door
desk on the right
window on the left wall

Figure 1: Irrelevant (highlighted in red) information can overwhelm the VLM and hurt its performance. Left:
VLM ignores crucial information and hallucinates. Right: VLM cannot attend to the important part.

We show that the key to robust spatial reasoning lies in a similar pursuit: actively discovering a Minimal
Sufficient Set (MSS)—the most compact representation of spatial information required to answer a specific
query. Motivated by this principle, we introduce MSSR (Minimal Sufficient Spatial Reasoner), a zero-
shot framework that operationalizes this pursuit through a dual-agent architecture. MSSR disentangles the
challenges of perception and reasoning into two specialized, collaborative agents:

To bridge the 3D perception gap, we equip a Perception Agent (PA) with a suite of vision modules to
programmatically query the scene for spatial primitives (e.g., locations, directions, relations) and return a
structured, VLM-friendly state. A key limitation of existing tool-augmented VLMs is their inability to ground
complex, situational directions specified by language descriptions. We address this with a SOG (Situated
Orientation Grounding) module, which reformulates the orientation estimation task as a multi-choice question,
and to overlay candidate 3D directions on 2D images as visual prompting. Through a procedural coarse-to-fine
approach and alternative 3D view rendering to eliminate ambiguities, it robustly extracts object orientations
(“Is the chair facing the door?”) and behavior-centric directions (“Which way is the person facing while
ascending the stairs?”). Thus, the PA provides rich and accurate 3D data without costly end-to-end training.

While the PA gathers extensive perceptual data, it risks worsening the second bottleneck: information
redundancy that could degrade reasoning accuracy. To solve this, a Reasoning Agent (RA) strategically
prunes this stream of information and curates the MSS by explicitly filtering redundant or task-irrelevant 3D
information. It first formulates a high-level reasoning plan, assesses the collected information, and subtracts
non-contributing information. If this set is deemed insufficient to confidently answer the question, the RA
issues targeted, specific requests back to the PA to acquire only the missing information. This iterative
refinement continues until a MSS is formed. The final answer is derived exclusively from this curated set,
sharpening the model’s focus and mitigating errors from distracting data.

We evaluate MSSR on two challenging benchmarks: MMSI-Bench (Yang et al., 2025b), which tests situated
multi-view reasoning in complex scenes, and ViewSpatial-Bench (Li et al., 2025a), which focuses on
perspective relational understanding. MSSR achieves state-of-the-art performance against strong monolithic
and agentic baselines, while producing compact, interpretable reasoning paths. Extensive ablation studies
demonstrate the harmful effect of redundancy and the efficacy of the RA’s pruning in restoring performance.
Our contributions are threefold:

• We formulate 3D spatial reasoning as Minimal Sufficient Set construction and introduce a dual-agent
framework that interleaves perception with high-level planning to acquire just enough information.

• We design a perception agent that has access to a versatile toolbox including a SOG module for robust
directional grounding; and a reasoning agent that directs the entire process and provides final answers.

• Our MSSR effectively improves the 3D spatial reasoning performance on two challenging benchmarks and
produces interpretable reasoning traces that can provide supervision for future 3D-aware models.
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2 RELATED WORK

Monolithic VLMs in Spatial Reasoning typically inject 3D knowledge by fine-tuning on synthetic data (Chen
et al., 2024a; Cheng et al., 2024b; Ma et al., 2025a) or integrate specialized modules to process 3D modalities
like point clouds (Hong et al., 2023; Huang et al., 2024; Ma et al., 2025b). While demonstrating progress,
these methods are fundamentally limited: they require prohibitively expensive 3D instruction datasets (Yang
et al., 2025a) and risk forgetting pre-trained knowledge, which degrades the VLM’s crucial general-purpose
reasoning abilities (Kirkpatrick et al., 2017). In contrast, MSSR is a zero-shot, training-free framework
that bypasses these issues. By preserving the VLM’s full capabilities and instead explicitly structuring the
perception-reasoning process, our approach maximizes spatial reasoning performance without compromising
the model’s versatility or requiring costly data and retraining.

Agentic Frameworks are a prominent line of work where complex problems are decomposed into steps
solved via tool-use. Pioneering methods like ReAct (Yao et al., 2023) showed that LLMs can interleave
reasoning and action, a paradigm extended to 3D where agents gather spatial information for tasks like
embodied exploration (Yang et al., 2025c) and 3D VQA (Ma et al., 2024a). These approaches focus primarily
on information gathering, often adopting a purely accumulative strategy. However, for the tasks we address,
the dense nature of 3D scenes introduces significant redundancy, where an excess of irrelevant spatial details
degrades performance. MSSR is therefore designed to not only gather information, but also prune irrelevance,
which is a key departure from prior agentic designs.

Visual Programming is a paradigm often used for 3D attribute querying (Marsili et al., 2025; Yuan et al.,
2024). It enhances VLMs by decomposing complex visual tasks into executable programs that leverage
specialized modules (Gupta & Kembhavi, 2023; Surís et al., 2023). We adopt the visual programming as the
execution backbone for our Perception Agent, leveraging its modularity to integrate specialized tools. Instead
of the typical one-shot execution, our framework advances this paradigm by integrating visual programming
into a closed loop. By preserving the full execution state across iterations, subsequent perception steps can
build upon prior computations, enabling dynamic information refinement while avoiding redundant work.

3 METHOD

We address language-conditioned spatial reasoning: given M views I = {I1, . . . , IM} from the same scene
and a natural-language query q, the goal is to produce the answer a. Before answering the 3D reasoning
question, our approach first builds a Minimal Sufficient Set (MSS)—a compact representation that is both
sufficient to answer the query and minimal to prevent failures from redundant and distracting information.

3.1 OVERVIEW

As illustrated in Figure 2, our method actively curates the MSS. The process is iterative, interleaving infor-
mation acquisition and strategic pruning to converge on a representation that is both sufficient and minimal.
Formally, we define the target of this process, the MSS, as follows: Let W represent the comprehensive set of
all spatial and semantic information derivable from the full 3D scene. We consider a set of spatial information
S ⊆ W , which is a subset of W . Our goal is to find the MSS S⋆ ⊆ W , which satisfies two properties:

1. Sufficiency: Ideal MSS S⋆ must contain enough information for an oracle reasoning agent, R⋆, to correctly
answer the query q. Formally, this means:

R⋆(S⋆, q) = a⋆ (1)
where a⋆ is the ground-truth answer. This ensures that no essential information for reasoning is omitted.

2. Minimality: MSS S⋆ should be free of redundant or irrelevant information that would burden the reasoning
model. Ideally, it is the smallest such set that maintains sufficiency. This can be expressed as:

∀S ′ ⊂ S⋆, R⋆(S ′, q) ̸= a⋆ (2)

3



141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

Perception Agent

Reconstruct

Reasoning Agent

<Decide> Reasoning upon the final information set,
the order is door, TV, sofa, mural.

<Prune>
The updated 𝑆!"# is {…} ,
<Request>: Find projections on the north vector.

S!"#
<Request>

Locate

Calibrate

Query: If the direction of entering the 
room through the door is considered the 
north, what is the correct order of the 
following objects from  south to north:
TV, mural, sofa, door

Minimal SufficientComplete

𝑆!

Going Upstairs

Situated Orientation
Grounding

Sitting on Sofa

Figure 2: The MSSR dual-agent framework. Top: To avoid overwhelming the VLM, MSSR extracts a
Minimal Sufficient Set that only contains the necessary information. Bottom: Dual-agent loop: the Perception
Agent provides a spatial information set (Sn), and the Reasoning Agent prunes irrelevant information, requests
missing information, or makes a final decision based on the curated set.

Through updating the spatial information set S, we aim to approximate the MSS S⋆. In this attempt, MSSR
conducts a closed-loop collaboration between the Perception Agent (PA) and Reasoning Agent (RA), as
shown in Figure 3. The process begins with an empty S and proceeds iteratively. Initially, the PA executes
a broad perception directive to populate S with a comprehensive, potentially non-minimal set of spatial
primitives. This set is then passed to the RA for curation, where it formulates a reasoning plan and prunes
any information not causally linked to the plan, thereby enforcing minimality. If the pruned set is deemed
insufficient, the RA performs an assessment and issues a targeted request back to the PA for precisely the
missing information, which then augments S . This cycle of curation and targeted augmentation repeats until
the RA judges S to be sufficient for answering the query. At this final stage, the RA discards all prior context
and reasons exclusively over the curated MSS to produce the answer, ensuring both focus and interpretability.

3.2 PERCEPTION AGENT

The Perception Agent (PA) serves as the perception engine in our framework, responsible for bridging the gap
between high-level reasoning directives and raw elements from the 3D scene. To equip the PA with robust and
precise 3D perception capabilities, we adopt the Visual Programming (Gupta & Kembhavi, 2023) paradigm.
The PA is provided with a suite of pre-designed modules, which act as specialized tools. These modules
leverage vision expert models for tasks like geometric reconstruction and object localization, significantly
augmenting the LLM’s capabilities for complex spatial computations. Furthermore, the structured nature of
code generation within the visual programming framework ensures that the information extraction process is
logical, transparent, and reproducible.

At each turn, the PA receives the current S , the original query, scene images I and a natural language request
r from the Reasoning Agent representing the current information-gathering goal. Its objective is to generate a

4



188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

When I open the door and 
come in from outside, where 
is the clock located relative 
to me? A: Directly in front, 
B: On the left, 
C: Front right, 
D: Front left

Perception
Agent

𝑆!:{ Loc(door)
Loc(clock)
Orient(come_in)
Camera_Poses
Loc(Outside)
......} length:18

<Request>: Establish the
coordinate and calculate angles.

𝑆!"#

Reasoning
Agent

:{ Loc(door)
Loc(clock)
Orient(come_in)}
length:3

𝑆!"#

<Decide>

Sufficient?

<Request>

Save & Load

<Decision>
According to the calculated
angles,

if the direction of coming in
is north, the clock is 38°
from north and 52°from
the west.

That means the clock is in
front left of you.

𝑆!

Figure 3: A detailed example. The Perception Agent provides an 18-item set Sn, and the Reasoning Agent
prunes to 3 essential items in Sn+1. Deeming this insufficient, the RA issues a <Request> for missing
calculations. With sufficient information, it makes a final <Decision>.

Python script that invokes the appropriate foundation modules to fulfill the directive. The process begins with
an empty S and an initial, broad instruction, such as:

“Extract all potentially relevant information to solve the problem.
Your goal is to find as much information as possible.”

The generated script populates a designated dictionary with newly extracted information—such as object
coordinates and spatial relationships. This dictionary is then merged into S. Crucially, after each execution,
the entire state of the Python environment, including all intermediate variables and data structures, is preserved
as a snapshot. When the PA is invoked in a subsequent turn, this snapshot is reloaded. This mechanism allows
the PA to contextually build upon its previous computations, avoiding redundant processing and enabling a
more complex, stateful exploration of the scene. The newly updated S is then passed to the Reasoning Agent.

Spatial Reasoning Modules. The Perception Agent implements directives by invoking a curated suite of
spatial modules, which bridge high-level goals and raw perceptual data to construct the MSS. Following
established designs (Surís et al., 2023), our toolkit includes basic modules: a locate module that utilizes vision
expert models (Liu et al., 2024; Ravi et al., 2024) to pinpoint object coordinates in 3D, and a computation
module that offloads complex numerical tasks, such as coordinate frame transformations. More critically,
to address challenges often overlooked by prior work, we propose novel modules designed for more robust
spatial reasoning. These advanced modules cover the full pipeline of spatial understanding, from establishing
a coherent 3D representation to grounding language-conditioned attributes. The specific implementation of
each module is detailed in Appendix B.

Foundational 3D Scene Reconstruction. To bridge the critical gap between sparse 2D images and a coherent
3D scene representation, this module leverages recent breakthroughs in rapid neural-based reconstruction
models (Wang et al., 2024b;a; 2025) to estimate the camera parameters, depth maps, and a unified 3D point
cloud of the scene. In our experiment, VGGT (Wang et al., 2025) shows robust performance and high speed.
This output serves as the foundational canvas upon which subsequent spatial information is extracted. Similar
to Chen et al. (2024a), we additionally segment the ground plane during reconstruction.

Global Coordinate System Calibration. To resolve the inherent ambiguity of view-dependent spatial terms
(e.g., “left,” “behind”), this module establishes a unified global coordinate system. It aligns the scene’s axes
based on a reference vector, which is derived either from explicit instructions in the query (“assume the
window faces east”) or from prominent landmarks. This calibration ensures all directional and relational
information stored in the MSS is consistent and unambiguous, a prerequisite for reliable multi-step reasoning.
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Target: Direction of facing away from the wall in the clock area.
1 Input: <img_coarse><prompt>

Output: <Reasoning> Vector3.
<Render around vector3>

Camera Est.Depth

Target 3D Vecs

Renderer Input: <img_fine><prompt>
Output: <Reasoning> Vector1
Return: <𝑥!, 𝑦!, 𝑧!>

>

2

Figure 4: Situated Orientation Grounding as a multi-choice question. We prompt a VLM to select a direction
from multiple candidates using the original image and a rendered image, both overlayed with the candidate’s
3D orientation vectors. Starting from coarse directions, it then refines this direction to a fine-grained result.

Situated Orientation Grounding (SOG). Beyond simple localization, reasoning often requires understanding
orientation. We introduce the SOG module, which utilizes Visual Prompting (Qi et al., 2025) to ground
complex, language-conditioned directional concepts into 3D vectors. Critically, SOG handles not only
intrinsic object orientation (“the front of the chair”) but also situation-dependent orientations (“the direction
to exit the room”)—a capability largely overlooked in prior work. This module dramatically expands the
range of addressable queries from static localization to dynamic, perspectival reasoning.

The power of SOG lies in bridging the gap between a VLM’s rich semantic scene understanding and its
inability to directly regress 3D geometric outputs. Instead of attempting this intractable regression, we reframe
orientation grounding as a more reliable visual selection task, implemented through a coarse-to-fine strategy
as illustrated in Figure 4.

For a query anchored at object position Po, we first randomly generate a sparse set of four coplanar, orthogonal
vectors {d⃗i}4i=1 parallel to the ground plane, resembling compass directions. To provide the VLM with
sufficient context and resolve perspective ambiguity, we render these vectors onto two distinct views: a
Situated View using the original image to preserve natural context, and a synthetic Canonical View from
an elevated perspective to reduce foreshortening. The VLM is prompted to select the candidate that best
aligns with the language query. This selection is subsequently refined by generating a denser set of candidates
around the chosen vector and repeating the selection process, allowing the system to converge on a precise
direction. Empirically, this coarse-to-fine strategy robustly and efficiently identifies the target 3D orientation.
While not designed for sub-degree accuracy, our experiments confirm that this level of precision is sufficient
for most challenging spatial tasks. The vector is then added to S , empowering the RA to tackle a wide range
of orientation-dependent problems that were previously intractable.

3.3 REASONING AGENT

The Reasoning Agent (RA) acts as the cognitive core in MSSR, responsible for ensuring the information set
S is both sufficient and minimal. At each step, the RA receives the current information set Sn and the original
query q. It operates in a two-stage process of information curation and strategic decision-making.

In the first stage, Plan-Guided Information Curation, the RA formulates a high-level reasoning plan outlining
the necessary steps to answer the query. With this implicit plan, it initializes an empty, updated information
set, Sn+1. The RA is then prompted to systematically scrutinize each item within the current set Sn, critically
evaluating its relevance to the reasoning plan. Only those deemed necessary for the plan are preserved and
added to Sn+1. This subtractive filtering step is crucial for maintaining the conciseness of S, aggressively
pruning any information that is irrelevant to the specific query. After completing the curation, the RA enters
the second stage, Strategic Decision-Making. Here, it makes one of two decisions:

6
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Table 1: Comparison with baselines on MMSI-Bench and ViewSpatial-Bench. Our method performs
favorably against previous methods on these challenging spatial reasoning tasks. Blue is to highlight the
improvement of our method over GPT-4o backbone.

MMSI-Bench ViewSpatial-Bench
positional

relationship
multi-step
reasoning

attribute
& motion overall camera

based
person
based overall

Proprietary LLM
o3 45.8 34.9 36.4 41.0 51.3 51.0 51.1
Gemini 2.5 Pro 38.5 34.3 36.1 37.0 44.3 41.6 43.0
Gemini 2.5 Flash 37.4 30.3 33.9 35.0 41.6 36.9 38.4
GPT-4o (backbone) 28.0 30.8 34.3 30.3 33.6 36.3 35.0

Open-source LLM
Llama-3.2-11B-Vision 26.9 19.2 23.9 24.5 23.7 33.6 28.8
LLaVA-OneVision-7B 28.0 11.6 27.1 24.5 28.5 26.6 27.5
Qwen2.5-VL-3B 29.5 23.2 23.2 26.5 39.8 32.1 35.8
Qwen2.5-VL-7B 25.9 25.8 26.1 25.9 40.6 33.4 36.9
Qwen2.5-VL-72B 31.2 27.3 32.1 30.7 47.6 38.9 43.1
InternVL2.5-8B 29.9 30.3 25.4 28.7 46.5 40.2 43.2
InternVL3-14B 25.5 29.3 27.5 26.8 47.1 33.9 40.3

Specialist
LEO 42.3 32.3 38.6 39.3 41.5 45.8 43.7

Agentic
ViLaSR - - - 30.2 42.4 34.4 38.2
VADAR 32.8 22.7 26.1 28.9 34.2 33.2 33.7
MSSR (Ours) 50.6 50.0 47.1 49.5 (+19.2) 51.0 54.4 51.8 (+16.8)

<Request>: If the RA determines that Sn+1 is insufficient to complete the reasoning plan, it then formulates
a targeted, natural-language directive that precisely articulates the missing information (e.g., ‘<Request>
The facing direction of someone sitting on the chair.’). This request, along with
the pruned Sn+1, is passed back to the Perception Agent. The PA uses this focused guidance and updated set
to initiate a new round of programming, generating Sn+2 that populates the requested information.

<Decide>: Conversely, if the RA concludes that Sn+1 contains all necessary information to derive a final
answer, it triggers the <Decide> action. It then discards all prior context and reasons exclusively over this
final, minimal set using Chain-of-Thought (CoT) (Wei et al., 2022) to produce the answer. This disciplined
use of only the pruned set ensures that the final reasoning is efficient and shielded from the distracting
influence of irrelevant data.

Notably, unlike many current 3D agentic systems (Li et al., 2025b; Marsili et al., 2025), both our agents
operate in a zero-shot fashion. They are guided by high-level principles rather than in-context learning (ICL)
examples. This design endows our method with strong generalization capabilities and mitigates the risk of
overfitting to dataset-specific exemplars.

4 EXPERIMENTS

4.1 BENCHMARKS AND BASELINES

We evaluate our method and various baseline models on two challenging spatial reasoning benchmarks.
MMSI-Bench (Yang et al., 2025b) is a hand-crafted multi-image dataset focusing on spatial reasoning.
The tasks are designed to probe a model’s understanding of the positions, attributes, and motions of three
elements—cameras, objects, and regions—within real-world environments. Furthermore, it incorporates a
multi-step reasoning split, which composes elementary tasks into long-horizon questions to test for deeper
spatial reasoning. ViewSpatial-Bench (Li et al., 2025a) complements this by addressing a critical limitation
of the gap between egocentric and allocentric spatial reasoning. Designed to evaluate multi-viewpoint spatial
localization and recognition capability, this benchmark is structured into five distinct task categories to
rigorously assess a model’s ability to generalize across different spatial viewpoints. These two benchmarks
provide a robust, multifaceted platform for testing spatial reasoning capabilities that we aim to advance.

7



329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

17.3

6.5
5.945.8%

48.1%
48.3%

Figure 5: Effects of conciseness on accuracy.

Table 2: Ablation study of our framework’s key
components. We report accuracy (%) on the MSR
sub-task and the overall MMSI-Bench.

MSR Overall

GPT-4o 30.8 30.3
Ours (Full) 50.0 49.5

Only PA 33.8 37.1
Only RA 31.8 31.1
w/o SOG 47.0 46.9
w/o Iteration 44.4 47.2

To provide a comprehensive evaluation, we establish four distinct categories of baseline models for comparison:
Proprietary LLMs: We include powerful, closed-source models with strong reasoning capabilities, such
as GPT-4o (OpenAI, 2024), Gemini-2.5-flash (DeepMind, 2025), Gemini-2.5-pro (DeepMind, 2025), and
o3 (OpenAI, 2025). Open-Source LLMs: We compare with state-of-the-art models such as LLaMA-3.2-
Vision (Meta, 2024), LLaVA-OneVision (Li et al., 2024), Qwen2.5-VL (Bai et al., 2025), InternVL3 (Zhu
et al., 2025), InternVL2.5 (Chen et al., 2024b) and DeepSeek-VL2 (Wu et al., 2024). Specialists: We compare
with LEO (Huang et al., 2024), a multi-modal generalist model recognized for its proficiency in various 3D
tasks. Agents: We consider VADAR (Marsili et al., 2025), a visual programming framework targeted at
spatial inference, and ViLaSR (Wu et al., 2025), a model notable for its ability of visual manipulation.

4.2 MAIN RESULTS

On the MMSI-Bench, our method achieves an overall accuracy of 49.5%. We outperform even the strongest
LLM evaluated, o3 (41.0%), demonstrating an absolute gain of 8.5 percentage points. Compared to the
best-performing open-source LLM, Qwen2.5-VL-72B (30.7%), our approach shows a pronounced relative
improvement of over 60%. When contrasted with state-of-the-art specialist models such as LEO (39.3%) and
agentic frameworks such as ViLaSR (30.2%), our method maintains a clear lead.

Transitioning to the ViewSpatial-Bench, which focuses on multi-viewpoint spatial localization and recognition,
our method again sets a new benchmark with an overall accuracy of 51.8%. The consistent strength observed
in both Camera Based (51.0%) and Person Based (54.4%) tasks highlights our method’s robust generalization
across varied spatial viewpoints. Excelling in both categories indicates MSSR’s proficiency in bridging the
gap between egocentric and allocentric spatial understanding, a limitation for current methods.

4.3 ABLATION STUDY

Effects of Minimality. A central idea of our framework is that pursuing minimality is crucial for robust
reasoning. To rigorously test this, we conducted a controlled ablation study on a representative subset
of MMSI-Bench problems MSSR solved in three iterations. For these problems, we created sufficiency-
normalized information sets for each step by retrospectively adding critical information (discovered in
iterations) to earlier, larger sets. This isolates the effect of set size on the RA’s performance, ensuring each set
contains the same level of sufficiency. The RA was then tasked to solve the problem independently using
these three sets, corresponding to the state after each iteration.

As illustrated in Figure 5, the results reveal a clear inverse correlation between information set size and
accuracy. As our iterative pruning strategy reduces the average set element count from an initial 17.3 to a
concise 5.9, the RA’s inference accuracy concurrently rises from 45.8% to 48.3%. This finding provides
empirical evidence that excess information is a significant distractor for LLM-based agents. This affirms that
pursuing minimality is fundamental for high-fidelity spatial reasoning, not merely an efficiency optimization.
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Component Analysis. We conduct ablations to quantify the contributions of each component. In Table 2, we
report accuracy on the representative Multi-step Reasoning sub-task and the overall score on MMSI-Bench.

Only PA: Removing the RA and tasking the PA to programmatically deduce the answer after information
extraction leads to a significant performance drop. In fact, its sequential, top-down execution flow, while
effective for information gathering, is less effective in reasoning and question answering, as it often returns
sub-optimal results.

Only RA: Conversely, removing the PA and forcing the RA to rely solely on the initial context yields
negligible improvement over the baseline. This result affirms that prompting alone cannot substitute for the
precise, targeted 3D scene perception provided by the PA, even when using a powerful reasoning model. This
highlights the crucial synergy between the two agents.

w/o SOG: We replaced SOG with a baseline directly prompting the VLM to infer directional vectors, causing
an overall performance drop to 46.9%. Our observations suggest this degradation stems from the VLM’s
inability to regress 3D coordinates, rather than a failure in semantic understanding. This result validates our
design of SOG, which circumvents this limitation by reframing regression as a visual selection task.

w/o Iteration: Setting the maximum iteration count to 1 forces the RA to make an immediate decision
without the ability to request additional information. This leads to a noticeable drop in performance. The
degradation is more pronounced on the MSR sub-task, underscoring that for intricate multi-step tasks, the
iterative feedback loop is especially vital for achieving information sufficiency.

4.4 APPLICATION: ANNOTATING SPATIAL REASONING DATA

Table 3. Accuracy on MMSI-Bench
after fine-tuning.

Model Accuracy (%)

Qwen2.5-VL-7B 25.9
Qwen2.5-VL-7B-SFT 30.1 (+4.2)

Beyond zero-shot inference, MSSR serves as a powerful data an-
notation engine. In addition to numerical results (Hu et al., 2024),
its final output—a Minimal Sufficient Set (MSS) and an explicit
reasoning trace—provides a rich foundation for creating CoT (Wei
et al., 2022)-style data.

To demonstrate this potential, we curated a dataset by sampling
300 (30%) correctly solved questions from our MMSI-Bench runs.
We then employed GPT-4o for automated quality filtering, which
scrutinized the RA’s reasoning for logical consistency and removed cases of incidental correctness, yielding
258 high-fidelity traces. GPT-4o then synthesized these traces into CoT-style annotations. This process
grounds the RA’s abstract reasoning in gathered spatial information by systematically interleaving its high-
level strategic steps (e.g., “I need to determine the chair’s position”) with the specific perceptual evidence
from the MSS that substantiates each step (e.g., “The Locate module confirms the chair is at [x,y,z]”). We
conducted a preliminary fine-tuning experiment using this synthesized dataset on Qwen2.5-VL-7B. As shown
in Table 3, despite the modest scale of our experiment, the fine-tuned model’s accuracy on MMSI-Bench rose
to 30.1%, an absolute improvement of 4.2%. This result is particularly noteworthy as it elevates the 7B model
to a performance level competitive with its much larger 72B counterpart. This validates MSSR as an effective
data engine for distilling complex spatial reasoning capabilities into future models (details in Appendix C).

5 CONCLUSION

We present MSSR, which builds a Minimal Sufficient Set before answering spatial reasoning questions.
Specifically, it adopts a dual-agent loop: a programmatic Perception Agent—augmented with SOG for
directional grounding—extracts spatial information, while a plan-guided Reasoning Agent ensures sufficiency
and minimality through targeted pruning and requesting. This design mitigates redundancy-induced errors.
Our framework boosts the performance of the backbone VLM significantly, achieving state-of-the-art results
on MMSI-Bench and ViewSpatial-Bench. Beyond inference, the MSS reasoning traces also serve as high-
quality supervision signals for training future 3D-aware models.

9
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This appendix provides additional details and results that complement the main paper:

• Implementation Details: hardware setup, inference parallelization, and timing breakdowns.

• Module Implementations: detailed descriptions of each perception and reasoning module.

• Fine-tuning Details: training configuration for supervised fine-tuning of Qwen2.5-VL-7B.

• Qualitative Results: step-by-step execution traces and reasoning case studies.

• Limitations: discussion of error propagation and evaluation challenges.

• A Visualization Tool: web-based interface for inspecting code, execution, and reasoning.

• The Use of LLMs: clarification that LLMs were only used for polishing the text.

A IMPLEMENTATION DETAILS

All experiments were conducted on a server equipped with 8 NVIDIA 3090 GPUs. For evaluations, we ran
eight independent inference processes in parallel, with each process exclusively allocated to a single GPU.
Consequently, all performance metrics and timing statistics reported hereafter correspond to the execution of
a single such process.

A.1 INFERENCE TIME

The per-question inference time is shown in Table 4. The primary computational bottleneck is the latency of
API calls to the large language models that serve as the backbone for both the PA’s code generation and the
RA’s deliberation (GPT-4o in our case). These calls account for approximately 81.7% of the total iteration
time. The execution of our local perception toolbox constitutes the remaining 18.3%. This breakdown
highlights a clear avenue for future optimization through the use of smaller, locally-hosted models or more
efficient API endpoints.

Table 4: Breakdown of average inference time per iteration on MMSI-Bench. The dominant cost is from
API calls.

Component Average Time (s)
Local Vision Modules Execution 8.3
LLM API Calls (PA Code Generation & RA Deliberation) 37.1

Total per Iteration 45.4

A.2 ITERATION ANALYSIS

Table 5 presents the average number of iterations required for MSSR to resolve problems across different
benchmarks and task types. The average number of iterations required for task completion demonstrates a
potential correlation with problem complexity. The more demanding Multi-hop Spatial Reasoning (MSR)
sub-task within MMSI-Bench, which often needs intricate multi-step information retrieval and reasoning,
demands an average 2.41 iterations. Across all tasks on MMSI-Bench, the average iteration is around 2.15.
Problems on the ViewSpatial-Bench were generally resolved with greater efficiency, averaging 1.88 iterations
overall.

B MODULE IMPLEMENTATIONS

This section provides a detailed explanation of the implementation specifics for each specialized module
within the Perception Agent’s toolkit. These modules collectively enable the robust extraction of 3D perceptual
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Table 5: Average number of iterations per task. Our framework converges to a solution in a small number
of steps, demonstrating the efficiency of its iterative information curation process.

Benchmark Task Average Iterations
MMSI-Bench MSR 2.41
MMSI-Bench Overall 2.15
ViewSpatial-Bench Camera-based 1.84
ViewSpatial-Bench Person-based 1.92
ViewSpatial-Bench Overall 1.88

information, contributing to the construction of the Minimal Sufficient Set (MSS) required for complex spatial
reasoning.

B.1 RECONSTRUCTION MODULE

Functionality: This module transforms sparse 2D images I into a coherent 3D scene representation.
It estimates intrinsic and extrinsic camera parameters, predicts depth maps, and produces a unified 3D
point cloud. Additionally, it segments and reconstructs the ground plane, providing a spatial reference for
downstream reasoning.

3D Point Cloud Generation: We use a rapid, state-of-the-art 3D reconstruction model VGGT (Wang et al.,
2025) to estimate intrinsics K, extrinsics (RCW , TCW ), and depth maps d(u, v). For each pixel (u, v),
back-projection into camera coordinates is defined by:

ZC = d(u, v),

XC = ZC
u− cx
fx

, YC = ZC
v − cy
fy

,(
XW

YW

ZW

)
= RCW

(
XC

YC

ZC

)
+ TCW ,

where (fx, fy) are focal lengths and (cx, cy) the principal point. Here (XC , YC , ZC) are camera-frame
coordinates, mapped to world coordinates via RCW , TCW . Aggregating these across images yields the scene
point cloud.

Ground Plane Estimation: We detect floor regions using GroundingDINO (Liu et al., 2024) and segment
with SAM2 (Ravi et al., 2024). Masked pixels are back-projected to 3D, and PCA is applied to fit the ground
plane:

n · p+D = 0, p = (XW , YW , ZW ).

If the resulting n points downward (in our setting, the positive Y component points downward), we flip its
sign to ensure it points to the ’up’ of the real world.

Fallback: If floor detection confidence is low, PCA is applied to the full point cloud; the eigenvector with
smallest eigenvalue is used as the approximate ground normal.

Output: The module outputs calibrated camera parameters, depth maps, a dense 3D point cloud, and the
estimated ground plane equation. These are used in later modules.

B.2 OBJECT LOCALIZATION MODULE

Functionality: This module localizes objects in the 3D scene based on natural language queries. Given a
textual description of an object, it outputs the estimated 3D coordinates of the object within the reconstructed
scene.
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Object-Centric View Selection: For a query description “obj”, we first tried to identify bounding boxes
across all input images using GroundingDINO (Liu et al., 2024). However, we observe that the box with the
highest confidence score often does not correspond to the most complete or unoccluded view of the object.
To address this, we employ a low-cost vision-language model (VLM), Gemini-2.5-Flash-No-Thinking, to
evaluate all scene images jointly. The VLM is prompted to return the image ID that best captures a clear
and complete appearance of the queried object; if no such image exists, the module returns None. This step
ensures robust selection of the most informative viewpoint before localization.

2D Segmentation and 3D Projection: Given the selected image ID, we run GroundingDINO again with
the object description to obtain the bounding box with the highest confidence. The bounding box is then
refined into a segmentation mask using SAM2 (Ravi et al., 2024). Pixels within this mask are projected into
3D world coordinates using the estimated camera parameters and depth maps. The object’s 3D position is
computed as the centroid of all projected points:

pobj =
1

N

N∑
i=1

pi,

where pi ∈ R3 denotes the 3D world coordinates of the i-th pixel inside the segmentation mask, and N is the
total number of such pixels.

Output: The module outputs the estimated 3D location of the queried object, represented as a single point in
the world coordinate system.

B.3 GLOBAL COORDINATE CALIBRATION MODULE

Functionality: This module establishes a scene-level directional coordinate system (e.g., North, South, East,
West or equivalently Front, Back, Left, Right) based on natural language calibration such as “the table is north
of the chair.” With this calibrated system, relative directional relations of other objects (e.g., “the cabinet is to
the west of the chair”) can be consistently computed. An example is shown in Figure 6.

Table to the room center

wardrobe

table

Figure 6: Coordinate Calibration Example. Here, the coordinate is calibrated by “wardrobe is in the
northeast of the room”. Then the relation of the table to the room center can be calculated as “Southeast”.
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Calibration via Reference Relation: Given a calibration statement “A is north of B,” along with the 3D
world coordinates of objects A (target) and B (anchor), both objects are first projected onto the ground plane
estimated previously:

pG
A = Π(pA), pG

B = Π(pB),

where Π(·) denotes orthogonal projection onto the ground plane. The direction from anchor to target is then
defined as the north vector:

nN =
pG
A − pG

B

∥pG
A − pG

B∥
.

Constructing the Local Coordinate Frame: Let nG denote the ground plane normal. The west vector is
obtained as

nW =
nG × nN

∥nG × nN∥
.

By symmetry, the east and south vectors are defined as

nE = −nW , nS = −nN .

Thus, the four orthogonal directions {nN ,nS ,nE ,nW } form the calibrated ground-plane coordinate system.

Directional Querying: To answer queries such as “the cabinet is in which direction relative to the chair,” we
set the chair as anchor and the cabinet as target. After projecting both to the ground plane, the relative vector

v = pG
cabinet − pG

chair.

The directional relation is determined by measuring the angle between v and each of the basis vectors
{nN ,nS ,nE ,nW }, assigning the label corresponding to the vector with the smallest angular deviation.

Output: The module outputs a calibrated ground-plane coordinate system anchored to a reference relation,
together with directional labels for object pairs under this system.

B.4 SITUATED ORIENTATION GROUNDING (SOG) MODULE

Functionality: The Situated Orientation Grounding (SOG) module leverages Visual Prompting (Qi et al.,
2025) to align complex, language-conditioned directional concepts with explicit 3D vectors.

Grounded Vector Generation: Given an input image, the camera pose, and the 3D location of a target object
Po (obtained from the Object Localization Module), we first select a representative point near the ground
plane within the object’s point cloud. This ensures that rendered arrows appear closer to the image bottom,
mitigating perspective distortion (e.g., avoiding the degenerate case where arrows collapse into a single line
at eye level). A sparse set of four orthogonal candidate vectors

Dcoarse = {d⃗i}4i=1,

parallel to the ground plane and centered at Po, is then generated to approximate compass-like directions.

Multi-View Visual Prompting: Each candidate arrow is projected into the current camera frame using
the estimated camera parameters, preserving true 3D spatial relations. To further mitigate foreshortening,
we synthesize a Canonical View by rotating the camera 45◦ upwards around the axis defined by the cross
product of the camera-to-object vector and the ground plane normal. Formally, the virtual camera pose is

Rvirt = Rot
(
Rorig, 45

◦, (vco × nG)
)
,

where vco is the camera-to-object vector and nG the ground normal. Both the Situated View (original
camera) and Canonical View (synthetic top-down-like camera) are rendered and jointly input to the VLM
(Gemini-2.5-Pro in our experiments). The VLM is prompted to select the arrow that best matches the query
description.
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1 2 3 4

Figure 7: Situated Orientation Grounding with multi-view overlay. The target object is first localized and
grounded in the scene. Candidate orientation arrows are overlaid on the original camera view (Situated View),
which suffers from perspective distortion (e.g., arrows collapsing into near-collinear directions). To mitigate
this effect, we additionally render a Canonical View from a virtual elevated camera pose. Combining both
views, the VLM robustly selects the correct orientation vector despite visual foreshortening in the original
view.

Iterative Refinement: To improve precision, a denser set of five candidate vectors is generated around the
chosen coarse direction:

Dfine = {Rot(d⃗j , θ) | θ ∈ {−45◦,−22.5◦, 0◦, 22.5◦, 45◦}},

where d⃗j is the vector selected in the coarse stage. The same multi-view prompting and VLM selection process
is repeated, yielding the final grounded orientation vector. As illustrated in Fig. 7, overlaying candidate
orientation arrows on the original camera view alone can suffer from severe perspective distortion, making
disambiguation difficult. By incorporating the synthetic Canonical View, SOG enables the VLM to reason
correctly about the intended direction, demonstrating robustness to challenging viewpoint effects.

Output: The resulting 3D vector d⃗∗ is added to the information set. This equips the reasoning agent with
explicit, language-conditioned orientation vectors that support downstream tasks.

B.5 NUMERICAL COMPUTATION MODULES

Functionality: In addition to high-level reasoning modules, we design lightweight numerical utilities that
provide interpretable relative spatial relationships. These modules support both camera motion analysis and
object positioning, serving as building blocks for downstream reasoning.

Relative Camera Movement. Given two camera extrinsic matrices E0, E1 ∈ R4×4, the module computes
the relative transformation T = E1E

−1
0 . From T , we decompose translation (tx, ty, tz) and rotation

angles (θx, θy, θz), which correspond to intuitive notions such as forward/backward, right/left, up/down, and

18
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yaw/pitch/roll. The output is a dictionary of movement descriptors, e.g.,

{forward : 1.0, right : 0.0, up : 0.0, rotate_right : 30◦, rotate_up : 10◦}.

Relative Object Position. Given a camera extrinsic matrix E ∈ R4×4 and an object position p ∈ R3 in
world coordinates, the module transforms p into the camera coordinate frame:

pC = E

[
p
1

]
.

The resulting (x, y, z) is then expressed as right, up, and forward distances relative to the camera, yielding an
interpretable relation such as {forward : 1.0, right : 0.0, up : 0.0}.

Output: These numerical descriptors provide a low-level geometric interface that complements higher-level
grounding modules, enabling fine-grained spatial reasoning.

C FINE-TUNING DETAILS

We fine-tuned Qwen2.5-VL-7B (Bai et al., 2025) using LLaMAFactory (Zheng et al., 2024) on 4 NVIDIA
A6000 GPUs. We adopted LoRA (Hu et al., 2022) with a global batch size of 32 and trained for 5 epochs,
resulting in approximately 45 optimization steps in total. A peak learning rate of 2×10−5 with cosine decay
and 3% warmup was used.

D QUALITATIVE RESULTS

To further illustrate the effectiveness of our system, we provide qualitative case studies. Figures 8 and 9
visualize the step-by-step execution trace of the Perception Agent, including its intermediate variables and the
process of incrementally populating the information set (analysis data). Figure 10 then demonstrates how the
Reasoning Agent consumes this structured information and performs detailed reasoning over it, ultimately
producing the correct answer.

E LIMITATIONS

While our framework demonstrates strong performance across diverse spatial reasoning tasks, there are several
limitations. First, our tools rely on geometric information provided by 3D reconstruction models. Although
modern reconstruction models are highly advanced, they may still produce noisy or unstable results under
challenging conditions. Such errors inevitably propagate to downstream modules. Second, our approach
lacks an explicit mechanism for mitigating error accumulation between perception modules. For instance, a
mis-localization in the Object Localization Module might be passed into incorrect directional reasoning in
subsequent modules. Moreover, evaluation of situated spatial reasoning itself remains an open challenge, as
standardized benchmarks and metrics are still underdeveloped.

We view these limitations as opportunities for future research, particularly toward more robust, error-tolerant
reasoning pipelines for spatial reasoning.

F A VISUALIZATION TOOL

The dual-agent pipeline naturally produces multiple forms of intermediate artifacts, including programmatic
code snippets, execution traces, and reasoning trajectories across iterative steps. While these outputs are
valuable for analysis, inspecting them separately can be cumbersome. To address this, we developed a
lightweight web-based visualization tool built on Flask (flask, 2025) (Figure 11). This interface allows users
to conveniently observe the entire problem-solving process of a given query, including code generation,
execution results, reasoning iterations, and the evolution of the MSS. Such visualization serves as a useful
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resource for debugging, qualitative evaluation, and future research. We will release the complete source code
of both the core framework and this visualization tool to the community.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)
In this work, LLMs were employed solely for language polishing and editing purposes. They were not
involved in the design of methods, the development of algorithms, or the analysis of experimental results. All
technical contributions, experiments, and conclusions are the product of the authors.
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Perception Agent

Figure 8: Execution trace of the Perception Agent (part I). This figure shows the first part of the Perception
Agent’s execution trace. The step-by-step code execution and intermediate variables are visualized, highlight-
ing how raw observations are processed before being integrated into the shared analysis data.
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Figure 9: Execution trace of the Perception Agent (part II). A continuation of Figure 8, showing how the
Perception Agent progressively fills the analysis data structure. This illustrates the transition from low-level
perception results to a coherent, structured representation of the scene.
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Reasoning Agent

1 stands for <Decide>

Figure 10: Reasoning over analysis data. The Reasoning Agent receives the populated analysis data from
the Perception Agent and performs detailed multi-step reasoning. By grounding its inference in the structured
information, the agent arrives at the correct final answer, demonstrating the synergy between perception and
reasoning.
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Figure 11: Web-based visualization tool for MSSR. The interface integrates code, execution traces, and
reasoning trajectories in a unified view, enabling convenient inspection of the full problem-solving process.
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