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ABSTRACT

Large language models (LLMs) deliver remarkable performance but are costly to
deploy, motivating knowledge distillation (KD) for efficient inference. Existing
KD objectives typically match student and teacher probabilities via softmax, which
blurs valuable logit information. While direct logit distillation (DLD) mitigates
softmax smoothing, it fails to account for logit shift invariance, thereby restricting
the solution space. We propose Concrete Score Distillation (CSD), a discrete
score-matching objective that overcomes both softmax-induced smoothing and
restrictions on the optimal solution set. We resolve the training instability and
quadratic complexity of discrete score-matching in autoregressive LLMs, and the
resulting CSD objective aligns relative logit differences across all vocabulary pairs
between student and teacher with flexible weighting. We provide both mode-
seeking and mode-covering instances within our framework and evaluate CSD
on task-agnostic instruction-following, task-specific, and general chat capability
distillation using GPT-2-1.5B, OpenLLaMA-7B, Gemma-7B-IT, Qwen2.5-7B-IT,
and Gemma2-9B-IT teachers. Experiments show that CSD consistently surpasses
recent KD objectives, achieves favorable fidelity—diversity trade-offs, and yields
complementary gains when combined with on-policy techniques, demonstrating its
scalability and effectiveness for LLM distillation.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable generative capabilities across a wide
range of tasks (Achiam et al., 2023; Dubey et al., 2024; Liu et al., 2024; Comanici et al., 2025).
Such progress has been primarily driven by the vast amount of training data and the unprecedented
scale of model parameters (Kaplan et al., 2020). However, when deploying such LLMs in real-world
applications, the recurring inference cost becomes prohibitively expensive. Consequently, research
into reducing the parameter size of LLMs while preserving performance has become particularly
crucial for enabling efficient inference. In this context, knowledge distillation (KD) (Hinton et al.,
2015) has emerged as a promising approach for LLMs, as it allows a smaller student model to inherit
the capabilities of a large teacher model, thereby enabling more efficient inference.

The common paradigm in KD for LLMs is to align the per-token probability distributions of the
student with those of the teacher. Kullback-Leibler (KL) divergence was initially the most widely
adopted objective, and the search for more effective probability matching losses has since become
a central topic of research. Alternative objectives have been proposed within the framework of
f-divergence (Wen et al., 2023; Gu et al., 2024; Agarwal et al., 2024), as well as its smoothed
variants (Ko et al., 2024; Shing et al., 2025; Ko et al., 2025). However, existing distillation losses
primarily targeted the estimated probabilities obtained through the softmax transformation, instead of
directly utilizing the raw neural network outputs (logits) from either the teacher or the student. As
illustrated in Figure 1b, even when the teacher’s logit values differ substantially, their corresponding
probability values can be nearly indistinguishable. Such smoothing hinders the student from faithfully
capturing the teacher’s knowledge, a challenge further exacerbated in modern LLMs with large
vocabularies, where most tokens are assigned near-zero probabilities (See Figure 1a).

In traditional KD, direct logit distillation (DLD) (Ba & Caruana, 2014; Urban et al., 2017) has been
proposed as an alternative strategy, with advantages in generalization capability and in removing the
softmax smoothing (Kim et al., 2021). However, such approaches have not been thoroughly explored
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(a) Probability value statistics. (b) Softmax hides teacher’s knowledge. (c) Optimal solution sets.

Figure 1: Motivation for logit-level distillation and limitations of prior work. (a) Statistics of per-
token probabilities for every vocabulary for 16 input—output sequences from the teacher model
(GPT-2-1.5B). The probabilities are highly sparse, with only 0.0023% being greater than 0.01. (b)
Despite large differences in logits (e.g., [—1, —4, 4] vs. [1, =9, 6]), softmax yields nearly identical
probabilities and gradients. (c) Prior direct logit distillation restricts the solution set.

in the context of LLMs. This paper identifies a key drawback of DLD: its restriction on the optimal
solution set as described in Figure 1c. Considering the softmax activation in inference, it is sufficient
for the teacher’s and student’s logits to agree up to an additive constant, but the previous solutions of
DLD fail to accommodate such an acceptable slack constant, a.k.a. logit shift invariance. Such a
restriction on the solution set may hinder the discovery of optimal solutions in distillation, particularly
when the teacher and student models have a large capacity gap, as is often the case with LLMs.
Therefore, the goal of this paper is to establish a design space of distillation losses that overcome
both the softmax-induced smoothing of teacher knowledge and the restriction on the solution set.

This paper adopts the idea from energy-based models (Song & Kingma, 2021), which design
objectives that avoid the constraint of probabilistic models (sum-to-one) by using the score-matching
objective (Hyvirinen & Dayan, 2005). We propose Concrete Score Distillation (CSD), a discrete
form of the score-matching objective (Meng et al., 2022) adapted for autoregressive LLM distillation.
We address training instability and computational overhead arising when applying the score-matching
objective to LLMs, and provide theoretical guarantees of optimality, showing that its solution set is
broader than that of DLD from both theoretical and empirical perspectives. The resulting objective
reduces to matching the relative logit differences across all pairs of vocabulary items between the
student and teacher, while allowing flexible weighting across all vocabulary pairs in linear time with
respect to vocabulary size. Furthermore, we present instances within our framework that exhibit both
mode-seeking and mode-covering properties.

In our experiments, we conducted task-agnostic instruction-following distillation, task-specific
distillations (summarization, mathematics, and translation), and general chat capability distillation
using GPT-2 (Radford et al., 2019), OpenLLaMA (Geng & Liu, 2023), Gemma (Team et al., 2024a),
Qwen2.5 (Team et al., 2024b), and Gemma2 (Team et al., 2024a) backbones. The proposed CSD
consistently outperformed recent probability-matching objectives as well as direct logit distillation.
By appropriately choosing weighting functions, we further demonstrated that our method resides
on the frontier of the diversity—fidelity trade-off. Finally, we observed complementary performance
gains when integrating our loss with on-policy techniques.

2 PRELIMINARIES

2.1 KNOWLEDGE DISTILLATION OF LARGE LANGUAGE MODELS

We consider autoregressive large language models (LLMs), consisting of a teacher pr and a student
qo with 8 € ©, where the student is a smaller and more efficient model. Given an input context
c, the student generates an output sequence y = (y1,¥2,...,yr) with probability go(y|c) =
Hle qo(yt|c, y<¢), where L denotes the sequence length, and the teacher’s probability is defined
analogously. Each token y; is drawn from the fixed vocabulary set V := {v1,va,...}. As in prior
works (Lin et al., 2020; Ko et al., 2024), we assume the teacher and student share the same vocabulary
set. To compute the token probability gg(y:|c, y <), an LLM typically adopts a parametric function
fo : Vel x vt=1 5 RIVI which maps the input (c,y~;) to a logit vector fs(c,y<;) € RIVI. The
logit corresponding to token y; is denoted by fy(c,y<:)[y:]. For brevity of notation, the input
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arguments of the function fy will be omitted hereafter. Let f7 be the parametric function of the
teacher. Accordingly, the probability of each token is calculated through the softmax transformation:

exp( foly:]) exp(fr[y:])
vev XP(folz]))’ scy eXp(frz]))

qe(yt|C>Y<t) = Z pT(yt|C>Y<t) = Z (H

Problem definition: The goal of knowledge distillation for LLMs is to align the student’s per-token
probability distribution with that of the teacher, so that the student inherits the teacher’s capabilities.
We assume access to input—output sequence pairs (c,y) ~ D, obtained either from a fixed dataset or
from samples generated by the student or teacher (Lin et al., 2020; Ko et al., 2024). For each selected
instance (c,y), distillation is performed by selecting a specific discrepancy metric D and minimizing
the discrepancy between the per-token probability distributions with respect to 6:

L

1
Eey~p |7 ZD (pr (le;y<t) llgo (e, y <)) | - (@)
t=1

Prior work and metivation: In previous studies, D is most commonly chosen as the KL diver-
gence (Hinton et al., 2015), which is formulated as follows (the input of the probability is omitted):

pT(yt|C7Y<t)

. 3
QG(yt|C7Y<t) ©

Dy (prllge) = > pr(yile, y<i)log
Yyt €V

However, Dgy focuses on the teacher’s probabilities and is constrained by the softmax. As shown in
Figure 1b, although the teacher carries rich knowledge across all vocabulary items at the logit level,
much of it is lost after softmax, and the teacher provides nearly identical gradient signals to most
minor tokens. Accordingly, in classical KD studies (Ba & Caruana, 2014; Urban et al., 2017), direct
logit distillation (DLD) has been widely adopted as a logit-level mean squared error (MSE) loss:

Loip (0; pr, w) = % > w(ye) (folyd] — Friv)? “
Yyt €V

where w(-) is a strictly positive weighting function'. Kim et al. (2021) showed that Lpyp provides
better generalization and representation capability by taking minority indices into account. Since
faithfully distilling logit information is crucial for large-vocabulary LLMs, we investigated the use of
DLD for LLM distillation. However, we found that its optimal solution does not permit logit constant
invariance, thereby severely restricting the solution set. This observation motivated us to develop a
logit-level distillation loss that does not restrict the optimal solution.

2.2  SCORE MATCHING FOR A DISCRETE RANDOM VARIABLE

Score-matching (SM) (Hyvirinen & Dayan, 2005) was originally proposed in energy-based mod-
els (Song & Kingma, 2021) with continuous variables x € R, An energy function Ey : R¢ — R
maps x to a scalar. The corresponding probability and the score-matching objective are given by:

0 (X) _ exp(ng (X))

Zy ’

where pgai is the data distribution, Zy = fx exp(—Ep(x))dx is the partition function, and w(+) is
a weighting function. The term Vy log gg(x) = —VxFy(x) is known as the Stein score, which
uniquely identifies the probability distribution without requiring the computation of Zy. Lgy facili-
tates the design of losses without considering the normalization constraint of probabilistic models.
The probability computation gy here follows, analogously, the form of the LLM probabilities in
Eq. (1). The difference is that an LLM outputs energy values fy over all finite states at once, whereas
an EBM handles continuous variables, so that each input to Fy yields only a single scalar output.

LSM(H;pdataa w) = I[:-‘:w(x) [Hvx log QG(X) - Vx Ingdata(X)Hg] , )

Inspired by how EBMs design losses beyond the normalized structure of a probabilistic model through
score-matching, we extend this idea to construct logit-level distillation losses for LLMs. However,
because the Stein score is defined through derivatives, it cannot be directly applied to discrete random
variables. Meng et al. (2022) proposed a generalized score function, applicable to both continuous

'Throughout this paper, we assume each weighting function sums to one over the vocabulary for simplicity.
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and discrete variables, named the concrete score: sg(y) := [g‘;g” . Similar to the Stein score,
eV

the concrete score characterizes local changes at the current state, but replaces them with probability
ratios between all other point masses. This term is also uniquely identifiable with the underlying
distribution. The corresponding concrete score-matching objective is then defined as:

2
Lesm(0; paaa, w Z > w( ( ole) _ pdata(x)) ; (6)

S5 (¥)  Paa(y)

where pgy, is the data distribution defined over a discrete state, and w(-, -) is a positive weighting
function. Previous work on language models (Lou et al., 2024) typically adopted this loss by directly
parameterizing the concrete score (also known as discrete diffusion models) to mimic the data
distribution. In contrast, we take this concept as a starting point to design logit-level distillation losses
for autoregressive-type language models, which are more dominant in real-world applications.

3 METHOD

This section introduces the proposed Concrete Score Distillation (CSD) objective for knowledge dis-
tillation (KD) in autoregressive large language models (LLMs). Section 3.1 discusses the challenges
of directly applying Lcsm to LLMs, so we propose a modified objective with theoretical guarantees
of optimality and compare the objective with Lpy p. Section 3.2 presents an efficient analytic gradient
computation for CSD, analyzes its gradient structure, and compares it with that of Dy .

3.1 CONCRETE SCORE DISTILLATION FOR LARGE LANGUAGE MODELS

Tackling training instability: We observe that optimizing the student model ¢y by minimizing

Lcsm(0; pr, w) leads to training instability, as the likelihood ratio (;1:((;)) can diverge as the denomina-

tor approaches zero. In the discrete diffusion model (Lou et al., 2024), a single vocabulary item is fed
into the neural network sy, which directly outputs the ratios over the other vocabulary items, thereby
avoiding instability. In contrast, autoregressive LLMs compute probabilities for each vocabulary item
separately and then take their ratios, making this issue specific to autoregressive LLMs.

Training instability is a well-known issue in likelihood ratio estimation (Rhodes et al., 2020). Follow-
ing Higuchi & Suzuki (2025), we address it by applying a monotonically increasing function to the
concrete scores. In particular, we adopt the logarithm, which yields the following objective:

2
Lesp (05 pr, w) = % Z Z w(yt, ) (log wlale,yer) _ log Pr(zie,y <) ) (N

Y EV 2EV q0(yelc, y<t) pr(yelc,y<t)
=3 Z > wye ) (fole] = folyd] — frlz] + frlvd)*- ®)
thV zeV

The choice of the logarithm function provides two benefits: (1) it yields an MSE loss between logits
(i.e., neural network outputs), ensuring stability by avoiding the likelihood ratio computation; and (2)
it naturally leads to the logit-level loss design, which aligns with our motivation.

B

Logit distillation with intra-vocabulary relationships: Joly:] / T I/r
Unlike Lpyp, which directly matches student and teacher [1]4[3]
logits for the same vocabulary item, Lcsp aligns the logit .

residuals across different vocabulary items between the - —

student and the teacher. This allows the student not only

to be compared against the teacher but also to perform n

relative comparisons among its own vocabulary items. In  Student concrete score  Teacher concrete score

contrast to Dgy, where softmax normalization implicitly .

adjusts each vocabulary item relative to all others, our logs ~Figure 2: Schematic for Lesp (Eq. (8)).
explicitly controls the pairwise relationships between student vocabulary items y; and = through the
weighting function w(y,, z). Figure 2 illustrates how a logit vector fs(c,y;) € RVl (e.g., [1, 4,
—3]) produces a concrete score and how it is matched with the teacher’s concrete score. The following
theorems provide the theoretical guarantee of the proposed objective function.
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Algorithm 1: Gradient computation of Concrete Score Distillation

Input: Student fy, teacher fr, prompt c, prefix y -, function w(+, ) = wy (-)wa(+).
Compute the student logit fo[y:] = fo(c,y<t)[ys], Vyr € V.

with no_grad:

Compute the teacher logit fr[y:] = fr(c,y<¢)[y], Yy € V.

Compute the weighted average logits:

= X, evlon(u) x falydl-detach], fi* = X2, cylwa(ys) x folyel-detach]

=3 evlwi () x frlyll, 777 = 3, evlwa(y) x friye]]
Compute the weighted normalized logits:

Fa Tye) = folye) — o Fo lye) = folye) — f3'>, Yy € V.

7 ] = friyd — ::Lrul’ }UZ[?{t] = frly] — _%UQaYyt eV )
weraa(ye) = [wi(ye) [ £ lye) = F2 Iyl | + walwe) |75 ) = £ el | von € v

VoLesp (0;pr,w) =32, ey [Weraa (Y1) Vo folyt]
return Vo Lcsp (0; pr, w)

Proposition 1. (Consistency) Given context ¢ and prefix y <+, assume model capacity |©| — oc. For
any w(-,-) > 0, define the set of optimal parameters as O¢g;, = arg mingcg Lcsp (0; pr, w). Then,
for any 0% € OFg,, we have Lcsp (0*; pr, w) = 0, and the following holds for all y, € V:

90+ (yelc, y<t) = pr(ytle, y<t)-

Please refer to Section A.1 for the proof. Proposition 1 shows that consistency holds when matching
the log-transformed concrete scores of the student and teacher, and guarantees that our objective
leads the student to converge to the target teacher.

Theorem 2. (Solution Superset) Assume model capacity |O| — oo, let the set of optimal parameters
Ofgp = argmingeg Lesp (05 pr,w) and O, = argmingcg Lpp (0; pr, w), then following
holds:

Ocsp 2 Oprp-

Please see Section A.2 for the proof. Theorem 2 implies that all solutions obtainable by Lpp can
also be recovered by Lcsp. This is because L¢sp is invariant to constant shifts in logits; for example,
when fo[y:] = frly:] + C forall y; € V, the probabilities are identical and the Lcsp is zero, whereas
the Lprp is not optimal. This advantage could be pronounced under limited model capacity, where
the larger solution set of Lcsp enables more faithful approximation of the teacher’s knowledge.

3.2 GRADIENT COMPUTATION AND ANALYSIS

The remaining challenge of the proposed objective Lcsp in Eq. (8) lies in its computational cost
of O(|V|?). Unlike Dy, and Dpyp, Dcsp requires a double summation over the vocabulary set V.
This formulation is infeasible to implement in standard computational environments due to memory
constraints. Nevertheless, we show that the gradient of this objective can be computed in linear time:

Theorem 3. (Efficient Gradient Computation) Assume w(y;, ) = w1 (y)wo(x), then the gradient
of Lcsp (0; pr, w) with respect to 0 could be computed in O(|V]) as:

VoLesp (0o w) = > wlyn)” (Tol] — Erln) Vofoly) ©)

Y€V
. . N T ~ 3 T
where w(y:) = (wi(ye),wa(y))", Tolys] = ( o il ! [Z/t]) ey = ( 7y, I [yt]) :
with fiflye] = folye] = Buo folall, F#1ye] = frlye] — Bu (o [fr[z]] are normalized logis.

The proof is provided in Section A.3. For the actual training time and memory usage, please refer to
Table 9 in Section D. These results follow from factorizing the independent variables. Algorithm 1
further details the gradient computation of Eq. (9) step by step, with each step requiring only linear
time over the vocabulary. An alternative approach is to use Monte Carlo estimation as described in
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Algorithm 2 of Section C. Instead of taking a weighted sum over all possible states of y,; with w;, one
can draw a single sample of y; according to probability w; and compute the loss in expectation. The
Monte Carlo estimation, unlike the analytic gradient form, does not require assuming independence
between the two variables of w, allowing it to model the joint weighting function space directly.
However, defining a joint weighting function over two discrete vocabulary spaces is generally difficult.
We found that independent weighting functions capture various behaviors in Section 4.4. In these
cases, Monte Carlo estimation increases the variance within batched samples, which slightly slows
the convergence compared to the analytic computation (see Figure 5c¢).

Gradient analysis: The gradient of Lcgp in Eq. (9) has a structure similar to that of Dg;. For
intuitive understanding, let us consider the case where the weighting function of CSD is the uniform
distribution U. Then, the gradient of each loss becomes:

exp(fo[y:]) exp(frly]) >
VoD = — \Y ,
oD (prlan) = 3 (et~ S apti ) e

normalized student logit normalized teacher logit

2 - folz . frlx
VoLeso (0;pr,U) = > V|< <f9[yt} - W) - (fT[l/t] - Zeﬁf”) )Vefe[yt]-

Y€V
normalized student logit normalized teacher logit

In gradient descent, both losses decrease the student’s logit fy[y;] where the student’s normalized
logits are large, and increase fy[y;] where the teacher’s normalized logits are large. The only
difference lies in how the logit coefficients are normalized over the vocabulary set: Dk inherits the
softmax form, which, as noted in Figure 1b, poses a major problem for transferring the teacher’s
knowledge. In contrast, our Lcsp uses centering normalization, allowing the student to directly
capture the teacher’s logit information. Moving beyond the uniform weighting case study, the
formulation in Eq. (9) further provides a design space for logit normalization through (w1, w2), where
wy controls the weighting of vocabulary tokens during gradient updates and ws governs coefficient
normalization, with their roles applied again in reverse order (w2, w1).

4 EXPERIMENTS

This section comprehensively validates the effectiveness of the proposed Concrete Score Distillation
(CSD) across various experimental setups. Section 4.1 shows results on task-agnostic instruction-
following distillation, comparing CSD with alternative loss functions and assessing its performance
when combined with on-policy methods. Section 4.2 further examines task-specific settings, including
math, summarization, and translation, to evaluate the applicability of CSD. Section 4.3 evaluates
scalability by examining whether general conversational abilities can also be distilled. Finally,
Section 4.4 establishes the contribution of each component in CSD through ablation studies.

4.1 TASK-AGNOSTIC INSTRUCTION-FOLLOWING DISTILLATION

We follow the training setup of DistiLLM (Ko et al., 2024). For the distillation dataset D, we use
databricks—-dolly—-15k (Conover et al., 2023). We first fine-tune the teacher on this dataset
and then distill it into student models. We use the detached student probability as the default choice
for both w; and ws, and we apply it similarly to the weights in DLD. Please refer to Section C.1 for
further details on backbone, training configuration, baseline, and the evaluation protocol.

Loss-level comparison: To purely analyze the effect of the distillation loss itself, this comparison
excludes the use of pretraining losses, initialization with an SFT-tuned student, and any on-policy
techniques. Table 1 shows that the proposed CSD objective outperforms the other nine objectives,
ranking first on three of the five benchmarks, second on one, and achieving the highest average score.
SKL (Ko et al., 2024) and AB (Wang et al., 2025) exhibit slightly lower performance than previously
reported, likely due to their reliance on pretraining losses or on-policy techniques. Figure 3a shows
the fidelity—diversity trade-off based on ROUGE-L and Self-BLEU scores. Traditionally, KL favors
diversity, whereas RKL favors mode-seeking. Within this trade-off, SKL, SRKL, TV, and AB
achieve higher ROUGE-L scores than RKL, but at the cost of reduced diversity, reflecting a stronger
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Table 1: Comparison of loss functions for distilling GPT-2-1. 5B into GPT-2-0. 1B. Every result
is from our implementation with the same teacher, purely using the distillation objective. ROUGE-L
scores were averaged over five random seeds; best scores are boldfaced, second-best underlined.

Loss Dolly Eval Self-Instruct Vicuna Eval Super-NI UnNI Avg. (1)
Teacher 27.00+ 019 14.07+037 1631+032 26.46+041 31.10+006  22.99
KL 23.52+025 10.02+t0s5s 14.57+032 16761017 18.55+013 16.68
RKL (Gu et al., 2024) 2426+011 11.19+017 15.80+026 20.17+015 22.99+014 18.88
Sym-KL 23.29+ 020 10.24+ 031 15.25+043 17.46+011  20.60+008  17.37
Jeffrey 23.00+ 038  10.82+044 15.00+050 18.19+011 20.07+011  17.42
TV (Wen et al., 2023) 23.88+030 11.03+051 15.13+044 24.58+025 2524+006 19.97
GIS (0.9) (Agarwal et al., 2024) 24.10+ 024 11.40+030 16.02+057 20.28+013 22.55+012 18.87
SKL (0.1) (Ko et al., 2024) 2417+ 024 11.21+053 1529+ 024 22.65+014 24.69+011  19.60
SRKL (0.1) (Ko et al., 2024) 24.53+ 021 12.19+020 15.63+022 233741027 24.28+018  20.00
AB (0.2, 0.7) (Wang et al,, 2025)  24.20+0.12 11.82+020 15.87+036 21.44+020 25.59+000 19.78
CSD (Ours) 2494020 12.06+046 15.78+049 24.60+-031 25.88+:013 20.65
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Figure 3: An in-depth analysis of the distributional behavior of different loss functions.

emphasis on fidelity. Diversity, however, remains an important aspect of user experience in instruction-
following, and it becomes a valuable metric as it enhances performance when combined with best-of-N
sampling. The proposed CSD provides an additional lever to control the fidelity—diversity trade-off.
By default, using the detached student probabilities (5, .S) yields the highest fidelity. Replacing
one side with uniform (U, S) or with the teacher (T, S) gradually increases diversity. This is likely
because the (.5, S) makes the model focus only on regions where the student already assigns a high
likelihood, limiting its exploratory ability. The trade-off offered by CSD envelopes those of existing
losses, and we expect that even better operating points may exist within the design space of w; and
wo. Figure 3b presents an ablation on temperature, which enables easy adjustment of the trade-off
during inference. Even within a reasonable range of decoding temperature, CSD achieves better
trade-off points than other losses. In particular, CSD (U, S) demonstrates a well-balanced exchange
between diversity and fidelity through temperature adjustment.

Orthogonal improvement with recent on-policy advances: Table 2 reports the performance of
recent distillation baselines augmented with the CSD loss, demonstrating its orthogonal applicability.
We applied the CSD (S, .S) and DLD (5) loss to ImitKD (Lin et al., 2020), GKD (Agarwal et al.,
2024), and DistiLLM (Ko et al., 2024). DLD-mean refers to the mean-centered DLD variant, as
described in Section A.4. The primary distinction among these methods, apart from their losses, lies
in the choice of dataset D: ImitKD uses purely student-generated on-policy data, GKD combines
fixed data with student outputs, and DistiLLM adaptively selects between them based on validation
loss. As a result, the average ROUGE-L score improved for both GPT-2-0.1B and GPT-2-0. 3B
students in all settings, compared to both the baseline and the corresponding DLD versions. The best
result on each benchmark was also achieved by our method, with particularly strong performance
under pure on-policy settings. We also evaluated using GPT-4 as the judge in Figure 4, where our best
model was judged superior to other baselines. There may exist CSD variants other than (S, .5) that
perform better for specific D, but we leave this exploration to future work. Finally, applying our best
setting to a larger OpenLLaMA also outperformed baselines, demonstrating the scalability of CSD
with respect to model size. We provide comparisons with more baselines in Table 7 of Section D.
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Table 2: Instruction-following performance of CSD with on-policy techniques for various backbones.
D denotes the distillation dataset. ROUGE-L scores are averaged over five random seeds, with the
best score for each student highlighted in bold. CSD and DLD use the student probability weighting.

Method Loss D  DollyEval  Self-Instruct Vicuna Eval  Super-NI UnNI Avg. (D)
Teacher (GPT-2-1.5B) 27.00+019 14.07+037 1631+03 26.46+041 31.10+006 22.99
Teacher (OpenLLaMA-7B) 27.60+ 034 18.17+080 17.85+048 31.05+031 32.40+028 25.41

GPT-2-1.5B — GPT-2-0.1B

GKD (Agarwal etal., 2024)  GJS  Mix 22.48+020 10.08+067 15.61+008 13.88+021 16.59+013 15.73
DistiLLM (Koetal,2024) SKL Ada 25.28+ 028 12.04+ 049 16.66+ 034 22.13+031 24.32+ 014 20.09
ImitKD (Lin et al., 2020) KL On 21.79+018 10.25+0:
).
).

37 14.65+062 17.35+012 19.43+013 16.69
GKD + DLD DLD Mix 25.29+0s50 12.51+062 16.59+028 20.87+037 22.63+014 19.58
DistiLLM + DLD DLD Ada 24.23+023 11.86+051 17.69+01s 19.60+-0.13 22.77+022 19.23
ImitKD + DLD DLD On 24.69+02¢ 12.10+040 16.77+055 21.58+036 23.93+008 19.81
GKD + Ours CSD Mix 25.50+034 12.03+065 16.65+045 21.39+014 23.48+003 19.81
DistiLLM + Ours CSD Ada 2534+027 11.93+03 16.99+020 22.96+ 024 24.72+000 20.39
ImitKD + Ours CSD On 25.70:023 1240048 17.18+052 2291046 25.47+017 20.73

GPT-2-1.5B —+ GPT-2-0.3B

GKD (Agarwaletal, 2024)  GJS  Mix 25.15+t041 11.22+033 16.45+048 17.35+020 22.25+005 18.48
DistiLLM (Ko et al., 2024) SRKL Ada 26.92+023 13.75+020 16.90+025 26.12+027 29.65+ 014 22.67
ImitKD (Lin et al., 2020) KL On 23.61+03¢ 12.37+026 15.53+027 20.20-020 24.42+020 19.23

GKD + DLD DLD Mix 26.06+031 13.51+035 16.94+024 23.91+050 27.33+000 21.55
DistiLLM + DLD DLD Ada 2543+037 12.64+040 16.91+061 22.69+024 25.60-010 20.65
ImitKD + DLD DLD On 25.82+037 13.64+033 17.55+016 25.51+021 29.07+008 22.32
GKD + Ours CSD Mix 27.11+t04 13.71+t045 16.98+020 2549+ 035 30.16+-013 22.69
DistiLLM + Ours CSD Ada 26.77+01s 13.96+062 17.05+034 26.29+ 008 29.56+000 22.72
ImitKD + Ours CSD On 27.14:02¢ 14.85:066 16.88+018 26.28 021 30.43-002 23.12

OpenlLLaMA-7B — OpenLLaMA-3B
TAID (Shing et al., 2025) tKL  Ada 26.53+023 17.73+060 18.14+039 31.93+023 31.55+012 25.18

DistiLLM (Ko etal., 2024) SKL Ada 28.63+028 20.20+066 19.15+032 35.31+019 34.74+010 27.61
DistiLLM (Ko et al., 2024) SRKL Ada 28.83+041 20.76+037 19.37+015 36.82+014 35.76+013 28.31
ImitKD + DLD DLD On 29.07+043 20.07+060 20.05+037 36.30+041 35.71+014 28.24
ImitKD + DLD-mean DLD On 28.13+036 1991+0s50 19.58+055 35.85+050 35.49+012 27.79
ImitKD + Ours CSD On 29.63+:040 21.81+047 20.37+051 36.49+013 36.86+-010 29.03

Table 3: Task-specific distillation from

o
o
o

- 3 KD I GKD Gemma—-"7B-IT to Gemma—-2B-1IT.
E o Se_qKD BN DistiLLM Summarization Translation GSMS8K
> 0.50 [ ImitkD I Ours
5 Loss ROUGE-L COMET  Accuracy
a
5 Teacher 37.09 79.23 60.27
o KL 35.02 73.96 24.03
% JS 35.60 74.05 23.73
£ 40 vV 27.49 73.73 0.00
P Jeffrey 35.29 74.02 23.28
& SKL 25.86 59.65 0.00
0.35 SRKL 26.68 73.10 0.00
, CPT2018 CP120.38 . RKL 0.00 45.02 0.00
Figure 4: GPT-4 feedback performance, showing pLD (9) 0.00 21.52 0.00
the proportion of responses judged correct relative DLD-max (7') 32.54 65.28 17.74
to the golden answers. The teacher’s score is 0.61. CSD (7 5) 35.67 74.14 25.78

4.2 TASK-SPECIFIC DISTILLATION

We evaluate the effectiveness of CSD across dialogue summarization, low-resource translation, and
arithmetic reasoning tasks. Distillation was conducted on 1,000 samples from the DialogSum (Chen
et al., 2021), Flores-200 (Costa-Jussa et al., 2022), and GSM8K (Cobbe et al., 2021) datasets,
following the experimental setup of Xu et al. (2025) (Please refer to Section C.2 for further details).
Table 3 compares performance across the three tasks against baseline loss functions. Under identical
experimental conditions, the proposed CSD objective achieved the best results on all tasks. For the
arithmetic reasoning task, we observed several cases in which certain losses yielded zero accuracy. A
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Table 4: Benchmarking result for general chat capability. The best score is highlighted in bold.
| Qwen2.5-7B-IT — Qwen2.5-1.5B-IT  Gemma2-9B-IT — Gemma2-2B-IT

Benchmark \ MT-Bench (0-10)  AlpacaEval (WR) MT-Bench (0-10)  AlpacaEval (WR)
Judge | GPT4 GPT4-Turbo GPT4-Turbo  GPT4 GPT4-Turbo  GPT4-Turbo
Teacher | 859 7.52 88.69 8.91 7.66 94.60
DPKD (Li et al., 2024) | 1.04 1.09 0.32 6.30 4.89 71.18
DistiLLM-2 (Ko et al., 2()25)\ 7.28 5.75 70.42 7.81 6.45 89.91
DLD (T) | 7.25 5.56 69.80 5.85 4.45 31.24
DLD (5) | 7.28 5.74 67.67 7.58 6.53 89.84
CSD (T, S) | 742 5.90 70.42 7.85 6.55 89.92
CSD (S, 5) | 7.69 5.95 69.64 7.77 6.43 90.05

case study in Tables 11 to 15 of Section D shows that these models often produce excessively long
chains of thought without arriving at a final answer, indicating a failure to learn proper formatting;
furthermore, much of the reasoning itself is incorrect. As illustrated in Figure 3a, the RKL, TV, SKL,
and SRKL losses exhibit mode-seeking tendencies, which we conjecture may have caused collapses
into suboptimal modes under these limited data distillation settings. Similarly, CSD (S, S), which
also shows mode-seeking behavior, performed poorly as 21.09, 63.78, and 0.00 on summarization,
translation, and GSM8K, respectively. CSD achieved stable performance in this case by using
the (7', .5) weighting. DLD likewise performed poorly under student weighting and became only
marginally stable when teacher weighting was applied. A full ablation is provided in Table 10 of
Section D for DLD variants. Across all cases, DLD remained significantly weaker than CSD, likely
due to its restricted solution space being more detrimental under limited-data distillation.

4.3 GENERAL CHAT CAPABILITY DISTILLATION

To evaluate general chat performance, we conducted distillation experiments using the latest
instruction-tuned models, Qwen2.5-Instruct (Team et al., 2024b) and Gemma2-Instruct (Team et al.,
2024a). We followed DistiLLM-2 (Ko et al., 2025) and performed distillation using the S0K subset
of the UltraChat dataset (Ding et al., 2023) (Please refer to Section C.3 for further details). Ta-
ble 4 shows that CSD outperformed both DistiLLM-2 and DLD on MT-Bench (Zheng et al., 2023)
and AlpacaEval (Li et al., 2023) win rate (against text-davinci-003), demonstrating superior
performance. These results further demonstrate the scalability of CSD.

4.4 ABLATION STUDIES

CSD vs DLD: Table 5 presents comprehensive ablation studies on the weighting function choices in
CSD and compares them with direct logit distillation. DLD accommodates only a single weighting
function. When comparing DLD with T, U, and S against CSD with (T',T), (U,U), and (S5, S),
respectively, our method consistently achieved higher average scores. As shown in Theorem 2, we
hypothesize that the broader solution space positively contributed to this improvement. We also
compared CSD against other shift-aware DLD variants such as DLD-min and DLD-max, as well as
ranking-matching variants including DLD-std (Sun et al., 2024) and DLD-range. However, none
of these methods outperformed the naive DLD baseline. Figure 5a shows the effect of temperature
scaling on the weighting function of DLD (s). Under the same temperature scaling, CSD consistently
outperformed DLD. Figure 9 in Section D shows that DLD restricts solutions to those with a residual
constant of zero; CSD adapts residual constants per token, providing evidence that it explores a
broader solution set.

Design choice of CSD: CSD provides a more flexible loss design space through two weighting
functions. While (.S, S) provides high-fidelity generation, (U, S) and (7', S) have its own benefits.
As illustrated in Figure 3a, replacing (.5, S) with (U, S) or (T, S) reduces ROUGE-L but increases
diversity, highlighting that CSD can adapt to tasks requiring either mode-covering or mode-seeking
properties. As shown in Figure 13 in Section D, the (U, S) weighting substantially reduces the
gradient concentration on a small subset of vocabulary tokens that is induced by softmax. This allows
all vocabulary items to be learned more evenly, which in turn produces the pattern in Figure 9c
where the logits residuals are tightly centered around their offsets. When minority-vocabulary
logits are well learned, performance improves noticeably in situations where their contribution
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Table 5: Ablation on the logit-level loss design space using GPT-2-0.1B student. 7', U, and S
denote teacher, uniform, and detached student probabilities. ROUGE-L scores are averaged over five
seeds; best scores are in bold. Please refer to Section A.4 for DLD variants details.

Loss w1 () w2 () ‘ Dolly Eval Self-Instruct Vicuna Eval Super-NI UnNI Avg. (1)
T - 0.09+002  0.07+002 0.18+0.03 0.07+0.01 0.06+ 0.00 0.09
DLD U - 11.25+030  5.55+063  9.10+027  9.02+0.14 8.24+ 007 8.63
S - 2422+ 024 12.01+040 1542+031 25.44+0190 24.88+019 20.39
T - 1.14+ 001 0.93+ 005 1.65+0.13 0.85+0.01 0.87+0.01 1.09
DLD-min U - 7.16+0.13 4534020  749+019  7.20+ 004 5.97+ 005 6.47
S - 23.89+033 11.11+017 1543+036 23.78+024 25.87+011  20.02
T - 0.39+002  0.32+003  0.73+005  0.22+0.01 0.21+ 001 0.37
DLD-max U - 6.47+006 481007 6.67+02¢  6.80+006 5.17+ 001 5.98
S - 9.65+028  5.81+0.11 8.66+ 043 11.73+02¢ 11.62+012 949
T - 598+018  4.80+014  7.98+015 4931006  4.85+005 5.71
DLD-std U - 21454020 10.55+05 1590017 18.85+020 20.82+t000 17.51
S - 9.74+ 022 5.67+011  12.29+027  7.07+0.11 6.97+ 007 8.35
T - 0.85+003 0.73+0.04 1.44+006  0.53+002  0.51+000 0.81
DLD-range U - 10.84+012  749+014  12.82+030 9.97+004  7.89+001 9.80
S - 8.90+017  4.74+015 7.70+ 056 8.70+ 0.07 8.90+ 0.04 7.79
T T 6.82+0.16 424+ 0.12 9.16+ 025 4.53+ 0.02 4.83+ 0.02 591
U U 17.21+030 8.08+039 14.27+040 13.19+027 14.07+004 13.37
CSD S S 2494 020 12.06+046 15.78+040 24.60-031 25.88+:013  20.65
(Ours) U S 24.15+055 12.25+047 1525+041 22.55+009 25.19+012 19.88
T S 22.77+025 10.62+032 14.06+025 18.81+040 21.71+018 17.59
éﬂ goso % ;:27
; 5 g
'FE; ? %0.25 M\*\‘m‘»‘ g Z
819 %o.zo 3 21
o [} ©
S 18 E 015 'S 19 —8— CSD (ss) (Analytic) CSD (ts)
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Figure 5: Ablation studies for logit-level distillation loss design space.

becomes more significant, such as under high-temperature sampling. This explains why (U, .S)
performs exceptionally well in the high-diversity region of Figure 3b. Figure 5b measures probability
calibration performance. While (S, S) provides high-fidelity generation, it becomes overconfident.
Therefore, in scenarios where probability calibration is preferred, we recommend using the (7', S)
weighting. Better calibration can potentially improve training stability in small-data settings where the
optimization landscape is more difficult, as in Section 4.2. Figure 5S¢ compares the method to resolve
O(|V|?) computational cost: 1) using analytic gradient computation from Theorem 3 and 2) Monte
Carlo sampling. In both cases, the performance is far superior to KL, but the analytic CSD shows
slightly faster training and better convergence. Thus, we recommend using the analytic gradient
whenever possible. However, the Monte Carlo variant allows extensions such as joint weighting
functions or using Lp loss instead of L2, making it a viable option for more complex modeling.

5 CONCLUSION

We introduced Concrete Score Distillation (CSD), a novel design space for distillation losses in large
language models. CSD simultaneously addresses the challenges of softmax-induced smoothing and
restrictions on the optimal solution set, which prior methods have failed to resolve together. Within
this framework, we presented instances of both mode-covering and mode-seeking, and demonstrated
scalability by consistently surpassing prior work across diverse tasks and model backbones up to 7B
parameters. We anticipate that even better instances can be discovered within the proposed design
space, particularly by refining w; and ws and adapting them to the type of data (fixed or on-policy).
This points to promising directions for future exploration of improved instances.

10
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A PROOFS AND DERIVATIONS

A.1 PROOF OF PROPOSITION 1

Proposition 1. (Consistency) Given context ¢ and prefix y <+, assume model capacity |©| — oc. For
any w(-,-) > 0, define the set of optimal parameters as O¢g;, = arg mingcg Lcesp (0; pr, w). Then,
forany 0% € OFp,, we have Lcsp (0*; pr, w) = 0, and the following holds for all y, € V:

qo- (yelc, y<i) = pT(yt|C, Y<t)-

Proof. We have the following objective:

o —— 1 wls. go(zle,y<i) pr(zlc,y<i) )2
Les (03 pr,w) = 5 y%% (s, 2) <log a0 (yilc, y<t) tog pr(yele,y <) (10
- % Yo > wlyew) (fola] = folye — frla] + frlv])*. (11
Y€V x€V

Since the objective is a weighted sum of squares with strictly positive weights w(-,-) > 0, the loss
attains its minimum if and only if each squared term vanishes, i.e.

for[z] = forlye] = frlz] — frlw], Yy,zeV. (12)
Then, the probability of a student satisfying the following:
exp(forlye]) exp(fo- [y:])

G- Wil Y<t) = = oo 1) Sy oxpUa-lor] + frle] — Frlan)))

— eXP(fT[yt]) _
- Ysevexp(frla])) = pr(yele, y<o)- (14)

(13)

O

A.2 PROOF OF THEOREM 2

Theorem 2. (Solution Superset) Assume model capacity |©| — oo, let the set of optimal parameters
Ofgp = argmingeg Lesp (05 pr,w) and O, = argmingcg Lpp (0; pr, w), then following
holds:

Ocsp 2 Opip-

Proof. We have the following objective for direct logit distillation (DLD):

Low O pr,w) = 5 3 wwe) (oly] — rled)*, (15)
Yyt €V

Since the loss is expressed as a strictly positive weighted sum of squares, it achieves its minimum
value only when all squared terms are individually zero, i.e.,

fos el = friw], Yy €V. (16)

Unlike DLD, the optimality condition of our loss is more relaxed. Specifically, it is sufficient for 6*
to satisfy the condition in Eq. (12), i.e.,

Jo-lyel = frly) +C, Vy: €V, CeR. (17

At C = 0, our objective recovers the solution set of DLD; for an arbitrary choice of C, it yields a
strictly larger optimal solution set. This arises from the fact that the softmax mapping used to express
probabilities is invariant under additive constants, whereas DLD explicitly constrains this constant to
coincide with that of the teacher, which consequently reduces the solution set.

O
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A.3 PROOF OF THEOREM 3

Theorem 3. (Efficient Gradient Computation) Assume w(y;, ) = w1 (y)wa(x), then the gradient
of Lcsp (0; pr, w) with respect to 0 could be computed in O(|V]) as:

VoLesp (9;PT7U)) = Z W(yt)T (fe [yt] - fT[ZU:&]) Vo fo [yt], 9

Y€V

T = ~ ~ T . - ~ T
where w(y:) = (wn (o), woly) " Bolyd = (F32lwil, 5" l) . Brld = (Fi2 Mol 2 wel)
with [ ] = folvi] — B folall, 7] = frlve] = Euge[frla]] are normalized logits

Proof. We have the following objective:

2
»CCSD (0 pT U} Z Zwl yt w2 (log (w‘c7y<t) _ log pT(x|07Y<t)> (18)

ytev TEV o(ytle, y<t) pr(yele, y<t)
9 Z Zwl ye)wa(z) (fola] — folye] — frlz] + friv)?. (19)
y,ev €Y

And its gradient is given by:

VoLesp (0;pr,w) = DY wiy)wa(x) (folz] — folyed — frlz] + frlv]) Vo(folz] — foly))
Yyt €V xeV
= Z Zwl yo)wa(x) (folz] — frlz]) Vo(folz Z Zwl ye)wa(z) (folz] — friz]) Vo(foly:))
Y€V xeV Y€V x€V
@ @
+ Z Zwl(yt)wQ(I) (—=folye] + frlye]) Vo(folz Z Zwl ye)wa(x) (—folye] + friyel) Vo(foly:])
ye€V xeV Yyt €V €V
©) @

® =M S w(a) (fala] — frlel) Volfolal) = 37 walye) (folui] — Frlue]) Vo(falye)

eV 2%
1
@ =) wT)x wi(ye) (folye] = frlye]) Vo(folue]) = ) wilye) (folye] — frlve]) Vo(folue])
M;‘; i) (foly 7[ye]) Vo(foly y;} ye) (folye]l — frlye)) Vo(foly
{Z wa(x — frlz ])} { > wl(yt)ve(fe[yt])}
€Y 2%
~Eun ) Lfol2] = frlal] x Y wiye)Vo(folye))
Yyt €V
@:_{Zwl(yt) (fa[yt] fT yt } {sz Vo fa }
2% TEV

= —Bu, ) [folye] = Frlye]l x Y wa(a)Vo(folz

z€V

By o) ole] = friel] x D wa(y) Vol folye)

Y€V
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@+ = Z w1 (Ye) (fe[yt] = frly: - Ewg(m)[fe[x] - fT[l‘H) Vo(foly:))

yr €V

= 3 wilun) (Fi ) = Fi* (el ) Volfolyr)

Yyt €V

D+ = Z wa(ye) (folye] — frlye] — B, @ [folz] — frlz]]) Vo (folye])

Yyt €V

= > walye) (i ) — £ [wi]) Vo (Folue)

%

O+0+@+@ =Y wiw)” (Bl — Frlw]) Vo(folu)

yr €V

A.4 THE VARIANTS OF DIRECT LOGIT DISTILLATION

We define the DLD variants used for our comparisons in Table 2, Table 3, and Table 5.
2

L3 B;prw) = 5 3 w(y) ((foliw] — min fola)) — (Frly] — min frlz)))

2
. Yyt €V )
£ O:pr,w) = 5 > wie) ((folyel - max fola]) — (frlye] - max frla]))
ytEV )
) folve) — 15 X folal frlud — 1 X frlal
Lyip(0; pr, w) = 3 > wiy) o = — L = |
ey %‘1’ % (foldl - iy T fole) %5 5 (friel =iy T i)
eV eV z’'ey

z' eV
range f@ yt — min, f@[ ])) 2(fT[yt} — min, fT[xD) ?
Lotp (6:pr,w ytev ((maxz folx] — min, fo[x] 1) B (maxz frlz] — min, fr[z] B 1)) ’
o5 (s 5] (w5
pLD \V; PT, W ytEV oY |V| :;/ 0T T[] |V| IZE; T|T
LR Oprw) = 5 3 wiw) ((fe[yt] - w(x)fe[w]) - (fﬂyt] - w(%)fﬂﬂ)) .
Yy €V zeV zeV

Here, L}y is recovered by CSD as a special case shown by the following remark.

Remark 4. Let CSD ob]ectlve as Lcsp (0; pr, w) with w(y,, ) = wi(y)wa(x). If wi(-) = wa(-),
VoLcsp (05 pr, w) = Vo Lpip™ (0; pr, w1).

Proof. We use ZytEV w1(yt)févl [ye] = Zytev w1 (Yt) (fe Wil = D pey wi(z) fo [ac]) =

Vo LB (0; pr,wn) = Y wi(y:) (féul[yt] — f7 i) ) (Vefe vl = > wi(@) VoSl )
ye€V IS
0

= > wily) (féﬂl[yt] - fva[ytD Vofolyel = | D wily) [F T — Fi [ ) (Z w1 (2)Ve folz )

y+€V y eV
= VyLcsp (0; pr, w)
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A.5 WEIGHTING FOR DIVERGENCE-BASED LOSS

Unlike the L2 loss, a divergence-based loss does not guarantee convergence to the target distribution
when a weighting is applied. Here, we examine the effect of applying w weighting to the KL

divergence. Define p¥i(y:) = %, where Zyr = 2, o (pr(yt) X w(y)) is a partition
function. Then we have:

D (prllge) ==Y w(ye)pr(y:) log ((;J;))
Y€V

= > w(y)pr(v) (10gw(yt)pT(yt) - 10gw(yt)) :

= a0 (ye)

= ZuwT X Z yt pr (1) (log w(y)pr(ye) + log Zwr log'w(yt)>
=y ZwT X q@(yt)

= Zwr X Z i (yt) <1og P () + log Zy1 —logw(yt)>
= o(yt)

= ZuwT X ZPT yi) log ((5;))4‘0

Y€V
= ZwrDxe (p7||q0) + C,

where C' is constant with respect to §. Thus, in this case, the student gy does not converge to the
teacher distribution but instead converges to p7, meaning that the target distribution is altered by
the weighting w. In contrast, the proposed CSD theoretically guarantees convergence to the target
distribution for any choice of w proved by Proposition 1.

B RELATED WORKS

The choice of discrepancy metric between teacher and student probability distributions is central to
knowledge distillation for large language models (LLMs). Prior work has predominantly employed
either forward KL divergence (Hinton et al., 2015) or reverse KL divergence (Gu et al., 2024). These
divergences, however, exhibit distinct biases: forward KL is inherently mode-covering, while reverse
KL is mode-seeking. Consequently, optimization under either measure imposes an unavoidable
trade-off between fidelity and diversity. To address this limitation, recent studies have explored
alternative measures, including (generalized) Jensen—Shannon divergence (Wen et al., 2023; Agarwal
et al., 2024), adaptive KL divergence (Wu et al., 2025), and a—f divergence (Wang et al., 2025).
Complementarily, Ko et al. (2024) introduced skew KL and skew reverse KL divergences to improve
optimization stability. Beyond the KL family, total variation distance has also been investigated (Wen
et al., 2023). Broadly, existing approaches extend in two directions: (i) instantiating different
generating functions within the f-divergence family, or (ii) constructing hybrid objectives that
combine multiple divergences. In contrast, we propose a novel logit-level distillation framework
grounded in concrete-score matching (Meng et al., 2022), which departs from the f-divergence
family and offers both extensibility and originality. Furthermore, we introduce a loss design space
with multiple instances, including instances that envelope the diversity—fidelity trade-off exhibited by
previous methods.

Concurrently, a complementary line of work has examined dataset composition to mitigate the
distribution mismatch between training and inference. Several studies have explored on-policy
strategies, either using only student-generated outputs (Lin et al., 2020) or combining them with a
fixed dataset (Agarwal et al., 2024) and teacher-generated outputs (Gu et al., 2024; Xu et al., 2025).
To reduce the computational overhead of on-policy training, Ko et al. (2024) proposed an adaptive
off-policy method with a replay buffer. By contrast, our contribution focuses on developing a novel
discrepancy metric, which is orthogonal to these dataset composition strategies and can be seamlessly
integrated with them as shown in Table 2.
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C EXPERIMENTAL DETAILS

C.1 TASK-AGNOSTIC INSTRUCTION FOLLOWING DISTILLATION IN SECTION 4.1.

Experimental setup: We follow the training setup of DistiLLM (Ko et al., 2024). For the distillation
dataset D, we use databricks—-dolly-15k (Conover et al., 2023), containing about 14,000
samples for training, with 500 held out for validation and 500 for evaluation. For comparison with the
baseline, we optionally add a pretraining loss using the pretraining dataset OpenWebText (Gokaslan
& Cohen, 2019) in some cases of Table 2. We first fine-tune the GPT-2-1 . 5B (Radford et al., 2019)
teacher on the dataset, and then distill it into GRT-2-0. 1B and GPT-2-0. 3B students. Similarly,
we distill OpenLLaMA-7B (Geng & Liu, 2023) into OpenLLaMA-3B. We determined the learning
rate and batch size by referring to the search ranges used in prior studies (Gu et al., 2024; Ko et al.,
2024). We use the detached student probability as the default choice for both w; and ws, and analyze
alternative choices through ablation studies.

All experiments were conducted primarily on four RTX 3090 GPUs. We searched learning rates
in [5e-4, le-4, 5e-5] and batch sizes in [8, 16, 32]. Each configuration was trained for 20 epochs,
saving a checkpoint at every epoch, and evaluated using the checkpoint with the highest validation
ROUGE-L score. We used the same five evaluation seeds [10, 20, 30, 40, 50] as in prior work to
compute the mean and standard deviation of the evaluation metric. The baselines in Table 2 were run
with the official code settings of prior work (Ko et al., 2024), with additional tuning for the batch size.
In the OpenLLaMA experiments, all baselines and ours were standardized to a batch size of 8, the
maximum supported in our environment. Baselines used the learning rates from their official code,
while we fixed the learning rate to 1e-4 (commonly effective for GPT-2) with CSD, without further
tuning. For ablation studies in Table 5 and Figure 5, we used the same configuration: learning rate
le-4 and batch size 8. For GPT-4 feedback in Figure 4, we use the following templates following
prior work (Zheng et al., 2023; Ko et al., 2024) as shown below. We computed the ratio between the
model answer and the golden answer for each of the 500 samples from Dolly Eval, and reported the
average over all samples. We provide the reference implementation for CSD in Code 1.

Baselines: Since our main focus is on the loss function, we compared our method with existing
objectives using the same teacher checkpoint. The baselines include KL, reverse KL (RKL) (Gu et al.,
2024), symmetric KL (the mean of KL and RKL), Jeffrey’s divergence, Total Variation (Wen et al.,
2023), Generalized Jensen—Shannon (GJS) (Agarwal et al., 2024) with smoothing parameter 0.9,
Skewed KL (SKL) (Ko et al., 2024), Skewed reverse KL (SRKL) (Ko et al., 2024) with smoothing
parameter 0.1, and a—f divergence (AB) (Wang et al., 2025) with parameters (0.2, 0.7). We followed
the hyperparameter choices reported in each paper and the implementation of DistiLLM. For KL, we
performed a full-range hyperparameter search, as in our method. For losses not specified in prior
work, we adopted the same settings as for KL.

Evaluation metrics and setups: We evaluated on five instruction-following benchmarks: 1) the
test set of Dolly, 2) Self-Instruct (Wang et al., 2023), 3) Vicuna Eval (Chiang et al., 2023), 4) Super-
Natural Instructions (Super-NI) (Wang et al., 2022), and 5) Unnatural Instructions (UnNI) (Honovich
et al., 2023). ROUGE-L (Lin, 2004), which measures similarity to the golden answer, was used
as the primary metric. We additionally employed Self-BLEU (Zhu et al., 2018) and Distinct-N (Li
et al., 2016) as diversity metrics. Furthermore, GPT-4 feedback (Zheng et al., 2023) was used as a
proxy for human judgment. Checkpoints were saved at each epoch, with evaluation performed on the
one achieving the best validation ROUGE-L. The decoding temperature was set to 1 by default, and
following prior work, reduced to 0.7 for GPT-judge evaluation.

C.2 TASK-SPECIFIC DISTILLATION IN SECTION 4.2.

Experimental setup: We verify the effectiveness of CSD across diverse tasks, including dialogue
summarization, low-resource translation, and arithmetic reasoning. Distillation was conducted on
DialogSum (Chen et al., 2021), Flores-200 (Costa-Jussa et al., 2022), and GSM8K (Cobbe et al.,
2021) datasets, following the experimental setup of Xu et al. (2025) with a fixed dataset. We used
Gemma-7B-1IT (Team et al., 2024a), fine-tuned with SFT as the teacher and Gemma—-2B—1IT as the
student. We compared with the baselines using the same teacher, changing only the loss function.

For teacher SFT, we trained summarization and arithmetic reasoning for 3 epochs and translation
for 10 epochs, using the full datasets. Model evaluation was performed every 16 steps, and the
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checkpoint with the lowest validation loss was selected. The batch size was fixed to 128 for all tasks,
with the learning rate set to 1e-5. For each task in distillation, we distilled both the baselines and our
method from the same teacher checkpoint with a fixed learning rate of 1e-5 and batch size of 8, using
about 1,000 samples. We trained for 3 epochs on summarization and arithmetic reasoning, and 10
epochs on translation. For the baselines, checkpoints were saved every 25 steps, and the one with
the lowest validation loss was used for evaluation. For CSD, since the loss itself cannot be directly
computed and training relies on its gradient, validation loss was unavailable; thus, we evaluated using
the final checkpoint. For all tasks, we set w; and ws using the teacher’s and student’s probabilities.
For evaluation, we used task-specific metrics: COMET (Rei et al., 2022) for translation, ROUGE-L
(Lin, 2004) for summarization, and answer accuracy for arithmetic reasoning, all evaluated on each
task’s test dataset.

C.3 GENERAL CHAT CAPABILITY DISTILLATION IN SECTION 4.3.

Experimental setup: We closely followed the official code of DistiLLM-2 (Ko et al., 2025) for
our distillation setup. For 50k UltraChat prompts, we generated samples from both the student
and the teacher. We then applied the CSD and DLD matching losses to each pair of generated
samples. Although methods such as DPKD (Li et al., 2024) and DistiLLM-2 define different losses
depending on which model produced the sample, CSD could also benefit from adopting such a
strategy, suggesting room for further improvement. For evaluation, we followed the SimPO (Meng
et al., 2024) protocol. We used the same learning rate and batch size as DistiLLM-2.
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Algorithm 2: Monte Carlo estimation to compute Lcsp in Eq. (8)

Input: Student fy, teacher fr, prompt c, prefix y -, function w(-, ) = wy (-)wa(:|").
1 Compute the student logit fp[y:] = fo(c,y<t)[yt], Vyr € V.
2 Compute the teacher logit fr[y:] = fr(c,y<t)[ye], Vyr € V.
3 Sample y; according to w1 ().

s LEG (0 p7,w) = Yeevw2(@lys) x (folz] — foly:] — friz] + frlyi)?]
s return Vo LS (0; pr, w)

GPT-4 feedback template

[System] Please act as an impartial judge and evaluate the quality of the response provided
by an Al assistant to the user question displayed below. Your evaluation should consider
factors such as the helpfulness, relevance, accuracy, depth, creativity, and level of detail of
the response. Begin your evaluation by providing a short explanation. Be as objective as
possible. After providing your explanation, please rate the response on a scale of 1 to 10 by
strictly following this format: “[[rating]]”, for example: “Rating: [[5]]”.

[Question]
{question}

[The Start of Assistant’s Answer]
{answer}
[The End of Assistant’s Answer]

import torch
import torch.nn.functional as F

def CSD_loss (student_logits, teacher_logits, mode):
student_probs = F.softmax (student_logits, dim=-1)

teacher_probs = F.softmax (teacher_logits, dim=-1)
if mode == :
loss = (student_logits - teacher_logits - torch.sum(student_probs % (student_logits -
teacher_logits), dim=-1,keepdim=True)) .detach() x student_probs.detach() =

student_logits

elif mode == :
lossl = (student_logits - teacher_logits - torch.sum(teacher_probs * (student_logits -

teacher_logits), dim=-1,keepdim=True)) .detach() % student_probs.detach() =
student_logits
loss2 = (student_logits - teacher_logits - torch.sum(student_probs x (student_logits -
teacher_logits), dim=-1,keepdim=True)) .detach() x teacher_probs * student_logits
loss = (lossl + loss2) / 2
distil_loss = torch.sum(loss, dim=-1) ## summation over vocab

return distil_loss

Code 1: CSD loss function implementation
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D ADDITIONAL EXPERIMENTAL RESULTS

This section presents additional experimental results. Figure 6 shows the logit and probability statistics
of the GPT-2-1. 5B teacher, corresponding to Figure 1. Figure 7 illustrates further fidelity—diversity
trade-offs using Distinct-N metrics, corresponding to Figure 3a. Figure 8 presents validation ROUGE-
L scores during training, corresponding to Table 1. CSD not only converges to a higher point but also
achieves faster performance gains in the early stages. Table 7 provides comparisons with additional
baselines corresponding to Table 2, and Table 8 compares CSD with the MSE probability-matching
objective under different weighting schemes. Finally,Tables 11 to 15 present case studies of model
generations for math questions.
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Figure 6: Comparison between teacher’s logit and probability statistics. While the logits span a wide
range from —20 to 5 and convey rich information, the probabilities are mostly concentrated near zero.
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Figure 7: Fidelity vs. Diversity trade-off with more metrics.
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Figure 8: Validation ROUGE-L scores over training epochs.
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Figure 9: Solution set restriction of direct logit distillation (DLD) and the flexible selection of logit
residual constants in Concrete Score Distillation (CSD). CSD finds a broader solution space.

D.1 ANALYSIS ON THE LOGIT OFFSETS.

Figure 9 shows the logit offsets between the teacher and the student for 10 consecutive tokens within
a sentence. This demonstrates that DLD converges only to solutions with zero residual constants,
whereas CSD learns token-dependent residual constants. In other words, CSD explores a wide
solution space during the training. Figure 11 also shows how the offset for the same token changes
across training epochs. We observe that an appropriate offset for each token is determined early in
training, after which the model consistently refines its solution around that offset.

Figure 9c shows that CSD (U, S) is more tightly centered. As analyzed in Figure 13, vocabulary
items are learned more uniformly, causing the logits to cluster around the token-wise offset. This
indicates that minority vocabulary items are also well learned, which helps explain why the method
performs exceptionally well under the high-temperature sampling setting of Figure 3b, where the
contribution of minority vocabulary becomes more significant.

Figure 10 presents the averaged KL, probability MSE, and ECE errors across training epochs, and
Table 6 shows the per-instance values corresponding to Figure 9. Since the probabilities of specific
vocabularies (those with high probabilities in the student or teacher) are more important than the full
vocabulary in these metrics, CSD (7, S) performs well because it learns with probability weighting
from the teacher and student.

In contrast, the generative performance was highest with CSD (S, S). This is because generative
performance only needs good quality in the regions favored by the student, which is often negatively
correlated with probability calibration (Achiam et al., 2023; Wang et al., 2024).
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Dk (prllge) == Z pr(ye) log pz(yf)

= q (ytl) .
MSE (pr, q9) := Z (pr(ye) — qe(yt))2~
Y€V
ECE (pr,gs) := Y qo(y)lpr () — g0 (u2)|.
yr €V

Table 6: Instance-wise probability calibration results for various logit distillation methods correspond
to Figure 9.

| Y2 Y3 Ya Ys Yo y7 Ys Yo yio  AVG
KL Divergence

DLD (S) 061 540 1699 000 058 0.00 949 10.14 0.00 1741 6.06
CSD(S,S) | 898 11.25 1237 0.02 0.29 0.00 11.57 1257 0.01 12.16 6.92
CSD(U,S) | 641 990 12.00 0.03 048 0.00 1038 13.84 0.04 12.08 6.52
CSD(T,S) | 867 0.70 261 522 047 0.00 001 0.01 159 002 193

Mean Squared Error

DLD (S) 025 1.01 1.61 0.00 029 000 1.04 150 0.00 2.00 0.77
CSD(S,5) | 1.13 1.17 194 0.00 0.00 0.00 132 2.00 0.00 200 096
CSD(U,S) | 0.60 1.03 139 0.00 0.01 000 101 148 000 196 0.75
CSD(T,S) | 0.84 0.02 0.08 039 0.01 000 0.00 0.00 003 000 0.14

Expected Calibration Error

DLD (S) 029 0.03 061 000 034 000 004 050 0.00 1.00 0.28
CSD(S,S) | 039 0.18 094 0.00 0.05 0.00 032 1.00 0.00 100 039
CSD(U,S) | 028 0.04 039 0.0l 0.08 000 001 048 0.00 096 022
CSD(T,S) | 025 0.11 020 036 0.08 0.00 0.00 0.00 0.14 000 O0.11
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Figure 10: Averaged probability calibration results during the training.
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Figure 11: Logit offsets dynamics during the training of CSD.
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Figure 12: Adaptive loss weighting

Diversity and fidelity form an inherent trade-off in generative modeling; a well-balanced default
option is also important. Because an adaptive loss can better reconcile this trade-off, we conducted
additional experiments on the adaptive loss weighting. We provide the results of two naive scheduling
and one confidence-based adaptive loss that interpolates CSD (5, .S) and CSD (7', S) by defining
w1 as an interpolation of pg and pr using . We found that the following geometric interpolation
performs better than linear interpolation in balancing the fidelity—diversity trade-off:

wi(z) o< ps(@)pr(x)' ™%, wa(z) = ps(z).
CSD (TS — S5): o = Gapbet
CSD (SS N TS) a= Total Ep;;?aTg;;?lnt Epoch

CSD (Entropy): « = clip (H(ps (Iz)()p:gg])”(m)) ,0, 1)
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CSD (T'S — 55),CSD (SS — T'S), and CSD (Entropy) combine the strengths of both CSD (S, .S)
and CSD (T, S), and therefore achieve better performance at intermediate trade-off points as shown
in Figure 12. Because the learning rate is high in the early stages and decreases over time, the loss
used at the beginning of training tends to have a stronger influence on the final trade-off position. For
example, CSD (T'S — S5 behaves similarly to CSD (T, S) because its early-stage loss is closer to
CSD(T, S).

Unlike other epoch-based scheduling, CSD (Entropy) adaptively sets « at each token every step.
Early in training, the entropy H (ps) is typically larger than H (pr), so « becomes close to 1, making
the loss similar to CSD (S, S). Since p; is more diverse than py at the early stage, the CSD (S, S)
weighting provides richer feedback over a larger set of vocabulary indices compared to CSD (T, S).

In the later stages of training, ps ideally becomes closer to p7, making « close to 0. In a well-trained
situation, CSD (5, .S) and CSD (T, .S) will show similar behavior, so the exact value of o becomes
less important. However, when training does not progress well and ps becomes overconfident without
matching pr, focusing solely on CSD (.S, .S) weighting is undesirable. In such cases, stronger teacher
guidance from CSD (T, S) is needed, which is why CSD (Entropy) is designed as above. With this
design, the model showed more balanced performance.

D.3 GRADIENT COEFFICIENT DIVERSITY

N

37

‘0

56

2> —e— (CSD (ss)
o5

o CSD (us)
g 4 CSD (ts)
aq:) 3 \ —e— DLD (s)
S —o— KL

©

o

©)

=

0 2 4 6 8 10 12 14 16 18 20
Epoch

Figure 13: Gradient coefficient diversity.

The limitation of softmax-based divergence losses, as pointed out in Figures 1a and 1b, is that they
provide almost no learning signal for minority vocabulary items. In this section, we analyze how
broadly CSD learns across different vocabulary items. For CSD, we know the gradient coefficient for
each vocabulary item from Eq. (9), which is given as follows:

Coeff(y;) = w(y:)” (fe [ye] — fT-[yt])

We take the absolute value of this coefficient, normalize it by dividing by a constant so that the values
sum to one, and then measure its entropy across training epochs. Figure 13 shows that when both
weightings come from either the teacher’s or the student’s probabilities, the model learns only a small
subset of vocabulary items, similar to KL. In contrast, CSD (U, S) learns from a much broader range
of vocabulary.

This demonstrates that expanding the loss-design space beyond the smoothing behavior imposed
by softmax can be effective, which was the main motivation of this work. Because CSD (U, S)
learns uniformly across all vocabulary items, the logits for all vocabularies are well centered around
their respective offsets, as shown in Figure 9c. This also explains its strong performance under
high-temperature sampling (where minority vocabulary contributions become more important) as
shown in Figure 3b.
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Table 7: Comparison with more baselines corresponds to Table 2.

Method Loss D DollyEval  Self-Instruct Vicuna Eval  Super-NI UnNI Avg. (1)
Teacher (GPT-2-1.5B) 27.00+0.19 14.07+037 1631+032 26.46+041 31.10+006 22.99
GPT-2-1.5B — GPT-2-0.1B

SFT SFT Fix 23.49+025 10.56+020 15.09+048 17.13+012 19.97+008 17.25
SeqKD (Kim & Rush, 2016) SFT pr 23.86+049 11.67+080 14.73+037 21.04+019 23.55+011 18.97
KD (Hinton et al., 2015) KL Fix 23.52+025 10.02+058 14.57+032 16.76+017 18.55+0.13 16.68
Ours CSD Fix 24.94+ 02 12.06+ 046 15.78+ 049 24.60+ 031 25.88+ 013 20.65
Ours CSD On 25.70+023 12.40+ 048 17.18+ 052 2291+ 046 2547 +017 20.73

GPT-2-1.5B —+ GPT-2-0.3B

SFT SFT Fix 25.09+062 12.23+079 16.24+040 23.42+011 26.99+013 20.79
SeqKD (Kim & Rush, 2016) SFT pr 24.79+026 11.03+095 15.27+030 18.91+02 21.78+0.10 18.36
KD (Hinton et al., 2015) KL Fix 2541+05 11.15+020 15.83+026 20.13+038 23.57+013 19.22
Ours CSD On 27.14+02% 14.85+:066 16.88+015 26.28+021 30.43+004 23.12

Table 8: Comparison with probability matching loss with various weighting functions.

Loss w1 () w2 () ‘ Dolly Eval Self-Instruct ~ Vicuna Eval Super-NI UnNI Avg. (1)
T - 24.41+000 11.45+025 14.43+068 24.08+030 25.53+004 19.98
ProblL2 U - 15.62+037 6.59+049 10.63+£044 1031+034 12.51+014 11.13
S - 16.43+014 6.51+055 9.73+017 10.94+031 13.16+020 11.35
T - 23.65+ 044 10.36+019 15.10+041 16.18+ 036 19.64+007 16.99
KL U - 23.52+025 10.02+058 14.57+032 16.76+017 18.55+013 16.68
S - 23.18+ 034 10.04+043 15.06+029 16.93+ 0220 19.78+0.12 17.00
T - 24.04+ 033 1099+ 041 14.68+ 019 25.40+ 006 25.24+004 20.07
TV U - 23.88+030 11.03+051 15.13+044 24.58+ 025 25.24+006 19.97
S - 3.21+041 0.51+010 0.97+013 0.66+006 0.69+003 1.21
T - 0.06+001  0.04+001 0.18+002 0.03+£000 0.03+000 0.07
SRKL U - 24.53+ 021 12.19+020 15.63+022 23.37+027 24.28+01s8 20.00
S - 0.64+004 0.49+005 0.94+008 0.53+002 044+000 0.61
T T 6.82+016 4.24+012 9.16+025 4.53+002 4.83+002 591
U U 1721+030 8.08+03 14.27+040 13.19+£027 14.07+004 13.37
CSD S S 124941029 12.06+046 1578+ 049 24.60+031 25.88+ 013 20.65
(Ours) U S 2415+ 055 12.25+£047 15.25+041 22.55+£009 25.19+012 19.88
T S 12277+025 10.62+032 14.06+025 18.81+040 21.71+018 17.59

E THE USE OF LARGE LANGUAGE MODELS

In this work, LL.Ms were used only for minor writing assistance, such as grammar correction after
drafting. In addition, since the research topic is LLM distillation, LLMs were employed as the subject
of experiments and also as evaluation models for performance assessment.
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Table 9: Distillation configuration, memory usage, and training speed for each teacher—student pair
and distillation method. All measurements were obtained using a single A100 GPU.

Teacher — Student

GPT-2 GPT-2  OpenLlama Qwen2.5-IT Gemma2-IT
1.5B —+0.1B1.5B -+ 0.3B 7B —3B 7B — 1.5B 9B— 2B

Configuration
Vocab 50,257 50,257 32,000 151,665 256,000
Max sequence len. (prompt len.) 512 (256) 512 (256) 512 (256) 1024 (512) 1024 (512)
BatchSize (microbatch x accum.) 32 32 32 32 (2 x 16) 32 (1 x 32)
LoRA X X v v v
Efficiency (memory & training speed)
DLD Memory (MB) ({) 30489.98 50656.78  35341.80 45134.24  46203.35
Elapsed Time (sec / batch) ({) 0.758 1.033 4.035 26.62 44.50
SKL Memory (MB) ({) 39129.84 60082.85 41542.05 5223471 52196.50
Elapsed Time (sec / batch) ({) 0.803 1.094 4.077 27.88 43.92
KL Memory (MB) () 32845.77 49870.58  35041.99 38032.67 40208.22
Elapsed Time (sec / batch) ({) 0.770 1.027 4.044 25.84 43.34
CSD (Anal.) Memory (MB) ({) 28919.70 49085.38  34542.05 42766.25 44205.31
Elapsed Time (sec / batch) ({) 0.764 1.033 4.041 26.64 42.12
CSD (MC) Memory (MB) ({) 30490.10 50656.91 3534192 47502.30 48201.43
Elapsed Time (sec / batch) ({) 0.789 1.061 4.063 27.78 43.06

Table 10: Task-specific distillation performance from the Gemma-7B-IT teacher to the
Gemma—2B-1IT student.Please refer to Section A.4 for DLD variants details.

Summarization Translation GSM8K

Loss ROUGE-L COMET  Accuracy
Teacher 37.09 79.23 60.27
DLD (T) 0.00 19.00 0.00
DLD (U) 0.00 18.98 0.00
DLD (S) 0.00 21.52 0.00
DLD-min (T) 0.46 48.05 0.00
DLD-min (U) 13.29 53.81 0.00
DLD-min (S) 15.91 52.98 0.00
DLD-max (T) 32.54 65.28 17.74
DLD-max (U) 15.75 24.23 0.00
DLD-max (S) 18.72 60.56 0.00
DLD-std (T) 0.00 35.71 0.00
DLD-std (U) 0.85 35.29 0.00
DLD-std (S) 18.97 58.07 0.00
DLD-mean (T) 0.00 34.21 0.00
DLD-mean (S) 18.78 43.98 0.00
DLD-mean (U) 0.03 32.03 0.00
CSD (T, 5) 35.67 74.14 25.78
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Table 11: Qualitative comparison on the GSM8K dataset. Only CSD (Ours) produces the correct
final answer; other students give incorrect results.

Prompt for model:

Q: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it
take? A:

Correct Answer:

It takes 2/2=«2/2=1»1 bolt of white fiber

So the total amount of fabric is 2+1=«2+1=3»3 bolts of fabric
#iH#H# 3

Teacher sampled output:

The robe takes 2 x 1/2 = «2*1/2=1»1 bolt of white fiber.
So it takes 2 + 1 = «2+1=3»3 bolts in total.

#iH# 3

CSD (ours) student sampled output:

The robe takes 2 x 1/2 = «2*1/2=1»1 bolt of white fiber.
So, it takes 2 + 1 = «2+1=3»3 bolts in total.

#H# 3 (V)

KL student sampled output:

2 bolts of blue fiber + 1 bolt of white fiber = «2+1=3»3 bolts in total
3 bolts of blue fiber + 2 bolts of white fiber = «3+2=5»5 bolts in total
#i## 5 (X)

Jeffrey student sampled output:

The robe takes 2 x 2 = «2*2=4»4 bolts of blue fiber.
The robe takes 4 / 2 = «4/2=2»2 bolts of white fiber.
The robe takes 4 + 2 = «4+2=6»6 bolts in total.
#i#HE 6 (X)

JS student sampled_output:

The robe takes 2*2=«2%*2=4»4 bolts of blue fiber.
The robe takes 4/2=«4/2=2»2 bolts of white fiber.
The robe takes 4+2=«4+2=6»6 bolts in total.
HHHE 6 (X)
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Table 12: Qualitative comparison on a GSM8K dataset. The SRKL student’s sampled output shows
degenerative repetition and drifting arithmetic reasoning.

Prompt for model:

Q: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it
take? A:

Correct Answer:

It takes 2/2=«2/2=1»1 bolt of white fiber

So the total amount of fabric is 2+1=«2+1=3»3 bolts of fabric
H#HHHHE 3

SRKL student sampled output:

The robe takes 2/2=1/2 bolts of white fiber.
So, it takes 1/2*2=1 bolt of blue fiber.
So, it takes 1+2=3 bolts in total.

So, it takes 3*1=3 bolts in total.

So, it takes 3*2=6 bolts in total.

So, it takes 6+1=7 bolts in total.

So, it takes 7*2=14 bolts in total.

So, it takes 14+3=17 bolts in total.

So, it takes 17*2=34 bolts in total.

So, it takes 34+1=35 bolts in total.

So, it takes 35 bolts in total.

So, it takes 35*%2=70 bolts in total.

So, it takes 70+1=71 bolts in total.

So, it takes 71 bolts in total.

So, it takes 71*2=142 bolts in total.
So, it takes 142+3=145 bolts in total.
So, it takes 145%2=290 bolts in total.
So, it takes 290+1=291 bolts in total.
So, it takes 291 bolts in total.

So, it takes 291*2=582 bolts in total.
So, it takes 582 bolts in total.

So, it takes 582%2=1164 bolts in total.
So, it takes 1164 bolts in total.

So, it takes 1164*%2=2328 bolts in total.
So, it takes 2328 bolts in total.

So, it takes 2328%2=4656 bolts in total.
So, it takes 4656 bolts in total.

So, it takes 4656*2=9312 bolts in total.
So, it takes 9312 bolts in total.

So, it takes 9312*%2=18624 bolts in total.
So, it takes 18624 bolts
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Table 13: Qualitative comparison on a GSMS8K dataset. The TV student’s sampled output shows
degenerative repetition and drifting arithmetic reasoning.

Prompt for model:

Q: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it
take? A:

Correct Answer:

It takes 2/2=«2/2=1»1 bolt of white fiber

So the total amount of fabric is 2+1=«2+1=3»3 bolts of fabric
#HiHHE 3

TV student sampled output:
The robe takes 2 x .5 = 1 bolt of white fiber.
So it takes 2 + 1 = 3 bolts in total.
The robe takes 3 x 2 = 6 bolts in total.
So it takes 6 bolts in total.
The robe takes 6 bolts in total.
So it takes 6 bolts in total.
The robe takes 6 bolts in total.
So it takes 6 bolts in total.
The robe takes 6 bolts in total.
So it takes 6 bolts in total.
The robe takes 6 bolts in total.
So it takes 6 bolts in total.
The robe takes 6 bolts in total.
So it takes 6 bolts in total.
The robe takes 6 bolts in total.
So it takes 6 bolts in total.

... (repeats) ...

The robe takes 6 bolts in total.
So it takes 6 bolts in total.
The robe takes 6 bolts in total.
So it takes 6 bolts in total.
The robe takes 6 bolts in total.
So it takes 6 bolts in total.
The robe takes 6 bolts in total.
So it takes 6 bolts in total.
The robe takes 6 bolts in total.
So it takes 6 bolts in total.
The robe takes 6 bolts in total.
So it takes 6 bolts in total.
The robe takes 6 bolts in total.
So it takes 6 bolts in total.
The robe takes 6 bolts in total.
So it takes 6 bolts in total.
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Table 14: Qualitative comparison on a GSM8K dataset. The SKL student’s sampled output shows
degenerative repetition and drifting arithmetic reasoning.

Prompt for model:

Q: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it
take? A:

Correct Answer:

It takes 2/2=«2/2=1»1 bolt of white fiber

So the total amount of fabric is 2+1=«2+1=3»3 bolts of fabric
#i#HH# 3

SKL student sampled output:

The robe takes 2/2=1/2 bolts of white fiber.
So it takes 2+1/2=3/2 bolts of fiber in total.
So it takes 3/2=1.5 bolts of fiber in total.
So it takes 1.5%2=3 bolts of fiber in total.
So it takes 3+1=4 bolts of fiber in total.
So it takes 4*2=8 bolts of fiber in total.
So it takes 8+1=9 bolts of fiber in total.
So it takes 9+1=10 bolts of fiber in total.
So it takes 10+2=12 bolts of fiber in total.
So it takes 12+1=13 bolts of fiber in total.
So it takes 13+1=14 bolts of fiber in total.
So it takes 14+4=18 bolts of fiber in total.
So it takes 18+1=19 bolts of fiber in total.
So it takes 19+1=20 bolts of fiber in total.
So it takes 20+2=22 bolts of fiber in total.
So it takes 22+1=23 bolts of fiber in total.
So it takes 23+1=24 bolts of fiber in total.
So it takes 24+1=25 bolts of fiber in total.
So it takes 25+1=26 bolts of fiber in total.
So it takes 26+1=27 bolts of fiber in total.
So it takes 27+1=28 bolts of fiber in total.
So it takes 28+1=29 bolts of fiber in total.
So it takes 29+1=30 bolts of fiber in total.
So it takes 30+1=31 bolts of fiber in total.
So it takes 31+1=32 bolts of fiber in total.
So it takes 32+1=33 bolts of fiber in total.
So it takes 33+1=34 bolts of fiber in total.
So it takes 34+1=35 bolts of fiber in total.
So it takes 35+1=36 bolts of fiber in total.
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Table 15: Qualitative comparison on a GSM8K dataset. The DLD (S) student’s sampled output shows
degenerative repetition and drifting arithmetic reasoning.

Prompt for model:

Q: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it
take? A:

Correct Answer:

It takes 2/2=«2/2=1»1 bolt of white fiber

So the total amount of fabric is 2+1=«2+1=3»3 bolts of fabric
#i#HH# 3

DLD (S) student sampled output:
reluct reluct reluct reluct reluct reluct
reluct reluct reluct reluct reluct reluct
reluct reluct reluct reluct reluct reluct
reluct reluct reluct reluct reluct reluct
reluct reluct reluct reluct reluct reluct
reluct reluct reluct reluct reluct reluct
reluct reluct reluct reluct reluct reluct
reluct reluct reluct reluct reluct reluct
reluct reluct reluct reluct reluct reluct
reluct reluct reluct reluct reluct reluct
... (repeats) ...

reluct reluct reluct reluct reluct reluct
reluct reluct reluct reluct reluct reluct
reluct reluct reluct reluct reluct reluct
reluct reluct reluct reluct reluct reluct
reluct reluct reluct reluct reluct reluct
reluct reluct reluct reluct reluct reluct
reluct reluct reluct reluct reluct reluct
reluct reluct reluct reluct reluct reluct
reluct reluct reluct reluct reluct reluct
reluct reluct reluct reluct reluct reluct
reluct reluct reluct reluct reluct reluct
reluct reluct reluct reluct reluct reluct
reluct reluct reluct reluct reluct reluct
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