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Abstract

Achieving superior polymeric components through additive manufacturing (AM)
relies on precise control of rheology. One key rheological property particularly
relevant to AM is melt viscosity (η). Melt viscosity is influenced by polymer
chemistry, molecular weight (Mw), polydispersity, induced shear rate (γ̇), and
processing temperature (T ). The relationship of η with Mw, γ̇, and T may be
captured by parameterized equations. Several physical experiments are required
to fit the parameters, so predicting η of a new polymer material in unexplored
physical domains is a laborious process. Here, we develop a Physics-Enforced
Neural Network (PENN) model that predicts the empirical parameters and encodes
the aforementioned equations to calculate η as a function of polymer chemistry,
Mw, polydispersity, γ̇, and T . We benchmark our PENN against physics-unaware
Artificial Neural Network (ANN) and Gaussian Process Regression (GPR) mod-
els. Finally, we demonstrate that the PENN offers superior values of η when
extrapolating to unseen values of Mw, γ̇, and T for sparsely seen polymers.

1 Introduction

Additive Manufacturing (AM) enables the rapid creation of metal or polymer parts with previously-
unimaginable features and topologies, and is poised to disrupt industries [1, 2]. Achieving desired
properties in the final component is determined by the appropriate choices of material chemistries
with suitable rheological properties, as well as conditions adopted during the AM process such
as temperature, extrusion rates, etc. At present, a limited palette of chemistries, properties, and
conditions is utilized, generally guided by experience, intuition, and empiricism.
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In this contribution, we adopt an informatics approach relevant to AM across the chemical and
process condition space, to predict one critical rheological property of polymers, namely, the melt
viscosity η. Informatics approaches have made major inroads in recent years within materials research
[3, 4, 5], leading to accelerated means for property predictions and providing guidance for the design
of new materials [6, 7, 8, 9, 10]. These methods start with available materials data on properties
of interest. The materials are then represented numerically to capture and encode their essential
features in a machine-readable format. The numerical representations, or fingerprints, are then
mapped to available property data using machine learning (ML) algorithms, ultimately producing
predictive models for the property considered [6, 11, 12, 13, 14, 15]. Within the AM space, similar
methods have been used for process monitoring [16] and optimization of printing parameters (albeit
mainly for powder-bed AM [17, 1], but not as much for polymer melt extrusion AM [2]). Extrusion
AM relies on the precise control of polymer melts, which currently requires data from extensive
rheological experiments for each new chemistry. This is a bottleneck in the ink development process
[2]. Therefore, predictive capabilities for rheological properties, such as η, are useful to reduce the
number of physical experiments aimed at optimization and design.
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Figure 1: The melt viscosity (η) learning problem and machine-learning workflow. (A) Depictions of
the functions used to describe the behavior of η with respect to temperature (T ), molecular weight
(Mw), and shear rate (γ̇). The functions are parametrized by empirical parameters with physical
significance, elaborated in Table 1 and in Appendix A. (B) The Physics-Enforced Neural Network
(PENN) architecture starts with an input containing the polymer fingerprint and the PDI. A Multi-
Layer Perceptron (MLP) uses the concatenated input to predict the empirical parameters. Next, the
computational graph uses the predicted empirical parameters to calculate η, via the encoded log ηMw

,
log η0(T,Mw), and log η(T,Mw, γ̇) functions. The physical condition variables logMw, log γ̇ and
T are input to their respective functions. (C) Physics unaware Artificial Neural Network (ANN) and
a Gaussian Process Regression (GPR) are baselines to compare with the PENN model. The input
features to the ANN and GPR models are the concatenated polymer fingerprint, T , Mw, γ̇, and PDI.

Melt viscosity of polymers, beyond being a critical property, is attractive to model with ML because
there is a reasonable amount of related literature data, although with limited chemical diversity com-
pared to other polymer property datasets [12, 18, 5, 15, 19]. Additionally, there are known physical
equations (albeit with empirical parameters) that describe the dependence of η on its governing
conditions: temperature (T), weight average molecular weight (Mw), and shear rate (γ̇) (Figure 1A).
For instance, it is known that the melt viscosity increases with increasing Mw (via piece-wise power
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law dependencies), decreases (non-linearly) with increasing γ̇, and decreases (exponentially) with
increasing T. Explicit functional forms and additional background on the behaviors are provided
in Appendix A. Molecular weight distributions, quantified by the polydispersity index (PDI), are
also known to affect melt viscosity [20, 21, 22]. With this situation in mind, previous works have
also addressed the modeling of η using ML [23, 24, 25, 26]. While promising, the majority of these
works have focused on specific scenarios or are shown to predict unphysical results [26], making
them difficult to apply. For example, [23] uses coarse-grained molecular dynamics simulation data of
polymer nanocomposites with ML frameworks to predict η, and validated the results with empirical
equations, but this hasn’t been applied to modeling across chemistries.

Additionally, physics-informed ML frameworks have shown great promise recently to apply ML
models to physical and real-world applications, including atomic modeling, chemistry-informed
materials property prediction, and solving partial differential equations that describe physical phe-
nomena [27, 28, 29, 30, 31]. A notable framework is the Physics Informed Neural Network (PINN)
in which a neural network is considered to be the solution to a boundary value problem, and initial
and boundary conditions comprise the loss function such that the neural network fits the data and the
underlying principles within the equations [31]. However, the PINN approach assumes that boundary
values or constraints remains the same for all inputs. In the case of η and other materials informatics
problems, the governing equations’ parameters depend on the input polymer chemistry. If a PINN
were to be applied to this problem, the loss surface would drastically change for different polymer
chemistries, making optimization difficult.

Given this, we approach this problem with a physics-enforced neural network (PENN) framework for
η which explicitly encodes the known physical equations while also learning the empirical parameters
for new chemistries directly from available data. Our PENN for polymer melt viscosity prediction
involves a Multi-Layer Perceptron (MLP) that takes as input the polymer chemistry (fingerprinted
using our Polymer Genome approach [6]) along with the PDI of the sample, and predicts the empirical
parameters as a latent vector (listed in Table 1) used to estimate η as a function of T , Mw, and γ̇. A
computational graph then encodes the dependence of Mw, γ̇, and T on η (see Figure 1A) using the
equations described in Appendix A. Smooth transition functions are used to combine the different
regimes observed across Mw and γ̇, ensuring that the PENN captures the full physical behavior. By
combining the dependencies on shear rate, temperature, and molecular weight, the model provides
a comprehensive expression for η(Mw, T, γ̇). The entire framework (Figure 1B) is trained on our
dataset.

Parameter Physical Representation Relevant Equa-
tion(s)

C1 Empirical Parameter for the η - T relationship 5
C2 Empirical Parameter for the η - T relationship 5
Tr Reference temperature for the η - T 5
Mcr Critical Mw , associated with the onset of polymer

chain entanglement
6,7,8

α1 Slope of zero-shear viscosity (η0) vs. Mw when
Mw < Mcr (approximately 1)

6,7,8

α2 Slope of η0 vs. Mw when Mw > Mcr (approxi-
mately 3.4)

6,7,8

βMw Measure of transition from α1 to α2 at Mcr 8
k1 η0 when M = 0 and T = Tr 6,7,8
γ̇cr Critical Shear Rate when T = Tr , associated with

the onset of shear-thinning
2,3,4

n Slope of shear thinning, typically has a value of (0.2-
0.8 for polymer melts)

2,3,4

βγ̇ Measure of transition between the zero-shear and
shear-thinning regions

4

Table 1: Definitions of empirical parameters predicted by the Physics Enforced Neural Network
(PENN) and their relevance to temperature (T ), molecular weight (Mw), and shear rate (γ̇) when
calculating melt viscosity (η). The relevant equations in the Methods section are provided for each
parameter.

We find that this strategy is critical to obtain results that are physically meaningful in extrapolative
regimes (e.g., ranges of T, Mw and γ̇ where there is no training data for chemistries similar to the
queried new polymer). This ability is vital given our benchmarking dataset’s sparsity, containing
only 93 unique repeat units, although the total number of datapoints is 1903 (including T , Mw, γ̇,
and composition variations. As baselines to assess this PENN, we trained artificial neural network
(ANN) and Gaussian process regression (GPR) models without any physics encoded. We find that the
PENN model is more useful in obtaining credible extrapolative predictions. Our results indicate that
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Figure 2: The joint distributions of A) molecular weight (Mw), B) shear rate (γ̇), C) temperature
(T ), and D) polydispersity index (PDI) with respect to melt viscosity (η) are presented. The single
distributions for the physical conditions are given on the top axes and the distribution of η is given on
the right-most axis. Each subplot contains all 1903 datapoints from the dataset. A, B, and C have
highlighted samples in red that exemplify the dependencies depicted in Figure 1A.

informatics-based data-driven and physics-enforced (when possible) strategies can aid and accelerate
extrusion AM innovations in sparse data situations.

2 Results and Discussion

2.1 Polymer Fingerprinting and Representation

The input to the ML models consists of a vector to represent the chemical attributes of a polymer
material (Figure 1B and C). The vector, known as a fingerprint (FP) contains features derived from
atomic-level, block-level, chain-level, and morphological descriptors of a polymer as described at
length earlier[6]. Thus, the FP features vary across the polymer chemistries in the dataset to help
build chemical intuition. The dataset contains homo- and co-polymers, and miscible polymer blends.
Co-polymers and blends contain multiple repeating units, each with a separate FP. For co-polymers,
the FP of each unit was aggregated to a single copolymer FP using a weighted average (with weight
equal to composition percentage) [12]. Similar to previous work[12], all co-polymers were treated
as random. For miscible polymer blends, the FP of each unit was aggregated to a single FP using
a weighted harmonic average (with the weight equal to composition percentage) [18]. For blends
containing units with different Mw and/or PDI, the weighted average over each unit was used.

2.2 Dataset

We define a melt viscosity datapoint as having an input of FP for a polymer and its processing
conditions (Mw, γ̇, T , and PDI), with η being output. Melt viscosity data was collected from the
PolyInfo repository [32] and from the literature cited by PolyInfo. Cited literature data was extracted
from tables and figures with the help of the WebPlotDigitizer tool [33]. The final dataset shown
in Figure 2 includes a total of 1903 datapoints composed of 1326 homopolymer datapoints, 446
co-polymer datapoints, and 113 miscible polymer blend datapoints. The dataset spans a total of 93
unique repeat units with variations in Mw, γ̇, T , and PDI. For datapoints without a recorded PDI, we
impute 2.06, the median PDI of the dataset.

We found that η at low Mw were underrepresented when compared to η measurements at high Mw.
Using the zero-shear viscosity (η0) relationship with Mw (Figure 1A), we added 126 datapoints at
low Mw (included in the 1903 datapoints). This was achieved by identifying polymer chemistries
with more than five η0 datapoints at high Mw and a recorded Mcr[34]. Equation 6 (Appendix A) was
fit to each chemistry and extrapolated to estimate η values at low Mw.

Because the viscosity values span several orders of magnitude (Figure 2), we use the Order of
Magnitude Error (OME) to assess ML model accuracy. OME is calculated by taking the Mean
Absolute Error of the logarithmically scaled η values. Models with lower OME exhibit more accurate
predictions.
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2.3 Overall Assessment of Physical Intuition with Sparse Chemical Knowledge

An important future use case of our ML models is to estimate the melt viscosity in new physical
regimes, given a small amount of knowledge of a given polymer and other chemistries. For example,
given a few costly tests of a new polymer at a few molecular weights, a scientist should be able to
predict the viscosity at remaining molecular weights, and, likewise, across different shear rates and
temperatures. This ability was tested through a unique splitting of data into test/train sets across the
chemical and physical regimes. First, the monomers were split into train (90%) and test (10%) sets.
Within the test monomers, the median of the distributions of the test monomers with respect to a
variable in the physical space was calculated. The median was used to split all datapoints containing
that monomer: half for a final test split, and the other half for training. The upper or lower half going
to testing was randomly chosen. This approach ensures that all the test data focuses on predicting in
new physical regimes given a sparse amount of monomer data. This process was repeated three times
for each of Mw, γ̇, and T to ensure that diverse tests were used for evaluation.

(D) (E) (F)

(G) (H) (I)

(A) (B) (C)

G
PR

A
N
N

PE
N
N

Figure 3: Parity plots are used to assess the models’ overall predictive capabilities in new physical
regimes based on the physical variable split for molecular weight (Mw), shear rate (γ̇), and tempera-
ture T . Results are compared between Gaussian Process Regression (GPR), Artificial Neural Network
(ANN), and Physics Enforced Neural Network (PENN) models. Each plot compares experimental
values for melt viscosity (η) to the predicted η across 3 unique test-train splits for each physical
variable. The top row (A-C) contains GPR results for A) the Mw split, B) the γ̇ split C) the T split.
The middle row (D-F) contains ANN results for D) the Mw split, E) the γ̇ split F) the T split. The
bottom row (G-I) contains PENN results for G) the Mw split, H) the γ̇ split I) the T split. The
dotted black lines represent perfect predictions. The coefficient of determination (R2) and Order of
Magnitude Error (OME) are reported over these test sets.
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Figure 3 shows the combined results of three trials for splits across all three physical variables. SI
Section 1 shows parity plots that specify the results from each trial. The GPR, ANN, and PENN
predictions have acceptable OMEs, indicating that all three can capture some chemical information
and physical trends. The PENN results in a distinct decrease in OME (an average of 35.97%
improvement), and an increase in R2 (up to 79% for the γ̇ split) from the ANN. The PENN also
outperforms the GPR for the Mw and T splits, but the GPR is more accurate on the test set for γ̇. In
further analysis, we show how the physical viability of these predictions is scrutinized beyond the
high-level trends of the parity plot.

2.4 Distribution of Predicted Empirical Parameters

Despite the high overall performance of all three models, only the PENN model can produce
physically credible predictions in regimes with restricted and sparse data. A comparison of the GPR,
ANN, PENN models in estimating crucial empirical parameters (found in Table 1) from sparse data in
the held-out set is detailed in Figure 4. We compare these with ground truth values of the parameters
from the dataset. The process to obtain these ground truth values is described in Appendix C.

Figure 4: Normalized distributions of empirical parameter values found in the dataset (Ground Truth)
are compared to parameter values predicted by Gaussian Process Regression (GPR), Artificial Neural
Network (ANN) and Physics Enforced Neural Network (PENN) models. Each column compares a
different parameter for the melt viscosity (η) relationship with molecular weight (Mw), shear rate
(γ̇), and temperature (T ). The examined parameters include: A) α1, the slope of zero-shear viscosity
(η0) vs. Mw correlation at low Mw (accepted value of 1 depicted by the red dashed line) B) α2, the
slope of η0 vs. Mw at high Mw (accepted value of 3.4 depicted by the red dashed line), C) critical
molecular weight (Mcr), D) n, the rate of shear thinning (accepted range of 0.2-0.8 depicted by
the dashed red lines), E) critical shear rate (γ̇cr), F) reference temperature (Tr) of a polymer. G
and H) show distributions for the C1 and C2 fitting parameters for the η-T trend. The ground truth
distributions represent 41 samples for Mw parameters, 33 samples for γ̇ parameters, and 22 samples
for T parameters. The Kullback–Leibler (KL) divergence of the model estimation distributions from
the ground truth is given in the top left of each histogram. The lowest KL divergence among the three
models is bolded for each parameter.

We used two different methods to obtain parameter estimations from the models: one method is
unique to the PENN model, and another approach for the purely data-driven ANN and GPR. The
PENN model automatically predicts each of the empirical parameters (see Figure 1B), which are used
in the computational graph to predict η. The ANN and GPR do not directly predict the parameters, so
we used a fixed extrapolation procedure. The procedure involved selecting an unseen data point and
varying a physical variable (one of Mw, γ̇, and T ) within a predetermined range while holding the
other two constant. The ranges for each variable encompass similar orders of magnitude as those
present in the training dataset (Figure 2). For Mw extrapolation, a range of 102 − 107 g/mol was used
to encompass low and high Mw. For shear rate extrapolation, a range of 10−5 − 106 1/s was used to
model behaviors in zero-shear and shear-thinning regimes. For temperature extrapolation, ranges of
±20 K from the original data point’s temperature were used to stay within the boundary constraints
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of Equation 5. Using this procedure, sets of predictions were made on every unseen datapoint and fit
using Equations 5, 6, or 2, yielding estimated values of the empirical parameters.

In Figure 4, we show the feasibility of the models’ empirical parameter predictions evaluated against
the ground truth values and accepted values. For parameters where a theoretical value is well-defined,
the Root Mean Square Error (RMSE) of the predictions’ deviation from this value is calculated. The
parameter prediction distribution is also compared to the ground truth distribution through a discrete
Kullback–Leibler (KL) divergence.

From Figure 4, it can be seen that GPR struggles to predict expected parameter values. The GPR
predictions for α1 deviate from 1 by an RMSE of 1.26. For some polymers, GPR predicts α1 ≤ 0.
The GPR predictions for α2 deviate from 3.4 by an RMSE of 2.87, and are significantly lower than
the ground truth values in the dataset. Most predicted values for logMcr are within the same range as
the ground truth, but the proper low and high entanglement behavior is not captured which decreases
the credibility of these fittings. For the shear thinning parameter n, some values fall within the
expected range of 0.2 − 0.8 [35] for polymer melts, but others are closer to 0, indicating that the
expected shear thinning behavior is not always predicted. The predicted γ̇cr distribution is lower than
the ground truth, indicating that the GPR model forecasts the onset of shear-thinning at a significantly
lower γ̇ than observed (if shear thinning is predicted at all). On temperature dependence, some Tr

values are predicted higher than what is seen in the dataset.

The ANN model’s failure to capture correct physical trends is also evident in the distributions of
its fitted parameters. The RMSEs for the ANN’s estimated α1 and α2 values are 1.31 and 2.79,
respectively. ANN model overestimates α1 and underestimates α2 and therefore doesn’t capture the
effects of high Mw chain entanglement. The ANN also estimates a low n for a subset of polymers,
which goes against the definition of shear thinning. The predicted γ̇cr values are lower than the ground
truth distribution, indicating that the ANN struggles to capture the shear-thinning transition region
from the dataset. ANN predictions for the T trend are closest to the ground truth in comparison to its
trends of the other variables, because T is a smoother, exponential function (Figure 1A), enabling an
easier average fitting.

The PENN model outperforms the ANN in estimating feasible empirical parameters as depicted
by lower KL Divergence values in PENN row of Figure 4. The RMSEs of the predicted α1 and
α2 values are 0.05 and 0.17, which are substantially smaller than that of the ANN. Moreover, all
the predicted values of logMcr are within the ground truth range of 2.5 − 5. The PENN can also
learn the correct shear thinning phenomenon by predicting n values between 0.2− 0.8[35] and a γ̇cr
distribution that mirrors the dataset. The PENN’s predicted range of Tr is closest to the ground truth.
For the C1 parameter, the PENN distribution is closest to the proposed value of C1 = 7.60 [36], also
having the lowest divergence from the ground truth. For C2 predictions, although the KL Divergence
of the PENN is lower than the ANN, the PENN is confined to much lower values of C2, and has an
average much lower than some experimentally derived values, such as C2 = 227.3 K [37].

Overall, the average KL divergence across all parameter distributions for the GPR, ANN, and PENN
are 14.59, 22.24, and 1.74, respectively. The overall distributions of empirical parameters points to the
PENN having greater capabilities for producing physically correct results, than a purely data-driven
model.

2.5 Performance in Extrapolative Regimes

In Table 2, we summarized the performance of predicted η profiles over wide ranges of Mw (256
extrapolations), γ̇ (71 extrapolations), and T (127 extrapolations) for all three models considered.
We define a successful extrapolation as a model that can predict the correct trends while maintaining
accuracy over the train and test points within the uncertainty. If either of these criteria is not met,
the extrapolation is considered to be unsuccessful. Overall, the PENN successfully predicts 80.4%
of Mw extrapolations, 49.2% of γ̇ extrapolations, and 54.1% of T extrapolations. The ANN rarely
achieves correct physical trends for Mw or γ̇ extrapolations in the span of the dataset and only predicts
successful profiles for 17.2% of T extrapolations. The GPR model also exhibits a low performance in
extrapolation. There are several instances (given in the brackets in Table 2) where the ANN and GPR
successfully fit the data points but fail to extrapolate correctly beyond the dataset. This underscores
the need for information beyond experimental data to enable extrapolation to new physical regimes.
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Model Mw γ̇ T
PENN 80.4% 49.2% 54.1%
ANN 4.30%

[64.4%]
4.22%
[19.7%]

17.2%
[19.5%]

GPR 0.0%
[68.0%]

7.04%
[40.8%]

7.03%
[28.1%]

Table 2: Extrapolative predictive performance of the PENN, ANN, and GPR models along the unseen
molecular weight (Mw), shear rate (γ̇), and temperature T regimes. The values within brackets for
the ANN and GPR show the percentages of extrapolations where the unseen data was predicted
correctly, but the extrapolated trend beyond available data regimes was physically incorrect.

Figure 5 shows a few examples of the extrapolation results summarized in Table 2. A much larger set
of examples of both successful and unsuccessful extrapolations by the PENN compared to GPR and
ANN are provided in SI Section 2. Figure 5A-C shows examples of the PENN correctly extrapolating
η given a small amount of information about a monomer in another part of the physical regime in
unseen regimes. The ANN and GPR models are uncertain in these unseen regimes, resulting in
large confidence intervals. In Figure 5A, the PENN model accurately predicts the region near Mcr

where the η-Mw relationship transitions from unentangled to entangled, and can therefore accurately
predict η values at high Mw, despite not having seen any data in this region. The errors for the ANN
and GPR in Figure 5A are low, within approximately an order of magnitude of error. However, the
ANN predictions have a near-constant slope around Mcr (implying α1 ≈ α2) and are inconsistent
with the effects of polymer chain entanglements at high Mw. The GPR model also fails to predict
a higher α2 slope. In Figure 5B, only the PENN model predicts a zero-shear and shear-thinning
region when predicting the η-γ̇ relationship of the given copolymer. The GPR model fits the training
points but mispredicted shear-thinning at high shear rates. The ANN model predicts a decreasing
relationship consistent with shear-thinning but doesn’t predict the zero-shear region. This could be
an example of spectral bias within neural networks [38], where the general decreasing trend of η-γ̇
is "low frequency" and is captured by the ANN. In contrast, the transition regions are of a "higher
frequency" and are not captured by the ANN. In Figure 5C, the PENN model predicts the correct η-T
relationship. The ANN model also predicts an exponential relationship but with a higher inaccuracy.
The GPR model fits both the training and unseen datapoints, but predicts an unphysical trend beyond
this. Overall, the PENN model makes predictions that follow the expected behaviors (Figure 1A) of
polymer melts.

Correctly extrapolated samples by the PENN model, such as the ones in Figure 5A-C make up
67.5% of the extrapolated test cases, which is a significant improvement relative to both the ANN
and GPR. The PENN model also has room for improvement, especially when applied to datasets
with low chemical diversity. Overfitting to a small set of chemistries in training can lead to the
inaccurate prediction of parameters when making predictions for unseen chemistries. This behavior
is demonstrated in Figure 5D-F, where the PENN predicts a plausible rheological trend but incorrect
values for unseen polymers. However, the PENN model introduces a layer of interpretability
unavailable to physics-unaware models. Based on the predictions we can reasonably infer which
parameters were over- or under-estimated. In Figure 5D, the PENN model predicts near-correct α1

and α2 slopes, but the predicted Mcr and k1 values are underestimated. Figure 5E depicts how an
underestimated η0 (caused by inaccuracies in predicted Mcr, α1, α2 and/or k1) can cause inaccurate
η predictions for all other γ̇ values. We also see this phenomenon in Figure 5F, where Tr is likely
underestimated. The propagating error causes the PENN model to predict an inaccurate trend across
the entire spectrum of T . Despite these errors, the pinpointing of the PENN’s weak spots can be used
to add targeted training data to improve the model. This level of interpretation is unique to the PENN
and cannot be done for the GPR and ANN.

These examples of extrapolations provide insights on the applicability of PENN versus pure data-
driven methods when using datasets that contain limited chemistries. The equations used in the
PENN are based on assumptions and generalizations, and may not account for all physical nuances.
Furthermore, the use and the setup of the PENN framework is dependent on the informatics task at
hand. The governing equations used must be well-established across the many material chemistries
to be used. These must be considered when applying PENNs to future material design and process
optimization problems.
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Figure 5: Examples of accurate (A-C) and inaccurate (D-F) melt viscosity (η) and zero-shear melt
viscosity (η0) predictions over wide ranges of molecular weight (Mw), shear rate (γ̇), temperature
(T ) by the Physics Enforced Neural Network (PENN) models. The extrapolated predictions are
compared to those by Gaussian Process Regression (GPR) and Artificial Neural Network (ANN)
models given the same training information. A) is a good η0-Mw extrapolation for [*]CCCCCCCC-
CCOC(=O)CCCCC(=O)O[*] at T = 382.15 K. B) is a good η-γ̇ extrapolation for a copolymer of
[*]CC([*])CC(C)C and [*]CC([*])CCCCCCCC (0.968:0.032) (Mw = 290000 g/mol, PDI = 7.8) at
T = 543.15 K. C) is a good η-T extrapolation for [*]CCOCCOCCOC(=O)CCCCCCCCC(=O)O[*]
(Mw = 2000 g/mol, γ̇ = 60 1/s). D) is an unsuccessful η0-Mw extrapolation for [*]C=CCC[*]
at T = 490.15 K, with possible mispredictions of Mcr and k1. E) is an unsuccessful η-
γ̇ extrapolation for a copolymer of [*]C[*] and [*]CC([*])OC(C) (0.72:0.28) (Mw = 60000
g/mol), with possible misprediction of ˆ̇γcr and η0. F) is an unsuccessful η-T extrapolation for
[*]CC(O)COc1ccc(C(C)(C)c2ccc(O[*])cc2)cc1 (Mw = 1696 g/mol, γ̇ = 0.0 1/s) with a possible
misprediction of Tr.

3 Conclusion

In this study, we introduce a Physics Enforced Neural Network (PENN), a strategy that combines
data-driven techniques with established empirical equations, to predict the melt viscosity of polymer
melts with better physics-guided generalization and extraplation. The PENN makes predictions
across many chemical compositions and relevant physical parameters, including molecular weight,
shear rate, temperature, and polydispersity index. We compared our PENN approach against the
purely data-driven, physics-unaware, Artificial Neural Network and Gaussian Process Regression. In
extrapolative regimes, our PENN model outperforms the physics-unaware counterparts and offers an
elevated level of interpretability and generalizability. To enhance generalizability across chemistries,
future work could increase the chemical space in the dataset through new experiments, molecular
dynamics simulations, and/or more aggressive data acquisition from literature.

This work has profound implications for additive manufacturing (AM) and materials informatics.
The PENN model’s capability to guide the rheological control of diverse polymer resins accelerates
the development of new printing materials, thereby expanding AM’s utility. Our methodology offers
a blueprint for modeling other properties governed by empirical equations. The initial success of
the PENN architecture for melt viscosity is a powerful demonstration of how data-driven insights
combined with established knowledge can propel us into a new era of rapid advancements in materials
science and engineering.
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Appendix

A PENN Architecture

A.1 Enforced Polymer Physics Trends

In this section, we detail the physics-based correlations included within the Physics Enforced Neural
Network (PENN). We enforce dependencies of η on temperature (T ), molecular weight (Mw), and
shear rate (γ̇) through η(Mw, T, γ̇), which we derive below.

A.1.1 Preamble: Smoothing of Piecewise Functions

When going from one function g(a, b) in a low regime (a < b) to another function h(a, b) in a high
regime (a > b), we can use the smoothened Heaviside step function,
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Hβ = 1
1+exp(−βx) , (1)

where β is a tunable rate of transition.

A function f(a, b) that transitions from g(a, b) to h(a, b) is given by

f(a, b) = g(a, b) ·Hβ(b− a) + h(a, b) ·Hβ(a− b)

A.1.2 η dependence on γ̇, T , and Mw

The η dependence on γ̇ follows the physics of shear-thinning fluids [39, 40, 41]. In these fluids, at
low γ̇, there is not enough force between chains to break entanglements and cause movement, so η
remains constant at η0. At a critical shear rate, γ̇cr, the shear force is high enough to cause chain
alignment, making chain diffusion easier. Beyond γ̇cr, η decreases according to a shear-thinning
linear power law. [39]. This trend can be represented by a function (Equation 2) across both the
zero-shear and shear thinning regimes [42, 43, 39, 44],

η(Mw, T, γ̇) =
η0(Mw, T )

(1 + γ̇
γ̇cr

)1−n

log η = η0(Mw, T ) + (n− 1) log(1 +
γ̇

γ̇cr
)

(2)
where the parameter n describes the sensitivity to shearing [45]. For shear-thinning fluids, n < 1.
For most polymer melts, n is empirically known to be in the range of 0.2− 0.8.[35]

Equation 2 is unfavorable to use directly because γ̇ spans several orders of magnitude, so log γ̇ must
be used as an input. Equation 2 cannot be adapted to use log γ̇ as an input (due to the +1 in the
denominator), so we depict the relationship across the low γ̇ and high γ̇ regimes as a piecewise
function on the log-scale,

log η =

{
log η0 if γ̇ << γ̇cr
log η0 + (n− 1) log( γ̇

γ̇cr
) if γ̇ >> γ̇cr

(3)

We smooth Equation 3 with Hβγ̇
to get log η(Mw, T, γ̇) (Equation 4),

log η(Mw, T, γ̇) = log η0(Mw, T ) ·Hβγ̇
(log γ̇cr − log γ̇)

+(log η0(Mw, T ) + (n− 1) log(
γ̇

γ̇cr
)) ·Hβγ̇

(log γ̇ − log γ̇cr),
(4)

where βγ̇ is a parameter that dictates the rate of shift from zero-shear to shear-thinning. For our
implementation, we found that optimization over the γ̇ domain was optimal when βγ̇ = 30.

log η0(Mw, T ) is defined by the T dependence. As temperature increases, so does the rate of
molecular self-diffusion, resulting in lower η seen in fluidic polymer melts [41]. The William-Landel-
Ferry (WLF) equation[36, 37] describes the exponential decrease in η as the temperature increases.
Therefore, we can encode temperature dependence as

η0 = ηMw
· 10

−C1(T−Tr)

C2+(T−Tr) ,∀T ≥ Tr

log η0(Mw, T ) = log ηMw · −C1(T − Tr)

C2 + (T − Tr)
,∀T ≥ Tr

(5)

where Tr is a reference temperature and C1 and C2 are material-dependent empirical parameters. The
values for these are dependent on polymer chemistry. C1 = 7.60 and C2 = 227.3 K are examples of
values that have been proposed [37] from observations of experiments on a small subset of polymers.
The reference temperature Tr is within a few degrees of the glass transition temperature Tg. It has
been proposed that the WLF relationship holds within the range of Tg to Tg + 200K [37].

ηMw is defined by the Mw dependence. Longer and heavier polymer chains experience increased
entanglements, which hinder chain reptation in the polymer melt at low shear. [46, 41] Equation 6 is
a piece-wise power law that describes this phenomenon.
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ηMw
=

{
k1M

α1
w if Mw < Mcr

k2M
α2
w if Mw ≥ Mcr

(6)

where
k2 = k1M

α1−α2
cr .

Mcr is the critical molecular weight, above which entanglement density is high enough to increase
the impact of Mw on η0. The two power laws intersect at Mw = Mcr [46]. Mcr is found to be
approximately 2-4 times the molecular weight at which chain entanglement starts, but the exact value
is polymer dependent.[41] α1 is the slope of the log η0-logMw curve if Mw < Mcr and α2 is the
slope if Mw ≥ Mcr. Typically, α1 is theoretically and empirically determined to be about 1, while
α2 is found to be about 3.4 [46, 41], but the exact value is dependent on the polymer. k1 and k2 are
the y-intercepts of each power law and are polymer-dependent.

Mw and η0 span several orders of magnitude, so we use Equation 6 in the log-scale to get Equation 7,

log ηMw
=

{
log k1 + α1 logMw if Mw < Mcr

log k1 + (α1 − α2) logMcr + α2 logMw if Mw ≥ Mcr
(7)

Smoothing Equation 7 with HβMw
gives Equation 8,

log ηMw
=[log k1 + α1 logMw] ·HβMw

(logMcr − logMw)

+ [log k1 + (α1 − α2) logMcr] ·HβMw
(logMw − logMcr)

(8)

where HβMw
is the smoothened Heaviside step function using βMw

, a parameter which dictates the
rate of shift from α1 to α2.

Therefore, Equations 4, 5, and 8 determine the log η(Mw, T, γ̇). The predicted parameters n, γ̇cr,
βγ̇ determine the γ̇ dependence in log η(Mw, T, γ̇), which is also a function of η0(Mw, T ). The
predicted parameters C1, C2, and Tr determine the T dependence in η0(Mw, T ), which is also a
function of ηMw

. The predicted parameters α1, α2, Mcr, βMw
, and k1 determine the Mw dependence

in ηMw
.

A.2 Bounding Ranges of Physical Parameters within the PENN Framework

The final constants output from the MLP use the Sigmoid function to hold them to physically
meaningful ranges. The ranges also help reduce possible imbalances of gradients and/or exploding
gradients that may occur during backpropogation, because of the complexity of the computation
graph. In this work, we use a rudimentary approach to solve this problem, described in Table 3 and
more complete solutions may be developed in future works.

A.3 PENN Training

This entire PENN architecture is trained, in part, to minimize the error of viscosity predictions. The
sum of these errors across all n training points is called the viscosity loss Lη , defined in Equation 9.
Each data point is denoted by its index i.

Lη =
1

n

n∑
i=1

(η̂i − ηi)
2 (9)

During training, we add loss terms (see Equation 10) to penalize the predicted α1 and α2 for the ith
training point ( ˆα1,i and ˆα2,i, respectively) for deviating from their average values. The viscosity loss
plus the penalty terms form the total loss L.

L = Lη +
1

n

n∑
i=1

wα[( ˆα1,i − 1)2 + ( ˆα2,i − 3.4)2] (10)

wα is a hyperparameter that controls the impact that known values of the α1 and α2 parameters have
on the final loss.
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Table 3: Bounded Ranges and Justifications of Empirical within the PENN Framework

Parameter Bounding Range Justification
Mcr (-1,1) Keep critical value within Mw ranges of the dataset
α1 (0,3) Bound to practical value near 1
α2 (0,6) Bound to practical value near 3.4
k1 (-1.5,0.5) Keep viscosity value within η ranges of the dataset
βM (20, 50) Appropriate range to control transition region, found

through trial-and-error
C1 (0,2) Keep within practical ranges with regards to temperature

scaling
C2 (0,2) Keep within practical ranges with regards to temperature

scaling
Tr (-1.5,1) Keep reference temperature within T and just below T

range of dataset
γ̇cr (-1, 1) Keep critical value within γ̇ ranges of the dataset
n (0,1) Keep slope within range for general shear thinning fluids
βγ̇ (30) Appropriate range to control transition region, found

through trial-and-error

B Training Approaches and Hyperparameter Tuning

The PENN and ANN models were implemented in PyTorch [47]. All models were trained on the
same 9:1 (Train:Test) split. Before training, the features and η were scaled to a range of (-1,1). The
polymer fingerprint, PDI, and temperature were scaled with the Scikit-Learn MinMaxScaler [48] to a
range of (-1,1). The γ̇ was scaled by first adding a small value of 10−5, taking the log10, and then
scaling to (-1,1). Mw was scaled by taking the log10 value and then scaling to (-1,1). For the PENN,
logMw and log γ̇ use the same scaling bounds as η.

Within the training set, a 10-fold cross-validation (CV) was used to ensure that the models did not
overfit the training set. The ANN and PENN models also had separate models trained for each
CV split. Hyperparameter optimization was performed using the Hyperband [49] optimization
algorithm over each CV fold for both the ANN and the PENN models, with RayTune [50] im-
plementations, respectively. The ANN and PENN models, both containing 4 layers (including 2
hidden layers), involved optimization of the same hyperparameters: layer 1 size (64, 128, 256, 512),
layer 1 dropout (0,0.01, 0.015,0.02,0.025,0.03), layer 2 size (64, 128, 256, 512), layer 2 dropout
(0,0.01,0.015,0.02,0.025,0.03), and weight decay (0.00001, 0.00005, 0.0001, 0.0005, 0.001). For
the PENN, wα (0.001, 0.005, 0.01, 0.03, 0.05) was also optimized. The value corresponding to the
lowest Lη (Equation 9) of the CV test split was used.

The Adam optimizer was used to train the models with a learning rate (LR) reduction by a factor
or 0.5 on the plateau of the validation loss given a patience of 20 epochs. An initial LR of 0.0001
was used for the PENN. Empirically, we found that the PENN tuning was sensitive to high LR. The
initial LR for the ANN was 0.001. Training was stopped with an Early Stopping patience of no
improvement in the validation loss after 25 epochs.

The GPR model was implemented using Scikitlearn [48] and trained using Bayesian optimization to
tune key hyperparameters. The hyperparameters optimized include the noise level (alpha) with a
range of [10−2, 101], the length scale of the RBF kernel (length_scale) with a range of [10−2, 102],
and the constant value used in the kernel (constant_value) with a range of [10−2, 102], each with
a logarithmic uniform prior. The optimization was performed over 50 iterations each over the 10-fold
cross-validation, with the best-performing model parameters selected based on the results. The
scaling for the inputs and outputs of the GPR were the same as the ANN.

C Obtaining Ground Values of Empirical Parameters from the Dataset

To establish a benchmark for comparing the three models, we obtained ground truth values of the
parameters from the dataset. We did this by identifying subsets of our dataset involving the same
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polymer with measured η of several T , Mw, or γ̇. If a subset contained at least five points, we fitted
the corresponding equation (Equation 5, 6, or 2) to obtain empirical parameters. The distributions
of these ground truth parameter values are shown in the first row of Figure 4. There are a limited
number of ground truth values because a small number of datapoints satisfy the above conditions.
Nevertheless, this small sample set allowed us to make a few inferences about expected viscosity
trends. The ground truth values of α1 and α2 are close to the theoretical values of 1 and 3.4,
respectively[46]. α2 values were occasionally less than the expected 3.4, possibly due to outliers
or errors in fitting a small number of datapoints. The fitted logMcr values fell within a range of
102.5 − 105 g/mol. For shear parameters, the majority of samples are found to have n in a range
of 0.2 − 0.8, which is typical for polymer melts [35]. The obtained γ̇cr values were found in the
range of 10−3 − 104 1/s. The fitted Tr values are mostly in a range of Tr < 250K. This is low
when compared to Tg values found in thermal property datasets [12]. In our dataset, the datapoints
that could be fitted to the η-T relationship were observed at T < 475K, so low Tr values could
be overrepresented in the ground truth. The C1 parameter average was 11.8 and the C2 parameter
average was 159.42 K. This analysis of the ground truth data suggests desired parameter values our
models should predict.

D Computational Resources

We conducted our experiments using a Tesla V100-PCIE-32GB GPU. The GPU was utilized with
CUDA version 12.3, ensuring compatibility with the latest libraries and frameworks and optimizing
performance through advanced parallel computing capabilities.

The training of each PENN model and ANN model took 300MiB of GPU space. Each individual
model took approximately 10 minutes to hyperparameter tune, about 35 minutes to train. The total
training time for a PENN or ANN experiment across 10 CV folds took approximately 450-500
minutes. The total compute is estimated to be about 4500 minutes for the experiments in this
manuscript. The full research project required many iterations of tuning to understand how to build
the computational graph. Therefore we estimate the total compute to be about 10-15 times the
compute used in the final experiments.
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E Additional Parity Plots for Test Sets

Figure 6: Parity plots containing trial information and the test sizes from each trial. Each plot
compares experimental values for melt viscosity (η) to the predicted η. The dotted black lines
represent perfect predictions. The coefficient of determination (R2) and Order of Magnitude Error
(OME) are reported over each test set trial.
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F Additional Extrapolation Plots in Various Test Cases

Figure 7: Examples successful of molecular weight extrapolations on partially seen and unseen
monomers.
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Figure 8: Examples of unsuccessful molecular weight extrapolations on partially seen and unseen
monomers. PENN extrapolations consist of data points that lie outside of the uncertainty bounds of
the predictions.

Figure 9: Examples of successful shear rate extrapolations on partially seen and unseen monomers.
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Figure 10: Examples of unsuccessful shear rate extrapolations on partially seen and unseen monomers.
PENN extrapolations consist of data points that lie outside of the uncertainty bounds of the predictions
and/or incorrect predictions of the γ̇cr transition region.

Figure 11: Examples of successful temperature extrapolations on partially seen and unseen monomers.
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Figure 12: Examples of unsuccessful temperature extrapolations on partially seen and unseen
monomers. PENN extrapolations consist of data points that lie outside of the uncertainty bounds of
the predictions.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction discuss the scope of the work applied to polymer
melt viscosity and the ability to extrapolate to unseen physical settings. This is reflected in
the results.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the shortcomings of the PENN approach and the necessary consid-
erations when applying the method. Examples demonstrating limitations are given in Figure
5.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The assumptions and theory in this paper are addressed. The theory is in
the physical characteristics of polymer melts and assumptions made from these are given
throughout the paper and in Appendix A.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The details of the dataset, splitting, architecture details, and training informa-
tion/hyperparameter tuning are all provided.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The authors have released the dataset on the open-source section of our research
group github. The code will be released upon this work’s publication in a journal. Enough
information to reproduce the PENN and the experiments are provided otherwise.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This information is provided in the Section 2.2, Section 2.3 and Appendix B.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We quantify uncertainties and report error bars where necessary, shown in
Figures 3 and 5.
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The authors explain the computational usage in Appendix D.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Upon review, the authors believe that this follows the code of ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer:[NA] .
Justification: The authors believe that there is not enough societal impact from this work to
be discussed because it is in the materials science field.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: The authors believe that there is no major risk from this work because it is in
the materials science field.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The credit and refer to the creators of Polyinfo [32] where the dataset is from
and Polymer Genome [6, 5].

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: The authors do not provide any assets in this paper.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: There are no human subjects in this work.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing or research with human subjects.
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