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ABSTRACT

Generating molecules with desirable properties is key to domains like material
design and drug discovery. The predominant approach is to encode molecular
graphs using graph neural networks or their continuous-depth analogues. However,
these methods often implicitly assume strong homophily (i.e., affinity) between
neighbours, overlooking repulsions between dissimilar atoms and making them
vulnerable to oversmoothing. To address this, we introduce HTFlows. It uses
multiple interactive flows to capture heterophily patterns in the molecular space
and harnesses these (dis-)similarities in generation, consistently showing good
performance on chemoinformatics benchmarks.

1 INTRODUCTION

Identifying molecular candidates with specific chemical properties is an integral task in important
biochemistry domains such as material design and drug discovery. However, traditional methods rely
on expensive exploratory experiments that involve time and resource-intensive investigations (Paul
et al., 2010), hindered by the inherent discreteness of the search space and its vast combinatorial
possibilities (Reymond et al., 2012; Polishchuk et al., 2013). Deep generative models can employ
effective inductive biases to encode molecules and expedite the discovery process by narrowing down
the search space; e.g., they have recently shown significant potential for suggesting promising drug
candidates in silico (Ingraham et al., 2019; Polykovskiy et al., 2020).

Molecules can be presented as input to a deep learning model in different formats. Initial works,
e.g., Kusner et al. (2017), Dai et al. (2018) posed molecular generation as an autoregressive problem,
utilizing SMILES (short for ‘Simplified Molecular-Input Line-Entry System’), i.e., a unique sequence
representation for molecules (Landrum et al., 2013). However, the mapping from molecules to
SMILES is not continuous, so similar molecules can be assigned vastly different string representations.
Graphs provide an elegant abstraction to encode the interactions between the atoms in a molecule, so
powerful encoders based on graph neural networks (GNNs, Scarselli et al., 2009; Kipf & Welling,
2017; Veličković et al., 2018; Xu et al., 2019; Garg et al., 2020) have been adopted in recent years.
A range of deep learning frameworks have been integrated with GNNs for molecule generation,
including, adversarial models (De Cao & Kipf, 2018; You et al., 2018), diffusion models (Hoogeboom
et al., 2022), energy-based models (Liu et al., 2021b), and Neural ODEs (Verma et al., 2022) and
other flow-based models (Shi et al., 2019; Luo et al., 2021; Zang & Wang, 2020).

We seek to illuminate, and address, a key issue that has been overlooked while using GNNs in
molecule generation settings. Standard GNNs employ local message-passing steps on each input
graph to exchange information between nodes and their neighbours; implicitly assuming strong
homophily, i.e., tendency of nodes to connect with others that have similar labels or features. This
assumption turns out to be reasonable in settings such as social (McPherson et al., 2001), regional
planning (Gerber et al., 2013), and citation (Ciotti et al., 2016) networks. However, heterophilous
graphs violate this assumption leading to sub-optimal performance (Zhu et al., 2020; 2021; Chien
et al., 2021; Lim et al., 2021; Wang et al., 2023), owing to oversmoothing (Li et al., 2018) resulting
from flattening of high-frequency information (Wu et al., 2023) by message-passing schemes.

We shed light on this issue with the standard QM9 data in Fig. 1. A conceptual way to characterize
homophily is by examining the neighbours of each node. A fully homophilous molecule only has links
between atoms of the same type (right), while a heterophilous molecule has links between different
types (left). We observe that a major fraction of molecules in QM9 have scores in the range [0.4, 0.8].
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Figure 1: A simple way to characterize homophily is by studying the links of each node. A fully
homophilous molecule only has links between atoms of the same type, while a heterophilous molecule
has links between different types. Rather than counting links, HTFlow utilizes multiple interactive
flows to estimate the propensity of a link to be homophilic/heterophilic in a given molecular context.

However, in practice, simply counting atom types is not expressive enough. Instead, the heterophily
typically stems from more intricate properties of the molecules which need to be learned from data.
We introduce HTFlows to carefully address and utilize the heterophily present in molecular data
during generative modelling.

Our contributions In this paper, we introduce a novel framework for flow-based graph generation,
likely the first molecular generation model that directly accounts for data heterophily. The proposed
model comprises several interactive flows, designed to learn graph structures and node features across
varying degrees of homophily and heterophily. Our key contributions are summarized below:

• (Conceptual and technical) we motivate the relevance of heterophily in molecular contexts,
and propose a generative framework that encodes homophily/heterophily patterns;

• (Methodological) we design an invertible model with three co-evolving flows: a central
flow interacts with heterophilous and homophilous flows to learn nuanced representations;

• (Empirical) we demonstrate the benefits of our method by benchmarking molecule genera-
tion on the QM9 and ZINC-250K data sets, evaluating with an extensive set of 14 different
chemoinformatics metrics to analyze the actual chemical properties of the generated data.

Notable advantages of our model include achieving high validity without the need for additional
validity checks in random generation experiments and successful optimization of target chemical
properties in molecular searches. We now proceed to reviewing relevant related works.

2 RELATED WORK

Molecule representation and generation Early works in molecule generation (e.g., Kusner et al.,
2017; Guimaraes et al., 2017; Gómez-Bombarelli et al., 2018; Dai et al., 2018) primarily used
sequence models to encode the SMILES strings (Weininger et al., 1989). Graphs afford more flexible
modeling of interactions, so the field has gravitated towards representing molecules as (geometric)
graphs and using powerful graph encoders, e.g., based on graph neural networks (GNNs).

Variational autoencoders (VAEs, Kingma & Welling, 2014) provided a toolset for molecule generation
with an encoder-decoder architecture, affording a latent encoding that can be optimized to search for
molecules with specific properties. A prominent work, JT-VAE, showed benefits of viewing graphs
as tree-like substructures obtained by including rings, in addition to the usual atoms labels, as part
of the vocabulary (Jin et al., 2018). Other models such as Graph Convolutional Policy Network
(You et al., 2018) and MolecularRNN (Popova et al., 2019; Shi et al., 2019; Luo et al., 2021) add
atoms/bonds sequentially, and rely on rejection schemes to ensure the validity of the generated
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molecules. Generative Adversarial Networks (GANs, Goodfellow et al., 2014) introduced added
flexibility, as demonstrated by works such as De Cao & Kipf (2018) and You et al. (2018).

Flow-based models Normalizing flows enable exact likelihood estimation (see Papamakarios et al.,
2021), so have recently gained prominence in the context of molecule generation (Kaushalya et al.,
2019; Luo et al., 2021; Shi et al., 2019; Zang & Wang, 2020; Verma et al., 2022). These models learn
invertible transformations to map data from a simpler base distribution to a more complex distribution
over molecules. GraphAF (Shi et al., 2019) and GraphDF (Luo et al., 2021) keep the traditional
sequential generation process, with GraphDF constraining the latent variables to be discrete. MoFlow
(Zang & Wang, 2020) leverages a GLOW model (Kingma & Dhariwal, 2018) for structure generation
with a conditional flow for assigning atom types.

More recently, there has been a shift towards incorporating prior knowledge and stronger inductive
biases into deep learning models for molecule generation, thus allowing for more nuanced and
accurate representations. ModFlow (Verma et al., 2022) builds a continuous normalizing flow with
graph neural ODEs (Poli et al., 2019) assuming molecular structure is available, and use an E(3)-
equivariant GNN (Satorras et al., 2021) to account for rotational and translational symmetries. EDM
(Hoogeboom et al., 2022) generates molecules in 3D space through an equivariant diffusion model
(Sohl-Dickstein et al., 2015; Song et al., 2021; Austin et al., 2021; Vignac et al., 2022) on the atom
coordinates and categorical types. This relates to ongoing interest in guiding the generative process
by controlling the inductive biases of the model. Such structure is perhaps more apparent in image
generation (e.g., Rissanen et al., 2023; Hoogeboom & Salimans, 2023), while in molecule modelling
the prior knowledge needs to be included in more subtle ways, such as in the form of heterophily.

Heterophily Many previous studies analyze how heterophily influences GNN performance and
design new methods to mitigate it (Zhu et al., 2020; Liu et al., 2021a; Yan et al., 2022; Ma et al.,
2021). Some studies demonstrate deeper insights about how heterophily affects model expressiveness
(Ma et al., 2021; Luan et al., 2022; Mao et al., 2023; Luan et al., 2023). However, most of these
papers focus on node classification. However, molecular generation requires models to learn the data
distribution by distinguishable graph embeddings. Heterophilic graphs lose distinguishability more
from message-passing layers. We now address this issue with HTFlows.

3 HETEROPHILOUS TRIPLE FLOWS

We propose a graph generative model leveraging normalizing flows and heterophily features in graph
data. Our model is split into two main components: the bond flow and the atom flow. The bond flow
focuses on learning the molecular structure, while the atom flow assigns specific atomic details to
this topology.

3.1 PREREQUISITES: NORMALIZING FLOWS WITH AFFINE COUPLING LAYERS

ACL

X

X1 “ M d X X2 “ p1 ´ Mq d X

Split masking
matrix M

GNNγ

S d X1 ` T X2
logS,T

CONCAT[ ]

Y

Figure 2: The affine coupling layer. The coupling is
defined through a GNN and depends on the nature (γ P

thom., cen., het.u) of the flow (see Sec. 3.2).

Normalizing flows offer a methodical ap-
proach to transform a simple distribution
(like a Gaussian) into a complex one,
matching the distribution of the target data.
This is achieved by applying a chain of re-
versible and bijective transformations for
distribution learning (Dinh et al., 2014).
Given a flow f “ fT ˝ ¨ ¨ ¨ ˝ f1, we ini-
tialize from a target distribution z0 „ pz .
The flow then undergoes a series of trans-
formations to reach a Gaussian distribution
zT „ Npµ, σ2q through invertible func-
tions: zi “ fipzi´1q, i “ 1, 2, . . . , T . The
goal of normalizing flows is to minimize
the difference between the learned distri-
bution and the target distribution. This is
typically quantified using the negative log-
likelihood of the data. The flow learns the
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target distribution by minimizing the nega-
tive log-likelihood:

L “ ´ log pzpz0q “ ´ log NpzT | µ, σ2q ´ log det |Bf{Bz0| . (1)
The power of normalizing flows lies in their bijectiveness. Each transformation is both reversible
and maintains the ‘volume’ of the data distribution. This ensures that no information from the data
is lost during these transformations. Thus, the transformed distribution can be ‘pulled back’ to the
original space using the inverse of the transformation functions, providing a bridge between the
simple Gaussian and the intricate target distribution. For this to work, the flow needs to be reversible,
which we get back to in Sec. 3.5.

Affine coupling layers (ACLs) introduce reversible transformations to normalizing flows, ensuring
efficient computation of the log-determinant of the Jacobian (Kingma & Dhariwal, 2018). Typically,
the affine coupling layer, denoted by ACLpf,Mq, contains a binary masking matrix M P t0, 1umˆn

and coupling function f which determines the affine transformation parameters . Given an input
X P Rmˆn, the input is split into X1 “ M d X and X2 “ p1 ´ Mq d X by masking, where
‘d’ denotes the element-wise Hadamard product. Here, X1 is the masked input that will undergo the
transformation, and X2 is the part that provides parameters for this transformation via the coupling
function and keeps invariant insdide the ACLs. The output is the concatenation of the transformed
part and the fixed part as visualized in Fig. 2:

ACLpf,Mq
pXq “ M d pS d X1 ` T q ` p1 ´ Mq d X2 such that logS,T “ fpX2q. (2)

The binary masking eensures that only part of the input is transformed, allowing the model to
retain certain features while altering others, enabling the flow to capture intricate data distribution
characteristics. This is key for enabling heterophily in the next sections.

3.2 HETEROPHILIOUS MESSAGE PASSING

Graph Neural Networks (GNNs) have emerged as a potent paradigm for learning from graph-
structured data, where the challenges include diverse graph sizes and varying structures (Kipf
& Welling, 2017; Veličković et al., 2018; Xu et al., 2019; Garg et al., 2020). Consider a graph
G “ pV, Eq with nodes V and edges E . For these nodes and edges, we denote the corresponding node
features as X “ txv P Rnv | v P Vu and edge features as E “ teuv P Rne | u, v P Eu. For each
node v P V , its embedding at the kth layer is represented as hpkq

v . These embeddings evolve through a
sequence of transformations across K-deep GNN, by the message passing scheme (Hamilton, 2020):

mpkq
uv “ MESSAGEpkq

uv

´

hpkq
u , euv

¯

, u P N pvq, k “ 0, 1, . . . ,K, (3)

hpk`1q
v “ UPDATEpkq

´

hpkq
v ,m

pkq

N pvq

¯

, k “ 0, 1, . . . ,K. (4)

Here N pvq denotes the neighbours set of node v. Both UPDATEpkq and MESSAGEpkq
uv are

arbitrary differentiable functions. The set mpkq

N pvq
“ tm

pkq
uv | u P N pvqu aggregates messages from

all neighbours of v. Importantly, the function UPDATEpkq needs to be permutation invariant on
this message set mpkq

N pvq
(e.g., by operations like summation or taking the maximum). However, a

naïve aggregation strategy will mix different messages and leads to the ‘oversmoothing’ problem.

Heterophilious GNNs Our method HTFlows encodes the heterophily assumption into the message
passing sheme of the GNN. We denote the GNNγ with heterophilious message passing scheme
with an indicator γ P tcen., hom., het.u depending on the scheme being employed. These indicators
specify the preference of the GNNs: whether they lean towards homophily (hom.), centrality (cen.),
or heterophily (het.).

Referring to Eq. (4), the messages undergo a preprocessing step before being sent forward to the
subsequent layer. This is given by:

m
pkq

N pvq
“ tαpkq

uv m
pkq
uv | u P N pvqu, (5)

where

αpkq
uv “

$

&

%

Hpu, vq, if γ “ hom.
1, if γ “ cen.
1 ´ Hpu, vq, if γ “ het.

(6)
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where H denotes the homophily of the node (Pei et al., 2019). Yet, instead of traditional labels, in
this context, the model aims to learn embeddings. Thus, in practice, we define the homophily or
attraction to similarity between embeddings as the cosine similarity Hpu, vq fi Scosph

pkq
u ,h

pkq
v q

at the relevant layer.

3.3 HETEROPHILOUS TRAINING PROCESS

X

Atom features

Input

Xcen.Xhom. Xhet.

ACLACL ACL

ACLACL ACL

ACLACL ACL

ACLACL ACL

...
...

...

hcen.hhom. hhet.

mixing ACL

mixing ACL

mixing ACL

Figure 3: Heterophilous atom
flow structure of HTFlows. The
color of the ACL block refers to
the indicators of GNN coupling
functions: hom., cen., het.

Given a molecule represented as a graph G “ pX,B), the
atom features are denoted by X P Rnˆna and the bond fea-
tures by B P Rnˆnˆnb . The terms na and nb represent the
number of atom types and bond types, respectively. Specifi-
cally, pXqi denotes the one-hot encoded type of the ith atom
present in molecule G. Similarly, pBqij denotes the one-hot
encoding of the specific chemical bond between the ith and
jth atom in G. Our model HTFlows maps the molecule G to
embeddings hpaq and hpbq from the Gaussian distributions:

hpaq „ pa “ Npµa, σ
2
aq, hpbq „ pb “ Npµb, σ

2
b q. (7)

Bond flow The bond flow represented by fb “ ACLb
kb

˝ ¨ ¨ ¨ ˝

ACLb
1 consists of a series of affine coupling layers with simple

convolutional networks (CNNs) as coupling function: ACLb
i “

ACLpCNNi,M
b
i q, i “ 1, 2, . . . , kb, where kb denotes the

number of layers and masking pM b
i qjk “ 1r2k{nbs”ip2q. Then

bond embeddings hpbq “ Bkb
“ fbpB0q emerge from the

bond tensor B0 “ B:
Bi “ ACLb

i pBi´1q , i “ 1, 2, . . . , kb. (8)

Heterophilous atom flow The atom flow fa contains three
dependent normalizing flows of depth ka. They are the central,
homophilic, and heterophilic flows, associated with specific
indicators labelled as Γ “ tcen., hom., het.u. The correspond-
ing affine coupling layers are built with heterophilious GNNs
defined in Sec. 3.2 as coupling functions and masking Mi P t0, 1unˆnˆnb

ACLa
i,γ “ ACLpGNNγ

i ,Miq, i “ 1, 2, . . . , ka, γ P Γ. (9)

where pMiqj,k,l “ 1j”ipnaq. All GNNs in this context derive their graph topology pE ,Eq from the
bond tensor B. The embeddings are initialized by the atom features: Xγ

0 “ X, γ P Γ. With each
layer, the embeddings undergo an update through the coupling layers:

X̄γ
i “ ACLa

i,γ

`

Xγ
i´1 | B

˘

, i “ 1, 2, . . . , ka, γ P Γ. (10)
Instead of constructing three separate flows, another sequence of ‘mixing’ affine coupling layers
is introduced: ACLmix.

i “ ACLpMLPi,M
mix.
i q with MLP coupling functions. These layers serve

the purpose of facilitating interactions between flows. By modulating the mask matrix Mmix.
i P

t0, 1unˆ3na , the three flows engage in iterative interactions:

hpaq “ h
paq

ka
“ faph

paq

0 | Bq, h
paq

i “ ACLmix.
i

´

h̄
paq

i

¯

, i “ 1, 2, . . . , ka, (11)

where the embeddings are concatenated from the three flows as hpaq

i “ concat
“

Xcen.
i ,Xhom.

i ,Xhet.
i

‰

and h̄
paq

i “ concat
“

X̄cen.
i , X̄hom.

i , X̄het.
i

‰

, and the mask matrix pMmix.
i qjk “ 1rk{nas”ip3q. A visual

representation of the entire structure of the HTFlows model can be found in Fig. 3. For better
undersatnding, we provide example reconstructions from intermediate layers in Fig. 4.

Loss The loss function combines the negative log-likelihoods (NLLs) from both the atom and bond
flows: L “ La ` Lb. Each NLL could be decomposed as shown in Eq. (1):

Lb “ ´ log pb

´

hpbq
¯

´ log det

ˆ
ˇ

ˇ

ˇ

ˇ

Bhpbq

BB

ˇ

ˇ

ˇ

ˇ

˙

“ ´ log p
´

hpbq
¯

´

kb
ÿ

i“1

log det

˜
ˇ

ˇ

ˇ

ˇ

ˇ

BACLb
i pBi´1q

BBi´1

ˇ

ˇ

ˇ

ˇ

ˇ

¸

.

(12)
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Figure 4: Step-by-step generation (QM9). Snapshots of reconstructed molecules when fixing the
bond model and collecting node embeddings of the intermediate layers i.

Similarly, the loss La for the heterophilous atom flow can be constructed as:

La “ ´ log p
´

h
paq

ka

¯

´ log det

ˆ
ˇ

ˇ

ˇ

ˇ

Bhpaq

BX

ˇ

ˇ

ˇ

ˇ

˙

“ ´ log p
´

h
paq

ka

¯

´

ka
ÿ

i“1

»

–log det

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

BACLmix.
i

´

h̄
paq

i

¯

Bh̄
paq

i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˛

‚´
ÿ

γPΓ

log det

˜ˇ

ˇ

ˇ

ˇ

ˇ

BACLa
i,γ

`

Xγ
i´1

˘

BXγ
i´1

ˇ

ˇ

ˇ

ˇ

ˇ

¸

fi

fl .

(13)

3.4 GENERATION PROCESS

Given a trained HTFlows model, with established atom flow fa˚ and bond flow fb˚, the procedure
for generating molecules is described as follows.

1. Sampling Embeddings: Start by randomly sampling embeddings hpaq and hpbq from a
Gaussian distribution as expressed in Eq. (7).

2. Obtaining the Bond Tensor: The bond tensor B can be derived by applying the inverse of
the bond flow fb˚ to the sampled embedding hpbq. This is given as

B “ f´1
b˚

phpbqq “

´

ACLb
1˚

¯´1

˝ ¨ ¨ ¨ ˝

´

ACLb
kb˚

¯´1

phpbqq. (14)

3. Recovering Graph Topology: From the bond tensor B, the graph topology pE ,Eq can be
deduced. This topology is essential for the GNN-based affine coupling layers (ACLs) within
the atom flow fa.

4. Generating Node Features: With the bond tensor in place, node features can be produced
by applying the inverse of the atom flow fa˚ to the sampled atom embedding hpaq. This is
given as

X “ f´1
a˚ phpaq | Bq. (15)

5. Molecule Recovery: Finally, a molecule, represented as G, can be reconstructed using the
generated atom features X and bond tensor B from random embeddings rhpaq,hpbqs.

3.5 REVERSIBILITY OF THE HETEROPHILOUS TRIPLE FLOWS

To ensure that the molecular embeddings and transformations produced by HTFlows can be inverted
back, it is crucial to understand the reversibility of the processes. Both the atom and bond models
of HTFlows rely on ACL blocks. As introduced in Sec. 3.1, these blocks are inherently reversible.
This means they can forward process the input to produce an output and can also take that output
to revert it back to the original input without loss of information. Besides the use of ACL blocks,
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Figure 5: Structured latent-space exploration (ZINC-250K). Nearest neighbour search in the latent
space with the seed molecules on the left and neigbours with the Tanimoto similarity (1 0)
given for each molecule. For results on QM9, see Fig. A8 in the appendix.

the operations used within the model primarily leverage simple concatenation or splitting. These
operations are straightforward and do not affect the overall reversibility of the processes. Given that
the individual components (both atom and bond flows) are reversible and the operations performed
on the data are straightforward, it is apparent that HTFlows as a whole is reversible. A formal proof
on reversibility of ACL blocks and HTFlows is provided in App. B.

4 EXPERIMENTS

We demonstrate our model in a variety of common benchmarks tasks for molecule generation and
modelling. First, provide an illustrative example of latent space exploration around seed molecules.
Second, we provide results for molecule generation with benchmarks on a wide range of chemoinfor-
matics metrics. Finally, we provide results for molecular property optimization.

Implementation The models were implemented in PyTorch (Paszke et al., 2019) and PyTorch
Geometric (Fey & Lenssen, 2019). In HTFlows, we used GNNs with 4 layers and flows that were
ka “ 27pQM9q and ka “ 38pZINC-250Kq and kb “ 10 deep. We trained our models with the
AdamW optimizer (Loshchilov & Hutter, 2019) for 500 epochs, with batch size 256 and learning rate
0.001. The final model selection was based on score comparison on a hold-out validation set. We
select the best-performin model by the FCD score as suggested in Polykovskiy et al. (2020). Our
models are trained on a cluster equipped with NVIDIA A100 GPUs. The training time for single
models were 24 hours (QM9) and 56 hours (ZINC-250K).

Chemoinformatics metrics We compare methods through an extensive set of chemoinformatics
metrics that perform both sanity checks (validity, uniqueness, and novelty) on the generated molecule
corpus and quantify properties of the molecules: neighbour (SNN), fragment (Frag), and scaffold
(scaf) similarity, internal diversity (IntDiv1 and IntDiv2), and Fréchet ChemNet distance (FCD). We
also show score histograms for solubility (logP), syntetic accessibility (SA), drug-likeness (QED),
and molecular weight. For computing the metrics, we use the MOSES benchamrking platform
(Polykovskiy et al., 2020) and the RDKit open-source cheminformatics software (Landrum et al.,
2013). The ‘data’ row in metrics is based on randomly sampled (1000 mols) for 10 times from data
set. When we calculate the metrics we simulate 1000 molecules for 10 times and compare them to a
hold-out reference set (20% of data, other 80% is used for training). Full details on the 14 metrics we
use are included in App. C.

Data sets We consider two common molecule data sets: QM9 and ZINC-250K. The QM9 data set
(Ramakrishnan et al., 2014) comprises „ 134k stable small organic molecules composed of atoms
from the set {C, H, O, N, F}. These molecules have been processed into their kekulized forms
with hydrogens removed using the RDkit software (Landrum et al., 2013). The ZINC-250K (Irwin
et al., 2012) data contains „ 250k drug-like molecules, each with up to 38 atoms of 9 different types.
Despite still relatively small (molecular weights ranging from 100 to 500), the molecules in the
ZINC-250K data set are larger and more complicated than those in QM9.
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Figure 6: Chemoinformatics statistics for data (QM9) and generated molecules from HTFlows (ours),
MoFlow, and GraphDF. We report histograms for the Octanol-water partition coefficient (logP), syn-
thetic accessibility score (SA), quantitative estimation of drug-likeness (QED), and molecular weight.

Table 1: Chemoinformatics summary statistics for random generation on the QM9 data set. Full
listing of all 14 metrics in Table A4. HTFlows performs well on all these summary metrics.

FCD Ó SNN Ò Frag Ò Scaf Ò IntDiv1 Ò IntDiv2 Ò

Data (QM9) 0.40 0.54 0.94 0.76 0.92 0.90
GraphDF 10.76 0.35 0.61 0.09 0.87 0.86
MoFlow 7.48 0.33 0.60 0.04 0.92 0.90
HTFlows 5.63 0.36 0.71 0.23 0.92 0.90

Visualizing the continuous latent space Similar to Zang & Wang (2020), we examine the learned
latent space of our method on both QM9 and ZINC-250K. Results for ZINC-250K are presented in
Fig. 5 and QM9 in the appendix (Fig. A8). Qualitatively, we note that latent space appears smooth and
the molecules near the seed molecule resemble the input and have high Tanimoto similarity (Rogers
& Hahn, 2010).

4.1 MOLECULE GENERATION

Baselines For random generation, we include baseline results for models that have pre-trained
models available. We need access to the trained models, because few papers report chemoinformatics
metrics beyond trivial sanity checks (validity, uniqueness, and novelty) that tend to be high (90%–
100%) for most models. We compare to GraphDF (Luo et al., 2021) and MoFlow (Zang & Wang,
2020) which are current state-of-the-art (see Verma et al., 2022).

Results on QM9 For the QM9 data set, the main chemoinformatic summary statistics are given in
Table 1 and the descriptive distributions in Fig. 6. The full listing of all 14 metrics is provided in
Table A4 in the appendix. From Table 1, HTFlows achieves the lowest FCD, and achives highest (or
on-par values with MoFlow) on SNN, Frag, and diversity. From the extended results in Table A4, it
is clear that each model has its strengths, and the choice might depend on the specific requirements
of a task. If one is looking for a model that produces a broad range of diverse molecules, HTFlows
stands out as preferable.

Results on ZINC-250K For the ZINC-250K data set, the main chemoinformatic summary statistics
are given in Table 2 and the descriptive distributions in Fig. 7. The full listing of all 14 metrics are
provided in Table A5 in the appendix. While its performance on the ZINC-250K data set exhibits
some variation, HTFlows still achieves the best internal diversity (IntDiv1 and IntDiv2) and has
the most favorable molecular weight distribution. Notably, its validity score is lower than MoFlow,
indicating some challenges in generating completely valid molecules in this context. Overall, HTFlow
emerges as a robust and versatile molecular generation model, adept at balancing fidelity, diversity,
and molecular properties.

4.2 PROPERTY OPTIMIZAITON

In the property optimization task, models show their capability in finding novel molecules that
optimize specific chemical properties not present in the training data set: a critical component for
drug discovery. For our study, we focused on maximizing the QED property. We trained HTFlows on
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Figure 7: Chemoinformatics statistics for data (ZINC-250K) and generated molecules from HTFlows
(ours), MoFlow, and GraphDF. Histograms for the Octanol-water partition coefficient (logP), syn-
thetic accessibility score (SA), quantitative estimation of drug-likeness (QED), and molecular weight.

Table 2: Chemoinformatics summary statistics for random generation on the ZINC-250K data set.
Full listing of all 14 metrics in Table A5. HTFlows performs well especially on diversity metrics.

FCD Ó SNN Ò Frag Ò Scaf Ò IntDiv1 Ò IntDiv2 Ò

Data (ZINC-250K) 1.44 0.51 1.00 0.28 0.87 0.86
GraphDF 34.30 0.23 0.35 0.00 0.88 0.87
MoFlow 22.65 0.29 0.81 0.01 0.88 0.86
HTFlows 27.90 0.22 0.57 0.00 0.90 0.88

ZINC-250K and evaluated its performance against other state-of-the-art models (Verma et al., 2022;
Luo et al., 2021; Zang & Wang, 2020; Shi et al., 2019; Jin et al., 2018; You et al., 2018). The results,
given in Table 3, show that the top three novel molecule candidates identified by HTFlows (that are
not part of the ZINC-250K data set), exhibit QED values on par with those from ZINC-250K or other
state-of-the-art methods. For details of the property optimization strategy and the top three molecules,
see App. D.2.

5 DISCUSSION AND CONCLUSIONS

Table 3: Performance on molecule prop-
erty optimization in terms of the best
QED scores, scores taken from the cor-
responding papers (JTVAE score from
Luo et al., 2021; Verma et al., 2022).

Method 1st 2nd 3rd

Dat(ZINC-250K) 0.948 0.948 0.948
JTVAE 0.925 0.911 0.910
GCPN 0.948 0.947 0.946
GraphAF 0.948 0.948 0.947
GraphDF 0.948 0.948 0.948
MoFlow 0.948 0.948 0.948
ModFlow 0.948 0.948 0.945
HTFlows 0.948 0.948 0.948

We have presented HTFlows, a novel approach to molec-
ular generation by emphasizing heterophily patterns,
countering the traditional oversmoothing vulnerability
seen in existing graph neural network methodologies.
By leveraging multiple interactive flows to discern (dis-
)similarities between molecular entities, our method of-
fers a more versatile representation of the intricate bal-
ance between molecular affinities and repulsions. The
experiment results show HTFlows’ ability to consistently
generate molecules with high fidelity, diversity, and de-
sired properties, marking it as a promising tool in the
field of chemoinformatics and molecular design.

Based on the experiment results, it is noteworthy to
draw parallels and distinctions between our model and
MoFlow (Zang & Wang, 2020). While there are over-
arching similarities, our approach introduces several enhancements. Foremost, our atom model
incorporates a heterophilous message-passing scheme within the coupling layers of the GNNs, and
employs multiple interactive flows for dynamic information exchange. MoFlow’s implementation
uses an additional dimension to represent non-existent nodes, which, in practice, reduces the GNNs
to MLPs. Furthermore, the masking matrix in MoFlow’s ACL layers filters information predicated on
node order in each graph, inadvertently making the model susceptible to isomorphic transformations.
In contrast, our HTFlows model allows flexible-sized input graphs, avoids message exchange from
the non-existed nodes, and is permutation-invariant to isomorphism.

9
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Reproducibility statement The code and trained models will be made available under the MIT
License on GitHub upon acceptance.
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APPENDIX

This appendix is organized as follows. App. A presents details on heterophilious message passing
in our model and compuational issues. App. B provides a formal proof to show that the proposed
triple flow model is reversible. App. C summarizes and describes the metrics used in the experiments.
App. D provides additional experiment results for molecule generation and the algorithm for property
optimization together with detals on found candidate molecules.

A ALGORITHM DETAILS

A.1 THE BEHAVIOR OF HETEROPHILIOUS GNN CONTROLLED BY γ

In the code implementation, we choose a single-layer Graph Attention Network (GAT) as the base,
but change the scaling of the message collected from neighbours based on the homophily during
message passing.

Given node embeddings hu,hv of node u, v, there is the attention factor βu,v calculated based on a
softmax of the attributes of nodes and edge feature euv:

βu,v “
exp

`

LeakyReLU
`

aJrΘhu }Θhv }Θeei,js
˘˘

ř

wPN puqYtuu exp pLeakyReLU paJrΘhu }Θhw }Θeev,wsqq
,

where θ “ pΘ,Θe,aq are model parameters, Then the message collected from neighbours and
updated to be

h1
v “ αγ

v,vβv,vΘhv `
ÿ

uPN pvq

αγ
u,vβu,vΘhu,

where αγ
u,v denotes the homophily factor, where

αγ
u,v “

$

&

%

1, if γ “ cen.
Hpu, vq, if γ “ hom.
1 ´ Hpu, vq, if γ “ het.,

where Hpu, vq fi Scosph
pkq
u ,h

pkq
v q is the cosine similarity.

In conclusion, given the input X “ rxvsvPV , edge attributes and edge index contained inside the
edge tensor E, the GNN gets the output X 1 “ rx1

vsvPV

GNNγ
θ pX | Eq “ X 1.

A.2 COMPUTATIONAL CONSIDERATIONS

For the convenience on the calculation of the log-likelihood, every transformation of variables needs
the calculation of a Jacobian matrix (i.e., BZpl`1q{BZplq). So all the complicated modules (e.g.,
GNNs, MLPs) are all built inside the coupling structure (part of input is updated by the scaling matrix
S, and transformation matrix T depends on the other part of input).

B PROOF OF REVERSIBILITY

B.1 REVERSIBILITY OF THE ACL

Set up Assume an ACL defined in Sec. 3.1 contains coupling function f and masking matrix
M P t0, 1umˆn. Given input X P Rmˆn, the output Y is calculated as

Y “ ACLpf,Mq
pXq “ M d pS d X1 ` T q ` p1 ´ MqX2 (16)

where logS,T “ fpX2q, and X1,X2 are the split from input by masking:

X1 “ M d X, X2 “ p1 ´ Mq d X.

We seek to recover X from the f,M , and Y .
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Reversibility from output to input Since M is binary, we get
M d M “ M , p1 ´ Mq d p1 ´ Mq “ p1 ´ Mq,

M d p1 ´ Mq “ p1 ´ Mq d M “ 0

and
X “ pM ` p1 ´ Mqq d X “ M d X ` p1 ´ Mq d X “ X1 ` X2.

By splitting the output Y to Y1,Y2 by masking matrix:
Y1 “ M d Y , Y2 “ p1 ´ Mq d Y .

Combining with Eq. (16), we know
Y1 “ M d Y

“ M d pM d pS d X1 ` T q ` p1 ´ Mq d X2q

“ M d pS d X1 ` T q,

and
Y2 “ p1 ´ Mq d Y

“ p1 ´ Mq d pM d pS d X1 ` T q ` p1 ´ Mq d X2q

“ p1 ´ Mq d pM d pS d X1 ` T q ` p1 ´ Mq d p1 ´ Mq d Xq

“ p1 ´ Mq d X “ X2.

Now the logS,T “ fpX2q “ Y2 are recovered by Y . Notice that
M d pY1 ´ T q c S “ M d pM d pS d X1 ` T q ´ T q c S

“ pM d S d X1 ` M d T ´ M d T q c S

“ pM d S d X1q c S

“ M d X1

“ M d M d X

“ M d X

“ X1 if pSqi,j ą 0, @i, j,

where ‘c’ denotes element-wise division. Since we define S as the exponential of part of output
from coupling function, the elements of S are all strictly positive. Then

´

ACLpf,Mq
¯´1

pY q “ X “ X1 ` X2

“ M d pY1 ´ T q c S ` Y2

“ M d pM d Y ´ T q c S ` p1 ´ Mq d Y .

(17)

where logS,T “ fpX2q “ fpp1 ´ Mq d Y qq. Eq. (17) shows how the input is recovered from
output, thus the ACL block is reversible.

B.2 REVERSIBILITY OF THE BOND MODEL

For the bond model fb “ ACLb
kb

˝ ¨ ¨ ¨ ˝ ACLb
1, and since each ACLb

i , i “ 1, . . . , kb is reversible,

we can write f´1
b “

´

ACLb
1

¯´1

˝ ¨ ¨ ¨ ˝

´

ACLb
kb

¯´1

, which the reverse function of fb.

B.3 REVERSIBILITY OF THE ATOM MODEL

For atom model fa, which includes all tACLmix.
i ,ACLa

i,γ |i “ 1, . . . , ka, γ P Γu, we prove that each

layer of fa which maps hpaq

i´1 to h
paq

i is reversible.

For i P t1, . . . , kau, given h
paq

i “ ACL
pmix.q
i ph̄

paq

i q, the h̄
paq

i could be recovered by reversible
ACL

pmix.q
i . Since

h̄
paq

i “ concat
“

X̄cen.
i , X̄hom.

i , X̄het.
i

‰

(18)

“ concat
“

ACLi,cen.pX
cen.
i´1q,ACLi,hom.pX

hom.
i´1 q,ACLi,het.pX

het.
i´1q

‰

, (19)

then the Xcen.
i´1,X

hom.
i´1 ,X

het.
i´1 can be recovered by reversible tACLa

i,γ | γ P Γu, thus h
paq

i´1 “

concat
“

Xcen.
i´1,X

hom.
i´1 ,X

het.
i´1

‰

is recovered.
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C DESCRIPTION OF METRICS

For benchmarking, model selection, comparison, and explorative analysis, we use the following 14
metrics. The metrics are presented in detail in the work by Polykovskiy et al. (2020) that introduced
the MOSES benchmarking platform. The metrics calculation makes heavy use of the RDKit open-
source cheminformatics software (https://www.rdkit.org/). We briefly summarize the
metrics below.

Sanity check metrics

1. Validity Fraction (in r0, 1s) of the molecules that produce valid SMILES representations.
This is a sanity check for how well the model captures explicit chemical constraints such
as proper valence. Higher values are better as a low value can indicate that the model
does not capture properly chemical structure. We report numbers without post hoc validity
corrections.

2. Uniqueness Fraction (in r0, 1s) of the molecules that are unique. This is a sanity check
based on the SMILES string representation of the generated molecules. Higher values are
better as a low value can indicate the model has collapsed and produces only a few typical
molecules.

3. Novelty Fraction (in r0, 1s) of the generated molecules that are not present in the training
set. Higher values are better as a low value can indicate overfitting to the training data set.

Summary statistics

4. Similarity to a nearest neighbour (SNN) The average Tanimoto similarity (Jaccard coeffi-
cient) in r0, 1s between the generated molecules and their nearest neighbour in the reference
data set. Higher is better: If the generated molecules are far from the reference set, similarity
to the nearest neighbour will be low.

5. Fragment similarity (Frag) Measures similarity (in r0, 1s) of distributions of BRICS
fragments (substructures) in the generated set vs. the original data set. If molecules in the
two sets share many of the same fragments in similar proportions, the Frag metric will be
close to 1 (higher better).

6. Scaffold similarity (Scaf) Measures similarity (in r0, 1s) of distributions of Bemis–Murcko
scaffolds (molecule ring structures, linker fragments, and carbonyl groups) in the generated
set vs. the original data set. This metric is calculated similarily as the Fragment similarity
metric by counting substructure presence in the data, and they can be high even if the data
sets do not contain the same molecules.

7. Internal diversity (IntDiv1) Measure (in r0, 1s) of the chemical diversity within the gener-
ated set of molecules. Higher values are better and signal higher diversity in the generated
set of moleculers. Low values can signal mode collapse.

8. Internal diversity (IntDiv2) Measure (in r0, 1s) of the chemical diversity within the gener-
ated set of molecules. The interpretation is similar to IntDiv1, but with stronger penalization
of the Tanimoto similarity in calculating the diversity.

9. Filters This metric is specific to the MOSES benchmarking platrofm (see Polykovskiy et al.,
2020). It gives the fraction (in r0, 1s) of generated molecules that passes filters applied during
data set construction. In practice, these filters may filter out chemically valid molecules
that have fragments that are not of interest in the MOSES data set (filtered with medicinal
chemistry filters). Thus, this metric is not of primary interest for us, but gives a view on
match with the MOSES data set.

10. Fréchet ChemNet distance (FCD) Analogous to the Frechét Inception Distance (FID) used
in image generation, FCD compares feature distributions of real and generated molecules
using a pre-trained model (ChemNet). Lower values are better.

Descriptive distributions

11. Octanol-water partition coefficient (logP) A logarithmic measure of the relationship be-
tween lipophilicity (fat solubility) and hydrophilicity (water solubility) of a set of molecules.
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Figure A8: Structured latent-space exploration (QM9). Nearest neighbour search in the latent
space with the seed molecule on the left and neigbours with the Tanimoto similarity (1 0)
given for each molecule.

For large values a substance is more soluble in fat-like solvents such as n-octanol, and for
small values more soluble in water. We report both histograms of logP and a summary statis-
tic in terms of the Wasserstein distance between the generated and reference distributions
(smaller better).

12. Synthetic accessibility score (SA) A metric that estimates how easily a chemical molecule
can be synthesized. It provides a quantitative value indicating the relative difficulty or ease
of synthesizing a molecule, with a lower SA score suggesting that a molecule is more easily
synthesized, and a higher score suggesting greater complexity or difficulty. We report both
histograms of SA and a summary statistic in terms of the Wasserstein distance between the
generated and reference distributions (smaller better).

13. Quantitative estimation of drug-likeness (QED) A metric designed to provide a quanti-
tative measure of how ‘drug-like’ a molecule is. It essentially refers to the likelihood that
a molecule possesses properties consistent with most known drugs, estimated based on a
variety of molecular descriptors. We report both histograms of QED and a summary statistic
in terms of the Wasserstein distance between the generated and reference distributions
(smaller better).

14. Molecular weight (Weight) The sum of atomic weights in a molecule. We report both
histograms of molecular weights and a summary statistic in terms of the Wasserstein distance
between the generated and reference distributions (smaller better).

D EXPERIMENT DETAILS

D.1 FURTHER RESULTS

We provide further results for structured latent-space exploration (only ZINC-250K included in the
main paper). Example explorations for QM9 are shown in Fig. A8.

We include full listings of all 14 metrics (description of metrics in App. C) considered in the random
generation tasks for QM9 and ZINC-250K. The values are listed in Tables A4 and A5, respectively.
Additionally, we also visualize the node homophily (in the ‘neighbour-counting’ sense as in Fig. 1) for
both QM9 and ZINC-250K together with the estimated node homophily histograms (see Fig. A9) from
the generation output from the different models. Even if our model, considers homophily/heterophily
in learned embedding sense, the histograms show structure even for node homophily—though with
an additional mode for strong heterophily, which shows for both HTFlows and MoFlow.

D.2 PROPERTY OPTIMIZATION

Algorithm Given a pretrained HTFlows f , and training set D contains molecule and property
label pairs tG, yu. Now we introduce an extra simple MLP gθ, trained on the dataset to be gθ˚ by
optimizing the parameters:

θ˚ “ argmin
θ

MSEloss
pG,yqPD

.pgθpfpGqq, yq (20)
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Table A4: Full benchmark metrics for random generation using QM9 (reporting mean˘std).

Validity Ò Uniqueness Ò Novelty Ò SNN Ò Frag Ò Scaf Ò IntDiv1 Ò

Data (QM9) 1.00˘0.00 1.00˘0.00 0.62˘0.02 0.54˘0.00 0.94˘0.01 0.76˘0.03 0.92˘0.00

GraphDF - 1.00˘0.00 0.98˘0.00 0.35˘0.00 0.61˘0.01 0.09˘0.07 0.87˘0.00

MoFlow 0.94˘0.01 1.00˘0.00 0.99˘0.00 0.33˘0.00 0.60˘0.03 0.04˘0.03 0.92˘0.00

HTFlows 0.83˘0.01 1.00˘0.00 0.95˘0.01 0.36˘0.01 0.71˘0.04 0.23˘0.05 0.92˘0.00

IntDiv2 Ò Filters Ò FCD Ó logP Ó SA Ó QED Ó Weight Ó

Data (QM9) 0.90˘0.00 0.64˘0.02 0.40˘0.02 0.04˘0.01 0.03˘0.01 0.00˘0.00 0.32˘0.08

GraphDF 0.86˘0.00 0.69˘0.02 10.76˘0.21 0.16˘0.03 0.27˘0.02 0.05˘0.00 19.72˘0.54

MoFlow 0.90˘0.00 0.55˘0.02 7.48˘0.23 0.38˘0.02 0.41˘0.02 0.04˘0.00 3.74˘0.09

HTFlows 0.90˘0.00 0.39˘0.02 5.63˘0.15 0.42˘0.06 0.49˘0.04 0.07˘0.00 2.97˘0.31

Table A5: Full benchmark metrics for random generation using ZINC-250K (reporting mean˘std).

Validity Ò Uniqueness Ò Novelty Ò SNN Ò Frag Ò Scaf Ò IntDiv1 Ò

Data (ZINC-250K) 1.00˘0.00 1.00˘0.00 0.02˘0.00 0.51˘0.00 1.00˘0.00 0.28˘0.02 0.87˘0.00

GraphDF - 1.00˘0.00 1.00˘0.00 0.23˘0.00 0.35˘0.01 0.00˘0.00 0.88˘0.00

MoFlow 0.70˘0.01 1.00˘0.00 1.00˘0.00 0.29˘0.00 0.81˘0.01 0.01˘0.00 0.88˘0.00

HTFlows 0.46˘0.02 1.00˘0.00 1.00˘0.00 0.22˘0.00 0.57˘0.03 0.00˘0.00 0.90˘0.00

IntDiv2 Ò Filters Ò FCD Ó logP Ó SA Ó QED Ó Weight Ó

Data (ZINC-250K) 0.86˘0.00 0.59˘0.01 1.44˘0.01 0.05˘0.01 0.03˘0.01 0.01˘0.00 2.18˘0.39

GraphDF 0.87˘0.00 0.54˘0.01 34.30˘0.30 1.28˘0.03 1.70˘0.03 0.30˘0.00 149.27˘1.55

MoFlow 0.86˘0.00 0.53˘0.02 22.65˘0.40 0.14˘0.03 0.85˘0.04 0.24˘0.01 61.83˘3.00

HTFlows 0.88˘0.00 0.22˘0.02 27.90˘0.23 0.96˘0.07 2.07˘0.05 0.44˘0.01 16.51˘2.85

Then we find molecule candidates tGiu
k
i“1 with top-k properties in the data set D are chosen. New

embeddings are explored by optimizing the predict label by gθ˚ starting from these candidates:

hi,j “ δ
Bgθ˚

Bh
phi,j´1q ` hi,j´1, j “ 1, . . . , N, hi,0 “ fpGiq, i “ 1, . . . , k,

where δ denotes the search step length, and N is the number of iterations. These embeddings could
be recovered to be molecule set:

D1 “ tf´1phijqui“1,...,k, j“1,...,N .

Finally, D1zD gives the novel molecule sets with related high target properties.

Generation results In our experiments, the gθ is a simple 3-layer MLP with 16 hidden nodes, the
dataset D is ZINC-250K, and target property y is QED. And D1zD provides 17 molecules with QED
score 0.948. The Top-3 QED score and molecular SMILES are listed below:

1. QED “ 0.948442, CC(C)N1N=CC2=NC(c3ccc(-c4ccccn4)cc3)NC21
2. QED “ 0.948190, O=C(NCC1COc2ccccc2O1)c1ccccc1Cl
3. QED “ 0.948051, Cc1ccc(C(CO)C2CS(=O)(=O)c3ccccc32)cc1

Baselines The baselines scores of GCPN (You et al., 2018), GraphAF (Shi et al., 2019), GraphDF
(Luo et al., 2021), MoFlow Zang & Wang (2020) and ModFlow (Verma et al., 2022) are acquired
from the corresponding papers. The score of JTVAE (Jin et al., 2018) is acquired from Zang & Wang
(2020); Verma et al. (2022).
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Figure A9: Node homophily distribution of generated molecules.
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