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Learning-Time Encoding Shapes Unlearning in LLMs

Anonymous Authors1

Abstract

As large language models (LLMs) are increas-
ingly deployed in the real world, the ability to
“unlearn”, or remove specific pieces of knowledge
post hoc, has become essential for a variety of
reasons ranging from privacy regulations to cor-
recting outdated or harmful content. Prior work
has proposed unlearning benchmarks and algo-
rithms, and has typically assumed that the train-
ing process and the target model are fixed. In this
work, we empirically investigate how learning-
time choices in knowledge encoding impact the ef-
fectiveness of unlearning factual knowledge. Our
experiments reveal two key findings: (1) learning
with paraphrased descriptions improves unlearn-
ing performance and (2) unlearning individual
piece of knowledge from a chunk of text is chal-
lenging. Our results suggest that learning-time
knowledge encoding may play a central role in
enabling reliable post-hoc unlearning.

1. Introduction
Large Language Models (LLMs) acquire vast amounts of
factual knowledge through large-scale pretraining as well as
subsequent fine-tuning. As they are increasingly deployed in
real applications, there is an increasing need for “unlearning”
certain information in an efficient post-hoc way (Bourtoule
et al., 2021; Liu et al., 2025) from pre-trained or the fine-
tuned models. This need arises for several reasons. One is
compliance with privacy regulations such as the GDPR’s
"Right to be Forgotten" (gdp, 2016) – for example, when
a user requests that personal data used during training be
removed. Other motivations include addressing copyright
violations (Eldan & Russinovich, 2023; Dou et al., 2024;
Vyas et al., 2023), removing unsafe or harmful content (such
as instructions for building weapons) (Yao et al., 2024b; Li
et al., 2024), and removing personal and sensitive informa-
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tion (Jang et al., 2022; Wu et al., 2023; Barrett et al., 2023).
These diverse motivations often align with slightly different
objectives for the unlearning process.

One common goal of unlearning in LLMs is to make spe-
cific factual knowledge non-extractable, which means that
prevent the model from generating it in response to relevant
prompts (Jang et al., 2022; Si et al., 2023; Guo et al., 2024;
Tian et al., 2024; Choi et al., 2024; Yuan et al., 2025; Wu
et al., 2024; Patil et al.), and at the same time retain the
remaining knowledge. Prior work has primarily focused on
benchmarks (Maini et al.; Shi et al., 2024; Yao et al., 2024a;
Jin et al., 2024) and developing algorithms (Ilharco et al.,
2022; Si et al., 2023; Zhang et al.; Yu et al., 2023; Wu et al.,
2023; Jia et al., 2025; Eldan & Russinovich, 2023; Patil
et al.), and typically assume that both the trained model and
the unlearning targets are fixed. The central goal in these
studies is to improve the effectiveness of the unlearning
method itself. However, a crucial factor is often overlooked:
the way a model is trained – including how knowledge is
encoded in the training data – may significantly influence
how challenging it is to later unlearn that knowledge. This
raises a fundamental question: Does learning-time knowl-
edge encoding affect knowledge unlearning? By varying
how knowledge is encoded as textual data while keeping
the set of factual knowledge constant, we aim to understand
how learning-time encoding shapes unlearning.

To ensure fair comparison, we investigate this question
through controlled experiments. For this purpose, we ex-
tend two existing unlearning datasets – Eval-DU (Wu et al.,
2024) and TOFU (Maini et al.) – resulting in Eval-DU+
and TOFU+. Both datasets involve synthetic biographies
of “made-up” characters that are unlikely to occur in the
pre-training corpus; this allows us to control the exact tex-
tual encodings observed by the LLM during training. We
fine-tune LLMs on identical sets of factual knowledge, vary-
ing only the knowledge textual encoding. After fine-tuning,
we attempt to unlearn specific pieces of knowledge and
analyze the differences in the unlearning across different
types of encoding. Notably, our study focuses on unlearning
from fine-tuned models, a common scenario where sensitive
content or private user data could be introduced. 1.

1Please see our discussion on “studying unlearning with pre-
trained models" in Section A.
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Using the constructed testbed, we first empirically study
the effects of paraphrased texts on knowledge unlearn-
ing. We compare two fine-tuning setups: one in which
each knowledge piece is encoded by a single description,
and another in which each piece is associated with multiple
paraphrased descriptions. We observe that learning with
multiple paraphrased descriptions improves unlearning ef-
fectiveness. It helps remove memorization of the original
training texts and reduces the model’s ability to extract the
target knowledge when prompted with unseen paraphrased
inputs. The finding suggests the first practical unlearning
strategy: paraphrasing.

Second, we aim to empirically understand the behav-
ior of unlearning knowledge embedded within chunks
of text. The finetuning set consists of chunks of text, where
each chunk summarizes multiple pieces of knowledge. We
observe that unlearning individual knowledge pieces be-
comes significantly more challenging when the target knowl-
edge are entangled with retained content within the same
chunk. Motivated by this, we further formulate and em-
pirically validate two hypotheses: (1) unlearning is more
effective when the unlearning split aligns with the chunk
boundaries in the training data; and (2) the isolation of for-
get from retain knowledge within the same chunk of text
makes unlearning easier. The findings suggest the second
practical unlearning strategy: separating.

2. Problem Set-up
A single piece of knowledge can be encoded in training
data in different ways. Prior work (Allen-Zhu & Li, 2024;
Allen-Zhu & Li) suggests that learning with different encod-
ings influences both the model’s memorization of training
instances and its ability to extract the underlying knowledge
when prompted with alternative phrasings. Meanwhile, un-
learning factual knowledge aims to remove both the memo-
rized content and the model’s ability to extract knowledge
from unseen prompts. This raises a natural question: Does
the difficulty of unlearning a piece of knowledge k vary
depending on how k was encoded during training? In this
paper, we investigate two concrete problem settings to an-
swer this question.

Problem I: The effect of text paraphrasing on unlearn-
ing. Prior studies have shown that paraphrased represen-
tations can lead LLMs to internalize knowledge more ro-
bustly (Allen-Zhu & Li), improving generalization to un-
seen prompts. This raises the question: Do paraphrased
encodings of knowledge during training help post-hoc
unlearning?

We consider two fine-tuning datasets, FT-Single and
FT-Mul both encoding the same knowledge set. In
FT-Single, each knowledge piece is represented by a

single description and in FT-Mul by multiple paraphrased
descriptions; see examples in Figure 1). We fine-tune LLMs
on each dataset and compare unlearning performance for
different unlearning methods.

Problem II: the unlearning from text chunks. In natu-
ral datasets, knowledge is often embedded in larger text
alongside multiple other knowledge pieces, such as the para-
graphs from Wikipedia. Unlearn requests may apply only to
a subset of the knowledge within a chunk, while the rest of
the content is to be preserved. For instance, in a biography
of a public figure, personal details may need to be unlearned,
while professional accomplishments should remain intact.
This raises the question: How effective is unlearning a
subset of the knowledge within text chunks?

To explore this, we construct a fine-tuning dataset
FT-Mul-Chunk, where each knowledge piece is implic-
itly embedded across multiple paraphrased text chunks.
Each chunk may also include other knowledge pieces that
will not be targeted for removal; see examples in Figure 1.

Tabel 1 summarizes the experimental setups: given each
fine-tuned model, we will test with six unlearning choices
and evaluate the unlearning by two types of unlearn-retain
trade-offs together with two quantative metric to evalute the
trade-off; all experiments are conducted with three LLMs
and two datasets, which we augmented from the existing un-
learning datsets; See details in Appendix B and Appendix C.

3. Experiment Results
Due to the space, we only present the results for Llama2-
7B on two datasets Eval-DU+ and TOFU+ and only show
evalution with the extraction trade-off. The full results show
the similar findings and we attach them in Appendix D.

3.1. Empirical Study I: Effects of Paraphrased Texts
on Knowledge Unlearning

In this section, we study how paraphrased descriptions in
the fine-tuning dataset affect the difficulty of unlearning.
For four combinations of datasets and pre-trained LLMs,
we fine-tune models using two training sets: FT-Single,
where each knowledge piece is encoded with a single de-
scription, and FT-Mul, where each is encoded with mul-
tiple paraphrased descriptions. Table 2 reports the perfor-
mance of fine-tuned models on fine-tuning and test sets.

Main observation: fine-tuning with paraphrased de-
scriptions (FT-Mul) consistently leads to more effective

2FT Probs. is not applicable to FT-Mul-Chunk because
the probability-based knowledge score is defined with respect
to a single textual description of a knowledge piece k. In
FT-Mul-Chunk, the related words of k can be distributed and
shared with other knowledge in the same text-chunk.
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An example of the textual description for a piece of knowledge: 
Reid Perry has Richard Perry as his father.

An example of the paraphrased description: 
The father of Reid Perry is Richard Perry.

An example of the text trunk that implies the same piece of knowledge: 
Richard Perry, born in 1956 in Maryland, works as an airline pilot. He is married to Parker 
Ross and is the father of Reid, Reed, Raymond, and Quentin Perry. Richard's parents are…

Figure 1: Examples of different textual descriptions for the same piece of knowledge in Eval-DU+.

Table 1: Summary of experimental setups used in this paper. Our study focuses on the effects of fine-tuning on unlearning;
the remaining configurations define the framework for evaluation.

Fine-tuning Unlearning Unlearn-Retain Evaluation Dataset ModelUnlearning Data Unlearning Algo. Type of Trade-off Quantative Metric

FT-Single
FT-Mul

FT-Mul-Chunk

UL-Exact
UL-Single
UL-Mul

Gradieng Ascent
Task Vector

Memorization
Extraction

Norm-AUC
AUC

Eval-DU+
TOFU+

Llama2-7B
Llama3-8B

Gemma2-2B

Table 2: Average knowledge scores among finetuning set
(FT Probs.) or unseen test set (Test Probs.).

Llama2-7B, Eval-DU+ Llama2-7B, TOFU+

FT Probs. Test Probs. FT Probs. Test Probs.

FT-Single 0.95 0.47 0.99 0.12
FT-Mul 0.92 0.68 0.99 0.16

FT-Mul-Chunk2 - 0.46 - 0.13

unlearning. We can observe this advantage across datasets,
model types, unlearning methods, and evaluation metric.
As shown in Table 3, when evaluated with the extraction
trade-off, FT-Mul outperforms (or matches) FT-Single
in 22 out of 24 total comparisons; we also see FT-Mul
outperforms (or matches) FT-Single in 83/96 cases in
the full results.

Practical strategy I: paraphrasing. Incorporate multiple
paraphrased descriptions of each knowledge piece during
fine-tuning – or simply, augment the fine-tuning set through
the addition of paraphrases. As suggested by our results,
this would improve the effectiveness of unlearning by en-
hancing the model’s ability to forget targeted information
while preserving unrelated content.

3.2. Empirical Study II: Understanding the Unlearning
from Text Chunks

In this section, we examine the task of unlearning knowl-
edge embedded within larger text chunks. We use the
FT-Mul-Chunk setup for fine-tuning across four com-
binations of datasets and pre-trained LLMs, and evaluate
unlearning for six configurations of unlearning methods and
data encodings.

Observation: Unlearning individual knowledge pieces
is more difficult when they are entangled with retained

content in the same text chunk. Table 4 reports Norm-
AUC values for the extraction trade-off. We observe that
for Eval-DU+ (across all three pre-trained LLMs), most
Norm-AUC values are close to 0.5 across the six unlearn-
ing configurations. Norm-AUC value as 0.5 indicates that
unlearning tends to remove both target and retained knowl-
edge from the target LLM at a similar rate — suggesting
that the unlearning process is largely ineffective in selec-
tively removing the intended content. Particularly, mod-
els fine-tuned with FT-Mul-Chunk exhibit knowledge
scores (test probs.) comparable to those fine-tuned with
FT-Single (test probs.). Given this similarity, unlearning
from FT-Mul-Chunk still consistently results in lower
Norm-AUC scores than FT-Single.

A plausible explanation lies in the entanglement of the
descriptions of the target and the non-target knowledge
within text chunks. This is supported by the comparison
between Eval-DU+ and TOFU+. As shown in Table 4,
Norm-AUC values are noticeably higher for TOFU+, sug-
gesting more effective unlearning. The key distinction lies in
how the unlearn–retain split is defined. In Eval-DU+, tar-
get and retained knowledge are incorporated within shared
chunks (see the example in Figure 1) while TOFU+ orga-
nizes chunks so that each is either fully composed of un-
learned knowledge or entirely retained. This structural align-
ment enables unlearning methods to act on self-contained
units, thereby resulting in increased unlearning effectiveness.
These results indicate that representational entanglement be-
tween unlearn and retain split can be a primary obstacle to
selective unlearning. This explanation further motivates the
following two hypotheses.

Hypothesis 1: Unlearning is more effective when the un-
learn split aligns with the chunk boundaries in the train-
ing data. To test this hypothesis, we construct a new unlearn

3
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Table 3: FT-Single versus FT-Mul: Norm-AUC (↑) / AUC (↑) of the extraction trade-off. We bold the better score
between FT-Mul and FT-Single.

Model, FT Choices Gradient Ascent (GA) Task Vector (GA)
Dataset UL-Exact UL-Single UL-Mul UL-Exact UL-Single UL-Mul

Llama2-7B, FT-Single 0.59 / 0.52 0.62 / 0.53 0.63 / 0.53 0.57 / 0.52 0.62 / 0.53 0.69 / 0.55
Eval-DU+ FT-Mul 0.55 / 0.54 0.63 / 0.58 0.64 / 0.58 0.65 / 0.59 0.62 / 0.57 0.72 / 0.62

Llama2-7B, FT-Single 0.65 / 0.50 0.59 / 0.50 0.59 / 0.50 0.54 / 0.50 0.59 / 0.50 0.59 / 0.50
TOFU+ FT-Mul 0.62 / 0.51 0.63 / 0.51 0.64 / 0.51 0.58 / 0.51 0.64 / 0.51 0.65 / 0.51

Table 4: Norm-AUC (↑) of the extraction trade-off when the finetuning is done by FT-Mul-Chunk.

Model & Dataset Gradient Ascent (GA) Task Vector (GA)
UL-Exact UL-Single UL-Mul UL-Exact UL-Single UL-Mul

Llama2-7B, Eval-DU+ 0.53 0.50 0.49 0.57 0.55 0.56

Llama2-7B, TOFU+ 0.59 0.58 0.58 0.59 0.60 0.60

Table 5: Norm-AUC (↑) of the extraction trade-off on
(Llama2-7B, Eval-DU+), when the finetuning is done by
FT-Mul-Chunk and the unlearn split is aligned with
the partitions of text chunks. We also report the differ-
ence of Norm-AUC if compared with the results of the
original unlearning split in Table 4.

Gradient Ascent (GA) Task Vector (GA)
UL-Exact UL-Single UL-Mul UL-Exact UL-Single UL-Mul

0.66 (+0.13) 0.56 (+0.06) 0.55 (+0.06) 0.60 (+0.03) 0.57 (+0.02) 0.59 (+0.03)

Table 6: Norm-AUC (↑) of the extraction trade-off un-
der FT-Mul-Chunk-Iso on (Llama2-7B, Eval-DU+),
where the text chunks are concatenations of the individ-
ual knowledge descriptions. We also report the difference
of Norm-AUC compared with the results of the original
FT-Mul-Chunk in Table 4.

Gradient Ascent (GA) Task Vector (GA)
UL-Single UL-Mul UL-Single UL-Mul

0.61 (+0.11) 0.60 (+0.11) 0.64 (+0.09) 0.69 (+0.13)

split in Eval-DU+ that aligns more closely with how knowl-
edge pieces are grouped within text chunks. In Eval-DU+,
each chunk describes all facts related to a specific person.
Therefore, we randomly select 12 people and include all
knowledge pieces associated with them in the new unlearn
split, which also mostly matches the size of the original
unlearn split.

We then evaluate the same six unlearning configurations on
this new split using three LLMs. Table 5 reports the cor-
responding Norm-AUC values for the extraction trade-off.
Compared to the results in Table 4, we observe a consistent
improvement in Norm-AUC, indicating more effective un-
learning. These results support Hypothesis 1: unlearning
is more effective when the unlearn split is aligned with the
underlying structure of the text chunks.

Hypothesis 2: Unlearning is more effective when the tar-
get knowledge is less entangled with the retain content
within text chunks. We hypothesize that the difficulty of
unlearning a single knowledge piece while preserving oth-
ers in the same text chunk arises from entangled descrip-
tions—that is, when unlearn and retain knowledge are inter-
woven within the same narrative. But what if the unlearn and
retain pieces are presented in isolation within the chunk?

To explore this, we construct a new version of the fine-
tuning data, denoted as FT-Mul-Chunk-Iso, where
each text chunk is formed by simply concatenating inde-
pendent sentence-level descriptions of the associated knowl-
edge pieces. This ensures that each piece of knowledge is
expressed separately, even when grouped in the same chunk.
Below is an example:

Parker Ross is the wife of Richard Perry. As a child, Reed
Perry belongs to Richard Perry...

We fine-tune LLMs using these disentangled chunks and
evaluate unlearning effectiveness under the same six un-
learning configurations, using the original unlearn split from
Eval-DU+. Table 6 reports the corresponding Norm-AUC
values for the extraction trade-off. Compared to the orig-
inal FT-Mul-Chunk in Table 4, we observe consistent
improvements in Norm-AUC. This means that unlearning is
more effective when the unlearn and retain content are more
clearly separated within the same text chunk.

Practical strategy II: separating. Design training data
with unlearning in mind by identifying likely unlearning
targets in advance (e.g., via a detector) and rewriting the cor-
responding data to separate potential target knowledge from
retain content, either in standalone sentences or isolated
text chunks. This structural preparation can make post-hoc
unlearning more effective, as supported by our empirical
findings validating the two hypotheses.
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A. Unlearning from Fine-tuning or Pre-training
Rationale for focusing on fine-tuning. Our study focuses on unlearning from fine-tuned models, an important use-case
in which sensitive or private user data is often introduced during customization for downstream tasks. It also allows precise
control over the knowledge space. While the study targets fine-tuning, we include causal language modeling (the same
training objective as pre-training) and multiple LLM architectures, which may offer indirect evidence toward generalization
to pretrained models. A formal investigation of the novel unlearning problem proposed in this work within the pre-training
setting remains an important direction. However, we leave this to future work due to limited transparency in data of the
existing pre-trained models and the high computational cost of pretraining a model from scratch on a sufficiently large and
controlled corpus.

B. Unlearning Set-Up
B.1. Unlearning methods

In this subsection, we introduce the unlearning methods we evaluate in our empirical analysis. Suppose an LLM is already
trained on a represention of a knowledge base K. The objective of factual knowledge unlearning is that a subset Kul of K
becomes no longer extractable from the LLM while preserving the model’s utility. We consider three choices for the textual
encoding Dul of Kul and two unlearning algorithms.

Knowledge textual encodings for unlearning. A common approach for defining the unlearning dataset Dul is to identify
the exact data points used during fine-tuning to represent Kul. This aligns with GDPR’s original motivation of removing
the influence of specific records. However, this is not always applicable in factual knowledge unlearning: rather than the
exact samples from the training data, the unlearning requests are formulated only based on the target knowledge. First,
identifying the samples among the fine-tuning texts representing Kul may be infeasible. More importantly, there may be no
single data point that encodes only the target knowledge, making it difficult to remove it without affecting other knowledge.
Alternatively, Dul can be constructed by generating textual representations for the target knowledge at unlearning time. We
consider the following three options:

1. UL-Exact (Maini et al.; Eldan & Russinovich, 2023; Shi et al., 2024): Dul consists of the exact texts used to represent
k during fine-tuning. For models fine-tuned on FT-Single or FT-Mul, we directly reuse the descriptions in the
fine-tuning dataset. For models trained on FT-Mul-Chunk, we pick text chunks from the fine-tuning set that implicitly
encode k, though these chunks may also include other non-targeted knowledge.

2. UL-Single (Patil et al.): For every target knowledge piece k, Dul includes one textual description of k that differs from
the description used in fine-tuning.

3. UL-Mul (Patil et al.): For every target knowledge piece k, Dul includes multiple paraphrased descriptions of k not used
in fine-tuning, offering diverse yet unseen ways of expressing the same knowledge.

Unlearning algorithms. We experiment with two representative unlearning algorithms that are also evaluated in previous
benchmarks (Maini et al.; Shi et al., 2024; Wu et al., 2024): gradient ascent (GA) (Jang et al., 2022) and task vector
(TV) (Ilharco et al., 2022; Zhang et al., 2023). GA removes knowledge by ascending the loss on the unlearning dataset
Dul, updating parameters θ in the LLM πθ over T steps as θt+1 := θt + ηt · ∇θEDul

[`(πθt , x)]. The trade-off between
unlearning and utility preservation is controlled by the number of steps t: more steps generally yield stronger unlearning but
risk greater utility loss. TV computes a parameter difference vector between the original model θoriginal and a model θoverfit

trained to overfit Dul. The final model is then defined as θunlearn = θoriginal − α(θoverfit − θoriginal), where the scaling
factor α controls the strength of unlearning. We also discuss other existing unlearning algorithms in the related work.

B.2. Unlearning evalutions

Two types unlearning-retain trade-off. Similar to existing unlearning benchmarks (Maini et al.; Shi et al., 2024; Wu et al.,
2024), we evaluate unlearning effectiveness through the trade-off between forgetting the target knowledge and retaining the
non-target (retain) knowledge. Let e(LLM, xk) ∈ [0, 1] be a knowledge score measuring the degree to which the model
retains knowledge k based on a description xk. Given a target and a retain knowledge sets Kul and Krt, we define the
average knowledge scores:
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(a) Original trade-off curves (b) Normalized trade-off curves (c) Trade-off curves connected to (1, 1)
Figure 2: Illustrations for Norm-AUC and AUC. (a) shows the vanilla extraction trade-off curves comparison when the
models are fine-tuned by FT-Single and FT-Mul and the unlearning methods are fixed; (b) and (c) show the curves for
calculating Norm-AUC and AUC given the curves in (a).

Unlearn Score:
1

|Kul|
∑
k∈Kul

e(LLM, xk), Retain Score:
1

|Krt|
∑
k∈Krt

e(LLM, xk)

The goal of unlearning is to minimize the unlearning score (i.e., forget target knowledge) while maximizing the retain score
(i.e., preserve non-target knowledge). In particular, we consider two evaluation modes based on how xk is defined:

1. Memorization trade-off : xk is the text description of k appearing in fine-tuning dataset. This evaluates the model’s
memorization of the texts used during the model’s training.

2. Extraction trade-off : xk is a paraphrased description of k not used during fine-tuning or unlearning. This evaluates the
model’s ability to extract knowledge beyond its memorized description.

Quantitative metrics for evaluating the trade-off: Norm-AUC and AUC. To evaluate the unlearn-retain trade-off for
an unlearning method, we vary the parameter controlling the trade-off (e.g. t in GA and α in TV) across a list of pre-defined
values. For each parameter value we obtain a model checkpoint, whose unlearn and retain scores we compute. These scores
are plotted to form a trade-off curve (Figure 2), where curves closer to the top-left indicate a more favorable trade-off.

When comparing different fine-tuning strategies under a fixed unlearning configuration (i.e., using the same unlearning data
and algorithm), the trade-off curves may start at different points due to the different fine-tuned models. For instance, models
fine-tuned with FT-Mul typically achieve higher initial knowledge scores. To account for this we define the Norm-AUC
(↑). This metric first normalizes all knowledge scores by their value in the original fine-tuned model and then computes
the area under the normalized curve (Figure 2, middle). A higher Norm-AUC indicates a more efficient unlearning and a
Norm-AUC of 0.5 implies that unlearn and retain scores are decreasing at the same rate. In addition, we also report the
absolute AUC (↑). For fairness before computing AUC, we align all curves to start from the same reference point (1, 1)
(Figure 2, right). Together, the two metrics provide complementary insights: Norm-AUC highlights the relative efficiency of
unlearning, while AUC captures the absolute level of retained knowledge at different unlearning stages.

C. More Experimental Set-ups
In addition to the fine-tuning, unlearning, and evaluation setups introduced in the previous section, we now describe the
dataset and model configurations used in our experiments. Table 1 provides a summary of all experimental settings.

C.1. Dataset preparation – Eval-DU+ and TOFU+

Dataset augmentations. In order to systematically study how learning-time knowledge encodings affect unlearning, we
construct two datasets designed to support controlled experiments. Specifically, we augment two existing unlearning datasets
— Eval-DU (Wu et al., 2024) and TOFU (Maini et al.) — to form Eval-DU+ and TOFU+. The original datasets offer two
properties that allow us to construct the augmented datasets: structured knowledge spaces and initial textual descriptions for
each piece of knowledge.

We begin by defining the atomic knowledge pieces and their partitioning, which are later used to generate text chunks in
both datasets. In Eval-DU, each knowledge piece is a factual triple (subject, relation, object), such as family relationships or
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biographical details like birth year, birthplace, and occupation. The dataset contains 862 such facts involving 100 fictitious
individuals. We group the knowledge pieces by subject to form 100 sets of facts. TOFU is a question-answering (QA)
dataset about fictitious authors. It includes 200 authors, each associated with 20 QA pairs. We treat each QA pair as
representing one atomic fact and partition the knowledge by author, yielding 200 partitions.

We extend both datasets by generating the additional data required for our experimental setup 3: (1) multiple paraphrased
descriptions for each individual knowledge piece, and (2) multiple paraphrased text chunks for each partition of the
knowledge set. Figure 1 shows the data examples in Eval-DU+. In TOFU+, each text chunk is a synthesized QA pair that
consolidates the content of all 20 original QA pairs in a partition (i.e., all facts for a given author). Examples of these QA
pairs are provided in later Appendix G.

Notably, in Eval-DU+, both the knowledge descriptions and the corresponding text chunks are presented in a narrative format,
while in TOFU+, both follow a question–answer (QA) format. In addition, the two datasets span distinct knowledge domains:
Eval-DU+ focuses on relational and biographical facts, whereas TOFU+ centers on fictional author profiles. By constructing
Eval-DU+ and TOFU+ and conducting experiments across these two domains and representational formats, we
establish a robust testbed for analyzing how learning-time knowledge encodings influence the unlearning.

Unlearn–retain split in Eval-DU+ and TOFU+. In Eval-DU+, we randomly select 100 out of 862 knowledge pieces
as the unlearn split, with the remaining pieces forming the retain split. In TOFU+, we adopt the original unlearn–retain
split: 40 knowledge pieces associated with 2 out of the 200 authors form the unlearn split, while the knowledge associated
with the remaining authors constitutes the retain set. Importantly, there are structural differences in the distribution of
unlearning targets. In Eval-DU+ the text chunk of an individual is likely to contain both unlearn and retain knowledge. In
contrast, in TOFU+ all unlearn knowledge is concentrated on two authors, meaning that text chunks are either fully targeted
for unlearning or fully in the retain split. This leads to key empirical differences discussed in later sections.

Knowledge score function e. We use a knowledge score e(LLM, xk) to measure how well an LLM retains a knowledge
piece k when presented with its textual representation xk. This score forms the basis of our unlearn–retain trade-off
evaluations, as defined in Section 2.

In TOFU+, where xk is a QA pair, we adopt the “Probability” metric from the original TOFU benchmark: given a question
embedded in a prompt template, the score is the likelihood the LLM assigns to generating the reference answer. In Eval-DU+,
where xk is a sentence encoding a knowledge triple (s, r, o), we identify the words or phrases corresponding to the subject,
relation, and object. We then compute the conditional probability of the final token (e.g., the object) given the preceding
tokens in the sentence. This score reflects how well the model can extract a missing element of the triple when the other two
are provided in context. For simplicity, we refer to both of these scoring methods as probability throughout the paper.

C.2. Model set-ups

We now describe the model setup. Implementation details including hyperparameters for fine-tuning and unlearning specific
to each model are provided in Appendix H.

Datasets and models. Our experiments involve three large language models: Llama2-7B (Touvron et al., 2023), Llama3-
8B (Grattafiori et al., 2024), and Gemma2-2B (Team et al., 2024). We evaluate four combinations of models and datasets:
(Llama2-7B, Eval-DU+), (Llama3-8B, Eval-DU+), (Gemma2-2B, Eval-DU+), and (Llama2-7B, TOFU+). We expect our
findings to remain consistent across two datasets and multiple model families, supporting broader generalization to unseen
models and datasets.

Model finetuning set-up. The number of paraphrases is 3 in both FT-Mul and FT-Mul-Chunk. Fine-tuning prodcures
all start from the public pre-trained models. For Eval-DU+, we perform fine-tuning with Causal Language-Modeling (same
objective as the pre-training (Radford et al., 2018)), which minimizes the next-token prediction loss over all tokens in each
training example. In contrast, TOFU+ is structured in a QA format, so we adopt supervised fine-tuning (Radford et al., 2018;
Ouyang et al., 2022): each QA pair is placed in a predefined QA template, and the objective is to minimize the loss only
over the answer tokens. We use the Adam optimizer for all fine-tuning experiments and update all model parameters during
fine-tuning. While ensuring that each model achieves a near-perfect fit on its fine-tuning data, we additionally evaluate

3All generations are performed using ChatGPT-4o (Achiam et al., 2023). See later Appendix G for generation prompts and examples.
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Table 7: Pretrained and finetuned LLMs on three general utility benchmarks.

LLM & Dataset Llama2-7B on Eval-DU+ Llama3-8B on Eval-DU+ Gemma2-2B on Eval-DU+ Llama2-7B on TOFU+
Metric MMLU PIQA RACE MMLU PIQA RACE MMLU PIQA RACE MMLU PIQA RACE

Pre-train 0.400 0.778 0.396 0.621 0.807 0.402 0.496 0.791 0.373 0.400 0.778 0.396
FT-Single 0.383 0.775 0.398 0.612 0.801 0.386 0.496 0.798 0.380 0.335 0.758 0.398
FT-Mul 0.368 0.782 0.392 0.612 0.800 0.389 0.486 0.792 0.365 0.332 0.773 0.402

FT-Mul-Trunk 0.353 0.777 0.402 0.616 0.793 0.405 0.492 0.773 0.385 0.284 0.779 0.414

Table 8: Average knowledge scores among finetuning set (FT Probs.) or unseen test set (Test Probs.).

Llama2-7B, Eval-DU+ Llama3-8B, Eval-DU+ Gemma2-2B, Eval-DU+ Llama2-7B, TOFU+

FT Probs. Test Probs. FT Probs. Test Probs. FT Probs. Test Probs. FT Probs. Test Probs.

FT-Single 0.95 0.47 0.97 0.44 0.97 0.39 0.99 0.12
FT-Mul 0.92 0.68 0.95 0.64 0.95 0.61 0.99 0.16

FT-Mul-Chunk4 - 0.46 - 0.43 - 0.40 - 0.13

Table 9: FT-Single versus FT-Mul: Norm-AUC (↑) / AUC (↑) of the extraction trade-off. We bold the better score be-
tween FT-Mul and FT-Single. Across all comparisons, we observe that FT-Mul outperforms or matches FT-Single
in 44 out of 48 cases.

Model, FT Choices GA TV
Dataset UL-Exact UL-Single UL-Mul UL-Exact UL-Single UL-Mul

Llama2-7B, FT-Single 0.59 / 0.52 0.62 / 0.53 0.63 / 0.53 0.57 / 0.52 0.62 / 0.53 0.69 / 0.55
Eval-DU+ FT-Mul 0.55 / 0.54 0.63 / 0.58 0.64 / 0.58 0.65 / 0.59 0.62 / 0.57 0.72 / 0.62

Llama3-8B, FT-Single 0.55 / 0.52 0.60 / 0.53 0.62 / 0.54 0.62 / 0.54 0.63 / 0.54 0.68 / 0.55
Eval-DU+ FT-Mul 0.62 / 0.58 0.61 / 0.57 0.60 / 0.57 0.68 / 0.59 0.59 / 0.56 0.66 / 0.59

Gemma2-2B, FT-Single 0.52 / 0.52 0.57 / 0.53 0.61 / 0.54 0.60 / 0.54 0.59 / 0.53 0.66 / 0.53
Eval-DU+ FT-Mul 0.60 / 0.55 0.63 / 0.56 0.65 / 0.57 0.70 / 0.58 0.65 / 0.56 0.67 / 0.57

Llama2-7B, FT-Single 0.65 / 0.50 0.59 / 0.50 0.59 / 0.50 0.54 / 0.50 0.59 / 0.50 0.59 / 0.50
TOFU+ FT-Mul 0.62 / 0.51 0.63 / 0.51 0.64 / 0.51 0.58 / 0.51 0.64 / 0.51 0.65 / 0.51

general utility on standard LLM benchmarks to confirm that the models retain broad capabilities after fine-tuning. Please
check the general benchmark performance in the result section (Appendix D).

D. Full Experimental Results
Performance of fine-tuned models. We present the knowledge scores on fine-tuned and test set in Table 8. As we can
see, the FT probs are all above 0.9, indicating a near-perfect fit on its fine-tuning data. While ensuring that each model
achieves a near-perfect fit on its fine-tuning data, we additionally evaluate general utility on three standard LLM benchmarks:
MMLU (Hendrycks et al., 2021) for multi-domain language understanding, PIQA (Bisk et al., 2020) for commonsense
reasoning, and RACE (Lai et al., 2017) for reading comprehension. The results are presented in Table 7. We observe that
fine-tuning does not significantly degrade performance on these general tasks, confirming that the models retain broad
capabilities.

Full results in Section 3.1. Our main observation is that fine-tuning with paraphrased descriptions (FT-Mul) consistently
leads to more effective unlearningx. We can observe this advantage across datasets, model types, unlearning methods and
two types of unlearn-retain trade-off in Table 9 and Table 10. Out of 96 total comparisons among two tables, FT-Mul
outperforms (or matches) FT-Single in 83 cases.
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Table 10: FT-Single versus FT-Mul Norm-AUC (↑) / AUC (↑) of the memorization trade-off. We bold the better score
between FT-Mul and FT-Single. Across all comparisons, we observe FT-Mul outperforms or matches FT-Single
in 39 out of 48 cases.

Dataset, FT Choices GA TV
Model UL-Exact UL-Single UL-Mul UL-Exact UL-Single UL-Mul

Llama2-7B, FT-Single 0.66 / 0.64 0.54 / 0.54 0.56 / 0.55 0.64 / 0.63 0.58 / 0.57 0.65 / 0.63
Eval-DU+ FT-Mul 0.60 / 0.59 0.59 / 0.59 0.58 / 0.58 0.68 / 0.66 0.60 / 0.59 0.69 / 0.67

Llama3-8B, FT-Single 0.63 / 0.63 0.56 / 0.56 0.56 / 0.56 0.69 / 0.68 0.56 / 0.56 0.63 / 0.63
Eval-DU+ FT-Mul 0.64 / 0.64 0.57 / 0.57 0.58 / 0.58 0.72 / 0.70 0.56 / 0.57 0.63 / 0.62

Gemma2-2B, FT-Single 0.60 / 0.60 0.63 / 0.62 0.63/ 0.62 0.66 / 0.65 0.60 / 0.59 0.60 / 0.60
Eval-DU+ FT-Mul 0.62 / 0.61 0.62 / 0.62 0.60 / 0.59 0.75 / 0.73 0.59 / 0.59 0.63 / 0.62

Llama2-7B, FT-Single 0.90 / 0.90 0.63 / 0.63 0.61 / 0.61 0.64 / 0.64 0.74 / 0.74 0.68 / 0.67
TOFU+ FT-Mul 0.78 / 0.77 0.70 / 0.69 0.74 / 0.73 0.69 / 0.70 0.76 / 0.76 0.78 / 0.77

Table 11: Norm-AUC (↑) of the extraction trade-off when the finetuning is done by FT-Mul-Chunk. The most Norm-AUC
values are close to 0.5 when unlearning with Eval-DU+, indicating limited effectiveness in unlearning. In contrast, with
TOFU+, the Norm-AUC values are generally higher.

Model & Dataset GA TV
UL-Exact UL-Single UL-Mul UL-Exact UL-Single UL-Mul

Llama2-7B, Eval-DU+ 0.53 0.50 0.49 0.57 0.55 0.56

Llama3-8B, Eval-DU+ 0.52 0.48 0.46 0.59 0.54 0.52

Gemma2-2B, Eval-DU+ 0.54 0.47 0.45 0.61 0.48 0.52

Llama2-7B, TOFU+ 0.59 0.58 0.58 0.59 0.60 0.60

Table 12: Norm-AUC (↑) of the extraction trade-off when the finetuning is done by FT-Mul-Chunk and the unlearn split
is aligned with the partitions of text chunks. We also report the difference of Norm-AUC if compared with the results of
the original unlearning split in Table 4.

Model & Dataset GA TV
UL-Exact UL-Single UL-Mul UL-Exact UL-Single UL-Mul

Llama2-7B, Eval-DU+ 0.66 (+0.13) 0.56 (+0.06) 0.55 (+0.06) 0.60 (+0.03) 0.57 (+0.02) 0.59 (+0.03)

Llama3-8B, Eval-DU+ 0.58 (+0.06) 0.55 (+0.07) 0.55 (+0.09) 0.66 (+0.07) 0.54 (+0.00) 0.59 (+0.07)

Gemma2-2B, Eval-DU+ 0.64 (+0.10) 0.56 (+0.09) 0.59 (+0.14) 0.70 (+0.09) 0.59 (+0.11) 0.60 (+0.08)

Full results in Section 3.2. First, from Table 11 we can observe that the Norm-AUC values are around 0.5 when
unlearning with Eval-DU+ and three different LLMs. This aligns with the main observation in Section 3.2. The following
two hypotheses are evaluated on Eval-DU+ and three different LLMs, and we can see Table 12 and Table 13 support the two
hypotheses respectively.

E. Related Work
Machine unlearning for LLMs: algorithms. Recently, machine unlearning for LLMS has emerged as an important area
of research (Liu et al., 2025; Si et al., 2023). In this work, we focus on GA (Jang et al., 2022; Barbulescu & Triantafillou,
2024) and TV (task vector) (Ilharco et al., 2022) methods. Other notable approaches include: NPO (Zhang et al.; Bronec
& Helcl, 2025) which utilizes the DPO objective (Rafailov et al., 2023) treating the unlearn data as negative preference
data, WHP uses a linear combination of the distributions induced by initial and a reinforced model as an unlearn model
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Table 13: Norm-AUC (↑) of the extraction trade-off under FT-Mul-Chunk-Iso, where the text chunks are concatena-
tions of the individual knowledge descriptions. We also report the difference of Norm-AUC compared with the results of
the original FT-Mul-Chunk in Table 4.

Dataset & Model GA TV
UL-Single UL-Mul UL-Single UL-Mul

Llama2-7B, Eval-DU+ 0.61 (+0.11) 0.60 (+0.11) 0.64 (+0.09) 0.69 (+0.13)

Llama3-8B, Eval-DU+ 0.58 (+0.10) 0.58 (+0.12) 0.62 (+0.08) 0.66 (+0.14)

Gemma2-2B, Eval-DU+ 0.54 (+0.07) 0.55 (+0.10) 0.56 (+0.08) 0.58 (+0.06)

(Eldan & Russinovich, 2023; Liu et al., 2024b), UWC calibrates the post-unlearning parameters with the initial parameters
to better preserve the model’s utility (Wang et al., 2024a), GRU uses both the unlearning and retention gradients at each
update step (Wang et al., 2024a). Regularizers are often employed to better preserve the model’s utility. For example:
augementing the unlearning objective with the retention gradient (GDR) (Maini et al.; Zhang et al.; Liu et al., 2022) and
regularizing with the KL divergence on the retention set (KLR) (Maini et al.; Zhang et al.). Non-training based methods
include: localization-informed unlearning (Li et al., 2024; Meng et al., 2022; Wu et al., 2023) which localize the components
of the LLM related to the forget data and black-box in-context unlearning (Pawelczyk et al., 2023). Other recent promising
approaches are Jia et al. (2024); Liu et al. (2024a); Ji et al. (2024); Wang et al. (2024b); Ishibashi & Shimodaira (2023);
Thaker et al. (2024b); Wang et al. (2025); He et al. (2025).

Machine unlearning for LLMs: evaluations. Evaluating the effectiveness machine unlearning method poses another
challenge. As an example, Eldan & Russinovich (2023) uses completion and question-answer probability-based scores,
while Lynch et al. (2024) proposes comparing the unlearned model and a model retrained on the retention data. UNCD uses
Cognitive Diagnosis Modeling for fine-grained evaluation (Lang et al., 2025). Besides TOFU ((Maini et al.)) and Eval-DU
((Wu et al., 2024)), several other benchmarks have been proposed to assess the effectiveness of unlearning in LLMs such as:
WMDP - a dataset consisting of hazardous knowledge in multiple-choice format (Li et al., 2024) and RWKU for zero-shot
konwledge unlearning (Jin et al., 2024), MUSE proposes a comprehensive benchmark evaluating six desirable properties
from the perspectives of both data owners and model deployers (Shi et al., 2024), and PEBench for multimodal LLMs (Xu
et al., 2025). Finally, (Thaker et al., 2024a) discusses the limitations of existing benchmarks. Beyond this it shows that
entanglement of retain and unlearn data in test prompts decreases the evaluation score of an unlearned model.

F. Discussions and Conclusions
Limitations and future work. Although this paper focuses on the role of training data choices in unlearning, several other
learning-time factors may also influence unlearning effectiveness. These include the model architecture (e.g., full-parameter
tuning LoRA (Hu et al., 2022)) and the learning algorithm (e.g., supervised fine-tuning vs. reinforcement learning (Rafailov
et al., 2023; Lu et al., 2022)). A promising direction for future work is to systematically investigate how such factors impact
the behavior and difficulty of unlearning. Due to limited computational resources, our experiments are restricted to LLMs
that undergo fine-tuning. While we believe the findings presented in this paper may generalize to the pretraining stage and
to unlearning from pretrained models directly, validating this hypothesis remains an important avenue for future research
when more resources are available.

Conclusion. In summary, this work takes an initial step toward understanding how learning-time knowledge encoding
influences post-hoc unlearning in large language models. By isolating textual representation as the key variable and
controlling for underlying factual content, we show that both paraphrasing diversity and data structure significantly impact
unlearning effectiveness. Our empirical results reveal that using paraphrased representations and clearly separating the
descriptions of knowledge in the unlearn and retain splits can greatly enhance the ability to remove targeted information while
preserving unrelated content. These findings lay the groundwork for learning-time strategies that improve the adaptability
and reliability of unlearning in LLMs.
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G. Details of Constructing Benchmark Datasets
Detailed statistics of paraphrasing. We present the statistics of the paraphrasing and how they are used for learning,
unlearning and evaluation in both datasets Eval-DU+ and TOFU+:

Dataset # paraphrasing for each k # paraphrasing in FT-Mul-Chunk
FT-Mul UL-Mul Extraction Trade-Off

Eval-DU+ 3 3 3 3
TOFU+ 3 3 1 3

In FT-Single and UL-Single, the description of each k is picked randomly from FT-Mul and UL-Mul respectively.
The texts used in UL-Exact and the memorization trade-off depend on the definition of fine-tuning texts by definition.

Templates for the prompt when generating the texts through ChatGPT-4o. Here are the templates of how we
generate the paraphrased descriptions for each knowledge piece given the initial texts provided by each original dataset and
the paraphrased text chunks for each group of knowledge.

Templates of generating the paraphrased descriptions for each knowledge piece

Eval-DU+
Could you help rephrase the sentence {Initial Text} while keeping the word
{Objective Word}? Please give me 8 variations.

TOFU+
Could you help rephrase both the question and the answer below? Question:
{Intial Question}
Answer: {Intial Answer}
Please give me 7 variations and list them as a sequence of QAs, formated by
1., 2., ..., 7.
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Templates of generating the paraphrased text chunks for each knowledge group

Eval-DU+
Here are the family information and biographic information for {Person
Name}. Could you summarize all information in one paragraph and give me
5 versions of them by shuffling the order of these information:
{Text Description of the 1st Knowledge Piece}
. . .
Please list the versions by 1., 2., ...

TOFU+
Could you help summarize all information in the following 20
question-answering into one question-answer pair?
1.
Question: {1st Question}
Answer: {1st Answer}
. . .
Please give me 3 variations and do not miss any information. Please
response in the format
Variation 1:
Question 1:. . .
Answer 1:. . .
. . .

After collecting the responses from ChatGPT-4o, we did some text extractions in order to get a organized list of target
paraphrased texts.

Examples of QAs in TOFU+. We have shown the text examples of Eval-DU+ in the main paper. Here are the examples
after augmenting the TOFU

The original QA in TOFU (Used in FT-Single)
Q: Who is this celebrated LGBTQ+ author from Santiago, Chile known for their true crime genre work?
A: The author in question is Jaime Vasquez, an esteemed LGBTQ+ writer who hails from Santiago, Chile and
specializes in the true crime genre.

The paraphrased QA (Used in FT-Mul, UL-Single, UL-Mul, or extraction trade-off)
Q: Could you tell me about the celebrated LGBTQ+ author from Santiago, Chile who excels in the true crime genre?
A: Jaime Vasquez is the celebrated author recognized within the LGBTQ+ community and beyond for their
exceptional work in true crime, hailing from Santiago, Chile

The big QA (Used in FT-Mul-Chunk)
Q: Who is Jaime Vasquez, and what is notable about his contributions to literature?
A: Jaime Vasquez is a celebrated LGBTQ+ author from Santiago, Chile, born on February 25, 1958. With a father ...
he channels his passion for storytelling into the true crime genre. His award-winning books, including ...

Examples of calculating probabilities in Eval-DU+. In Eval-DU+, each knowledge piece has the structure tuple of (s, r,
o). We are able to identify the keywords for s, r, or o in a given text description. For example, here is a text description for
(Richard Perry, father, Reid Perry) and we highlight the corresponding keywords.

Reid Perry has Richard Perry as his father.

Then, we can calculate the likelihood of the keyword appearing the last in this sentence, which is father, for a given LLM
which modelizes the likelihood function πθ.

15
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H. Implementation Details in Experiments
Fine-tuning details. The batch sizes are 8 for all models fine-tuned on Eval-DU+ and 16 for the model fine-tuned on
TOFU+. In addition, we pick the learning rate η ∈ {2 · 10−5, 10−5, 2 · 10−6} and the number of epochs N ∈ {1, · · · , 8} to
ensure a good fit on the fine-tuning set while having a good test performance. The final selection of the two parameters are
presented in Table 14.

Table 14: Hyperparameter values of the fine-tuning on different models and datasets: the learning rate η and the number of
epochs N

Llama2-7B, Eval-DU+ Llama3-8B, Eval-DU+ Gemma2-2B, Eval-DU+ Llama2-7B, TOFU+

η N η N η N η N

FT-Single 10−5 5 10−5 8 10−5 8 10−5 5
FT-Mul 10−5 5 10−5 8 10−5 8 10−5 5

FT-Mul-Chunk 10−5 4 10−5 8 10−5 8 10−5 4

Unlearning details. First of all, UL-Mul has 3 paraphrased descriptions for the same target knowledge. In addition, each
unlearning algorithm has its own hyperparameters: gradient ascent (GA) has a list of step numbers t to control the trade-off
and the learning rate ηga (the batch sizes are fixed as 8 for Eval-DU+ and 16 for TOFU+), task vector (TV) has a list of
scaling parameter values α to control the trade-off, as well as the number of epoch Ttv and the learning rate ηtv to train the
reinforced model (the batch sizes are fixed as 8 for Eval-DU+ and 16 for TOFU+). The values are picked to best present the
trade-off. Their values given different fine-tuning data choices and unlearning data choices are presented as below:
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Table 15: Hyperparameter values of gradient ascent (GA) when the unlearning data choice is UL-Exact.

Llama2-7B, Eval-DU+ Llama3-8B, Eval-DU+ Gemma2-2B, Eval-DU+ Llama2-7B, TOFU+

List of t ηga List of t ηga List of t ηga List of t ηga

FT-Single {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6

FT-Mul {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6

FT-Mul-Chunk {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 10−5

Table 16: Hyperparameter values of gradient ascent (GA) when the unlearning data choice is UL-Single.

Llama2-7B, Eval-DU+ Llama3-8B, Eval-DU+ Gemma2-2B, Eval-DU+ Llama2-7B, TOFU+

List of t ηga List of t ηga List of t ηga List of t ηga

FT-Single {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6

FT-Mul {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6

FT-Mul-Chunk {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 10−6

Table 17: Hyperparameter values of gradient ascent (GA) when the unlearning data choice is UL-Mul.

Llama2-7B, Eval-DU+ Llama3-8B, Eval-DU+ Gemma2-2B, Eval-DU+ Llama2-7B, TOFU+

List of t ηga List of t ηga List of t ηga List of t ηga

FT-Single {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6

FT-Mul {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6

FT-Mul-Chunk {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 3× 10−6 {0, 5, 10, · · · , 75} 10−6

Table 18: Hyperparameter values of task vector (TV) when the unlearning data choice is UL-Exact.

Llama2-7B, Eval-DU+ Llama3-8B, Eval-DU+ Gemma2-2B, Eval-DU+ Llama2-7B, TOFU+

List of α Ntv ηtv List of α Ntv ηtv List of α Ntv ηtv List of α Ntv ηtv

FT-Single {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 5.0, 10.0} 20 10−5

FT-Mul {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 5.0, 10.0} 20 10−5

FT-Mul-Chunk {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.2, 0.5, 1.0, 5.0, 10.0, 20.0, 30.0, 50.0} 400 10−5

Table 19: Hyperparameter values of task vector (TV) when the unlearning data choice is UL-Single.

Llama2-7B, Eval-DU+ Llama3-8B, Eval-DU+ Gemma2-2B, Eval-DU+ Llama2-7B, TOFU+

List of α Ntv ηtv List of α Ntv ηtv List of α Ntv ηtv List of α Ntv ηtv

FT-Single {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 5.0, 10.0} 20 10−5

FT-Mul {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 5.0, 10.0} 20 10−5

FT-Mul-Chunk {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.2, 0.5, 1.0, 5.0, 10.0, 20.0, 30.0, 50.0} 400 10−5

Table 20: Hyperparameter values of task vector (TV) when the unlearning data choice is UL-Mul.

Llama2-7B, Eval-DU+ Llama3-8B, Eval-DU+ Gemma2-2B, Eval-DU+ Llama2-7B, TOFU+

List of α Ntv ηtv List of α Ntv ηtv List of α Ntv ηtv List of α Ntv ηtv

FT-Single {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 5.0, 10.0} 20 10−5

FT-Mul {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 5.0, 10.0} 20 10−5

FT-Mul-Chunk {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.2, 0.5, 1.0, 5.0, 10.0} 20 10−5 {0, 0.2, 0.5, 1.0, 5.0, 10.0, 20.0, 30.0, 50.0} 400 10−5
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