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ABSTRACT

Multimodal fusion integrates the complementary information present in multiple
modalities and has gained much attention recently. Existing fusion approaches
exhibit three key elements for informative multimodal fusion, i.e., stabilizing uni-
modal signals, capturing intra- and inter-modality interactions at multi-level, and
perceiving modality importance in a dynamic manner. The current fusion methods
mostly suffice only one of these conditions, without considering all three aspects
simultaneously. Encapsulating these ideas, in this paper, we propose a novel deep
equilibrium (DEQ) method for multimodal fusion via seeking a fixed point of the
dynamic multimodal fusion process and modeling feature correlations in an adap-
tive and recursive manner, which naturally consolidates the three key ingredients
for successful multimodal fusion. Our approach encodes and stabilizes rich in-
formation within and across modalities thoroughly from low level to high level
and dynamically perceives modality importance for efficacious downstream mul-
timodal learning, and is readily pluggable to various multimodal frameworks. Ex-
tensive experiments on four well-known multimodal benchmarks, namely, BRCA,
MM-IMDB, CMU-MOSI, and VQA-v2, involving a vast variety of modalities,
demonstrate the superiority and generalizability of our DEQ fusion. Remark-
ably, our DEQ fusion consistently achieves state-of-the-art performance on these
benchmarks. The code will be released.

1 INTRODUCTION

Humans routinely receive and process signals through interactions across multiple modalities, sup-
porting the unique human capacity to perceive the world. With the rise and development of deep
learning, there has been a steady momentum of innovation that leverages multimodal data for learn-
ing deep models (Ngiam et al., 2011; Mroueh et al., 2015; Ramachandram & Taylor, 2017). Multi-
modal fusion, the essence of multimodal learning, aims to integrate the information from different
modalities into a unified representation, and has made great success in real-world applications, e.g.,
sentiment analysis (Zadeh et al., 2016), multimodal classification (Arevalo et al., 2017), medical
analysis (Banos et al., 2015; Wang et al., 2021), object detection (Song et al., 2015), visual question
answering (Goyal et al., 2017), etc.

A common practice for multimodal learning is to first exploit uni-modality features, and then capi-
talize on multimodal fusion to combine information from all modalities, so-called late fusion. Uni-
modal learning has progressed with advanced architectures (He et al., 2016; Vaswani et al., 2017;
Liu et al., 2021), whereas multimodal fusion lags behind. In general, most fusion strategies are
static, i.e., all modality information are treated equally. This may result in generalization problems,
especially for tasks involving complicated multimodal correlations. Moreover, for simple modality
inputs, these static approaches might be excessive and potentially encode redundant, unstable, and
even noisy information.

Revisiting recent works, we found that many of them have reached a consensus on a few key com-
ponents to succeed in multimodal fusion. Joze et al. (2020) recalibrated the channel-wise features
from multiple CNN streams for multimodal feature alignment. Duan et al. (2022) emphasized the
importance of capturing a higher and more stable level of features to enforce better crossmodal
alignment. Hou et al. (2019); Pan et al. (2020); Xue & Marculescu (2023) have found the impor-
tance of stacking multiple fusion layers to capture higher-level feature interactions. In an effort to
improve the static fusion, Han et al. (2022); Wang et al. (2022a); Xue & Marculescu (2023) have
devised dynamic fusion processes to account for modality importance.
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We summarize these findings into three key points for successful multimodal fusion: 1) stabilizing
and aligning signals from different modalities; 2) integrating interactions across modalities ranging
from low level to high level; 3) dynamically perceiving the effective information and removing the
redundancy from each modality. To the best of our knowledge, there is no unified multimodal fusion
framework that looks into all three aspects simultaneously. This motivates us to develop a dynamic
multimodal fusion architecture to adaptively model the cross-modality interactions from low level,
middle level, to high level, making the architecture generic for various multimodal tasks.

To consolidate the above idea, we present a new deep equilibrium (DEQ) method for multimodal
fusion in this paper. Our launching point is to recursively execute nonlinear projections on modality-
wise features and the fused features until the equilibrium states are found. Specifically, our contribu-
tions include: 1) we seek the equilibrium state of features to jointly stabilize intra-modality represen-
tations and inter-modality interactions; 2) our method continuously applies nonlinear projections
to modality-wise features and the fused features in a recursive manner. As such, the cross-modality
interactions are reinforced at multiple levels for multimodal fusion; 3) we devise a purified-then-
combine fusion mechanism by introducing a soft gating function to dynamically perceive modality-
wise information and remove redundancy. Our DEQ fusion generalizes well to various multimodal
tasks on different modalities and is readily pluggable to existing multimodal frameworks.

We evaluate our DEQ fusion approach on several multimodal benchmarks built on different modal-
ities, including medical breast invasive carcinoma PAM50 subtype classification on BRCA, image-
text movie genre classification on MM-IMDB, audio-text sentiment analysis on CMU-MOSI, and
image-question visual question answering on VQA-v2. Our DEQ fusion approach consistently
achieves new state-of-the-art performance on all benchmarks, demonstrating the superiority of mod-
eling stable modality information from low level to high level in a dynamic way for multimodal
fusion. The related works are discussed in Appendix B.

2 DEEP EQUILIBRIUM FUSION

2.1 REVISITING DEEP EQUILIBRIUM MODEL

Our DEQ fusion is particularly built on deep equilibrium models to recursively capture intra- and
inter-modality interactions for multimodal fusion. The traditional deep neural networks have finite
depth and perform the backward pass through every layer. Two interesting observations are that the
hidden layers tend to converge to some fixed points, and employing the same weight in each layer
of the network, so-called weight tying, still achieves competitive results. That leads to the design
principles of deep equilibrium models and the goal is to simulate an infinite depth weight-tied deep
network, producing high-level and stable feature representations.

Formally, the standard DEQ (Bai et al., 2019) is formulated as a weight-tied network, and such a
network with parameter θ and a depth of L computes a hidden state z as

z[j+1] = fθ(z
[j];x), j = 0, . . . , L− 1 (1)

where the untransformed input x is injected at each layer, z[j] is the hidden state at layer j and
z[0] = 0. As claimed in Bai et al. (2019), the core idea of DEQ is that when there are infinite layers
(L → ∞), the system tends to converge to an equilibrium state z∗ such that

z∗ = fθ(z
∗;x). (2)

In practice, naively computing the equilibrium state requires excessive runtime. One convergence
acceleration is to formulate Eq. (2) into a root-finding problem:

gθ(z;x) = fθ(z;x)− z. (3)

Some root solvers can then be applied to the residual gθ to find the equilibrium state

z∗ = RootSolver(gθ;x). (4)

Instead of backpropagating through each layer, we can compute gradients analytically as

∂ℓ

∂(·)
=

∂ℓ

∂z∗

(
−J−1

gθ

∣∣
z∗

) ∂fθ(z;x)

∂(·)
, (5)
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Figure 1: Our deep equilibrium fusion architecture. For simplicity, we illustrate the case where
there are two modalities (N = 2). (Left) The fusion layer is applied in a recursive manner until
the equilibrium states are reached. (Right) Each layer j computes its output based on the previous
iteration. z[j] denotes the output z at layer j. The modality-wise features x1 and x2 are injected at
each layer, and are combined to obtain the residual fused feature xfuse. + represents summation and
× denotes Hadamard product.

where ℓ = L(z∗,y) is a loss between z∗ and the target y, J−1
gθ

∣∣
z∗ is the inverse Jacobian of gθ at z∗.

As it is expensive to compute the inverse Jacobian term, Bai et al. (2019) proposed to alternatively
solve a linear system by involving a vector-Jacobian product

x
(
Jgθ |z∗

)
+

∂ℓ

∂z∗
= 0. (6)

With the formulation above, DEQ represents an infinite depth network with just one layer fθ, which
converges to an equilibrium state, and can be backpropagated implicitly with a single computation.

2.2 DEEP EQUILIBRIUM MULTIMODAL FUSION

Next, we formally formulate our DEQ fusion method. Given a set of unimodal features x =
{x1,x2, . . . ,xN} from N modalities, our goal is to find a unified feature that integrates the in-
formation from all modalities. To ensure the informativeness of our final integrated feature, we first
execute another nonlinear projection fθi(·) to extract higher-level information within each modality:

z
[j+1]
i = fθi(z

[j]
i ;xi), (7)

where z
[j]
i is the j-th output of the layer for modality i and z

[0]
i is initialized to 0. xi is the injected

input feature for modality i. Our fusion design is flexible from the standpoint that fθi(·) can be
altered arbitrarily to fit multiple modalities. In our case, fθi(·) is designed to be similar to a simple
residual block (He et al., 2016). Following Bai et al. (2020), we adopt group normalization (Wu
& He, 2018) instead of batch normalization (Ioffe & Szegedy, 2015) for stability. Hence, fθi(·) is
formulated as

ẑ
[j]
i = ReLU

(
GroupNorm

(
θ̂iz

[j]
i + b̂i

))
z̃
[j]
i = GroupNorm

(
θ̃iẑ

[j]
i + xi + b̃i

)
fθi(z

[j]
i ;xi) = GroupNorm

(
ReLU

(
z̃
[j]
i

))
,

(8)

where θ̂i and θ̃i are the weights, b̂i and b̃i are the bias. Given this set of modality-wise features
{z[j+1]

i } computed from fθi(·), where i = 1, 2, . . . , N , our target is to fuse them to obtain a unified
feature integrating the information from all N modalities. In addition, considering that the dimen-
sion of this unified feature is limited, it necessitates dynamically selecting the most representative
information from each modality-wise feature to reduce redundancy.

We propose a dynamic purify-then-combine fusion strategy for this purpose. We account for feature
correlation between the fused feature and the modality-wise features by applying a soft gating func-
tion G(·), to dynamically model feature correlation via computing a weight αi for each modality:

αi = G(z
[j]
fuse, z

[j+1]
i )

G(z
[j]
fuse, z

[j+1]
i ) = θα

(
z
[j]
fuse + z

[j+1]
i

)
+ bα,

(9)
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where z
[j]
fuse is the fused feature from the j-th layer and z

[0]
fuse is initialized to 0. θα and bα are the

weight and bias. The gating function G(·) assigns the larger weights to parts of the fused feature
that better encode the information from modality i. We purify the fused feature with the correlation
weight for modality i:

z′i = αi ⊙ z
[j]
fuse, (10)

where ⊙ represents Hadamard product. z′i could be interpreted as the significant feature purified
from the fused feature that represents the information of modality i from previous layers. We then
combine these purified features and adopt a simplified residual block to obtain the unified feature as

ẑfuse = θfuse ·
N∑
i=1

z′i + bfuse

z
[j+1]
fuse = GroupNorm (ReLU (ẑfuse + xfuse)) ,

(11)

where xfuse is the injected input fused feature computed from the set of modality-wise features {xi}
for i = 1, 2, . . . , N , θfuse and bfuse are the weight and bias. In shallow layers (small j), z[j]fuse
encodes low-level modality interactions. As we continuously summarize the purified feature z′i, i.e.,
j gets larger and larger, z[j]fuse tends to capture higher-level modality interactions while recursively
integrating low-level information from previous iterations. By doing so, the final z[∞]

fuse integrates
the cross-modality interactions and correlations ranging from low level to high level. Moreover,
our approach is flexible on the ways to compute the injected fused feature xfuse. In our case, we
compute it with a simple weighted sum:

xfuse =

N∑
i=1

wixi, (12)

where wi is a learnable weight associated with modality i representing modality importance.

We denote the above-proposed fusion module in Eqs. (9) to (11) as a nonlinear function ffuse(·) such
that

z
[j+1]
fuse = ffuse(z

[j]
fuse;x), (13)

where x = {xi} for i = 1, 2, . . . , N is the set of the injected modality-wise features. Ideally, a
superior unified feature should capture the information from all modalities at every level and thus we
progressively model modality interactions from low-level to high-level feature space. Technically,
we present to recursively interchange intra- and inter-modality information until the equilibrium
state is reached, to obtain such an informative unified representation in a stable feature space for
multimodal learning. To achieve this goal, we leverage the idea of DEQs into our multimodal fusion
framework. Considering fθi(·) for i = 1, 2, . . . , N and ffuse(·) as DEQ layers, we aim to find
equilibrium states such that

z∗i = fθi (z
∗
i ;xi) , z∗fuse = ffuse (z

∗
fuse;x) , (14)

where z∗fuse and z∗i , i = 1, 2, . . . , N , are the fused feature and all unimodal features in equilibrium
states respectively. Note that we also keep track of computation for each unique modality-wise
feature, so that the information from different modalities can be aligned and captured at a stable
level together with the fused feature. We conduct ablation studies to demonstrate the superiority of
our purify-then-combine fusion strategy compared to other fusion variants involving DEQs. Please
refer to Section 3.2 for more details.

The fixed points in Eq. (14) can be reformulated into residual functions for the root-finding problem:

gθi(zi;xi) = fθi(zi;xi)− zi, (15)

gfuse(zfuse;x) = ffuse(zfuse;x)− zfuse (16)
Finally, we can solve for features in equilibrium states via a black-box solver by minimizing the
residuals gθi for i = 1, 2, . . . , N and gfuse:

z∗, z∗fuse = RootSolver(gθ; gfuse;x), (17)

where z∗ = {z∗i } and gθ = {gθi} for i = 1, 2, . . . , N . Fig. 1 illustrates an overview of our deep
equilibrium fusion architecture.
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Figure 2: Data samples from the FOUR benchmarks: (a) multi-omics BRCA; (b) image-text MM-
IMDB; (c) audio-text CMU-MOSI; and (d) image-question VQA-v2.

2.3 BACKPROPAGATION

A benefit of using DEQs compared to stacking conventional networks is that the gradients can be
computed analytically without tracing through the forward pass layer-by-layer.
Theorem 1. (Gradient of Deep Equilibrium Multimodal Fusion) Let z∗i , z

∗
fuse ∈ Rd for i =

1, 2, . . . , N be the equilibrium states of the modality-wise features and fused feature, and y ∈ Rq be
the ground-truth. Suppose we have a function h : Rd → Rq which is the head for some downstream
tasks (e.g., classification), we can compute a loss function ℓ = L(h(z∗fuse),y) between the prediction
and the target. We can backpropagate implicitly through the unimodal features by computing the
gradients with respect to xi using implicit function theorem:

∂ℓ

∂xi
=

∂ℓ

∂z∗fuse
·
(
−J−1

gfuse

∣∣
z∗
fuse

)
· ∂ffuse (z

∗
fuse;x)

∂z∗i
·
(
−J−1

gθi
|z∗

i

)
· ∂fθi (z

∗
i ;xi)

∂xi
, (18)

where J−1
g

∣∣
z

is the inverse Jacobian of g evaluated at z.

The proof for Theorem 1 is provided in Appendix A. The gradients with respect to parameters of
DEQ layers can be computed following Eq. (5).

3 EXPERIMENTS

We empirically verify the merit of our DEQ fusion on four multimodal tasks: 1) breast invasive
carcinoma PAM50 subtype classification BRCA1, associated with mRNA expression, DNA methy-
lation, and miRNA expression data; 2) movie genre classification on MM-IMDB (Arevalo et al.,
2017), which categorizes movies based on posters and text descriptions; 3) sentiment analysis on
CMU-MOSI (Zadeh et al., 2016), which manually labels sentiment of video clips ranging from -
3 to 3, where -3 indicates highly negative and 3 indicates highly positive; and 4) visual question
answering on VQA-v2 (Goyal et al., 2017), the most commonly used large-scale VQA benchmark
dataset containing human-annotated question-answer relating to images. Fig. 2 illustrates some data
examples. In order to demonstrate the generalizability and plug-and-play nature of our approach,
we only replace the fusion module of the existing methods and keep all the other components the
same for comparison. The detailed experimental setup is demonstrated in Appendix C.

3.1 DISCUSSION

BRCA. We compare our DEQ fusion approach with several baseline fusion methods, including
the current best competitor MM-Dynamics (Han et al., 2022), in Table 1. It is noticeable that the
complementarity of some modalities is significant, as approximately -10% performance drop is ob-
served without mRNA data. This also somewhat manifests the advantage of dynamic modeling
to take multiple modality signals into account. Similar to our dynamic design with a soft gating
function, MM-Dynamics models feature and modality informativeness dynamically for trustwor-
thy multimodal fusion. Our DEQ fusion additionally considers intra- and inter-modality features
at every level, outperforming MM-Dynamics in all evaluation metrics. Notably, our method with
two modalities of mRNA and DNA methylation already attains better performance in all evaluation
metrics compared to MM-Dynamics which leverages all three modalities. The above results evince
the effectiveness of capturing modality interactions ranging from low level to high level in our deep
equilibrium fusion design.

1BRCA can be acquired from The Cancer Genome Atlas program.
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Table 1: Performance comparisons of multimodal fusion methods on BRCA benchmark. The results
of baseline methods are obtained from Han et al. (2022). mR, D, and miR denote mRNA expression,
DNA methylation, and miRNA expression data respectively. ↑ indicates the higher the metric the
better the performance and vice versa for ↓. The best results are in bold.

Modality Acc(%)↑ WeightedF1(%)↑ MacroF1(%)↑
GRridge (Van De Wiel et al., 2016) mR+D+miR 74.5±1.6 72.6±2.5 65.6±2.5
GMU (Arevalo et al., 2017) mR+D+miR 80.0±3.9 79.8±5.8 74.6±5.8
CF (Hong et al., 2020) mR+D+miR 81.5±0.8 81.5±0.9 77.1±0.9
MOGONET (Wang et al., 2021) mR+D+miR 82.9±1.8 82.5±1.7 77.4±1.7
TMC (Han et al., 2021) mR+D+miR 84.2±0.5 84.4±0.9 80.6±0.9

MM-Dynamics (Han et al., 2022) mR+D+miR 87.7±0.3 88.0±0.5 84.5±0.5
MM-Dynamics + DEQ Fusion D+miR 78.9±1.6 79.2±2.3 75.8±3.0
MM-Dynamics + DEQ Fusion mR+miR 87.6±0.7 88.1±0.7 85.1±1.7
MM-Dynamics + DEQ Fusion mR+D 88.7±0.7 89.3±0.7 86.9±0.9
MM-Dynamics + DEQ Fusion mR+D+miR 89.1±0.7 89.7±0.7 87.6±1.0

Table 2: Performance comparisons of multimodal fusion methods on MM-IMDB benchmark. The
results of DynMM (Xue & Marculescu, 2023), MMBT (Kiela et al., 2019), and PMF (Li et al.,
2023) are obtained from their original paper. I and T denote image and text respectively.

Basic Settings Modality MicroF1(%)↑ MacroF1(%)↑
Unimodal Image VGGNet I 40.31 25.76
Unimodal Text Word2vec T 59.37 47.59
Early Fusion VGGNet + Word2vec I+T 56.00 49.36
Late Fusion VGGNet + Word2vec I+T 59.02 50.27
DynMM VGGNet + Word2vec I+T 60.35 51.60
DEQ Fusion VGGNet + Word2vec I+T 61.52 53.38

Unimodal Image ResNet152 I 45.65 29.91
Unimodal Text BERT T 64.81 58.00
MMBT ResNet152 + BERT I+T 66.80 61.60
PMF-large ViT-large + BERT-large I+T 66.72 61.66
DEQ Fusion VGGNet + BERT I+T 66.15 59.32
DEQ Fusion ResNet152 + BERT I+T 67.59 62.14

MM-IMDB. We compare our DEQ fusion strategy with various baseline fusion methods in Ta-
ble 2. It is clear that text modality is more representative than image modality for this classification
task, as unimodal text models exhibit significantly better performance than unimodal image mod-
els. As such, existing approaches which do not involve dynamic modeling of modality information,
attain either similar performance or minor improvement compared to the unimodal text baseline.
A dynamic fusion strategy is seemingly crucial to further leverage the information from the rela-
tively weak image signal for better performance. DynMM (Xue & Marculescu, 2023) capitalizes
on hard gating to select the most appropriate fusion strategy from a set of predefined operations to
achieve better results. We obtain the state-of-the-art results of 61.52% and 53.38% for micro and
macro F1 scores respectively on MM-IMDB benchmark with our DEQ fusion, achieving a signif-
icant improvement under the same settings against several fusion baselines. To further emphasize
the generalizability and adaptability with different backbones, we additionally evaluate DEQ fusion
with ResNet152 (He et al., 2016) and BERT (Devlin et al., 2018). Our DEQ fusion with ResNet152
and BERT achieves state-of-the-art results of 67.59% and 62.14% for micro and macro F1 scores
respectively, surpassing MMBT (Kiela et al., 2019) which is also evaluated with the same back-
bones. Remarkably, our results are also better than PMF-large (Li et al., 2023) which utilizes more
powerful ViT-large and BERT-large backbones.

CMU-MOSI. We compare our fusion approach with several baseline fusion methods, including
the state-of-the-art CM-BERT (Yang et al., 2020), in Table 3. It is worth noting that BERT-based
methods exhibit better performance than other baseline approaches. For instance, vanilla BERT
(Devlin et al., 2018), leveraging only text modality, already surpasses other non-BERT methods
which involve the utilization of all three modalities. We speculate that text modality provides more
significant information for sentiment analysis task than the other two modalities. CM-BERT exploits
audio modality in addition to BERT for further performance boost. Our DEQ fusion benefits from
the dynamic and stable modality information modeling, and interaction exchange at every level with
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Table 3: Performance comparisons of multimodal fusion methods on CMU-MOSI benchmark. The
results of baseline methods are obtained from (Yang et al., 2020). T, A, and V denote text, audio,
and video, respectively. Acc-N denotes N -class accuracy.

Modality Acc-7(%)↑ Acc-2(%)↑ F1(%)↑ MAE↓ Corr↑
Early Fusion LSTM T+A+V 33.7 75.3 75.2 1.023 0.608
LRMF (Liu et al., 2018) T+A+V 32.8 76.4 75.7 0.912 0.668
MFN (Zadeh et al., 2018a) T+A+V 34.1 77.4 77.3 0.965 0.632
MARN (Zadeh et al., 2018b) T+A+V 34.7 77.1 77.0 0.968 0.625
RMFN (Liang et al., 2018) T+A+V 38.3 78.4 78.0 0.922 0.681
MFM (Tsai et al., 2018) T+A+V 36.2 78.1 78.1 0.951 0.662
MCTN (Pham et al., 2019) T+A+V 35.6 79.3 79.1 0.909 0.676
MulT (Tsai et al., 2019) T+A+V 40.0 83.0 82.8 0.871 0.698

BERT (Devlin et al., 2018) T 41.5 83.2 82.3 0.784 0.774
CM-BERT (Yang et al., 2020) T+A 44.9 84.5 84.5 0.729 0.791
CM-BERT + DEQ Fusion T+A 46.1 85.4 85.4 0.737 0.797

Table 4: Performance comparisons of multimodal fusion methods on VQA-v2 benchmark. All
metrics are accuracy in %.

Basic Settings Fusion Method Yes/no Number Other Overall

Skip-thoughts + BottomUp Mutan 82.40 42.63 54.85 63.73
Skip-thoughts + BottomUp DEQ Fusion 82.91 45.40 55.70 64.57

GloVe + BottomUp + Self-Att + Guided-Att MCAN 84.67 48.44 58.52 67.02
GloVe + BottomUp + Self-Att + Guided-Att DEQ Fusion 85.17 49.07 58.69 67.38

our recursive fusion design, outperforming CM-BERT by 1.2%, 0.9%, and 0.9% in Acc7, Acc2, and
F1 score, respectively.

VQA-v2. Our experimental results on VQA-v2 based on Mutan (Ben-Younes et al., 2017) and
MCAN (Yu et al., 2019) are shown in Table 4. Mutan initializes GRU with pretrained Skip-thoughts
models (Kiros et al., 2015) to process questions, whereas MCAN leverages pretrained GloVe word
embeddings (Pennington et al., 2014). Both methods use bottom-up attention visual features. In ad-
dition, MCAN introduces self-attention and guided-attention units to model intra- and inter-modality
interactions. Following their basic settings, we replace the fusion method with our DEQ fusion for
comparison. It is noticeable that our DEQ fusion, under the same experimental settings, achieves
consistent improvements over all evaluation metrics on both baselines, suggesting the superiority of
our method. We are also aware of the highly performant large visual-language models, e.g. Radford
et al. (2021); Kim et al. (2021); Li et al. (2022), in which we make comprehensive discussion and
comparison with our DEQ fusion in Section 3.3.

3.2 ABLATION STUDIES AND ANALYSES

We conduct extensive ablation experiments and analyses to study the effectiveness of our proposed
deep equilibrium fusion method from multiple perspectives. All ablation studies follow the same
experimental setup as specified in Appendix C.

Effectiveness of seeking equilibrium. We first examine the effectiveness of computing the equi-
librium state to extract and integrate stable modality information at every level. We first discard
all components, i.e., directly fusing with a weighted sum approach: xfuse =

∑N
i=1 wixi, where

wi is a learnable weight associated with modality i. As shown in Table 5, on BRCA, this baseline
fusion method obtains similar performance to Han et al. (2022). Next, we disable the recursive
computation in our DEQ fusion module, i.e., all fθi(·) and ffuse(·) are only applied once without
finding the equilibrium states. Since all inputs z are initialized to zero, this approach is equiva-
lent to the weighted sum approach but with an additional nonlinear projection fθi(·) applied to all
modality-wise features. Interestingly, introducing additional parameters without DEQ even harms
performance compared to the weighted sum baseline. We additionally conduct ablation studies on
MM-IMDB and CMU-MOSI, which leads to similar conclusions except that we do not observe the
performance drop with additional fθ and ffuse without DEQ computation (the first row in Table 7).
All results demonstrate the importance of seeking the equilibrium states for multimodal fusion.
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Figure 3: Plots of learned normalized α over solver steps. (a) On CMU-MOSI, audio modality
tends to be more important at lower levels, whereas text modality dominates over audio modality
for high-level information extraction; (b) On BRCA, except for the first two solver steps, mRNA
appears to be the most dominant modality.
Table 5: Ablation experiments on BRCA. fθ represents
the modality-wise nonlinear projections fθi(·) for i =
1, 2, . . . , N ; ffuse denotes the fusing function ffuse(·);
DEQ indicates enabling recursive DEQ computation to
find the equilibrium state for the functions.

F1(%)↑
fθ ffuse DEQ Acc(%)↑ Weighted Macro

87.6±0.4 87.9±0.4 84.3±0.8
✓ ✓ 86.2±0.6 86.5±0.6 82.9±0.9
✓ ✓ 88.8±0.4 89.4±0.4 87.2±0.8

✓ ✓ 88.3±0.5 88.8±0.5 86.0±1.0
✓ ✓ ✓ 89.1±0.7 89.7±0.7 87.6±1.0
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Figure 4: Plot of DEQ Fusion’s conver-
gence to equilibrium over solver steps.
The shaded region indicates the 95% con-
fidence interval computed over 10 runs.

Different fusion variants involving DEQ. We compare our DEQ fusion strategy against several
variants involving DEQ in Table 5 and Table 7. First, we disable the purified-then-combine fusion
strategy, i.e., ablating our fusing projection ffuse(·) by simply summating all modality-wise features:
z∗fuse =

∑N
i z∗i . Our full DEQ fusion notably improves all evaluation metrics compared to the runs

without the proposed purified-then-combine fusion strategy. Next, we ablate all modality projections
fθi(·) as identity functions by setting z∗i = xi. Specifically, given a set of features from N modalities
{xi}, i = 1, 2, . . . , N , we set z∗i = xi. and proceed fusion with ffuse(·). We notice a decline in all
evaluation metrics without modality-wise nonlinear projections. These studies demonstrate that our
proposed fusion variant produces the most encouraging results across all evaluation metrics.

Impact of soft gating function. Motivated by the success of dynamically perceiving information
from modalities, we develop a soft gating function to capture the important information within
each modality. We further validate the effectiveness of the proposed soft gating function G(·).
Specifically, we set z′i = z

[j+1]
i for Eq. (10) to disable the soft gating function. As shown in

Table 6 and Table 7, DEQ fusion without soft gating function causes a performance drop among
all evaluation metrics. Note that since G(·) is a part of ffuse, disabling ffuse automatically removes
G(·). The soft gating function combined with all other components leads to the most superior result.

Table 6: Ablation experiments of soft gating function
on BRCA. G(·) denotes the soft gating function.

G(·) Acc(%)↑ WeightedF1(%)↑ MacroF1(%)↑
88.4±0.8 89.0±0.8 86.1±1.1

✓ 89.1±0.7 89.7±0.7 87.6±1.0

We additionally analyze the effectiveness
of our proposed purify-then-combine fu-
sion strategy by investigating the learned
α values associated with different modal-
ities in Fig. 3. On CMU-MOSI, we find
that in lower solver steps, namely when
extracting lower-level information, audio
modality seems to dominate over text modality. As our DEQ fusion moves onto higher levels,
text modality becomes more important. This suggests that text modality in general provides more
useful information in sentiment analysis than audio modality. On BRCA, we observe that mRNA
modality dominates the others, as it is always assigned with the largest α except for the first two
solver steps. This is indeed expected, as we report in Table 1 that excluding mRNA modality leads
to a significant performance drop. The observation that DNA modality is assigned with larger α

8
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Table 7: Ablation experiments on MM-IMDB and CMU-MOSI. “-” indicates not applicable (if ffuse
is not used, G(·) is automatically disabled).

MM-IMDB CMU-MOSI
fθ ffuse DEQ G(·) MicroF1 MacroF1 Acc-7 Acc-2 F1 MAE Corr

- 58.76 49.63 43.3 83.3 83.2 0.755 0.786
✓ ✓ ✓ 60.73 52.64 43.0 83.6 83.6 0.757 0.787
✓ ✓ - 59.80 49.27 43.7 84.8 84.9 0.741 0.782

✓ ✓ ✓ 60.76 53.09 45.3 84.4 84.3 0.747 0.782
✓ ✓ ✓ 60.83 52.67 43.8 83.1 83.1 0.751 0.789
✓ ✓ ✓ ✓ 61.52 53.38 46.1 85.4 85.4 0.737 0.797

than miRNA modality also aligns with our results, as our method with mRNA+DNA reports better
performance than mRNA+miRNA. These results signify that our proposed soft gating function is
capable of learning and modeling modality importance, thus contributing to a more effective multi-
modal fusion to boost performance.

Convergence of DEQ Fusion. We examine the convergence of our DEQ fusion, which is an
important assumption since fusion may collapse if it fails to find the equilibrium. We train a
model with our DEQ fusion from scratch, and track the relative difference norm evaluated as
∥z[i+1]

fuse − z
[i]
fuse∥/∥z

[i]
fuse∥ over 100 solver steps during inference. We compare it with a weight-tied

fusion approach which simply iterates our fusion layer and performs backward pass layer-by-layer.
Fig. 4 depicts the empirical results. It is notable that the difference norm of our DEQ fusion quickly
drops below 0.01 on average within 20 solver steps, whereas the weight-tied fusion oscillates around
a relatively high value. Benefiting from fixed point solvers and analytical backward pass, our DEQ
fusion has much quicker and stabler convergence to the fixed point than the weight-tied approach.

3.3 DISCUSSION ABOUT ATTENTION-BASED FUSION

Large pre-trained models have gained popularity in multimodal learning (Lu et al., 2019; Kim et al.,
2021; Li et al., 2022; Xu et al., 2023), which jointly perform feature extraction and fusion, thereby
learning a task-agnostic joint representation. We refer to such approaches as attention-based fu-
sion, which can be considered a type of mid-fusion. Despite their robust performance especially
in vision-language tasks, there are several limitations that inhibit such approaches to generalize to
other modalities. These methods require intricate preprocessing over input modalities such as tok-
enization. The lack of studies on tokenization reveals the difficulty of extending such approaches to
other modalities besides image and text. Additionally, since fusion is done within the transformer
modules, modifying such strategies is equivalent to adjusting the intricate backbones themselves.

DEQ fusion, as a type of late fusion approach, has several advantages. Late fusion considers feature
extraction and multimodal fusion as separate processes, which neither bind to any specific input
preprocessing techniques nor have any prerequisite on the unimodal feature extraction methods.
As such, adapting and plugging our DEQ fusion module into existing frameworks is intuitive and
straightforward. From the aforementioned perspectives, although attention-based fusion methods
achieve significant results in vision-language tasks, our DEQ can be distinguished from them by
benefiting from the general applicability to various modalities and backbones.

4 CONCLUSION

We have presented an adaptive deep equilibrium (DEQ) approach for multimodal fusion. Our ap-
proach recursively captures intra- and inter-modality feature interactions until an equilibrium state is
reached, encoding cross-modal interactions ranging from low level to high level for effective down-
stream multimodal learning. This deep equilibrium approach can be readily pluggable into existing
multimodal learning frameworks to obtain further performance gain. More remarkably, our DEQ
fusion constantly achieves new state-of-the-art performances on multiple multimodal benchmarks,
showing its high generalizability and extendability. A common drawback of DEQ in applications
is its additional training costs for solving root-finding and uncertain computation costs during infer-
ence. Although accelerating DEQ training and inference is not a focus of this work, improving the
convergence of DEQs is an important direction, which we leave as future works.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pp. 136–145. PMLR, 2017.

Donald G Anderson. Iterative procedures for nonlinear integral equations. Journal of the ACM
(JACM), 12(4):547–560, 1965.

John Arevalo, Thamar Solorio, Manuel Montes-y Gómez, and Fabio A González. Gated multimodal
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A PROOF FOR BACKPROPAGATION OF DEQ FUSION

Proof of Theorem 1. Our proof is similar to Bai et al. (2019). We know z∗i = fθi(z
∗
i ;xi) from

Eq. (14), we can first differentiate two sides implicitly with respect to xi:

dz∗i
dxi

=
dfθi(z

∗
i ;xi)

dxi

=
∂fθi(z

∗
i ;xi)

∂xi
+

∂fθi(z
∗
i ;xi)

∂z∗i
· dz

∗
i

dxi

(19)

Rearranging Eq. (19), we obtain(
I− ∂fθi(z

∗
i ;xi)

∂z∗i

)
dz∗i
dxi

=
∂fθi(z

∗
i ;xi)

∂xi
. (20)

Differentiating Eq. (15) with respect to z∗i , we obtain the Jacobian

Jgθi |z∗
i
= −

(
I− ∂fθi(z

∗
i ;xi)

∂z∗i

)
(21)

Therefore dz∗
i

dxi
=

(
−J−1

gθi
|z∗

i

)
· ∂fθi (z

∗
i ;xi)

∂xi
.

Similarly, we have z∗fuse = ffuse(z
∗
fuse;xfuse) from Eq. (14). Differentiating both sides with respect

to z∗i :
dz∗fuse
dz∗i

=
dffuse(z

∗
fuse;xfuse)

dz∗i

=
∂ffuse(z

∗
fuse;xfuse)

∂z∗i
+

∂ffuse(z
∗
fuse;xfuse)

∂z∗fuse
· dz

∗
fuse

dz∗i

(22)

Rearranging Eq. (22), we have(
I− ∂ffuse(z

∗
fuse;xfuse)

∂z∗fuse

)
dz∗fuse
dz∗i

=
∂ffuse(z

∗
fuse;xfuse)

∂z∗fuse
. (23)

Similar to computation in Eq. (21), we have:

Jgfuse
|z∗

fuse
= −

(
I− ∂ffuse(z

∗
fuse;xfuse)

∂z∗fuse

)
. (24)

Thus dz∗
fuse

dz∗
i

=
(
− J−1

gfuse

∣∣
z∗
fuse

)
· ∂ffuse(z

∗
fuse;xfuse)

∂z∗
fuse

.

Finally, we can differentiate loss ℓ with respect to xi:

∂ℓ

∂xi
=

∂ℓ

∂z∗fuse
· dz

∗
fuse

dz∗i
· dz

∗
i

dxi

=
∂ℓ

∂z∗fuse
·
(
−J−1

gfuse

∣∣
z∗
fuse

)
· ∂ffuse (z

∗
fuse;xfuse)

∂z∗i
·
(
−J−1

gθi
|z∗

i

)
· ∂fθi (z

∗
i ;xi)

∂xi

(25)

B RELATED WORKS

Multimodal Fusion aims to integrate modality-wise features into a joint representation to solve
multimodal learning tasks. Early works distinguished fusion approaches into feature-level early fu-
sion and decision-level late fusion, depending on where fusion is performed in the model (Atrey
et al., 2010). Nefian et al. (2002); Xu et al. (2018) adopted early fusion approach to integrating
features from multiple modalities for speech recognition and video retrieval respectively. Simonyan
& Zisserman (2014) proposed to use two separate branches for spatial and temporal modalities and
perform a simple late fusion for video action recognition. Alternatively, Natarajan et al. (2012) fused
the outputs by computing a weighted average. Ye et al. (2012) proposed a robust late fusion using
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rank minimization. More recently, with the advancement of deep learning approaches, the idea of
early fusion has been extended to the concept of mid fusion, where fusion happens at multiple lev-
els (Ramachandram & Taylor, 2017). Karpathy et al. (2014) learned the fused representation by
gradually fusing across multiple fusion layers. Similarly, Vielzeuf et al. (2018) proposed a multi-
layer approach for fusion by introducing a central network linking all modality-specific networks.
Pérez-Rúa et al. (2019) came up with an architecture search algorithm to find the optimal fusion
architecture. Hori et al. (2017); Nagrani et al. (2021) incorporated attention mechanism for mul-
timodal fusion. Wang et al. (2020) proposed to exchange feature channels between modalities for
multimodal fusion. Pan et al. (2020) introduced bilinear pooling to attention blocks, and demon-
strated its superiority in capturing higher-level feature interactions by stacking multiple attention
blocks for image captioning. Zhao et al. (2023) proposes a learnable pseudo-sensing module for
multimodal image fusion based on physical imaging processes. Wang et al. (2022b) proposes to ex-
change the channels between modality-specific networks to encourage information exchange among
different modalities. Duan et al. (2022) emphasized the importance of capturing a higher and more
stable level of representation to enforce better cross-modality alignment for successful multimodal
fusion. More recently, attention has been moved to dynamic fusion, where the most suitable fusion
strategy is selected from a set of candidate operations depending on input from different modalities
(Han et al., 2022; Wang et al., 2022a; Xue & Marculescu, 2023). Such dynamic approaches can
adaptively capture unimodal importance, hence are more flexible to various multimodal tasks than
static methods. Motivated by the success of capturing stable and multi-level feature interactions and
the dynamic fusion designs in multimodal fusion, our work aims to integrate the information within
and across modalities at multiple levels by recursively applying nonlinear projections over intra- and
inter-modality features, while generalizing well to multimodal tasks involving different modalities.

Several studies have focused on transformer-based multimodal learning (Lu et al., 2019; Kim et al.,
2021; Li et al., 2022; Xu et al., 2023). These approaches usually concatenate data from multiple
modalities at the input level and pretrain the transformer backbone to jointly perform feature extrac-
tion and fusion via attention mechanism, and have demonstrated competitive performance especially
in vision-language multimodal tasks. While these methods achieve significant improvement, our
DEQ fusion, as a type of late fusion, has several benefits over such attention-based approaches. A
more comprehensive discussion can be found in Section 3.3.

Implicit Deep Learning is a new family of deep neural networks and has grown rapidly in recent
years. Traditional explicit deep models are often associated with a predefined architecture, and
the backward pass is performed in reverse order through the explicit computation graphs. In con-
trast, implicit models compute their outputs by finding the root of some equations and analytically
backpropagating through the root (Bai et al., 2020). Previous works mainly focus on designing the
hidden states of implicit models. Pineda (1987) proposed an implicit backpropagation method for
recurrent dynamics. Amos & Kolter (2017) proposed optimization layers to model implicit layers.
Neural ODEs find the root of differentiable equations to model a recursive residual block (Chen
et al., 2018). Deep equilibrium models (DEQ) find a fixed point of the underlying system via black-
box solvers, and are equivalent to going through an infinite depth feed-forward network (Bai et al.,
2019; 2020). These implicit deep learning approaches have demonstrated competitive performance
in multiple applications while vastly reducing memory consumption, e.g., generative models (Lu
et al., 2021; Pokle et al., 2022), optical flow (Teed & Deng, 2020; Bai et al., 2022), graph modeling
(Li et al., 2021), etc. Bai et al. (2021) also proposed a Jacobian regularization method to stabilize
DEQs. Our work takes advantage of DEQs to adapt the number of recursion steps by finding the
equilibrium state of intra- and inter-modality features jointly, and to speed up training and inference
of our recursive fusion design.

C EXPERIMENTAL SETUP

We conduct the experiments on NVIDIA Tesla V100 GPUs and use Anderson acceleration (Ander-
son, 1965) as the default fixed point solver for all our experiments.

BRCA. We experiment based on the current state-of-the-art approach (Han et al., 2022) by replac-
ing the original concatenation fusion with our DEQ fusion. Following Han et al. (2022), the learning
rate is set to 0.0001 and decays at the rate of 0.2 every 500 steps. As the dataset is relatively small,
we additionally leverage dropout in fusion layer and early stopping to prevent overfitting. Jacobian
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Table 8: Convergence of DEQ Fusion. The values indicate the relative difference norm computed at
a given solver step.

Dataset step 1 step 10 step 20 step 40 step 100

BRCA 7.06e-1 3.38e-2 8.80e-3 5.18e-3 1.29e-3
MM-IMDB 2.86e-1 9.17e-4 7.65e-5 8.87e-6 2.17e-6
CMU-MOSI 3.09e-2 4.16e-7 6.94e-8 5.66e-8 5.66e-8

regularization loss with a loss weight of 20 is employed to stabilize training. We report the mean
and standard deviation of the experimental results over 10 runs.

MM-IMDB. Our implementation and experiments on MM-IMDB are based on MultiBench
(Liang et al., 2021). We follow the data split and feature extraction methods presented in Arevalo
et al. (2017) for data preprocessing. Jacobian regularization loss with a loss weight of 0.1 is ex-
ploited. To further stabilize training, we additionally set a smaller learning rate of 0.0001 for our
DEQ fusion module, and 0.001 for all other weights.

CMU-MOSI. We conduct the experiments with the state-of-the-art CM-BERT (Yang et al., 2020)
by replacing the original simple addition fusion strategy with our DEQ fusion. We follow (Bai et al.,
2021) and use Jacobian regularization loss with a loss weight of 0.01 to stabilize DEQ training.

VQA-v2. Our experiments are based on Mutan (Ben-Younes et al., 2017) and MCAN (Yu et al.,
2019). All methods are trained on the train set (444k samples) and evaluated on the validation set
(214k samples). Our Mutan2 and MCAN3 results are reproduced based on their official codebases
respectively. For a fair comparison, we apply the bottom-up-attention visual features for all ex-
periments and only use the VQA-v2 training set (disabled VisualGenome and VQA-v2 val set) for
model training. Our reproduced Mutan baseline has better performance than the other reproduced
version in Liang et al. (2019) (63.73% vs. 62.84% in overall accuracy) under the same settings. For
MCAN, we select its “Large” model setting as our baseline.

D ADDITIONAL ABLATION STUDIES

In addition to the convergence ablation study on BRCA, we further examine the convergence of DEQ
fusion by tracking the relative difference norm over solver steps on MM-IMDB and CMU-MOSI.
The results are in Table 8. DEQ fusion successfully converges on all three benchmarks, whereas the
convergence rate on MM-IMDB and CMU-MOSI is considerably faster than on BRCA.

2https://github.com/Cadene/vqa.pytorch
3https://github.com/MILVLG/mcan-vqa
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