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Abstract

We consider the effect of temporal aggregation
on instantaneous (non-temporal) causal discov-
ery in general setting. This is motivated by the
observation that the true causal time lag is often
considerably shorter than the observational inter-
val. This discrepancy leads to high aggregation,
causing time-delay causality to vanish and instan-
taneous dependence to manifest. Although we
expect such instantaneous dependence has con-
sistency with the true causal relation in certain
sense to make the discovery results meaningful, it
remains unclear what type of consistency we need
and when will such consistency be satisfied. We
proposed functional consistency and conditional
independence consistency in formal way corre-
spond functional causal model-based methods and
conditional independence-based methods respec-
tively and provide the conditions under which
these consistencies will hold. We show theoret-
ically and experimentally that causal discovery
results may be seriously distorted by aggregation
especially in complete nonlinear case and we also
find causal relationship still recoverable from ag-
gregated data if we have partial linearity or ap-
propriate prior. Our findings suggest community
should take a cautious and meticulous approach
when interpreting causal discovery results from
such data and show why and when aggregation
will distort the performance of causal discovery
methods.
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1. Introduction
Causal discovery methods, which aim to uncover causal
relationships from observational data, have been extensively
researched and utilized across multiple disciplines including
computer science, economics, and social sciences (Pearl,
2009; Spirtes et al., 2000). These methods can be broadly
categorized into two types based on whether they explicitly
utilize temporal information of the data. The first type is
temporal causal discovery, which is specifically designed
for analyzing time series data. Examples of this type in-
clude the Granger causality test (Granger, 1969) and its
variants. The second type is non-temporal causal discov-
ery referring to methods that do not explicitly utilize time
index information, which is applicable to independent and
identically distributed (i.i.d.) data. This category encom-
passes various approaches such as constraint-based, score-
based, and functional causal model (FCM)-based methods
like PC (Spirtes et al., 2000), GES (Chickering, 2002), and
LiNGAM (Shimizu et al., 2006).

Temporal causal discovery often relies on the assumption
that the causal frequency aligns with the observation fre-
quency, but in real-world scenarios the causal frequency
is often unknown, which means that the available observa-
tions may have a lower resolution than the underlying causal
process. An instance of this is annual income, which is an
aggregate of monthly or quarterly incomes (Drost & Nijman,
1993). Moreover, it is widely believed that causal interac-
tions occur at high frequencies in fields such as economics
(Ghysels et al., 2016) and neuroscience (Zhou et al., 2014).
Some research has been conducted to explore the effects
of temporal aggregation on time series modeling (Ghysels
et al., 2016; Marcellino, 1999; Silvestrini & Veredas, 2008;
Granger & Lee, 1999; Rajaguru & Abeysinghe, 2008; Gong
et al., 2017). These works typically consider small aggre-
gation factor k and still treat the temporal aggregation from
causal processes as a time series 1.

However, in many real-world scenarios, the temporal aggre-
gation factor can be quite large (we only consider aggrega-

1The ”aggregation factor k” refers to the number of data points
from the underlying causal process that are combined to form
each observed data point. It is also called the aggregation level or
aggregation period.
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tion without overlapping windows). In these cases, what
was originally a time-delayed dependence can appear as
an instantaneous dependence when observed. An example
commonly used in statistics and econometrics textbooks to
illustrate correlation, causation, and regression analysis is
the influence of temperature on ice cream sales. Intuitively,
one might think that the average daily temperature has an
instantaneous causal effect on the total daily ice cream sales.
However, in reality, the causal process involves a time lag:
a high temperature at a specific past moment influences peo-
ple’s decision to purchase ice cream, which then leads to
a sales transaction at a subsequent moment. But we typi-
cally work with the aggregation of this causal interaction,
such as the average daily temperature and the total daily ice
cream sales, which represent the sum of all individual sales
transactions over the day and that is the reason we observed
instantaneous causality.

Interestingly, the causality community has long acknowl-
edged the significance of temporal aggregation as a common
real-world explanation for instantaneous causal models like
the structural equation model. Fisher (1970) argued that
simultaneous equation models serve as approximations of
true time-delayed causal relationships driven by temporal
aggregation in the limit. He emphasized that while causa-
tion inherently involves a temporal aspect, as the reaction
interval tends to zero, the aggregation factor k tends to in-
finity. Granger (1988) shared a similar view and claimed
that “temporal aggregation is a realistic, plausible, and well-
known reason for observing apparent instantaneous causa-
tion”. This explanation has been consistently used in recent
causal discovery papers, especially those discussing cyclic
models (Rubenstein et al., 2017; Lacerda et al., 2012; Hytti-
nen et al., 2012).

When applying non-temporal causal discovery methods to
uncover instantaneous causal relationships resulting from
temporal aggregation, a fundamental question arises: Are
these estimated instantaneous causal relationships consistent
with the true time-delayed causal relationships? This issue
is crucial because our primary concern lies in discerning the
true causal relations. If the results obtained by the instanta-
neous causal discovery methods do not align with the true
causal relationship, the results may not suggest anything like
how to apply intervention. Regrettably, few studies have
examined the alignment of these estimated instantaneous
causal relationships stemming from temporal aggregation
with the true time-delayed causal relationships. To the best
of our knowledge, the only theoretical analysis related to
this question is conducted by Fisher (1970) and Gong et al.
(2017). We will delve into a comprehensive discussion of
their contributions in subsection 1.2.

1.1. Contributions

We propose and investigate two different sense of princi-
ple consistencies: functional consistency and conditional
independence consistency to formally define what does the
recoverability means when we perform FCM-based and con-
ditional independence-based methods on aggregated data
respectively. To the best of our knowledge, our paper is
the first to specifically discuss the risks and feasibility of
performing non-temporal causal discovery methods on ag-
gregated data in general(nonlinear) cases.

1. Functional consistency requires that the aggregated
model maintain the consistent functional form of the
original causal model. We discuss functional consis-
tency in the context of additive noise models and non-
stationary scenarios. For the additive noise model, we
present the construction form of the causal function
after aggregation in Theorem 3.3 and also provide the
necessary and sufficient conditions for the Structural
Causal Model (SCM) to hold. For non-stationary sce-
narios, we discuss different cases and provide results
for the general case in Theorem 3.6.

2. Conditional independence consistency expects aggre-
gated model maintain the consistent conditional in-
dependence properties as the original causal model.
We investigate the three fundamental trivariate struc-
ture, chain, fork and collider. We show the collider
structure naturally has conditional independence con-
sistency with the causal Markov condition, even for the
nonlinear case, but chain and fork do not (see Figure 2
and Remark 4.3). And we provide the necessary and
sufficient condition(Theorem 4.4) for the conditional
independence consistency for chain and fork structure
which can be presented as a equation involving con-
ditional density functions. Each conditional density
functions only involving two components of the time
series, which motivate us to prove that partial linearity
is sufficient to ensure such consistency for chain and
fork(Corollary 4.5 and 4.6).

3. We conducted five simulation experiments to support
our findings, focusing on theorems for functional and
conditional consistency, examining the effect of the k
value, and proposing a trivial solution for the aggrega-
tion issue.

1.2. Related work

Fisher (1970) established the corresponding relationship
between the simultaneous equation model and the true time-
lagged model, providing the conditions to ensure such cor-
respondence. His analysis encompassed both linear and
general cases. Roughly speaking, he conducted theoretical
analysis to show that this correspondence can be ensured
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when the function of the equation has a fixed point. How-
ever, the assumptions he employed were quite restrictive,
assuming that the value of noise is fixed for all the causal
reactions during the observed interval. Some subsequent
studies have also adopted this assumption (Rubenstein et al.,
2017; Lacerda et al., 2012). This assumption is too strong, as
it implies that noise in the causal reaction is only related to
our observation like measurement error. Actually, the noise
defined in structural causal models or functional causal mod-
els also represents unobserved or unmeasured factors that
contribute to the variation in a variable of interest, rather
than being merely observational noise.

Gong et al. (2017) adopted a more practical and flexible
assumption in their work. They defined the original causal
process as a vector auto-regressive model (VAR) Xt =
AXt−1 + et and allowed for the randomness of the noise et
in the observation interval. They gave a theoretical analysis
showing that, in the linear case and as the aggregation factor
tends to infinity, the temporally aggregated data X becomes
i.i.d. and compatible with a structural causal model X =
AX + e. In this model, matrix A is consistent with the
matrix A in the original VAR. This suggests that high levels
of temporal aggregation preserve functional consistency in
the linear case. However, their study only considers the
linear case and lacks analysis for general cases.

2. Preliminary
In this section, we first introduce the Vector Autoregressive
(VAR) model and its temporal aggregation. Then, we briefly
describe how, as the aggregation level k increases, the time-
delay dependence vanishes and how it can be approximated
as the aggregation of an instantaneous causal model. Based
on this fact, we ignore the unaligned variables caused by
time-delay causal effects and define the underlying process
with instantaneous causal effects across different compo-
nents, while allowing potential time-delay causal effects
between variables within the same component. The anal-
ysis in subsequent sections is based on the aggregation of
instantaneous causal effects.

2.1. VAR Model and its Temporal Aggregation

Aligning with the settings in Gong et al. (2017), we assume
the underlying causal process can be described by a VAR(1)
(autoregressive model with a maximum lag of 1):

Xt = f(Xt−1, Nt), t ≥ 2,

where Xt = (X
(1)
t , X

(2)
t , . . . , X

(s)
t )T is the observed data

vector at time t, s is the dimension of the random vec-
tor. f is a vector-valued function R2s → Rs, and Nt =

(N
(1)
t , . . . , N

(s)
t )T denotes a temporally and contemporane-

ously independent noise process. When mentioning VAR in

our paper, we refer to the general VAR model defined above,
which includes both linear and nonlinear functions.

The temporally aggregated time series of this process, de-
noted by Xt, is defined as:

Xt =

∑k
i=1 Xi+(t−1)k

g(k)
. (1)

When we mention the aggregation of the time-delay model
in the paper, we consider cases where k is large by default.
In such cases, we treat the temporally aggregated data as
i.i.d. data, and we will drop the subscripts t in Eq. 1 from
now on. The normalization factor g(k) is generally required
to satisfy lim

k→∞
g(k) = +∞, like g(k) = k. It should

be chosen carefully to ensure that the limit of temporal
aggregation has a finite, non-zero variance.

We also introduce the concept of a summary graph, which
often serves as the objective for causal discovery from a
random process. Figure 1 shows an example of a summary
graph.

Figure 1. Left: Directed acyclic graph for the VAR model with
chain-like cross lag effects. Right: The corresponding summary
graph.

Definition 2.1 (Summary Graph). Each time series compo-
nent is collapsed into a node to form the summary causal
graph. The summary graph represents causal relations be-
tween time series without referring to time lags. If there
is an arrow from X

(i)
t−k to X

(j)
t in the original process for

some k ≥ 0, then it is represented in the summary graph.

2.2. Approximation

In this subsection, we introduce how the aggregation of
a time-delay model can be approximated as the aggre-
gation of an instantaneous model. This section merely
provides a simple example to illustrate why the aggregation
of instantaneous causation can be used to approximate the
aggregation of time-delay causation. In the Appendix I, we
provide more rigorous and general theorem and proof to
justify this approach.

See Figure 1 as an example. The summary graph of
this VAR is a chain structure involving triple variables.
But the chain structure actually occurs in a lagged form:
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Xt → Yt+1 → Zt+2
2. For analytical convenience, we will

perform an alignment X ′
t := Xt, Y

′
t = Yt+1, Z

′
t := Zt+2

to make the causal effect instantaneous. We refer to the
instantaneous model over X ′

t, Y
′
t , Z

′
t : as the aligned model.

In the example of chain-like VAR, the aligned model is in
the red box in the Figure 1.

When k is large, the temporal aggregation from the orig-
inal VAR and the aligned model is exactly the same:
as k approaches infinity, the temporally aggregated data
(X ′, Y ′, Z ′) tends towards (X,Y , Z). This can be demon-
strated by the following equalities: Since g(k) → ∞, we
have

Y ′ − Y =

∑k+1
i=2 Yi

g(k)
−
∑k

i=1 Yi

g(k)
=

Yk+1 − Y1

g(k)
→ 0,

Z ′ − Z =

∑k+2
i=3 Zi

g(k)
−
∑k

i=1 Zi

g(k)

=
Zk+2 + Zk+1 − Z1 − Z2

g(k)
→ 0,

as k → ∞.

This approximation is natural, as the similar assertion that
high aggregation causes time-delay dependence to become
instantaneous has appeared and been discussed in many
papers (Pierce & Haugh, 1977; Granger, 1980; 1988; Re-
nault et al., 1998; Breitung & Swanson, 2002; Gong et al.,
2017). Please note that the number of unaligned variables
we rule out (outside the red block in Figure 1) is quite small
compared to the variables within the block. Therefore, as
k increases, the aggregation of the time-delay model will
rapidly approach the aggregation of the instantaneous model
in practice (see Appendix F for an experiment investigat-
ing the effect of k value). If the k value is quite small and
the unaligned variables significantly contribute to causal
discovery, it indicates that the data exhibit an obvious time-
delay property. In such cases, one should employ a temporal
causal discovery method, which is beyond the scope of this
paper.

Therefore, all the theoretical results in this paper con-
sider the aggregation of the instantaneous underlying
model, also referred to as the aligned model. They are
formally defined in Definition 3.1 in Section 3 and Defini-
tion 4.1 in Section 4. From this perspective, our paper can
be seen as exploring when it is possible to recover causal
relations from the aggregation of instantaneous causal mod-
els and all the results can be applied to them with any
finite k value and any choice of g(k) (thus we set g(k) = 1
for simplicity in the subsequent sections). Only when we

2Here Xt represents a one-dimensional variable. Starting from
here, Xt and X represent scalar random variable, and we will use
X, Y, Z,... to represent the different components of multivariate
time series, instead of using X(1),...,X(s) as defined in 3.1.

want to apply the results to the aggregation of the time-delay
model do we need k to be large and g(k) to be appropriate,
i.e., lim

k→∞
g(k) = +∞.

3. Functional Consistency: Recoverability with
FCM-based Methods

FCM-based methods make stronger assumptions and utilize
more information beyond just conditional independence.
Thus, they can distinguish cause from effect from observa-
tional data under the functional assumptions. If we want to
ensure the reliability of the results from FCM-based causal
discovery on temporally aggregated data, we need some
functional consistency between the process of temporally
aggregated data and the true causal process.

3.1. Definitions

The FCM-based methods primarily focus on the causal direc-
tion and consider the bivariate case in their studies. Aligned
with (Shimizu et al., 2011; Hoyer et al., 2008; Zhang &
Hyvarinen, 2012), we also consider the process involving
two components.

Definition 3.1 (Bivariate Aligned Model with Instant Struc-
tures). The aligned model for VAR model with two compo-
nents X → Y is defined below:

X0, Y0 are independent and follow the initial distribution.
when t ≥ 1,

Xt = fX(Xt−1, NX,t), Yt = fY (Xt, NY,t)

where fX , fY are general functions. NX,t, NY,t are inde-
pendent random variables with non-zero variance, which
are independent of each other and they are identically dis-
tributed and independent across time t.

The temporal aggregation (for simplicity we set g(k) = 1)
are denoted as X :=

∑k
i=1 Xi, and similarly for Y , Z.

Intuitively, functional consistency implies that the functional
causal model still exists after aggregation and adheres to the
correct causal direction. We attempt to formulate a general
definition; however, the problem becomes trivial because a
causal function and independent noise can always be con-
structed to create a Structural Causal Model between any
two random variables if no additional constraints are ap-
plied (Darmois, 1953; Hyvärinen & Pajunen, 1999; Zhang
et al., 2015). Therefore, in line with the requirements of
commonly used FCM-based methods, we introduce some
reasonable constraints, such as requiring the model to incor-
porate additive noise.
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3.2. Discussion for Two Types of Functional Consistency

Definition 3.2 (Functional Consistency Regarding Additive
Noise). Consider the bivariate aligned model defined in
3.1 incorporates additive noise: Yt = f(Xt) +NY,t. This
process exhibits functional consistency regarding additive
noise if there exists a function f̂ such that the aggregated
variables can be represented as Y = f̂(X) +N , where N

is independent of X , and such f̂ exists only in the correct
causal direction.

When the original causal function f is linear, then Y =∑k
i=1(AXi + NY,t) = AX +

∑k
i=1 NY,i (Gong et al.,

2017),
∑k

i=1 NY,i is independent of X . However, because
such an SCM exists on both sides, it is unidentifiable; we
require non-Gaussian (Shimizu et al., 2006; 2011) or nonlin-
earity (Hoyer et al., 2008) to achieve asymmetry. Nonethe-
less, due to the central limit theorem, even if NY,i is non-
Gaussian,

∑k
i=1 NY,i will quickly exhibit Gaussian char-

acteristics, making it unidentifiable. See Appendix D for
experiments showing how rapidly non-Gaussianity vanishes
as k increases.

In the nonlinear case, we derive the following theorem:
Theorem 3.3 (Construction of f̂ ). If such f̂ , as defined in
Definition 3.2, exists, then f̂ must take the form:

f̂(T ) = E

(
k∑

i=1

f(Xi) | X = T

)
+ c, (2)

where c is any constant (which can be incorporated into
the noise term) and the expression E(· | X = T ) denotes
the conditional expectation. For simplicity, we set c = 0.
Consequently, this implies:

E(f̂(X)) = E

(
k∑

i=1

f(Xi)

)
. (3)

See Appendix A for the proof. This construction of f̂ is
very interesting and bears a strong resemblance to the Rao-
Blackwell Theorem (Lehmann & Casella, 2006), which
aims to find an estimator (or a function in the causal infer-
ence framework) that accurately represents the underlying
relationship between variables while accounting for noise
or other confounding factors. The principle that the new
estimator should be a function of some statistics, and using
conditional expectations to enforce this, is very similar to
what is described by the Theorem 3.3.

Then we can present Y in two ways: Y =
∑k

i=1 f(Xi) +∑k
i=1 NY,i = f̂(X)+N , where f̂ is known and, according

to the definition, we expect N to be independent of X .
Therefore, we directly imply the results below.
Theorem 3.4 (Necessary and Sufficient Condition). The
necessary and sufficient condition for the existence of the

additive noise causal model defined in Definition 3.2 is that
N =

∑k
i=1 NY,i+

(∑k
i=1 f(Xi)− f̂(X)

)
is independent

of X , where f̂ is defined by Eq. 2.

The proof can be found in Appendix A.

It is worth noting that the construction of f̂ naturally en-
sures that N is uncorrelated with X . However, it is still
challenging to achieve independence. For the condition,
we find that the term

∑k
i=1 NY,i is independent of every

Xi and X , as well as the construction of f̂ . Thus, we
cannot rely on this term to enforce independence. Further-
more, the term

∑k
i=1 f(Xi) − f̂(X) is likely dependent

on X . If we calculate the conditional variance, conditional
on X = T , for

∑k
i=1 f(Xi) +

∑k
i=1 NY,i and f̂(X) +N

respectively, then we will get var(N) = var
[∑k

i=1 NY,i

]
+

var
[∑k

i=1 f(Xi) | X = T
]
. Please note that the LHS is

not related to T , and the first term in RHS is not related to
T as well. This requires var

[∑k
i=1 f(Xi) | X = T

]
also

to be unrelated to T , which is a non-trivial requirement for
the distribution of Xi and f .

Sometimes, data is collected from different regions/modules.
The causal mechanism remains unchanged across these re-
gions, but the distribution of data may vary. The identifi-
ability of some causal discovery methods depends on the
variance in distribution and the consistency of the causal
function across different regions (Huang et al., 2020). We
are now investigating whether the same causal mechanism
persists in different regions when considering aggregated
data.

Definition 3.5 (Functional Consistency with respect to
different regions). Consider causal models Xt,A =
fX(Xt−1,A, NX,t,A), Yt,A = f(Xt,A, Nt,A) and Xt,B =
fX(Xt−1,B , NX,t,B), Yt,B = f(Xt,B , Nt,B) for regions
A and B, respectively, where NX,t,A, NX,t,B , Nt,A, and
Nt,B represent independent noises with region-specific dis-
tributions and are i.i.d. within each region. XA/B and
Y A/B are the aggregated data across individuals within
each region. This process exhibits functional consistency
with respect to different regions if, only for the correct
causal direction X → Y , there exists a function f̂ such
that the aggregated variables satisfy Y A = f̂(XA, NA) and
Y B = f̂(XB , NB).

Obviously, if f is a linear function, then it will always be
consistent across different regions. For the nonlinear addi-
tive noise model, according to the construction formula Eq.
2, which is rely on the distribution of Xi, it is feasible to
provide examples of f̂ being inconsistent across different
regions (see Appendix H). In general cases, due to a lack of
constraint, it is always possible to find a consistent function;
however, such a function can exist in both directions, ren-
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dering the system still unidentifiable. See Appendix A for
the proof.

Theorem 3.6 (General Case for Functional Consistency
Across Different Regions). For the causal model defined in
Definition 3.5, assume the aggregated variables XA, XB

and Y A, Y B have continuous support. Then, there exists
functions f̂ and ĝ such that Y A = f̂(XA, NA), Y B =

f̂(XB , NB), XA = ĝ(Y A, N
′
A), and XB = ĝ(Y B , N

′
B),

where NA is independent of XA, NB is independent of XB ,
N ′

A is independent of Y A, and N ′
B is independent of Y B .

4. Conditional Independence Consistency:
Recoverability with Constraint-based
Method

Constraint-based causal discovery methods utilize condi-
tional independence to identify the Markov equivalence
classes of causal structures. These methods heavily rely
on the faithfulness assumption, which posits that every
conditional independence in the data corresponds to a d-
separation in the underlying causal graph.

The information utilized by constraint-based causal discov-
ery methods is less than that used by FCM-based methods.
This implies that the consistency we require for the recov-
erability of constraint-based methods on temporally aggre-
gated data is less stringent than functional consistency. In
essence, we only need the temporally aggregated data to pre-
serve the conditional independence of the summary graph of
the underlying causal process. If the temporal aggregation
maintains such conditional independence consistency, then
the constraint-based causal discovery method can recover
the Markov equivalence class of the summary graph entailed
by the underlying true causal process.

4.1. Definitions and Problem Formulation

To examine whether the temporally aggregated data pre-
serves the conditional independence consistency with the
summary graph of the underlying causal process, we will
discuss the three fundamental causal structures of the sum-
mary graph: the chain, the fork, and the collider. We will
provide theoretical analysis for each of these three funda-
mental cases respectively.

In subsection 3.1, we assume the original causal process
is VAR(1) and we work with the temporal aggregation of
it. But in this section, for analytical convenience we will
assume the original model is an aligned version of VAR(1),
and work with the temporal aggregation of it. We will
show this alignment is reasonable because the temporal
aggregation of these two original processes is the same
when k is large.

4.1.1. ALIGNED MODEL

Definition 4.1 (Trivariant Aligned Model with Instant Struc-
tures). The aligned model for VAR model with structure
function fX , fY , fZ incorporating chain-like cross lag ef-
fect is given by:

X0, Y0, Z0 are independent and follow the initial distribu-
tion. when t ≥ 1,

Chain-like Model: Xt = fX(Xt−1, NX,t), Yt =
fY (Xt, Yt−1, NY,t), Zt = fZ(Yt, Zt−1, NZ,t),

Fork-like Model: Xt = fX(Xt−1, Yt, NX,t), Yt =
fY (Yt−1, NY,t), Zt = fZ(Yt, Zt−1, NZ,t),

Collider-like Model: Xt = fX(Xt−1, NX,t), Yt =
fY (Xt, Yt−1, Zt, NY,t), Zt = fZ(Zt−1, NZ,t),

where fX , fY , fZ are general functions. NX,t, NY,t, NZ,t

are independent random variables with non-zero variance,
which are independent of each other and they are identically
distributed and independent across time t.

The temporal summation and aggregation are denoted as
SX :=

∑k
i=1 Xi, X := SX

g(k) , and similarly for SY , Y ,
SZ , and Z. When k is finite, SX , SY , and SZ have the
same conditionally independent relationship with X , Y ,
and Z, respectively. Therefore, when discussing conditional
independence, we can treat SX , SY , and SZ as equivalent
to X , Y , and Z.

The figures of the aligned models of three fundamental struc-
ture involving temporal aggregation variables are presented
in Figure 2.

Figure 2. Left: Chain-like aligned model. Center: Fork-like
aligned model. Right: Collider-like aligned model.

4.1.2. PROBLEM FORMULATION

Definition 4.2 (Conditional Independence Consistency).
Consider an underlying causal process generating tempo-
rally aggregated data. This process is said to exhibit condi-
tional independence consistency if the distribution of tem-
porally aggregated data satisfies the Markov condition with
respect to the summary graph of original process.

We will address the problem of determining the conditions
under which temporal aggregation preserves conditional
independence consistency in three fundamental causal struc-
tures: chain, fork, and collider.
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4.2. Necessary and Sufficient Conditions for Consistency

For the figure of a chain or fork structure, we expect the mid-
dle node can d-separate the nodes on both sides. However,
from the structure of Figure 2 Left and Center, we can find
that all adjacent nodes of Y point to Y . Therefore, when we
condition on Y , we cannot block any path.

For the figure of a collider structure, we expect the nodes
on both sides are unconditionally independent and when
conditioned on the middle node, the nodes on both sides
will be dependent. Fortunately, from the structure of Figure
2 Right, we can find that all the Yt are collider for Xt

and Zt so X ⊥⊥ Z unconditionally. And because Y is a
descendant of these colliders, when we condition on Y , the
path involving Xt and Zt will be open. As a result, X is
dependent with Z conditional on Y .
Remark 4.3 (Conditional Independence Consistency under
Faithfulness Condition). Assume the aligned models satisfy
the causal Markov condition and causal faithfulness condi-
tion with respect to the causal graphs of aligned models in
Figure 2.

• The conditional independent sets of temporal aggrega-
tion of chain-like/fork-like aligned model is ∅, which
is not consistent with the chain/fork structure.

• The conditional independent sets of temporal aggrega-
tion of collider-like aligned model is X ⊥⊥ Z, which
is consistent with the collider structure.

This remark emphasizes that in general cases, the temporal
aggregation of a model with chain-/fork-like structure does
not exhibit the same conditional independence as a genuine
chain or fork structure under the faithfulness assumption.
As a result, we will explore the conditions required to ensure
the validity of the conditional independence X ⊥⊥ Z | Y in
the context of temporal aggregation.

Theorem 4.4 (Necessary and Sufficient Condition for Con-
ditional Independence Consistency of Chain and Fork Struc-
ture). Consider the distribution of (X,Y , Z, Y1, ..., Yk) en-
tailed from the aligned model, the following statements are
equivalent when 2 ≤ k < ∞:

(i) Conditional Independence: X ⊥⊥ Z | Y
(ii) Conditional Probability Relation: ∀sX , sY , sZ ∈ R∫∫

Rk α(sZ , sY , y1:k) (β(y1:k, sY , sX)− γ(y1:k, sY ))
dy1... dyk = 0
(iii) Alternative Conditional Probability Relation:
∀sX , sY , sZ ∈ R∫∫

Rk α
∗(sX , sY , y1:k) (β

∗(y1:k, sY , sZ)− γ(y1:k, sY ))
dy1... dyk = 0

where α := pSZ |SY ,Y1:k
, β := pY1:k|SY ,SX

, α∗ :=
pSX |SY ,Y1:k

, β∗ := pY1:k|SY ,SZ
, γ := pY1:k|SY

.

See Appendix B for the proof. From this sufficient and
necessary condition, we find that the integrand can be di-
vided into two parts. For example, the integrand in for-
mula 4.4 can be divided into two parts. The first part
is pSZ |SY ,Y1:k

(sZ |sY , y1:k). Because Y1, ...Yk d-separate
SZ from X1, ..., Xk perfectly, this part is related to the
causal mechanism between Y and Z. The second part(
pY1:k|SY ,SX

(y1:k|sY , sX)− pY1:k|SY
(y1:k|sY )

)
is related

to the causal mechanism between Y and Z. This inspires us
to consider different parts of the model individually.

Corollary 4.5 (Sufficient Conditions for Conditional Inde-
pendence). If {X ⊥⊥ Y1:k | Y } or {Z ⊥⊥ Y1:k | Y } holds,
then X ⊥⊥ Z | Y holds.

Proof can be found in Appendix B. This corollary has a very
intuitive interpretation: when the information needed to
infer X from Y1:k is completely included in Y (X ⊥⊥ Y1:k |
Y ), then conditioning on Y is equivalent to conditioning
on Y1:k. In this case, Y1:k d-separate X from Z. The same
principle applies to Z. When does the information to infer
X/Z from Y1:k is completely included in Y ?

Corollary 4.6 (Partial Linear Conditions).

1. For a fork-like aligned model:

• If fZ(Yt, Zt−1, NZ,t) is of the form α ∗ Yt +Nt,
where α can be any real number, then Z ⊥⊥ Y1:k |
Y .

• If fX(Xt−1, Yt, NX,t) is of the form α ∗ Yt +Nt,
where α can be any real number, then X ⊥⊥ Y1:k |
Y .

2. For a chain-like aligned model:

• If fZ(Yt, Zt−1, NZ,t) is of the form α ∗ Yt +Nt,
where α can be any real number, then Z ⊥⊥ Y1:k |
Y .

• If the time series is stationary and Gaussian, and
fY (Xt, Yt−1, NY,t) is of the form α ∗ Xt + Nt,
where α can be any real number, then X ⊥⊥ Y1:k |
Y .

Proof can be found in Appendix B. Roughly speaking, this
corollary suggests that if the causal relationship between
X/Z and Y is linear, then the information needed to infer
X/Z from Y1:k is completely included in Y . Further, based
on the sufficient condition for conditional independence
(refer to Corollary 4.5), we can see that it is not necessary
for the entire system to be linear.

5. Simulation Experiments
We conducted five experiments to comprehensively address
the various aspects of the aggregation problem. Firstly, we
applied widely-used causal discovery methods(PC(Spirtes
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et al., 2000), FCI(Spirtes et al., 2013), GES(Chickering,
2002)) to aggregation data with 4 variables, enabling read-
ers to grasp the motivation and core issue discussed in this
paper. Secondly and thirdly, we conducted experiments
on functional consistency(apply Direct LiNGAM(Shimizu
et al., 2011)/ANM(Hoyer et al., 2008) to linear/nonlinear
data with different aggregation levels) and conditional in-
dependence consistency(perform Kernel Conditional Inde-
pendence test(Zhang et al., 2012) on aggregated data) to
bolster the theorems presented in the main text. Fourthly,
we carried out an experiment to investigate the impact of the
k value and to justify the approximations made in this pa-
per. Fifthly, we performed the PC algorithm with a skeleton
prior on aggregated data and consistently obtained correct
results, offering a preliminary solution to the aggregation
problem and laying the groundwork for future research in
this area. Due to the page limit, we present only a limited
number of results in the main text. Detailed settings and
results of the five experiments can be found respectively in
the Appendices: C, D, E, F, and G.

5.1. FCM-based Causal discovery in Linear
non-Gaussian case

Here we examine the use of a FCM-based causal discovery
method on bivariate temporally aggregated data in the linear
non-Gaussian case to distinguish between cause and effect.
Specifically, we employ the Direct LiNGAM method to
represent FCM-based causal discovery methods.

We perform a simulation experiment on the model Yi =
2Xi + NY,i, where the noise follow uniform distribu-
tion. We then generating the dataset X,Y with a sam-
ple size of 10,000. We apply the Direct LiNGAM
method on this dataset to determine the causal order.

Figure 3. Relationship between the aggre-
gation factor k and the performance of the
Direct LiNGAM method. The blue area
represents the standard deviation. The red
line represents the random guess baseline.

To investigate
the relationship
between the ag-
gregation factor
k and the per-
formance of the
Direct LiNGAM
method, we
vary the values
of k from 1 to
100 to see the
correct rate in
100 repetitions.

Our results indi-
cate that when k
is small, the correct rate is near 100%, implying a good
performance of the Direct LiNGAM method. However, as k
increases from 3 to 30, the correct rate drops rapidly to 50%
as random guess. This experiment demonstrates that even

in the linear non-Gaussian case, temporal aggregation can
significantly impair the identifiability of functional-based
methods relying on non-Gaussianity.

5.2. Conditional Independence Test in Gaussian case

We perform experiments using three different structures:
chain, fork, and collider to validate our theoretical results.

In all structures, each noise term N follows an independent
and identically distributed (i.i.d) standard Gaussian distri-
bution. For the causal relationship between X and Y , we
use the function f(·, N). In the linear case, f(·) = (·).
In the nonlinear case, we use the post-nonlinear model
f(·, N) = G(F (·) +N) (Zhang & Hyvarinen, 2012) and
uniformly randomly pick F and G from (·)2, (·)3, and
tanh(·) for each repetition. This is to ensure that our ex-
periment covers a wide range of nonlinear cases. Similarly,
the same approach is applied for the relationship between
Y and Z with the corresponding function g(·).

We set t = 1, 2, thus X = X1 + X2, Y = Y1 + Y2,
Z = Z1 + Z2. And we generate 1000 i.i.d. data points
for (X1, X2, Y1, Y2, X, Y ) and feed them into the approx-
imate kernel-based conditional independence test (Strobl
et al., 2019). We test the null hypothesis(conditional inde-
pendence) for (I) X ⊥⊥ Y , (II) Y ⊥⊥ Z, (III) X ⊥⊥ Z, (IV)
X ⊥⊥ Y | Z, (V) Y ⊥⊥ Z | X , (VI) X ⊥⊥ Z | Y . We
also test for the conditional independence in corollary 4.5:
(A) X ⊥⊥ Y1 | Y , and (B) Z ⊥⊥ Y1 | Y . We report the
rejection rate for fork structure at a 5% significance level in
100 repeated experiments in Table 3b. The results for chain
structure and collider structure can be found in Appendix
3a.

The experiment shows that as long as there is some linearity,
we can find a consistent conditional independence set, which
aligns with Corollary 4.6. However, in completely non-
linear situations, we still cannot find a consistent conditional
independence set, which aligns with Remark 4.3.

6. Conclusion and Limitation
This paper points out that although many people use the
occurrence of instantaneous causal relationships due to tem-
poral aggregation as a real-world explanation for instanta-
neous models, few people pay attention to whether these
instantaneous causal relationships are consistent with the
underlying time-delayed causal relationships when this sit-
uation occurs. This paper mainly discusses whether the
causal models generated by temporal aggregation maintain
functional consistency and conditional independence consis-
tency in general (nonlinear) situations. Through theoretical
analysis in the case of finite k, we show that functional
consistency is difficult to achieve in non-linear situations.
Furthermore, through theoretical analysis and experimen-
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Table 1. Rejection rates for CI tests with different combinations of linear and nonlinear relationships. The index in the box represents the
conditional independence that the structure should ideally have. Simply speaking, for the column VI, the closer the rejection rate is to 5%,
the better. For all other columns from I to V, a higher rate is better.

Xt → Yt Yt → Zt I II III IV V VI A B

Linear Linear 100% 100% 100% 100% 100% 5% 6% 5%
Nonlinear Linear 92% 100% 84% 92% 100% 5% 76% 5%
Linear Nonlinear 100% 93% 85% 100% 93% 5% 5% 71%
Nonlinear Nonlinear 92% 93% 72% 86% 87% 58% 72% 74%

tal verification in the case of infinite k, we show that even
in linear non-Gaussian situations, the instantaneous model
generated by temporal aggregation is still unidentifiable.
For conditional independence consistency, we show through
sufficient and necessary conditions and experiments that it
can be satisfied as long as the causal process has some lin-
earity. However, it is still difficult to achieve in completely
non-linear situations.

Limitations: Although the negative impact of temporal
aggregation on instantaneous causal discovery has been
pointed out, a solution has not been provided.
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A. Proof for Necessary Condition of Functional Consistency

Theorem A.1 (Construction of f̂ ). If such f̂ , as defined in Definition 3.2, exists, then f̂ must take the form:

f̂(T ) = E

(
k∑

i=1

f(Xi) | X = T

)
+ c, (4)

where c is any constant (which can be incorporated into the noise term) and the expression E(· | X = T ) denotes the
conditional expectation. For simplicity, we set c = 0. Consequently, this implies:

E(f̂(X)) = E

(
k∑

i=1

f(Xi)

)
. (5)

Proof. According to the definition of functional consistency regarding additive noise, we can express Y in two ways:
Y =

∑k
i=1 f(Xi) +

∑k
i=1 NY,i = f̂(X) +N .

Taking the conditional expectation conditioned on X = T for both sides of the equation (noting that both NY,i and N are
independent of X):

E

(
k∑

i=1

f(Xi) | X = T

)
+ E

(
k∑

i=1

NY,i

)
= f̂(T ) + E(N). (6)

Then, we have:

f̂(T ) = E

(
k∑

i=1

f(Xi) | X = T

)
+

(
E

(
k∑

i=1

NY,i

)
− E(N)

)
. (7)

Please note that E
(∑k

i=1 NY,i

)
− E(N) is a constant, not related to T .

Therefore,

f̂(T ) = E

(
k∑

i=1

f(Xi) | X = T

)
+ c. (8)

Finally, applying the law of total expectation, we obtain the expectation of f̂ .

Theorem A.2 (Necessary and Sufficient Condition). The necessary and sufficient condition for the existence of the additive
noise causal model defined in Definition 3.2 is that N =

∑k
i=1 NY,i +

(∑k
i=1 f(Xi)− f̂(X)

)
is independent of X , where

f̂ is defined by Eq. 2.

Proof. According to Definition 3.1, Y is described as

Y =

k∑
i=1

f(Xi) +

k∑
i=1

NY,i. (9)

Furthermore, according to Theorem 3.3, Y can be expressed as

Y = f̂(X) +N. (10)

By combining Equations 9 and 10, we derive the expression for N as

N =

k∑
i=1

NY,i +

(
k∑

i=1

f(Xi)− f̂(X)

)
. (11)

Given the requirement in Definition 3.1 that N should be independent of X , we thereby establish the theorem.
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Theorem A.3 (General Case for Functional Consistency Across Different Regions). For the causal model defined in
Definition 3.5, assume the aggregated variables XA, XB and Y A, Y B have continuous support. Then, there exists functions
f̂ and ĝ such that Y A = f̂(XA, NA), Y B = f̂(XB , NB), XA = ĝ(Y A, N

′
A), and XB = ĝ(Y B , N

′
B), where NA is

independent of XA, NB is independent of XB , N ′
A is independent of Y A, and N ′

B is independent of Y B .

Proof. We only provide the proof for Y A = f̂(XA, NA), Y B = f̂(XB , NB) here. And the construction of ĝ is very similar
to f̂ .

Aligned with Lemma 1 in (Zhang et al., 2015), for any random variables, we can construct independent noise with
NA = q ◦ FY A|XA

(Y A) and NB = FY B |XB
(Y B). Since q is an arbitrary, strictly increasing function and the support of

the random variable is continuous, the CDF is invertible. We can set q = FY B |XB
◦ F−1

Y A|XA
, making NA constructed

by the same function as NB . Given the CDF’s invertibility, we can define f̂ := F−1

Y B |XB
to derive Y A = f̂(XA, NA),

Y B = f̂(XB , NB).

B. Proofs for Conditions of Conditional Independence Consistency
Theorem B.1 (Necessary and Sufficient Condition for Conditional Independence Consistency). Consider the distribution of
(X,Y , Z, Y1, ..., Yk) entailed from the aligned model, the following statements are equivalent when 2 ≤ k < ∞:

(i) Conditional Independence: X ⊥⊥ Z | Y
(ii) Conditional Probability Relation: ∀sX , sY , sZ ∈ R∫∫

Rk

α(sZ , sY , y1:k) (β(y1:k, sY , sX)− γ(y1:k, sY )) dy1... dyk = 0 (12)

(iii) Alternative Conditional Probability Relation: ∀sX , sY , sZ ∈ R∫∫
Rk

α∗(sX , sY , y1:k) (β
∗(y1:k, sY , sZ)− γ(y1:k, sY )) dy1... dyk = 0 (13)

where

• α(sZ , sY , y1:k) := pSZ |SY ,Y1:k
(sZ |sY , y1:k)

• β(y1:k, sY , sX) := pY1:k|SY ,SX
(y1:k|sY , sX)

• α∗(sX , sY , y1:k) := pSX |SY ,Y1:k
(sX |sY , y1:k)

• β∗(y1:k, sY , sZ) := pY1:k|SY ,SZ
(y1:k|sY , sZ)

• γ(y1:k, sY ) := pY1:k|SY
(y1:k|sY )

Proof. The proof will proceed by showing that statements (i), (ii), and (iii) are mutually equivalent.

Proof that (i) is equivalent to (ii): Suppose that SX ⊥⊥ SZ | SY holds. By the definition of conditional independence, this is
equivalent to the statement that for all sX , sY , and sZ in R, we have pSZ |SY ,SX

(sZ |sY , sX) = pSZ |SY
(sZ |sY ).

We can now derive both sides of this equation as follows.
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On the left hand side(LHS):

pSZ |SY ,SX
(sZ |sY , sX)

=
pSZ ,SY ,SX

(sZ , sY , sX)

pSY ,SX
(sY , sX)

=

∫∫
Rk pSZ |SY ,SX ,Y1:k

(sZ |sY , sX , y1:k)pSY ,SX ,Y1:k
(sY , sX , y1:k)dy1...dyk

pSY ,SX
(sY , sX)

=

∫∫
Rk

pSZ |SY ,Y1:k
(sZ |sY , y1:k)pY1:k|SY ,SX

(y1:k|sY , sX)dy1...dyk

=

∫∫
Rk

α(sZ , sY , y1:k)β(y1:k, sY , sX)dy1...dyk

The first steps is based on the definition of conditional probability and the second step uses the law of total probability. The
third step is using the d-separation: {Y1, . . . , Yk} d-separates SZ from SX .

Meanwhile, RHS:

pSZ |SY
(sZ |sY )

=
pSZ ,SY

(sZ , sY )

pSY
(sY )

=

∫∫
Rk pSZ |SY ,Y1:k

(sZ |sY , y1:k)pSY ,Y1:k
(sY , y1:k)dy1...dyk

pSY
(sY )

=

∫∫
Rk

α(sZ |sY , y1:k)γ(y1:k, sY )dy1...dyk

Finally, substitute both to the original equality:

pSZ |SY ,SX
(sZ |sY , sX)− pSZ |SY

(sZ |sY )

=

∫∫
Rk

α(sX , sY , y1:k) (β(y1:k, sY , sZ)− γ(y1:k, sY )) dy1... dyk

= 0

Hence, we arrive at the condition specified in (ii).

Proof that (i) is equivalent to (iii): The proof that (i) and (iii) are equivalent is analogous to the above arguments. We
therefore omit the details for brevity.

Corollary (Sufficient Conditions for Conditional Independence). If {X ⊥⊥ Y1:k | Y } or {Z ⊥⊥ Y1:k | Y } hold, then
X ⊥⊥ Z | Y holds.

Proof. This corollary introduces two sufficient conditions for conditional independence. While the proofs for each are
analogous, we demonstrate the proof for the first condition to avoid redundancy.

Proof that {X ⊥⊥ Y1:k | Y } implies X ⊥⊥ Z | Y :

Assume that {X ⊥⊥ Y1:k | Y } is true. By definition, this is equivalent to

pY1:k|SY ,SX
(y1:k|sY , sX) = pY1:k|SY

(y1:k|sY )

for all sX , y1:k, and sY . Utilizing the notation from Theorem 4.4, we can rewrite this as
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β(y1:k, sY , sX) = γ(y1:k, sY ).

This simplification makes it clear that the equality conforms to the second condition of Theorem 4.4, which is

∫∫
Rk

α(sZ , sY , y1:k) (β(y1:k, sY , sX)− γ(y1:k, sY )) dy1... dyk = 0.

Because this holds for all sX , sY , and sZ in R, it follows that X ⊥⊥ Z | Y is true, completing our proof.

Corollary. 1. For a fork-like aligned model:

• If fZ(Yt, Zt−1, NZ,t) is of the form α ∗ Yt +Nt, where α can be any real number, then Z ⊥⊥ Y1:k | Y .
• If fX(Xt−1, Yt, NX,t) is of the form α ∗ Yt +Nt, where α can be any real number, then X ⊥⊥ Y1:k | Y .

2. For a chain-like aligned model:

• If fZ(Yt, Zt−1, NZ,t) is of the form α ∗ Yt +Nt, where α can be any real number, then Z ⊥⊥ Y1:k | Y .
• If the time series is stationary and Gaussian, and fY (Xt, Yt−1, NY,t) is of the form α ∗Xt +Nt, where α can be

any real number, then X ⊥⊥ Y1:k | Y .

Proof. The proof for these four sufficient conditions is tied to the bivariate substructure within the fork and chain models.

We categorize the bivariate substructures within these trivariate structures into two types. The first type is where the middle
node directs the side nodes, such as in the fork structure where the middle node Y directs X and Z. There are two such
substructures in the fork model and one in the chain model where Y directs Z. The second type is where the side node
directs the middle node, seen in the chain model with X directing Y .

Due to the causal direction in the bivariate structure, the sufficient conditions for Z ⊥⊥ Y1:k | Y and X ⊥⊥ Y1:k | Y in the
fork, and Z ⊥⊥ Y1:k | Y in the chain are similar and share a similar proof. The sufficient condition for X ⊥⊥ Y1:k | Y
in the chain is different from the other three. To avoid redundancy, we provide a proof for the sufficient condition for
Z ⊥⊥ Y1:k | Y in the chain; the proof for the two conditions in the fork model is similar to this. We also provide the proof
for the sufficient condition for X ⊥⊥ Y1:k | Y in the chain.

proof for sufficient condition of Z ⊥⊥ Y1:k | Y in chain model:

Suppose fZ(Yt, NZ,t) = α ∗ Yt +NZ,t for some real number alpha. Then, by substitution, we get

SZ =

k∑
t=1

Zt

=

k∑
t=1

(αYt +NZ,t)

= αSY +

k∑
t=1

NZ,t

Given SY , the random part of SZ is only
∑k

t=1 NZ,t, which is independent of Y1:k. Therefore, it follows that Z ⊥⊥ Y1:k | Y .

proof for sufficient condition of X ⊥⊥ Y1:k | Y in chain model:

We will prove the case for k = 2, and it can be easily generalized to k ≥ 3. In the linear, Gaussian, stationary model for
k = 2, we have:
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X1 ∼ N (0, σ2
X1

)

Y1 = αX1 +NY,1

X2 = βX1 +NX,2

Y2 = αX2 +NY,2

where NX,2 ∼ N (0, σ2
NX

), NY,1, NY,2 i.i.d. ∼ N (0, σ2
NY

). And due to stationarity, σ2
X1

=
σ2
NX

1−β2 .

In the linear Gaussian case, conditional independence implies that the partial correlation equals 0. We have:

covSX ,Y1|SY
= covSX ,Y1 −

covSX ,SY
covY1,SY

varSY

covSX ,Y2|SY
= covSX ,Y2

− covSX ,SY
covY2,SY

varSY

where

cov(SX , Y1) = cov(X1, Y1) + cov(X2, Y1),

cov(SX , Y2) = cov(X1, Y2) + cov(X2, Y2),

cov(SX , SY ) = cov(SX , Y1) + cov(SX , Y2),

cov(Y1, SY ) = var(Y1) + cov(Y1, Y2),

cov(Y2, SY ) = var(Y2) + cov(Y1, Y2).

Substitute these into the partial covariance equations to get

covSX ,Y1·Z = covSX ,Y2·Z = 0

C. Causal Discovery from Aggregated Data
To investigate the direct effects of aggregation on causal discovery, we applied three widely-used causal discovery methods
on both the original and aggregated data, comparing the results in both linear and nonlinear scenarios. The performance of
these methods is measured using the correct rate over 100 repetitions.

For data generation, in each repetition, the original data is generated based on the causal graph shown in Figure 4. The
causal relationships are defined as:

Z = X + Y +NZ ,

H = Z +NH (for linear);

Z = X2 + Y 2 +NZ ,

H = Z2 +NH (for nonlinear).

The aggregated data is the result of aggregation with a factor of k = 2 based on the aligned model 4.1, having an instant
structure resembling the original data. All datasets have a sample size of 500.

Regarding the method parameters, we used the Fisher-Z test for PC and FCI, and the BIC score for GES in the linear
scenario. In the nonlinear scenario, we set the conditional independence test for PC and FCI as the Kernel Conditional
Independence Test (KCI) with the default kernel and chose the “local score CV general” score function for GES. All other
settings are kept at their default values.
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Figure 4. Causal graph of original data

Figure 5. Linear Case: Correction Rate by Causal Discovery Method

From Figure 5, we observe that, in the linear scenario, aggregation does not adversely affect the performance of the causal
discovery methods. This might explain why the causal community has not prioritized the aggregation issue in instantaneous
causal discovery for a long time.
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Figure 6. Nonlinear Case: Correction Rate by Causal Discovery Method

Contrastingly, the nonlinear scenario paints a completely different picture, with aggregation causing a significant drop in
the performance of all three methods. It is crucial to rigorously investigate this issue to understand its causes and potential
solutions.

Additionally, Figure 6 shows the comparison of experimental results of PC, FCI, and GES on nonlinear disaggre-
gated/aggregated data. All three methods have near 90% accuracy for disaggregated data but experience a significant
collapse when they come to aggregated data. The GES method is least affected, still maintaining an accuracy of around 70%.
Therefore, we conducted more experiments to test whether this is due to coincidence or because GES truly has the ability to
handle aggregated data.

Motivated by Reisach et al. (2021), some score-based methods are sensitive to variance, which may result in falsely high
performance. So, we changed the variance of some independent noise in the underlying model:

Underlying model: Xt = NX,t, Yt = NY,t, Zt = X2
t + Y 2

t +NZ,t, Ht = Z2
t +NH,t.

All the independent noises N iid follow N(0, 1).

We respectively changed NX,t and NZ,t to N(0, 4), keeping other settings unchanged to perform experiments.

Experimental Change Disaggregated Accuracy (50 reps) Aggregated Accuracy

Increase VAR(NX,t) 0.98 ± 0.03 0.13 ± 0.04
Increase VAR(NZ,t) 0.94 ± 0.04 0.28 ± 0.09

Table 2. The accuracy was calculated by repeating the experiment 50 times, and in the outside loop, we repeated this process 5 times to
calculate the standard deviation for the accuracy. The results were rounded to two decimal places.

From the results, we find that even when we increase the variance of one of the independent noises, GES performs very well
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on disaggregated data. However, when it comes to aggregated data, the accuracy collapses to lower than 30%.

Therefore, there is no solid evidence to confirm that GES has the ability to deal with aggregated data, but it does have less
collapse than other methods in some cases, and it may need further investigation in future work.

D. Experiment for Functional Consistency
Determining the causal direction between two variables is an essential task in causal discovery. To understand the impact of
aggregation on this task, we employed two renowned FCM-based causal discovery methods: Direct LiNGAM for the linear
scenario and Additive Nonlinear Model (ANM) for the nonlinear one. We assessed how the correct rate in 100 repetitions
varies with the aggregation factor k.

For data generation, it’s straightforward. The data is generated based on an aligned model with an instantaneous causal
relationship, given by:

Y = 2X +NY (for linear);

Y = X2 +NY (for nonlinear),

where the independent noise follows a standard uniform distribution. The sample size is 500.

Figure 7. Linear Case: Direct LiNGAM Correction Rate with Different Aggregation Factors k. The blue area represents the standard
deviation. The red line represents the random guess baseline.
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Figure 8. Nonlinear Case: ANM Correction Rate with Different Aggregation Factors k. The blue area represents the standard deviation.

From the presented figures, it’s evident that in the linear non-Gaussian case, the non-Gaussian distribution increasingly
approaches a Gaussian one as k grows. Eventually, Direct LiNGAM resembles a random guess. It’s noteworthy that the
x-axis range for the linear scenario spans from 0 to 50, while for the nonlinear case, it’s from 0 to 10. This difference
suggests that the performance of ANM deteriorates faster than Direct LiNGAM. ANM is not reliant on non-Gaussian
properties but on additive noise. Aggregated data lacks functional consistency as the additive noise function is disrupted by
the aggregation, rendering ANM ineffective.

E. Experiment for Conditional Independence Consistency
We conduct experiments using three different structures: chain, fork, and collider, to validate our theoretical results in
Section 4. However, due to space constraints, we only report the results for the fork-like model in the main text. In this
section, we will reiterate the experiment details and report the complete results for chain, fork, and collider structures, along
with a more detailed analysis.

The specific settings for these structures are as follows:

Chain-like Model: Xt = NX,t , Yt = f(Xt, NY,t) , Zt = g(Yt, NZ,t)

Fork-like Model: Xt = f(Yt, NX,t), Yt = NY,t, Zt = g(Yt, NZ,t)

Collider-like Model: Xt = NX,t , Yt = f(Xt, NY,t) + g(Zt, NY,t) , Zt = NZ,t

In all structures, each noise term N follows an independent and identically distributed (i.i.d) standard Gaussian distribution.
For the causal relationship between X and Y , we use the function f(·, N). In the linear case, f(·) = (·). In the nonlinear
case, we use the post-nonlinear model f(·, N) = G(F (·)+N) (Zhang & Hyvarinen, 2012) and uniformly randomly pick F
and G from (·)2, (·)3, and tanh(·) for each repetition. This is to ensure that our experiment covers a wide range of nonlinear
cases. Similarly, the same approach is applied for the relationship between Y and Z with the corresponding function g(·).
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And t = 1, 2, X = X1+X2, Y = Y1+Y2, Z = Z1+Z2. And we generate 1000 i.i.d. data points for (X1, X2, Y1, Y2, X, Y )
and feed them into the approximate kernel-based conditional independence test (Strobl et al., 2019). We test the null
hypothesis(conditional independence) for (I) X ⊥⊥ Y , (II) Y ⊥⊥ Z, (III) X ⊥⊥ Z, (IV) X ⊥⊥ Y | Z, (V) Y ⊥⊥ Z | X , (VI)
X ⊥⊥ Z | Y . And we also test for the conditional independence in corollary 4.5: (A) X ⊥⊥ Y1 | Y , and (B) Z ⊥⊥ Y1 | Y .
We report the rejection rate, rounded to the nearest percent, at a 5% significance level in 1000 repeated experiments in Table
3a, 3b, 3c.

Table 3. Rejection rates for CI tests with different combinations of linear and nonlinear relationships. The index in the box represents the
conditional independence that the structure should ideally have. Simply speaking, for the column with the index in the box, the closer the
rejection rate is to 5%, the better. For all other columns from I to VI, a higher rate is better.

(a) Chain Structure

Xt → Yt Yt → Zt I II III IV V VI A B

Linear Linear 100% 100% 100% 100% 100% 6% 4% 7%
Nonlinear Linear 92% 100% 89% 63% 100% 9% 27% 10%
Linear Nonlinear 100% 95% 87% 100% 94% 5% 6% 82%

Nonlinear Nonlinear 92% 86% 56% 89% 85% 18% 27% 39%

(b) Fork Structure

Xt → Yt Yt → Zt I II III IV V VI A B

Linear Linear 100% 100% 100% 100% 100% 5% 6% 5%
Nonlinear Linear 92% 100% 84% 92% 100% 5% 76% 5%
Linear Nonlinear 100% 93% 85% 100% 93% 5% 5% 71%

Nonlinear Nonlinear 92% 93% 72% 86% 87% 58% 72% 74%

(c) Collider Structure

Xt → Yt Yt → Zt I II III IV V VI A B

Linear Linear 100% 100% 5% 100% 100% 99% 4% 5%
Nonlinear Linear 95% 89% 5% 96% 91% 51% 17% 56%
Linear Nonlinear 90% 95% 5% 91% 96% 48% 54% 15%
Nonlinear Nonlinear 81% 81% 6% 83% 81% 29% 26% 26%

This experiment support our theoretical results, suggesting that conditional independence consistency can be ensured even
with some nonlinearity in the model.

Specifically, let’s examine the results for chain and fork. We anticipate the tested conditional independence set to contain
only SX ⊥⊥ SZ | SY . If so, we can assert that temporal aggregation maintains conditional independence consistency.

From the first and second tables for chain and fork, it’s evident that when the model is entirely nonlinear, the results for
conditional independence can be erroneous. For instance, the rejection rate for conditional independence that should have
been rejected is not high. In the chain structure, the rejection rate for the conditional independence III is zero, implying
that every conditional independence test wrongly accepted this conditional independence (type II error). Conversely, the
conditional independence that should have been accepted, VI SX ⊥⊥ SZ | SY , has rejection rates of 62% (chain) and 36%
(fork), significantly exceeding the significance level of 5%. This aligns with our conclusion in remark 4.3, stating that chain
and fork models cannot guarantee conditional independence consistency in general cases.

However, when half the model is linear, all conditional independence that should be rejected exhibit high rejection rates,
indicating fewer type II errors. Moreover, the rejection rate for the acceptable conditional independence VI is quite low,
closely approximating the significance level of 5%. This suggests that conditional independence-based causal discovery
methods can still be applied to temporally aggregated data when the system is partially linear.

Columns A and B primarily aim to validate corollary 4.6 and corollary 4.5. The conditional independence represented by
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A and B corresponds to the two sufficient conditions for conditional independence consistency in corollary 4.5. From the
experimental results, we find that if one of these conditions holds, we can ensure conditional independence consistency.
For example, in the fork results, under the nonlinear+linear case, B holds while A does not. Nonetheless, we still have
conditional independence consistency. Moreover, our findings further verify corollary 4.6, indicating that when a certain
part of the causal mechanism is linear, the corresponding sufficient condition in this part is satisfied, ultimately ensuring the
conditional independence consistency of the entire system.

Finally, looking at the collider results, conditional independence consistency is maintained under all nonlinear and linear
combinations, which agrees with our conclusion in remark 4.3, stating that collider can ensure conditional independence
consistency under general conditions.

F. Effect of k Value
Gong et al. (2017) have proven that the time-delay causal model (time series data) will transform into an instantaneous
causal model (i.i.d. data). In our paper, we utilize large k values to approximate the aggregation of the time-delay model
as the aggregation of the instantaneous model (aligned model as defined in the main text). We aim to demonstrate the
reasonableness of this approximation and to show how quickly the time-delay model transitions to an instantaneous model.

We apply the GES method on a linear fork-like time-delay model (VAR) and a fork-like instantaneous model (aligned
model) across different values of k.

Figure 9. GES Correct Rate vs. Factor k

From Figure 9, we observe that k does not need to be infinite. A sufficiently large k, such as 20, ensures that the time-delay
model becomes an instantaneous model detectable by the instantaneous causal discovery method.

G. Causal Discovery on Aggregated Data with Prior Knowledge
Inspired by Remark 4.3, we propose a straightforward solution to ensure that the PC algorithm identifies the correct Markov
equivalence. The remark indicates that the collider structure retains conditional independence consistency. This implies that
the PC algorithm can determine the correct v-structure if it has the correct skeleton. We therefore conducted experiments to
assess whether the PC with a given skeleton as prior knowledge can discern the correct Markov equivalence.
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Figure 10. Correct Rate: PC on Original Data vs. PC on Aggregated Data vs. PC with Prior on Aggregated Data

Figure 11. PC can find correct v-structure on aggregated data

From Figure 10, it becomes evident that when the PC is applied directly to aggregated data, its performance is subpar.
However, when provided with the skeleton as prior knowledge, the PC consistently identifies the correct v-structure, yielding
accurate results(see Figure 11). This discovery suggests that future work should concentrate on addressing the aggregation
problem during the skeleton discovery process.

H. Example for Inconsistency in the Nonlinear Additive Noise Model
Consider the nonlinear additive noise models Xt,A = NX,t,A, Yt,A = X3

t,A+Nt,A and Xt,B = NX,t,B , Yt,B = X3
t,B+Nt,B

for regions A and B, where t = 1, 2, NX,t,A ∼ N(0, 1), NX,t,B ∼ N(0, 2), g(k)=1.
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According to Theorem 3.3, if we require

Y A = f̂(XA) +NA

, then it must be

f̂(T ) = E

(
k∑

i=1

f(Xi) | X = T

)
+ c

here we incorporate c into the noise term, and substituting the definition of the causal function in this example, then we have:

f̂(T ) = E
(
X3

1 +X3
2 | X1 +X2 = T

)
And according to the formula for conditional density, we can derive when X1,X2 i.i.d. follow N(0, σ2), and conditioning
on X1 +X2 = T , the conditional distribution of X1 or X2 is N(T2 ,

σ2

2 ).

And the 3rd raw moment for N(µ′, σ′2) is µ′3 + 3µ′σ′2. Thus, we substitute the conditional expectation and conditional
variance to derive (excluding the constant term):

f̂(T ) =
3Tσ2

4

Therefore,

f̂(T ) =
3T

4

for region A, and

f̂(T ) = 3T

for region B, which are inconsistent.

I. Theorem and Proof for Approximating Time-delay Causal Effect by Instantaneous Causal
Effect

Theorem I.1 (Asymptotic Equivalence of Time-Delayed and Instantaneous Models). Given an s-dimensional independent
noise random vector sequence N0, N1, N2, . . . that are i.i.d. and follow a distribution with zero mean and finite variance,
and given that matrix B is an s× s square matrix with ∥B∥ < 1 (all norms here are l2 norms), and g(k) is always positive
and satisfies limk→∞ g(k) = ∞.

Consider the time-delayed model:

X0 = N0

Xt = BXt−1 +Nt

and the corresponding instantaneous model:

Yt = BYt +Nt

Then, when k → ∞,
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1

g(k)

k∑
t=1

Yt −
1

g(k)

k∑
t=1

Xt
P−→ 0

Proof. Since ∥B∥ < 1, then I −B is invertible.

Thus,

Yt = (I −B)−1Nt

and

k∑
t=1

Yt =

k∑
t=1

(I −B)−1Nt (14)

=

k∑
t=1

(I +B +B2 +B3 + . . .)Nt (15)

According to

X1 = BX0 +N1

X2 = BX1 +N2 = B2N0 +BN1 +N2

. . .

we have

Xt =

t∑
i=0

Bt−iNi

then

k∑
t=1

Xt =

k∑
t=1

t∑
i=0

Bt−iNi (16)

=

k∑
i=1

k∑
t=i

Bt−iNi +

k∑
t=1

BtN0 (17)

=

k∑
i=1

(
k−i∑
h=0

Bh

)
Ni +

k∑
t=1

BtN0 (let h = t− i) (18)

Therefore, combining these equations,

1

g(k)

k∑
t=1

Yt −
1

g(k)

k∑
t=1

Xt =
1

g(k)

(
k∑

t=1

( ∞∑
i=k−t+1

Bi

)
Nt −

(
k∑

i=1

Bi

)
N0

)
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∥∥∥∥∥ 1

g(k)

k∑
t=1

Yt −
1

g(k)

k∑
t=1

Xt

∥∥∥∥∥
≤ 1

g(k)

(
k∑

t=1

( ∞∑
i=k−t+1

∥B∥i
)
∥Nt∥+

(
k∑

i=1

∥B∥i
)
∥N0∥

)

=
1

g(k)

(
k∑

t=1

∥B∥k−t+1

1− ∥B∥
∥Nt∥+

∥B∥ − ∥B∥k+1

1− ∥B∥
∥N0∥

)
(the sum of a geometric series)

=
1

(1− ∥B∥)g(k)

(
k∑

t=1

∥B∥k−t+1∥Nt∥+ (∥B∥ − ∥B∥k+1)∥N0∥

)

Because N0, N1, N2, . . . are i.i.d. and follow a distribution with zero mean and finite variance, the mean and variance for
∥Nt∥ are also finite, denoted as µnorm and σ2

norm, respectively.

Let’s prove the expectation and variance of 1
(1−∥B∥)g(k)

(∑k
t=1 ∥B∥k−t+1∥Nt∥+ (∥B∥ − ∥B∥k+1)∥N0∥

)
tend to 0 when

k → ∞.

Then,

E

(
1

(1− ∥B∥)g(k)

(
k∑

t=1

∥B∥k−t+1∥Nt∥+ (∥B∥ − ∥B∥k+1)∥N0∥

))

=
1

(1− ∥B∥)g(k)

(
k∑

t=1

∥B∥k−t+1µnorm + (∥B∥ − ∥B∥k+1)µnorm

)

=
1

(1− ∥B∥)g(k)

(
∥B∥ − ∥B∥k+1

1− ∥B∥
µnorm + (∥B∥ − ∥B∥k+1)µnorm

)
Because ∥B∥ < 1 and g(k) → ∞ as k → ∞, we have

1

(1− ∥B∥)g(k)

(
∥B∥ − ∥B∥k+1

1− ∥B∥
µnorm + (∥B∥ − ∥B∥k+1)µnorm

)
→ 0

and

VAR

(
1

(1− ∥B∥)g(k)

(
k∑

t=1

∥B∥k−t+1∥Nt∥+ (∥B∥ − ∥B∥k+1)∥N0∥

))

=
1

((1− ∥B∥)g(k))2

(
k∑

t=1

∥B∥2(k−t+1)σ2
norm + (∥B∥ − ∥B∥k+1)2σ2

norm

)

=
1

((1− ∥B∥)g(k))2

(
∥B∥2 − ∥B∥2k+2

1− ∥B∥2
σ2

norm + (∥B∥ − ∥B∥k+1)2σ2
norm

)
Because ∥B∥ < 1 and g(k) → ∞ as k → ∞, we can also conclude the variance tends to 0.

Therefore, according to Chebyshev’s inequality, for any ϵ > 0, when k → ∞,

P

(
1

(1− ∥B∥)g(k)

(
k∑

t=1

∥B∥k−t+1∥Nt∥+ (∥B∥ − ∥B∥k+1)∥N0∥

)
> ϵ

)
→ 0

therefore, for any ϵ > 0, when k → ∞,
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P

(∥∥∥∥∥ 1

g(k)

k∑
t=1

Yt −
1

g(k)

k∑
t=1

Xt

∥∥∥∥∥ > ϵ

)

≤ P

(
1

(1− ∥B∥)g(k)

(
k∑

t=1

∥B∥k−t+1∥Nt∥+ (∥B∥ − ∥B∥k+1)∥N0∥

)
> ϵ

)
→ 0

Thus, we conclude convergence in probability.
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