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Abstract
Minimax-fair machine learning minimizes the er-
ror for the worst-off group. However, empirical
evidence suggests that when sophisticated mod-
els are trained with standard empirical risk min-
imization (ERM), they often have the same per-
formance on the worst-off group as a minimax-
trained model. Our work makes this counter-
intuitive observation concrete. We prove that if
the hypothesis class is sufficiently expressive and
the group information is recoverable from the fea-
tures, ERM and minimax-fairness learning formu-
lations indeed have the same performance on the
worst-off group. We provide additional empirical
evidence of how this observation holds on a wide
range of datasets and hypothesis classes. Since
ERM is fundamentally easier than minimax op-
timization, our findings have implications on the
practice of fair machine learning.

1. Introduction
There have been many proposals to address systematic dif-
ferences in model performance among protected groups.
While the majority of proposals in algorithmic fairness aim
to equalize the performance across groups (Mitchell et al.,
2021), more recent work in fairness aims to improve perfor-
mance on the worst-affected group(s) without needlessly de-
creasing performance in the other groups. Such approaches
are referred to as minimax-fairness (Martinez et al., 2020).

Minimax refers to minimizing the maximum error across
groups. This framing of the fairness objective avoids unin-
tended consequences of the equal-error proposal – achieving
equality in all groups may end up increasing error on the
well-performing groups without any gains for the remain-
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ing groups (Zietlow et al., 2022). Thus, minimax-fairness
can be a preferable notion to enforce when performance
improvements for any group is more desirable than parity.

A wide range of algorithms have been proposed for learn-
ing minimax-fair predictors (Martinez et al., 2020; Diana
et al., 2021b; Abernethy et al., 2022; Pethick et al., 2023;
Shekhar et al., 2021). In principle, these algorithms support
learning from arbitrarily complex hypothesis classes rang-
ing from linear models to neural networks. However, they
are typically evaluated on linear models. When using neural
networks, for example, empirical evidence suggests that
minimax predictors do not consistently improve upon ERM
predictors in terms of the maximum group error (Gardner
et al., 2022; Pfohl et al., 2022). This can be explained in ret-
rospect that highly flexible models can fit each group’s data
well even under the ERM objective. In this work, we seek
to formalize this observation and study the question how do
minimax-fair learning and ERM relate to each other?

We bridge this gap in the understanding of the minimax
predictors both theoretically and empirically. We show that
ERM is minimax-fair when trained under a flexible hypothe-
sis class and given access to the group information. We show
that this observation holds empirically for different hypothe-
sis classes like decision trees. The results have implications
for the practice of learning minimax-fair predictors.

Indeed, simple training paradigms like ERM should be com-
prehensively tested before going to more involved, and of-
ten harder, optimization solutions. Minimax optimization
is hard for even convex problems where standard versions
of gradient descent solvers might not converge. For non-
convex non-concave problems, such as minimax-fair learn-
ing with non-convex loss functions, the challenges persist
(Hsieh et al., 2021). In contrast, ERM with gradient descent
based solvers can avoid saddle points (Lee et al., 2019).

Assuming that the hypothesis class is sufficiently expressive,
we claim for a range of minimax-related notions of fairness
(see Figure 1):

1. ERM is minimax-fair given perfect group information.
ERM has the same worst-case risk as the minimax
predictor trained on the known group information.

2. ERM is group-optimal given approximate group in-
formation. If the predictor of group information is
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Figure 1: Summary of results. (left) Nested space of functions satisfying various minimax-fairness definitions – minimax-
fair (Diana et al., 2021b), Pareto minimax-fair (Martinez et al., 2020), lexifair (Diana et al., 2021a), and functions which are
optimal separately on each group’s data. (right) Our main result is that ERM satisfies group-optimality (and hence the differ-
ent minimax-fairness definitions) under recoverability (C1) and expressiveness (C2) conditions. C1 means that the young/old
group membership is recoverable from the features X , here, by Ayoung(x). C2 means that the function class F contains the
combination of any two functions in a decision tree-like structure, here, Ayoung(x)fyoung(x) + (1−Ayoung(x))fold(x).

sufficiently accurate, then ERM has the same risk as
the best predictor for the group on the set of correctly
identified data points of the group.

3. ERM is minimax-fair given expressive features. If the
labels are conditionally independent of the group in-
formation given the features, then ERM has the same
worst-case risk as the minimax predictor trained on the
known group information.

2. Related Work
Minimax-fairness. As an alternative to equalizing errors
across groups, recent work proposed to minimize error on
the worst-off group (Diana et al., 2021b; Martinez et al.,
2020; Abernethy et al., 2022; Pethick et al., 2023; Diana
et al., 2021a; Shekhar et al., 2021). The works of (Diana
et al., 2021b;a) solved minimax problems by performing al-
ternative updates for the min (learner) and max (group) play-
ers. Effectively, it repeatedly performs ERM on reweighted
group errors until convergence. As such, the techniques
are applicable to any hypothesis class that supports sample
weights. Recent methods (Shekhar et al., 2021; Abernethy
et al., 2022; Pethick et al., 2023) also support updating the
models by actively observing a single or a batch of data
points. A relaxation of minimax-fairness was proposed
by Williamson & Menon (2019) which replaced the max
group error by average over the error for the k worse-off
groups. One limitation of these lines of work is that groups
must be defined beforehand in order to control their worst-
case error. Instead of pre-specified groups, Hashimoto et al.
(2018) considered error on worst-case perturbations in the
neighbourhood of the training data. Work on multi-group
calibration aims to control error for any computationally-

identifiable group which can be expressed as a function of
the features (Hebert-Johnson et al., 2018; Kim et al., 2019).
Empirical evidence. Concurrent work by Gardner et al.
(2022) empirically found that tree-based models trained
with ERM perform the same or better than minimax-fair
methods based on distributional robust optimization (e.g.,
Sagawa* et al., 2020) in terms of their worst-case perfor-
mance. However, they did not investigate reasons for the
findings theoretically nor empirically. They only used neu-
ral network models in the minimax-fair methods, and did
not compare ERM and minimax-fairness under the wide
range of hypothesis classes (e.g., trees), which we do in our
work. Moreover, results in the original minimax-fairness
work (Martinez et al., 2020) show minor difference between
ERM and their specialized minimax-fair method except
in datasets where groups are constructed using the labels
(which does not satisfy our Assumptions C1 and 4.10). No-
tably, the difference is minor even for the less-expressive
hypothesis class of linear classifiers. Pfohl et al. (2022) and
Zong et al. (2023) made similar observations that minimax-
fair methods do not outperform ERM for neural networks.
Zietlow et al. (2022) found that generating synthetic data
for the worst performing group could slightly improve per-
formance. However, they also found the focus on the worst
performing group was not necessary and all groups could be
improved simultaneously. Lastly, Pethick et al. (2023) ob-
served that minimax-fair training could improve over ERM
in the case of adversarial training (with labels as groups) but
the gains can be marginal.

Relation to domain generalization. Minimax-fairness has
also been seen as a criterion to help generalize across do-
mains or groups. The formulation of Sagawa* et al. (2020)
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named Group-DRO is equivalent to minimax-fairness
(Eq. (3)). Zhai et al. (2021) showed that ERM was equiva-
lent to a variant of Group-DRO with adversarially selected
groups, namely CVaR classification under 0-1 loss and de-
terministic models. In Hu et al. (2018), the same result was
shown for the case of a larger set of robust optimization
objectives. When performing minimax in high-dimensional
data settings, highly flexible models can overfit the train set
to near-zero loss and lead to models that generalize poorly
(Sagawa* et al., 2020). However, overfitting might be less
severe in the low-dimensional data considered in our work.
We see empirically that ERM remains minimax-fair on the
held-out test set.

Advantages of ERM. ERM is a well-motivated learning
principle (Vapnik, 1999). In addition to being tractable and
conceptually simple, ERM can be used to output models
satisfying different fairness definitions. Results in Corbett-
Davies et al. (2017) show that definitions such as demo-
graphic parity can be achieved starting from a Bayes-optimal
classifier and suitably setting the decision thresholds. Under
an expressive hypothesis class and approximate group in-
formation, ERM produces predictors that calibrated within
groups (Definition 4.5) (Liu et al., 2019). In a related work,
Globus-Harris et al. (2022) show that minimax-fair classi-
fiers can be obtained using ERM by repeating the process
of finding regions of high model risk and appending the
region-specific optimal predictors to the overall model. Our
sufficiency conditions posit that this process is possible
through ERM itself. Lastly, Muandet (2022) shows that
ERM is the only admissible method compatible with a set
of desired properties expected from a learning method.

Our main contribution to the study of ERM’s properties is
that it can satisfy minimax-fairness under stated conditions.
This explains the empirical observations made in prior work.

3. Preliminaries
We describe the notation, problem setup, and necessary
background on ERM and minimax methods.

3.1. Notation

Given a class of functions F that map from features x
to labels y, we want to find a function f ∈ F that
minimizes some loss defined by ℓ(f(x), y) ∈ R. For
doing this we have a training dataset of n (feature, la-
bel) tuples D := {(x, y)}. The dataset D is parti-
tioned (or grouped) into K disjoint groups {D1, · · · , DK}
such that ∪g∈[K]Dg = D and Di ∩ Dj = ϕ for
all i, j ∈ [K]. Here, [K] := {1, · · · ,K}. Em-
pirical risk for a function f on the dataset D is de-
fined as R(f,D) := 1/|D|

∑
(x,y)∈D ℓ(f(x), y). Simi-

larly, the empirical risk for the group g is R(f,Dg) =

1/|Dg|
∑

(x,y)∼Dg
[ℓ(f(x), y)]. Note that the risk is com-

puted on the training data in all our results.

3.2. Problem setup

ERM solutions are functions that minimize the risk on the
full dataset,

FERM := argmin
f∈F

R(f,D). (1)

Instead of minimizing risk on the full dataset, we can de-
fine functions that minimize the risk separately for each
group. A group-optimal predictor f∗(x) ∈ Fg with respect
to dataset D and loss function ℓ is defined as,

R(f∗, Dg) = argmin
f∈F

R(f,Dg), ∀g ∈ [K]. (2)

Minimax-fairness instead advocates to minimize the risk for
the worst-off group,

FMM := argmin
f∈F

max
g∈[K]

R(f,Dg). (3)

Our goal is to show that FERM achieves the same risk as the
minimizers Fg,FMM on specific groups. Before that, we
discuss other notions of minimax-fairness from prior work.

3.3. Minimax Pareto-fair and Lexicographic fairness

Martinez et al. (2020) defined FMM by minimizing over
the class of Pareto-optimal functions (that is, functions for
which the risk cannot be unilaterally improved on both the
groups without degrading risk for one of the groups). Al-
ternatively, Diana et al. (2021a) defined minimax solution
as the predictors which minimize worst-group’s risk, the
second worst-group’s risk, and so on, namely lexicographic
minimax-fairness. We show that ERM satisfies both the
definitions of minimax-fairness under our stated conditions.

Definition 3.1 (Pareto front). Let the vector R(f) :=
(R(f,D1), R(f,D2), · · · , R(f,DK)) denote the group-
specific risks of the predictor f . A predictor f is said to
Pareto dominate another f ≺ f ′ if it has equal or better risk
for all groups ∀i ∈ [K],R(f)i ≤ R(f ′)i and strict inequal-
ity holds for at least one group ∃j ∈ [K],R(f)j < R(f ′)j .
Given a set of predictors F , the Pareto front PF is defined
as the subset such that {f ∈ F : ∄f ′ ∈ F|f ′ ≺ f}.

For the Pareto front to exist, we need the following technical
condition on the function class F .

Assumption 3.2. Consider the partial order induced on
functions in F by the dominated relation ≺. Then, every
totally ordered subset of F (that is, an ordered sequence of
dominated predictors) has an upper bound in F .
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This condition holds, for instance, when we use regulariza-
tion (like in ridge regression) to restrict the function class.

Definition 3.3 (Minimax Pareto fairness (Martinez et al.,
2020)). Minimax Pareto fair predictors are defined as pre-
dictors among the Pareto front which minimize the worst-off
group’s risk as follows:

FPMM := {argmin
f∈PF

max
g∈[K]

R(f,Dg)}. (4)

Definition 3.4 (Lexical minimax-fairness (Diana et al.,
2021a)). Let f̄(j) be the group with the jth highest risk
for a predictor f , ties broken arbitrarily. Define the lowest
risks γj in a set of nested hypothesis classes F(j) as follows:

γj := min
f∈F(j−1)

R(f,Df̄(j)),

F(j) := {f ∈ F(j−1) : R(f,Df̄(j)) = γj}, (5)

where 1 ≤ j ≤ K and F0 := F . Then, a lexical minimax
or lexifair predictor of level ℓ where 1 ≤ ℓ ≤ K is defined
as a predictor f such that for all j ≤ ℓ, R(f,Df̄(j)) ≤ γj .
A lexifair predictor of level K will have R(f,Df̄(j)) = γj
for all j.

3.4. Algorithm for solving the minimax problem

To find the minimax-fair solution of Eq. (3), we will employ
the method proposed by Diana et al. (2021b). The main
advantage is that it can be used as a wrapper around arbitrary
hypothesis classes. It works by making repeated calls to
an ERM solver for the given class after reweighting the
data points. In contrast the gradient-based approaches of
Abernethy et al. (2022) require computing gradients of the
loss function with respect to the model parameters. Thus
it is unclear how to use them, for instance, in the case of
decision trees which are an important class for our analysis.

4. Main Result – ERM can be Minimax-fair
We first state a restrictive condition for our result which,
intuitively, implies that the group information is perfectly
recoverable from the features and the function class is suf-
ficiently expressive. We will relax this assumption in Sec-
tion 4.3.

4.1. Perfectly recoverable groups

We make the following assumption on D and F .

Assumption 4.1 (Sufficiency condition). The groups are
recoverable from the features that is there exists functions
Ag ∈ F that can determine group membership for any x,

Ag(x) =

{
1 if x ∈ Dg

0 if x ̸∈ Dg

, ∀g ∈ [K] (C1)

and the function class F is closed under addition-and-
multiplication that is if f, g, h are in F , then

e : e(x) = h(x)f(x)+ (1−h(x))g(x) is also in F . (C2)

Condition (C1) trivially holds if the features include the
group attribute. Otherwise, it requires that the attribute is
a function (from F) of the features. Condition (C1) can be
reinterpreted as saying that an interpolating classifier exists
for predicting group labels, where interpolating classifiers
are functions that can predict the exact labels for the train
set (e.g. see (Wyner et al., 2017, Page 8)).

Condition (C2) (where the function h is fixed to be the group
indicator function Ag in the definition) holds for the class
of decoupled functions defined by Dwork et al. (2018) to
be functions which learn separate predictors for each group,
given Condition (C1) holds. Decision trees where the first
split is on the group attribute, f(x) = {f1(x) if Ag(x) =
1 else f0(x)} is also an example where f0(x), f1(x) are
any two classifiers from F . More generally, decision tree
based predictors with unbounded depth like random forests
and boosted trees, and universal approximators like neural
networks satisfy the condition.
Remark 4.2 (Decoupled classes). Condition 4.1 implies that
F is a decoupled class: cf. Section (C) in the appendix.
Remark 4.3 (Overlapping groups). Condition (C1) is not
satisfied if the dataset has overlapping groups, that is, same
data points belonging to more than one group e.g., race,
gender. In such a case, we can redefine the group attribute
to consider all intersections of the groups e.g., Asian male,
Black female, and so on.

Theorem 4.4. The structure shown in Figure 1 holds.

(a) Pareto minimax implies minimax.

(b) Lexical minimax implies Pareto minimax.

(c) Group-optimal implies Lexical minimax.

(d) Every group-optimal solution is an ERM.

(e) Under the sufficiency condition (C1) and (C2), ERM
satisfies group-optimality.

The result implies that under the sufficiency condition, ERM
is group-optimal, and due to the nested structure, it is lexical
minimax-fair, Pareto minimax-fair, and minimax-fair.

The proof is deferred to Section A in the appendix. The first
four statements follow from the definitions of the minimax-
fairness notions and group-optimality. A brief justification
for the last statement can be given as follows. Suppose the
statement was not true, that is ERM is not group-optimal.
Then we can improve the overall risk of the ERM solution
by composing it with the group-specific optimal predictor,
given that groups are recoverable. This new predictor by our
expressiveness condition will still be in the hypothesis class.
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This would mean that ERM does not minimize overall risk
which is a contradiction.

4.2. ERM can achieve a broader class of fairness notions

A definition of classifier fairness requires that the predictions
are calibrated for each group (Kleinberg et al., 2017).

Definition 4.5 (Well-calibration across groups). Given a
predictor f : x 7→ f(x) ∈ [0, 1] which outputs a real value
between [0, 1] in a binary classification problem of predict-
ing y ∈ {0, 1} from x, we say that f is well-calibrated
across groups if E[Y |G = g, f(x) = t] = t for all g ∈ [K]
and t ∈ [0, 1]. Here, G is the random variable denoting the
known or unknown group attribute.

Proposition 4.6. If ERM is performed using a calibrated
loss1 and Assumption 4.1 holds, then any minimizer of em-
pirical risk is well-calibrated across groups.

Proof. By Theorem 4.4 (e), any ERM solution is group
optimal and a minimizer of the empirical risk over each
individual group Di. It therefore follows from the definition
of calibrated loss that it is calibrated for each group, and is
consequentially well-calibrated over the entire dataset.

This result is also shown in Liu et al. (2019) under different
assumptions on the loss function which determines the abil-
ity to find the conditional expectation E[y|x] using ERM.

Given access to a well-calibrated model, Corbett-Davies
et al. (2017) show that setting group-specific thresholds
on the predictions results in classifiers maximizing utility
(say, accuracy) while satisfying fairness constraints such
as (conditional) demographic parity and false positive rate
equality. Thus, achieving a calibrated model for each group
by ERM we can repurpose the predictors to satisfy different
fairness properties based on the application context. This
highlights another advantage of ERM over specialized fair
learning methods, in addition to minimax-fairness.

4.3. When group information is imperfectly recoverable

Theorem 4.4 requires perfect recovery of the group infor-
mation by a function Ag(x). We can relax this requirement
to datasets where we can only imperfectly recover group
information. We define imperfect recovery as the case when
we have a classifier for the group (that is, an approximation
to Ag(x)) which has perfect precision and at least k recall.

Definition 4.7 (k-recoverable group). A group g is k-
recoverable in a given dataset D if there exists a group
classifier Ãg(x) ∈ {0, 1} such that the subset of data with
Ãg(x) = 1, written as DÃg(x)=1, is correctly predicted to

1A calibrated loss refers to one such as squared loss or log loss
(Banerjee et al., 2005) that results in a calibrated function over any
training set.

be group g and contains at least k-fraction of the total data

points with attribute g in D. That is,
|DÃg(x)=1|

|Dg| ≥ k.

Next we define a relaxed notion of group-optimality in the
case of imperfect recovery which requires that a predictor
achieves the same risk as the group-optimal predictor on at
least k-fraction of the data points for the group.

Definition 4.8 (k-optimal predictor for a group). A pre-
dictor f is k-optimal compared to any group-optimal clas-
sifier fg ∈ Fg on group g if there exists a subset of data
points D̃g ⊆ D consisting solely of data points with at-
tribute g and recovering at least k-fraction of the total points
with attribute g (that is, Ag(x) = 1 ∀(x, y) ∈ D̃g and
|D̃g|
|Dg| ≥ k), and the risk for f on D̃g is the same as fg, that

is R(f, D̃g) = R(fg, D̃g).

We show that ERM is k-optimal for the recoverable group.

Theorem 4.9. Given that group g is k-recoverable in D and
that the corresponding group classifier Ãg(x) exists in the
function class F , then ERM outputs k-optimal predictors
for group g.

The proof is included in Section B in the appendix. It
follows similar arguments as used for proving Theorem 4.4
(e).

4.4. When labels are independent of the group
information given the features

Continuing the scenario where we are not given the group
information, we can still perform as well as the minimax
predictor when the features are sufficiently expressive as
defined below.

Assumption 4.10. Observed features are expressive enough
such that the labels are conditionally independent of the
group indicator given the features, that is (Y ⊥ G)|X .

Here, X,Y,G denote random variables for features, label,
and group. This assumption holds trivially when features
contain the group indicator variable. However, we consider
settings where X does not explicitly contain G but has all
the label-relevant information that knowing G provides.

Definition 4.11 (Bayes optimal predictor). Function f∗(x)
is a Bayes optimal predictor for some distribution D if it
minimizes the risk for each data point x sampled from D.
That is f∗(x) ∈ argminŷ Ey∼DY |X=x

[ℓ(ŷ, y)].

Assumption 4.12. FERM are Bayes optimal predictors for
the empirical distribution of the dataset D.

For the next claim, we will define the joint distribution DY,X

to be the uniform distribution over the data points in the
given dataset D. Definitions of marginal and conditional
probabilities yield DX , DY |X . Distributions involving G
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Table 1: Datasets. ACS datasets are curated for 4 US states (NY, CA, TX, IN). Datasets for different domains combined
with different group types result in 36 datasets in total. All labels are binary. Dataset sources are given in Section E.2 in the
appendix

Dataset Samples Features Groups (levels)

ACS Income (NY, CA, TX, IN) 103021, 195665, 135924, 35022 26 Sex (2), Race (4)
ACS Employment (NY, CA, TX, IN) 196967, 378817, 268100, 67680 36 Sex (2), Race (4)
ACS Health Insurance (NY, CA, TX, IN)
(Ding et al., 2021)

67551, 138554, 98928, 24330 38 Sex (2), Race (4)

UCI Adult Income (Dua & Graff, 2017) 39073 14 Sex (2), Race (3)
COMPAS (ProPublica, 2020) 7214 6 Race (4)
Diabetes (Strack et al., 2014) 101766 23 Age (5)
Drug Consumption (Fehrman et al., 2015) 1885 8 Country (3)
eICU (Pollard et al., 2018) 20000 25 Sex (2), Race (2)
Default (Yeh & hui Lien, 2009) 30000 33 Sex (2)
Communities (Redmond & Baveja, 2002) 1994 123 Race (4)
German Credit (Dua & Graff, 2017) 1000 20 Sex & Marital status (4)
Heart (Chicco & Jurman, 2020) 299 12 Sex (2)
Marketing (Moro et al., 2014) 45211 48 Job (12)

such as DX|G, DY |X,G will refer to a hypothetical dataset
where G could be observed.

Proposition 4.13. Given Assumptions 4.10, 4.12 hold, then
ERM predictors FERM achieve the same or better risk than
the group-specific optimal predictors Fg and the minimax-
fair predictor FMM.

The proof is included in Section D in the appendix. Thus,
in the absence of group information, access to sufficiently
expressive features and function class means that ERM min-
imizes both the group-specific risk and the worst group-
specific risk. When the group information is not encoded
in the features, for example when groups are based on the
labels, ERM and minimax-fair methods can differ in perfor-
mance, as seen in experiments from Martinez et al. (2020).

5. Empirical Study
We perform a large-scale study to test how well do our the-
oretical results generalize to practical scenarios where the
assumptions may not hold.2 Accordingly, we include multi-
ple real datasets and hypothesis classes with varying levels
of expressiveness in the study. Table 1 lists the 36 datasets
used in the study. We chose to test on tabular datasets fol-
lowing much of the prior work in fairness (Diana et al.,
2021b). Moreover, similar observations have already been
made on high-dimensional datasets (Gardner et al., 2022;
Pfohl et al., 2022; Zong et al., 2023). We train minimax-fair

2Code to reproduce the experiments is available
at https://github.com/amazon-science/
rethinking-minimax-fairness

models for Diana et al. (2021b)’s method using their code3

with different classifiers.

Classifiers. We use random forest (Breiman, 2001), a mul-
tilayer perceptron (MLP) architecture used in a tabular data
benchmark (Gorishniy et al., 2021), decision trees, linear
support vector classifiers (SVC, Fan et al., 2008), and logis-
tic regression models. We use the default ERM solvers avail-
able in the scikit-learn Python package (Pedregosa
et al., 2011). We use stochastic gradient descent for MLPs.

Metrics. We compare the models in terms of their worst-
case accuracy and negative log loss across groups. Higher
value of the metrics is better as a convention.

Setup. Datasets are divided randomly into 70-30 train-
test split. For the optimization procedure of the minimax
method, we set the convergence threshold as 10−12 and run
at most 10000 iterations, except for MLP we use 200 itera-
tions to reduce compute time. Rest of the hyperparameters
are detailed in Table 5 in the appendix. Experiments were
run on a compute cluster using 36 nodes with an Intel Xeon
2.9 GHz processor, 1 NVIDIA RTX8000 GPU and 24 GB
system memory for each node.

5.1. Main questions to test Theorem 4.4 in practice

We design the experiments to test the following questions.

Q1. Does ERM perform differently than minimax model
on the train set i.e. does Theorem 4.4 hold in practice?

3https://github.com/amazon-science/
minimax-fair
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ERM v/s GROUP-OPTIMAL ERM v/s MINIMAX
Model type

p-value
equivalence

p-value
non-inferior

p-value
equivalence

p-value
non-inferior

Logistic Regression 0.9955 0.0039 0.7324 0.7324
Linear SVC 0.1795 0.0562 1.0000 0.0000
Decision Tree depth 8 0.9984 0.9984 0.9858 0.0106
Random Forest 0.0000 0.0000 0.9801 0.0010
MLP 0.0694 0.0694 0.9946 0.0050

Table 2: Q1. ERM ≈ group-optimal or minimax-fair on train set (via hypothesis tests). p-values from the two hypothesis
tests of ERM against group-optimal and minimax-fair models. Metric is negative logloss and threshold is t = 0.01.
Significance level is set to p-value<0.05, values in bold. We reject the hypothesis that ERM is not equivalent (or is inferior)
to Group-optimal for random forest models. The p-value for MLP models is small as well. We reject the hypothesis that
ERM is inferior to minimax in all model classes except logistic regression models.
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Figure 2: Q1. ERM ≈ group-optimal or minimax-fair on
train set (visually). Worst-case accuracy of ERM vs group-
optimal (top) and minimax models (bottom) on train set.
Each point on the plot corresponds to a model type trained
on a dataset for one of the three methods. Dotted line is
y = x. Visually, ERM matches the worst-case performance
for group-optimal and minimax models for most classes.
Figure 3 in the appendix makes the same observation when
evaluating models on the test set.

Q2. How does the result vary with model expressiveness?

Q3. Does Theorem 4.4 generalize to the test set?

Owing to the optimization challenges of the minimax prob-
lem, we also compare ERM with group-optimal models,
trained via ERM on the group’s data. Theorem 4.4 (a-c)
implies that group-optimal models will be minimax-fair.

Hypothesis tests. To answer the above questions, we adopt
the hypothesis testing framework which is prevalent in the
physical sciences. We test whether the behavior predicted
by the theoretical claim (ERM ≈ minimax models) matches
the empirical results. If so, then we conclude that the claim
is likely to hold. This, in general, does not imply that the
claim is true in practical scenarios not covered by the theory.

Accordingly, our null hypothesis is that ERM behaves differ-
ently from minimax (or group-optimal) models, in order to
reject the null. We cannot use the standard null hypothesis
testing framework since it assumes that the null is the no
difference case. Therefore, we use hypothesis tests from the
equivalence testing literature (Wellek, 2002, Chapter 5) that
flip the null and the alternative hypothesis.

Let ERM denote a random variable for the worst-case risk
of ERM. Similarly, MINIMAX denotes a random variable for
the worst-case risk of minimax-fair predictor. Each dataset
provides us with a pair of samples for ERM and MINIMAX.
We need a threshold t to say that the difference between
the two methods is practically significant. Then, we test for
equivalence of ERM and minimax via the hypotheses,

H0 : ERM ≤ MINIMAX − t or ERM ≥ MINIMAX + t

Halt : |ERM − MINIMAX| < t

The composite null hypothesis is that ERM and minimax
differ by at least t, while the alternate is that they do not.
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Additionally, we can also test if ERM is better than minimax
using non-inferiority tests via,

H0 : ERM ≤ MINIMAX − t

Halt : ERM > MINIMAX − t

Table 3: Q2. Ablation study by decreasing model ex-
pressiveness. We train decision trees with three values
of maximum depth. The p-values is shown for accuracy
metric, threshold t=0.01. Significance level is taken as
p-value<0.05, values in bold. We observe that p-values
increase as max depth (model expressiveness) is decreased.

ERM v/s MINIMAX

Model type
p-value

equivalence
p-value

non-inferior

Decision Tree depth 8 0.0281 0.0281
Decision Tree depth 4 0.0075 0.0075
Decision Tree depth 2 0.1399 0.1399

Here, the null hypothesis is that ERM is worse than min-
imax by at least t. We set t as 0.01 which for accuracy
means a 1 percentage point difference. We conduct two
one-sided t-tests which are commonly used for equiva-
lence and non-inferiority testing (Schuirmann, 1987), imple-
mented in the Python package statsmodels by the func-
tion stats.weightstats.ttost paired. This is a
parametric test and makes the standard assumptions for t-
tests including that the variables are approximately normally
distributed.

5.2. Results and discussion

We include group information as a feature in all the experi-
ments. Thus, Condition (C1) holds by design. According
to Theorem 4.4, we expect that ERM should perform simi-
larly to minimax (and group-optimal) models for expressive
model classes that satisfy Condition (C2). That is, we ex-
pect to reject the nulls for equivalence and/or non-inferiority
tests. Figure 2 plots the minimum accuracy across groups
for different classes. This data is analyzed using hypothesis
tests in Table 2.

The main takeaways are as follows.

• Theorem 4.4 is likely to hold for random forests
and MLPs. Results for random forests in Table 2
favor the hypothesis that ERM is equivalent to group-
optimal models and is not inferior to minimax (since
p-value < 0.05). Table 6 shows the results for accuracy
metric where our theoretical result is validated for both
random forest and MLP classes.

• Theorem 4.4 is unlikely to hold as model expres-
siveness is decreased When we make the hypothesis

classes less expressive by decreasing the maximum
depth of the decision trees, we observe that p-values
are higher (result unlikely to hold) for depth 2 than for
depth 8 in Table 3.

• Result is likely to generalize to the test set. For ran-
dom forests and MLPs, Table 4 shows that Theorem 4.4
is likely to hold (ERM is group-optimal and minimax)
even when models are evaluated on the held-out test
sets. This differs from our setup as we only analyze
train set risk. This suggests that the result may hold for
population risk which is desirable for practice.

In addition to testing Theorem 4.4, we present preliminary
evidence for Theorem 4.9 in Section E.5 in the appendix.
To simulate the imperfectly recoverable groups, we omit the
group information from the features given to the models, and
repeat the experiments comparing ERM with group-optimal
and minimax-fair models. Results suggest that Theorem 4.9
is likely to hold for random forests and MLPs.

Lastly, we remark the inconsistencies in the results for
MLPs. We expect to reject both the hypotheses for MLPs
since these are a flexible model class. However, Table 2
shows that we cannot reject both the null hypotheses for
group-optimal models. We believe that this behavior can
be caused by difficulties with stochastically optimizing non-
convex objectives. In particular, the iterative (re)training
that is part of the minimax optimization is similar to an
annealing strategy, and may make the optimization more
likely to stop in minima with different properties. Note
that the minimax-fair learning method we use (Diana et al.,
2021b) does not have convergence guarantees in the case of
a non-convex classification loss. This may also explain the
significantly low accuracy for minimax models trained with
MLP in the bottom plot of Figure 2. We note that necessary
changes in optimization from the minimax method of Diana
et al. (2021b) to other approaches could lead to apparently
different behavior.

5.3. Limitations

A major limitation of the work is that testing whether Con-
dition (C2) holds for any given hypothesis class is difficult.
This assumption was critical in Theorem 4.4 to show that
ERM can be minimax-fair. Our emphasis here was solely
on accuracy-based measures of fairness where a better ac-
curacy for any group is desirable. Alternatively, notions
of parity can be the preferred fairness goals under some
contexts. An important limitation of the work is that we
assume that training data perfectly represents the world as it
should be, that is, there are no distribution shifts in features
or labels. Relatedly, we ignore estimation and optimization
errors due to small sample size during minimax learning.
Finally, the preference for using flexible hypothesis classes
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Table 4: Q3. ERM ≈ group-optimal or minimax-fair on test. p-values from the two hypothesis tests of ERM against
group-optimal and minimax-fair models. Significance level is set to p-value<0.05, values in bold. For the case of negative
logloss metric, we reject the hypothesis that ERM is inferior to Group-optimal for all models. We reject the hypothesis that
ERM is inferior to minimax in all model classes except logistic regression and decision tree models.

(a) Metric = negative logloss, threshold t = 0.01

ERM v/s GROUP-OPTIMAL ERM v/s MINIMAX

Model type
p-value

equivalence
p-value

non-inferior
p-value

equivalence
p-value

non-inferior

Logistic Regression 0.9938 0.0057 0.7877 0.7877
Linear SVC 0.0671 0.0239 1.0000 0.0000
Decision Tree depth 8 0.9992 0.0007 0.9245 0.0605
Random Forest 0.6403 0.0082 0.2191 0.0025
MLP 0.9685 0.0216 1.0000 0.0000

(b) Metric = accuracy, threshold t = 0.01

ERM v/s GROUP-OPTIMAL ERM v/s MINIMAX

Model type
p-value

equivalence
p-value

non-inferior
p-value

equivalence
p-value

non-inferior

Logistic Regression 0.9155 0.0007 0.3654 0.0004
Linear SVC 0.0007 0.0007 0.9935 0.0000
Decision Tree depth 8 0.0220 0.0000 0.4671 0.0000
Random Forest 0.2855 0.0001 0.1968 0.0000
MLP 0.0406 0.0000 0.9183 0.0000

to be minimax-fair has to be carefully considered along with
the need for interpretability.

6. Conclusion
Our work shows that ERM can satisfy minimax notions of
fairness given that (1) the hypothesis classes are sufficiently
expressive and (2) group information can be predicted from
the features. This explains the overwhelming evidence from
recent work that finds ERM is rarely outperformed by more
sophisticated minimax learning methods on its performance
on worst-off group (Gardner et al., 2022; Pfohl et al., 2022;
Zong et al., 2023; Martinez et al., 2020). We provide more
comprehensive evidence for the same on multiple tabular
datasets from different application domains.

An important direction of further work is to verify and en-
sure that the sufficiency condition is satisfied while per-
forming ERM for a given model class. This may include
designing model architectures that are decoupled, that is,
the model has a dedicated function for each group to predict
their labels. Verifying this condition for the model classes
and datasets used in our experiments will provide more
conclusive evidence that the theoretical results continue to
hold in practice. Future work should study better ways to
learn minimax-fair models (via ERM or otherwise) when

the groups are not encoded in the features and yet are cor-
related with the labels. Another interesting open question
is to study whether the results generalize to unseen test sets
with possibly different distributions from the train sets. In
essence, our findings suggest including ERM as a potential
solution when optimizing for worst-case performance.
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A. Proof of the Main Result in Theorem 4.4
Theorem 4.4 (Nested structure). The structure shown in Figure 1 holds.

(a) Pareto minimax implies minimax under Condition (3.2).

(b) Lexical minimax implies Pareto minimax.

(c) Group-optimal implies Lexical minimax.

(d) Every group-optimal solution is an ERM.

(e) Under the sufficiency condition (C1) and (C2), ERM satisfies group-optimality.

We prove the five statements below in the order (d), (e), (c), (b), and then (a).

Proof of (d). Every member of the set of group-optimal solutions minimizes the empirical risk.

We assume a group optimal function f∗(x) exists, then:

min
f

∑
g∈[K]

∑
(x,y)∈Dg

ℓ(f(x), y) (6)

≥
∑
g∈[K]

min
f

∑
(x,y)∈Dg

ℓ(f(x), y) (7)

=
∑
g∈[K]

∑
x∈Dg

ℓ(f∗(x), y) (8)

≥ min
f

∑
g∈[K]

∑
x∈Dg

ℓ(f(x), y) (9)

and
min
f

∑
g∈[K]

∑
(x,y)∈Dg

ℓ(f(x), y) =
∑
g∈[K]

∑
(x,y)∈Dg

ℓ(f∗(x), y), (10)

as required.

Remark A.1 (Existence of a group-optimal predictor). The function f∗ ∈ F which is group-optimal simultaneously for
each group exists if the sufficiency condition C1 and C2 is satisfied. It can be constructed by composing the group-specific
optimal predictors as follows, f∗(x) =

∑
g∈G Ag(x)f

∗
g (x), where f∗

g (x) ∈ argminf∈F
∑

(x,y)∈g ℓ(f(x), y).

Proof of (e). ERM satisfies group-optimality under sufficiency condition.

We use f† to indicate an empirical risk minimizer (ERM), and fg to indicate a function that minimizes only over group g.
Then for every g ∈ [K] ∑

(x,y)∈D

ℓ(f†(x), y) (11)

[Condition (C1)] =
∑

(x,y)∈D

Ag(x)ℓ(f
†(x), y) + (1−Ag(x))ℓ(f

†(x), y) (12)

[definition of group-optimal] ≥
∑

(x,y)∈D

Ag(x)ℓ(f
g(x), y) + (1−Ag(x))ℓ(f

†(x), y) (13)

=
∑

(x,y)∈D

ℓ(Ag(x)f
g(x) + (1−Ag(x)f

†(x), y) (14)

[Condition (C2) and optimality of ERM] ≥
∑

(x,y)∈D

ℓ(f†(x), y) (15)

and subtracting
∑

(x,y)̸∈Dg
ℓ(f†(x), y) from equations (11), (13), and (15) we have:∑

(x,y)∈Dg

ℓ(f†(x), y) =
∑

(x,y)∈Dg

ℓ(fg(x), y)∀g ∈ [K] (16)

14



When do Minimax-fair Learning and ERM Coincide?

To simplify notation, denote the empirical risk of a predictor f on group g as R(f,Dg) := 1/|Dg|
∑

(x,y)∈Dg
ℓ(f(x), y).

Proof of (c). Group-optimal implies lexical minimax.

Consider a group optimal predictor f∗ ∈ F .

From Definition 3.4, recall that a leximax predictor f of level 1 ≤ l ≤ K is a function that satisfies,

R(f,Df̄(j)) ≤ γj ,∀ 1 ≤ j ≤ l,

where γj := minf∈F(j−1)
R(f,Df̄(j)). Here, f̄(j) refers to the group with the jth highest group risk for predictor f , as

defined earlier.

Since F(j−1) ⊆ F , we observe that
γj ≥ min

f∈F
R(f,Df̄(j)) =: R(f∗, Df̄(j)). (17)

Thus, the group optimal predictor satisfies lexicographic fairness.

Proof of (b). Lexical minimax (of level K) implies Pareto minimax.

Consider a lexical minimax predictor f∗
L ∈ F of level K.

From Definition 3.3, recall that a Pareto minimax predictor is an element of the Pareto front PF which minimizes the
worst-case group risk.

First, we show that f∗
L ∈ PF .

If possible, suppose f∗
L /∈ PF . This implies that there exists a predictor f ′ ∈ F that Pareto dominates f∗

L. That is,

∃g,R(f ′, Dg) < R(f∗
L, Dg) (18)

and the inequality ≤ holds for all groups.

Let j ∈ [K] be the highest index in the ordering of groups by f̄ ′(.) for which f ′ has strictly lower risk than f∗
L. That is,

R(f ′, Df̄ ′(i)) = R(f∗
L, Df̄∗

L(i)),∀i < j and R(f ′, Df̄ ′(j)) < R(f∗
L, Df̄∗

L(j)). Such an index j always exists due to (18). By
definition of lexical minimax-fairness, we know that for j,

R(f ′, Df̄ ′(j)) < R(f∗
L, Df̄∗

L(j)) = min
f∈F(j−1)

R(f,Df̄(j)).

which will be a contradiction if f ′ ∈ F(j−1). We can prove this by induction from 1 ≤ i ≤ j. For the base case, f ′ ∈ F , by
assumption.

For the i = 1 case, consider F(1) defined as {f ∈ F : R(f,Df̄(1)) = γ1}.

Since R(f ′, Df̄ ′(1)) = R(f∗
L, Df̄∗

L(1)) = γ1, we know that f ′ ∈ F(1).

Continuing the argument till i = j − 1, we can show that f ′ ∈ F(j−1).

Having shown that f∗
L ∈ PF , we now show that f∗

L minimizes the worst-case group risk among predictors on the Pareto
front, thus, implying it is Pareto minimax.

That is, we need to show that for all f ∈ PF ,

max
g∈G

R(f∗
L, Dg) ≤ max

g′∈G
R(f,Dg′).

If possible, suppose this is not true. Thus, there exists a f ′ ∈ PF for which

max
g

R(f∗
L, Dg) > max

g′
R(f ′, Dg′).
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By the definition of lexical minimax-fairness,

min
f∈F

R(f,Df̄(1)) ≥ R(f∗
L, Df̄∗

L(1)) (19)

> max
g′

R(f ′, Dg′) (20)

≥ R(f ′, Df̄ ′(1)) (21)

Thus, minf∈F R(f,Df̄(1)) > R(f ′, Df̄ ′(1)).

This is a contradiction since f ′ ∈ PF ⊆ F .

Proof of (a). Pareto minimax implies minimax.

Consider a minimax predictor f∗
MM ∈ F . We want to show that a solution of the same minimax risk lies in the Pareto front,

and therefore, a minimizer of the minimax risk subject to the additional constraint of Pareto efficiency is also generally
minimax-fair.

To see this, we note that either f∗
MM is in the Pareto front, or it is dominated by another solution fd that lies in the front. This

follows from the technical condition 3.2 which assumes that each ordered sequence of successively dominated predictors in
F terminates in a member of F . Thus, by Zorn’s lemma, we know that a maximal element fd of the set F exists.

For fd to dominate f∗
MM it must have no higher risk for any group and a strictly lower risk for one group. Hence, fd must

have lower or the same max group risk as f∗
MM. As fd ∈ F and f∗

MM minimize the max group risk, they must have the same
risk.

B. Proof of Theorem 4.9
Theorem 4.9 states that when only a fraction of a group can be recovered from the dataset, ERM has the same risk as
group-specific predictors on that recovered fraction of data points.

Theorem 4.9. Given that group g is k-recoverable in D and that the corresponding group classifier Ãg(x) exists in the
function class F , then all fERM ∈ FERM are k-optimal predictors for group g.

Proof. Since group g is k-recoverable, suppose the function Ãg(x) is such that it recovers at least k-fraction of D with

attribute g
|DÃg(x)=1|

|Dg| ≥ k and DÃg(x)=1 only contains data points with attribute g.

Then, use Ãg(x) to subset D into DÃg(x)=1. We want to prove that R(fERM, DÃg(x)=1) = R(fg, DÃg(x)=1) for all fERM, fg .

Suppose there exists fERM, fg such that R(fERM, DÃg(x)=1) ̸= R(fg, DÃg(x)=1).

Take any optimal predictor on DÃg(x)=1 as fÃg(x)=1 ∈ argminf∈F R(f,DÃg(x)=1).

Construct a new predictor f̃ on Dg by composing fÃg(x)=1 and fg as follows

f̃(x) =

{
fÃg(x)=1(x) if Ãg(x) = 1 ∧Ag(x) = 1 (which is same as Ãg(x) = 1 since by assumption DÃg(x)=1 ⊆ Dg)

fg(x) else if Ãg(x) = 0 ∧Ag(x) = 1.

Observe that since fÃg(x)=1 is a minimizer, R(fÃg(x)=1, DÃg(x)=1) ≤ R(fa, DÃg(x)=1). Following the proof for Theo-
rem 4.4 (e), we can show that R(fERM, DÃg(x)=1) = R(fÃg(x)=1, DÃg(x)=1). Since we assumed that R(fERM, DÃg(x)=1) ̸=
R(fAi=a, DÃg(x)=1), the inequality above is strict, R(fÃg(x)=1, DÃg(x)=1) < R(fa, DÃg(x)=1).

By the definition of k-recoverable, we can write the set {(x, y) ∈ D|Ãg(x) = 1 ∧Ag(x) = 1} ≡ {(x, y) ∈ D|Ãg(x) = 1}
since Ãg(x) has perfect precision.
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We can show that the risk of f̃ is lower than the risk of fg on Dg .

R(f̃ , Dg) =
1

|Dg|

 ∑
(x,y)∈DÃg(x)=1

ℓ(f̃(x), y) +
∑

(x,y)∈DÃg(x)=0∧Ag(x)=1

ℓ(f̃(x), y)


=

1

|Dg|

 ∑
DÃg(x)=1

ℓ(fÃg(x)=1(x), y) +
∑

DÃg(x)=0∧Ag(x)=1

ℓ(fg(x), y)


<

1

|Dg|

 ∑
DAg(x)=a

ℓ(fg(x), y) +
∑

DÃ(x)=0∧Ag(x)=1

ℓ(fg(x), y)


= R(fg, Dg)

which contradicts the fact that fg is a minimizer for group g.

C. Decoupled Classifiers and Sufficiency Condition

Definition C.1 (Decoupled class). Given K classifiers, f⃗ := (f1, f2, . . . , fK), a decoupled classifier is denoted by δf⃗ (x) :=

fg(x) ∈ {0, 1} where Ag(x) = 1. A decoupled class is a set of decoupled classifiers defined as δ(F) := {δf⃗ | f⃗ ∈ FK}.

Remark 4.2. Condition 4.1 implies that F is a decoupled class.

Proof. We want to show that δ(F) = F when Condition 4.1 holds. First, δ(F) ⊇ F since any f ∈ F can be written
as δ(f,f,...,f) ∈ δ(F). Next we need to show δ(F) ⊆ F . Let f⃗ = (f1, f2, . . . , fK) with fi ∈ F . We recursively define
functions h2, . . . , hK ∈ F with hK = δf⃗ , which shows δ(F) ⊆ F , as follows:

h2 = (1−A2)f1 +A2f2 and hi = (1−Ai)hi−1 +Aifi, i = 3, . . . ,K.

Due to Condition 4.1, we have h2, . . . , hK ∈ F . Furthermore, for all i = 2, . . . ,K, it is hi(x) = fg(x) on group g for
g = 1, . . . , i.

D. Proof of Proposition 4.13
Proposition 4.13. Given Assumptions 4.10, 4.12 hold, then ERM predictors FERM achieve the same or better risk than the
group-specific optimal predictors Fg and the minimax-fair predictor FMM.

Proof. A Bayes optimal solution for the observed DY,X is given by f∗(x) ∈ {argminŷ Ey∼DY |X=x
[ℓ(ŷ, y)]} which is the

same set as FERM by Assumption 4.12.

Consider the group-specific risk,

E(x,y)∼DY,X|G [ℓ(f(x), y)] = Ex∼DX|GEy∼DY |X,G
[ℓ(f(x), y)]

= Ex∼DX|GEy∼DY |X [ℓ(f(x), y)],

since DY |X,G = DY |X by Assumption 4.10.

Denote the inner expectation as R(f,DY |X=x) := Ey∼DY |X [ℓ(f(x), y)].

The Bayes optimal predictors minimize the inner expectation. Thus, they are also minimizers of the group-specific risk Fg

for any g ∈ [K].
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argmin
f

Ex∼DX|G=g
[R(f,DY |X=x)]

≥ Ex∼DX|G [argmin
f

R(f,DY |X=x)]

= Ex∼DX|G [R(f∗, DY |X=x)],

for any f∗ ∈ FERM. When the function class F used to find Fg is sufficiently large such that f∗ ∈ Fg, then FERM ⊆ Fg.
Otherwise, ERM achieves better risk than Fg .

Similarly rewriting the minimax risk using Assumption 4.10,

max
a

E(x,y)∼DY,X|G=g
[ℓ(f(x), y)]

= max
g

Ex∼DX|G [R(f,DY |X=x)].

By the max-min inequality, the Bayes optimal predictors minimize the worst group-specific risk,

min
f

max
g

Ex∼DX|G [R(f,DY |X=x)]

≥ max
g

min
f

Ex∼DX|G [R(f,DY |X=x)]

≥ max
g

Ex∼DX|G [R(f∗, DY |X=x)] for any f∗ ∈ FERM.

When the function class F used to find FMM is sufficiently large such that f∗ ∈ FMM, then FERM ⊆ FMM. Otherwise, ERM
achieves better risk than FMM.

E. Experiments
We first motivate the experimentation framework used in our study. Then, we provide the sources of the datasets used and
the hyperparameter settings.

E.1. Motivation for hypothesis testing

The purpose of the experiments is to test how well do the theoretical results generalize in practical scenarios when
assumptions may not necessarily hold. Such relevant scenarios are not amenable to direct theoretical analysis, thus, we use
the hypothesis testing framework to gather evidence where deviations can occur. For practical scenarios not covered by the
theory, we are essentially following the experimentation framework used in the physical sciences. Propose a law, match
its consequences with the real world, falsify the law if contradictory otherwise assume that the law is true. Through the
hypothesis tests for our experiments, we fail to falsify Theorem 4.4 for at least MLP and Random Forest classes, since we
observe the behavior predicted by the theorem. Had we failed to see the observed behavior this would have provided direct
evidence that assumptions did not hold. However, we note that the negation is not necessarily the case, and a consistent
outcome does not guarantee that the assumptions hold. Thus, verifying the assumption made in Condition (C2) is an
important direction for further work.

E.2. Sources for datasets

1. ACS Income, ACS Employment, ACS Health Insurance (Ding et al., 2021). Accessed using folktables package
https://github.com/zykls/folktables from https://www.census.gov/programs-surveys/
acs.

2. UCI Adult Income (Kohavi & Becker; Dua & Graff, 2017). Accessed from https://archive.ics.uci.edu/
ml/datasets/adult. We follow the preprocessing steps given in https://auto.gluon.ai/stable/
tutorials/tabular prediction/tabular-custom-model.html.

3. COMPAS (ProPublica, 2020). Accessed from propublica.org/datastore/dataset/compas-
recidivism-risk-score-data-and-analysis.
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4. Diabetes (Strack et al., 2014; Dua & Graff, 2017). Accessed from https://archive.ics.uci.edu/ml/
datasets/Diabetes+130-US+hospitals+for+years+1999-2008.

5. Drug Consumption (Fehrman et al., 2015; Dua & Graff, 2017). Accessed from https://archive.ics.uci.edu/
ml/datasets/Drug%20consumption+(quantified).

6. eICU (Pollard et al., 2018). Accessed from https://physionet.org/content/eicu-crd/2.0/. Dataset
preprocessing is the same as done in Singh et al. (2022).

7. Default (Yeh & hui Lien, 2009; Dua & Graff, 2017). Accessed from https://archive.ics.uci.edu/ml/
datasets/default+of+credit+card+clients.

8. Communities and Crime (Redmond & Baveja, 2002; red, 1990; 1992a;b; 1995; Dua & Graff, 2017). Accessed from
https://archive.ics.uci.edu/ml/datasets/communities+and+crime.

9. German Credit (Hofmann; Dua & Graff, 2017). Accessed from https://archive.ics.uci.edu/ml/
datasets/statlog+(german+credit+data).

10. Heart (Chicco & Jurman, 2020). Accessed from https://www.kaggle.com/datasets/andrewmvd/heart-
failure-clinical-data.

11. Marketing (Moro et al., 2014; Dua & Graff, 2017). Accessed from https://archive.ics.uci.edu/ml/
datasets/bank+marketing

E.3. Hyperparameter settings

All model implementations, except for MLPs, are from scikit-learn. MLP is implemented using code from rtdl
package4.

Table 5: Hyperparameters used for the model types. Unless specified we use the default settings in scikit-learn.

Model type Settings

Logistic regression, SGDClassifier loss=log loss, penalty=none
Random Forest, RandomForestClassifier criterion=log loss
Decision tree, DecisionTreeClassifier criterion=log loss, max depth∈ {2, 4, 8}
Linear SVC,
CalibratedClassifierCV(LinearSVC(),2) default values
MLP, MLP in Gorishniy et al. (2021) hidden layer sizes=[1024,1024], dropout=0.1,

lr=0.001, batch size=2048, AdamW optimizer
in PyTorch (Paszke et al., 2019), ERM itera-
tions=2000

Gradient boosting machines did not work with the minimax solver, possibly due to numerical instabilities in the way sample
weights are handled. We found that the solver stopped after less than 10 iterations as the sample weights did not change
significantly. Therefore, we did not include results for boosting machines although this hypothesis class is likely to satisfy
the sufficiency condition.

E.4. Additional results to validate Theorem 4.4

Figure 3 compares ERM with group-optimal or minimax-fair on test set. Table 6 shows the results of hypothesis tests for the
accuracy metric instead of the negative logloss metric used for Table 2 in the main text.

4https://github.com/Yura52/rtdl
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Figure 3: Q1. ERM ≈ group-optimal or minimax-fair on test (visually). Worst-case accuracy of ERM vs group-optimal
(top) and minimax models (bottom) on test set. Each point on the plot corresponds to a model type trained on a dataset for
one of the three methods. Dotted line is y = x. Visually, ERM matches the worst-case performance for group-optimal and
minimax models for most classes.

Table 6: Q1. ERM ≈ minimax-fair or group-optimal on train. p-values from the two one-sided test for equivalence or
non-inferiority of ERM against group-optimal and minimax-fair models. We show p-values for negative logloss from results
on 36 datasets. Significance level is taken as p-value<0.05, highlighted in bold. We reject the hypothesis that ERM is not
equivalent to Group optimal for random forest, MLP, and linear SVC models. For the same models, we reject the hypothesis
that ERM is inferior to minimax.

(a) Metric = accuracy, threshold t = 0.01

ERM v/s GROUP-OPTIMAL ERM v/s MINIMAX

Model type
p-value

equivalence
p-value

non-inferior
p-value

equivalence
p-value

non-inferior

Logistic Regression 0.4732 0.0154 0.0853 0.0706
Linear SVC 0.0272 0.0173 0.9992 0.0000
Random Forest 0.0000 0.0000 0.9204 0.0003
MLP 0.0000 0.0000 0.9320 0.0083
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E.5. Additional results to validate Theorem 4.9

An ideal experimental design for Theorem 4.9 would control for different levels of k-recoverability (Definition (4.7))
across datasets by performing evaluation only on the successfully recovered points from a group. Note that a set of points
recovered could be found by training a classifier per group and adjusting the thresholds until the precision is 1. As a more
straightforward proxy, we use the same design as used to test the fully-recoverable case in Tables 2 and 6. This is reasonable
since we observe high precision for group classifiers on the train set. Thus, we use the same evaluation metrics and training
setup except we remove the group attribute from the list of features. Results are in the Tables 7 and 8 for train and test
set accuracy, respectively. To reduce computation time, we ran experiments for only 23 datasets for MLP (reducing the
iterations of minimax-fair learning to 100, results in the main text are for 200) and 33 datasets for other hypothesis classes.

We find that, in the case of train accuracy, we can reject the hypothesis that ERM is inferior to minimax-fair models for
both MLP and random forest classes. However, we cannot reject any hypothesis for group-optimal models for these classes.
When comparing test accuracy, we can reject inferior and non-equivalent hypotheses for random forest for minimax-fair
models. For MLP class, we can reject inferior hypotheses for both types of models. This is an intriguing observation that
results seem to hold better on the test set than on the train set, which we see in Table 4 as well. A generalization analysis
will help to study this observation.

Table 7: ERM ≈ minimax-fair on train set when group information is not given to models. p-values from the two
one-sided test for equivalence or non-inferiority of ERM against minimax-fair models’ risk.

(a) Metric = accuracy, threshold t = 0.01

ERM v/s GROUP-OPTIMAL ERM v/s MINIMAX

Model type
p-value

equivalence
p-value

non-inferior
p-value

equivalence
p-value

non-inferior

Logistic Regression 0.2431 0.0235 0.2793 0.0014
Linear SVC 0.1453 0.1453 0.9977 0.0000
Random Forest 0.3265 0.3265 0.8313 0.0038
MLP 0.7957 0.7957 0.9664 0.0090

Table 8: ERM ≈ minimax-fair on test set when group information is not given to the models. p-values from the two
one-sided test for equivalence or non-inferiority of ERM against minimax-fair models’ risk.

(a) Metric = accuracy, threshold t = 0.01

ERM v/s GROUP-OPTIMAL ERM v/s MINIMAX

Model type
p-value

equivalence
p-value

non-inferior
p-value

equivalence
p-value

non-inferior

Logistic Regression 0.7829 0.0007 0.6008 0.0001
Linear SVC 0.0095 0.0095 0.9797 0.0000
Random Forest 0.0651 0.0008 0.0061 0.0032
MLP 0.1400 0.0094 0.8484 0.0049
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