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ABSTRACT

In this research paper, we introduce a novel approach to Personalized Federated
Learning (PFL), which we call FedLoRA. This approach is inspired by recent ad-
vancements in fine-tuning Large Language Models (LLMs), particularly the Low-
Rank Adaptation (LoRA) technique. The remarkable success of LoRA demon-
strates that general linguistic knowledge is preserved in a pre-trained full-rank
model, while domain-specific knowledge can be effectively retained within a low-
rank parameter matrix. Building upon this insight, we present FedLoRA in the
context of PFL, aiming to maintain shared general knowledge among all clients
in a common full-rank matrix, while capturing client-specific knowledge within
a personalized low-rank matrix. However, the integration of LoRA into PFL
presents its own set of challenges. Unlike LoRA, which starts with pre-trained
general knowledge, FedLoRA’s full-rank matrix needs training from scratch. This
phase can be notably influenced by data heterogeneity, potentially hindering its
effective extraction of general knowledge. To address this challenge, we propose
a new training strategy to mitigate the effects of data heterogeneity on the shared
full-rank matrix. Our experimental results, obtained across multiple datasets ex-
hibiting varying degrees of data heterogeneity, demonstrate that FedLoRA outper-
forms current state-of-the-art methods significantly.

1 INTRODUCTION

Federated learning (FL) McMahan et al. (2016) allows clients to collaboratively train a global model
without directly sharing their raw data. A central challenge in FL is data heterogeneity, where the
data distributions across diverse clients are not independently and identically distributed (non-IID).
Such disparities in data distributions hamper the training of the global model, leading to a decrease
in the performance of FL Zhang et al. (2021a); Gong et al. (2021); Li et al. (2021a).

To confront this challenge, the concept of Personalized Federated Learning (PFL) has been intro-
duced. Within PFL studies, it is widely accepted that the knowledge learned by each client can be
divided into general knowledge and client-specific knowledge. This understanding prompts main-
stream PFL research to split a model into two parts: a global part with shared parameters across
all clients to preserve general knowledge and a personalized part with unique parameters for each
client to retain client-specific knowledge. The task of decomposing a model into its shared and
personalized components is garnering increasing attention. Numerous related studies have surfaced,
with several focusing on the personalization of parameters in specific layers. For instance, FedPer
by Arivazhagan et al. (2019) focuses on personalizing the classifier, whereas FedBN by Li et al.
(2021c) targets the personalization of Batch Normalization layers. Another strand of PFL research
introduces extra personalized layers to the original model Pillutla et al. (2022); Zheng et al. (2022).

Concurrently, the fine-tuning of large language models (LLMs) has emerged as another field gar-
nering attention. Fine-tuning aims to enhance a pre-trained language model (which contains broad
general linguistic knowledge), by incorporating domain-specific knowledge, thereby making it more
suitable for specific downstream tasks. We note that LLM fine-tuning aligns closely with PFL in
several dimensions. Firstly, examining their intrinsic purposes, the role of the pre-trained model
in LLM aligns with the shared component in PFL, as both are concentrated on the preservation of
general knowledge. In parallel, the fine-tuning phase of LLM corresponds with the personalized
component of PFL, with a mutual objective of preserving domain-specific knowledge. Beyond their

1



Under review as a conference paper at ICLR 2024

Add

Fine-tune Parameters in Certain Layers Insert Fine-tuned Adapters Add Low-Rank Adaptation (LoRA)
(a) Techniques for fine-tuning LLMs.

Fine-tuned
parameters

...
...

Pre-trained
parameters

Fine-tune

Insert

...

Add...

Shared Parameters Personalized Parameters in Clients

Pre-trained Parameters Fine-tuned Parameters

Pre-trained model Fine-tuned model

Fine-tune Fine-tune

Pre-trained model Fine-tuned model Pre-trained model Fine-tuned model

...
...

...
...

...
...

...
...

Insert Personalized Layers FedLoRA (ours)
(b) Techniques for PFL.

Personalize Parameters in Certain Layers

...
...

Add

...
...

...Add

... ...
......

Personalize

Share

Personalize

Share

Insert

...
...

... Insert

...
...

...

...
... ...

...

Client Client Client Client 

...
...

...
...

Client Client 

...
...

...
...

...

Figure 1: The development of related techniques in LLM fine-tuning and PFL.

objectives, the methodologies employed in LLM fine-tuning and PFL also share similarities, as de-
picted in Fig. 1. A summary of various LLM fine-tuning approaches is showcased in Fig. 1(a).
For example, one prevalent method emphasizes fine-tuning parameters in specific layers Kenton &
Toutanova (2019); Zaken et al. (2021). Other techniques introduce additional trainable parameters,
known as “adapters”, into LLMs; notable examples include AdapterDrop by Rücklé et al. (2020)
and AdapterFusion by Pfeiffer et al. (2020). From the above discussion, it becomes clear that, de-
spite the differences in the training processes between fine-tuning LLMs and PFL, the approaches
to parameter decomposition exhibit remarkable parallels.

Besides the approaches mentioned above, the state-of-the-art LLM fine-tuning method is Low-Rank
Adaptation (LoRA) Hu et al. (2022). As shown in the right of Fig. 1(a), LoRA acquires domain-
specific knowledge through a low-rank parameter matrix, while general knowledge is preserved in a
full-rank parameter matrix. Inspired by this insight, we propose FedLoRA as an analogous approach
in FL. FedLoRA decomposes each personalized model layer into a shared full-rank parameter matrix
and a personalized low-rank parameter matrix. The former retains general knowledge ubiquitous
across clients, whereas the latter concentrates on client-specific knowledge.

However, integrating LoRA into PFL introduces distinct challenges. Unlike LoRA, initiated with
a pre-trained general model, FedLoRA needs to train the full-rank parameter matrix from scratch,
which can be substantially influenced by non-IID data. To address this issue, we investigate the order
of training between the full-rank and low-rank parameter matrices during local updating. Specifi-
cally, this involves initially training the low-rank part to diminish the influence of non-IID data,
followed by the training of the full-rank part. Our findings indicate that unlike previous methods
that concurrently train both parameter matrices, adopting an alternating approach is more beneficial.

Our primary contribution in this paper can be summarized as follows:

• Inspired by LoRA in the area of fine-tuning LLMs, we introduce a new method of de-
composing shared and personalized parameters in PFL, namely FedLoRA. Specifically,
we decompose each layer of the personalized model into a shared full-rank part to preserve
general knowledge, and a personalized low-rank part to preserve client-specific knowledge.

• We introduce an innovative training strategy designed to optimize FedLoRA, effectively
mitigating the implications of non-IID data and significantly boosting performance.

• We evaluate FedLoRA across multiple datasets and under varied non-IID conditions. Our
findings underscore the efficacy of the FedLoRA method we propose.

2



Under review as a conference paper at ICLR 2024

Time

Client Side

Server Side

.
..

.
..

Full-Rank
Matrices 

Low-Rank
Matrices 

Client ............

.
..

Client ............

.
.. Initialize

Step 1: Freeze  and train . Step 4: Initialize  with .

Step 3: Aggregate a global model 
.

Step 2: Freeze  and train .

.
..

.
..

Client ............

Receive  

Global Model Full-Rank
Matrices 

Low-Rank
Matrices 

Broadcast  

Figure 2: The overview of one client in FedLoRA in one communication round.

2 RELATED WORK

PFL has emerged as a prevalent research direction to handle the non-IID problem in FL. Current
PFL methods can be mainly divided into meta-learning-based methods Fallah et al. (2020); Acar
et al. (2021), fine-tuning-based methods Jin et al. (2022); Chen et al. (2023), model-regularization-
based methods T Dinh et al. (2020); Li et al. (2021b), personalized-aggregation-based methods
Huang et al. (2021); Zhang et al. (2021b), and parameter-decomposition-based methods. Among
them, parameter-decomposition-based methods, which decompose models into a shared part and a
personalized part, are most relevant to ours.

Personalize certain parameters within the original model. The core idea of this kind of method
is to share part of the original model’s parameters while personalizing the other part. Representative
works include selecting specific layers for personalization, such as FedPer and FedRep Arivazha-
gan et al. (2019); Collins et al. (2021) proposing to personalize classifiers, and FedBN Li et al.
(2021c) suggesting to personalize the Batch Normalization (BN) layers. Other works employ Deep
Reinforcement Learning (DRL) or hypernetworks technologies to automate the selection of specific
layers for personalization Sun et al. (2021); Ma et al. (2022). Still, some other research no longer
selects personalized parameters based on layers but on each individual parameter, making more
fine-grained choices to personalize parameters sensitive to non-IID data Wu et al. (2023).

Add extra personalization layers to the original model. In recent years, some studies propose
another kind of personalized parameter partitioning method. Unlike the previous method, the core
idea of this method is to add additional personalized layers to the original model. For example,
ChannelFed Zheng et al. (2022) introduces a personalized attention layer to redistribute weights
for different channels in a personalized manner. Pillutla et al. (2022) proposes to add a bottleneck
module for personalization after each feedforward layer.

Different from the prior research, our paper introduces a new perspective on parameter decompo-
sition. We embed general knowledge into a full-rank matrix and client-specific knowledge into a
low-rank matrix to achieve better knowledge sharing across clients and personalization.

3 METHOD

3.1 OVERVIEW OF FEDLORA

We first give an overview of FedLoRA. As illustrated in Fig. 2, each layer of client i’s personalized
model is decomposed into the sum of a full-rank matrix and a low-rank matrix. The training process
in each communication round can be summarized as follows: 1) each client i freezes its full-rank
matrices σi and updates the low-rank matrices τi. 2) Then, each client i turns to update σi and
freeze τi. After local updating, all clients upload the full-rank part to the server while keeping the
low-rank part private. 3) The server receives clients’ parameters and aggregates them to generate a
global model σ. After doing this, the server sends σ back to all clients. 4) Each client receives the
global model and uses it to initialize the full-rank matrices.

3



Under review as a conference paper at ICLR 2024

3.2 PROBLEM DEFINITION OF PFL

PFL, in contrast to traditional FL algorithms that train a universal model for all clients, strives
to develop a personalized model for each client i, denoted as wi, specializing in capturing the
unique characteristics of its local data distribution Di. In recent PFL research, there is a consen-
sus that the knowledge acquired by individual clients comprises both general knowledge and client-
specific knowledge. In non-IID scenarios, since different clients have distinct data distributions (i.e.,
Di ̸= Dj , i ̸= j), it is difficult to extract general knowledge and thus brings challenges to client col-
laboration. To address this problem, PFL decouples wi into a shared part σ and a personalized part
τi to learn general knowledge and client-specific knowledge respectively. Formally, the training
objective can be formulated as

min
σ,τ1,τ2,...τN

N∑
i=1

Li(σ; τi;Di), (1)

where Li(σ; τi;Di) denotes the loss function of client i and N is the total number of clients. To
optimize the target function in equation 1, recent studies have put forth various PFL methods to
partition τi and σ. While these endeavors have shown promise, the question of how to further refine
the decomposition of these two parameter components still presents an unresolved challenge.

3.3 LOW-RANK PARAMETER DECOMPOSITION

To develop an efficient parameter decomposition method, we draw inspiration from recent advance-
ments in fine-tuning LLM, specifically a technique known as LoRA. LoRA suggests a novel ap-
proach where domain-specific knowledge is embedded into a low-rank parameter matrix, while
general linguistic knowledge remains integrated into a pre-trained model with a full-rank parameter
matrix. Building upon this concept, we propose a similar approach within the context of PFL. In
PFL, we observe that shared parameters responsible for extracting general knowledge benefit from
a high model capacity. In contrast, personalized parameters are tasked with learning knowledge
that complements the general understanding for specific local tasks (i.e., client-specific knowledge),
therefore, it is sufficient to use a low-rank matrix to represent these personalized parameters. For-
mally, in FedLoRA, we assume that each personalized model has a set of weights θi = {θki }Lk=1,
where θki is the weights for the k-th layer and L is the total layer number. Each θki is decomposed as

θki = σk
i + τki , k ∈ [1, L], (2)

where σk
i , k ∈ [1, L] is a full-rank parameter matrix that is shared across all clients, and τki , k ∈

[1, L] is a personalized low-rank parameter matrix. In the following, we employ the notation θi, σi

and τi to denote the complete model parameter set, the full-rank parameter set, and the low-rank
parameter set specific to client i, respectively. Additionally, we use θki , σk

i , and τki to represent the
parameter matrices for layer k within client i.

Next, we present the methods for imposing low-rank constraints on τi.

Low-rank Decomposition of Fully-Connected Layers: For fully-connected layers, we follow the
decomposition method outlined in LoRA. The dimension of τki is I × O, where I and O represent
the input and output dimensions. We constrain τki through a low-rank decomposition as follows:

τki = Bk
i A

k
i ,where Bk

i ∈ RI×(Rl·min(I,O)) and Ak
i ∈ R(Rl·min(I,O))×O. (3)

The Rl serves as a hyper-parameter designed to regulate the rank of τki within fully-connected layers.
Its value falls within the range of 0 < Rl ≤ 1.

Low-rank Decomposition of Convolutional Layers: In contrast to fully-connected layers, convo-
lutional layers involve multiple kernels, resulting in τki ∈ I × O ×K ×K dimensions. However,
we can still apply a low-rank decomposition to constrain τki as follows:

τk∗i = Bk
i A

k
i ∈ R(I·K)×(O·K), (4)

where Bk
i ∈ R(I·K)×(Rc·min(I,O)·K) and Ak

i ∈ R(Rc·min(I,O)·K)×(O·K),

τki = Reshape(τk∗i ) ∈ RI×O×K×K . (5)
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Figure 3: A toy example to illustrate the alternating training in FedLoRA.

The Rc is a hyper-parameter used to control the rank of τki within convolutional layers. Its value is
within the range of 0 < Rc ≤ 1.

During training, both B and A serve as trainable parameter matrices. We initialize A with random
Gaussian values and B with zeros, which means τki starts as zero at the beginning of training.

The hyper-parameters Rl and Rc play crucial roles in controlling the rank of parameters within
fully connected and convolutional layers, respectively. As the rank increases, the learning capacity
of personalized parameters within the model gradually improves. However, if the rank is set too
low, τi may struggle to effectively capture client-specific knowledge, making σi highly susceptible
to non-IID data distributions. This, in turn, negatively impacts collaboration among clients. In
contrast, if the rank is too large, τi may start to absorb some of the general knowledge that should be
learned by σi, diminishing the level of collaboration among clients. For simplicity, in the FedLoRA
approach, we apply the same Rc to all convolutional layers and the same Rl to all fully-connected
layers. This simplification streamlines the model architecture and hyper-parameter tuning process.

3.4 COORDINATE TRAINING BETWEEN σ AND τ

To better extract general knowledge, in contrast to the common practice where personalized and
shared parameters are trained simultaneously, we find that a more effective strategy is to initially
train the low-rank parameters. This alternating approach helps mitigate the impact of non-IID data
before proceeding to train the full-rank parameters. Formally, in each communication round t ∈
[1, T ], we first optimize the low-rank parameters τi for Elora epochs by

τ t+1
i = argmin

τi

Li(τ
t
i ,σ

t
i , Di). (6)

Then optimize the full-rank parameters σi for Eglobal epochs by

σt+1
i = argmin

σi

Li(τ
t+1
i ,σt

i , Di). (7)

We set Elora + Eglobal = E, where E is the total number of local update epochs in one round.
These hyper-parameters play an important role in balancing the learning dynamics between two
key components, σi and τi. When Elora is set higher, it results in σi learning less knowledge.
Consequently, the degree of knowledge sharing among clients diminishes. In contrast, if Elora is
set too low, σi ends up acquiring a significant amount of client-specific knowledge. This scenario
increases the risk of clients sharing knowledge that is more susceptible to non-IID data. In special
cases, when Elora = 0, the FedLoRA framework degenerates into FedAvg. Similarly, when Eglobal =
0, FedLoRA transforms into local training with low-rank parameters, without any collaborative
efforts among clients.

After local updating, each client i uploads σt+1
i to the server while keeping the τ t+1

i private. The
server computes a global model σt+1 by aggregating all clients’ σt+1

i through

σt+1 =
1

N

N∑
i=1

σt+1
i , (8)

and sends it back to clients. The detailed training process is summarized in the Algorithm 1.

To explain our intuition for proposing alternating training, we employ a toy example to illustrate
the local update phase of each client’s personalized model within the parameter space. As shown in
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Algorithm 1 FedLoRA
Input: Each client’s initial personalized parameter matrices τ 1

i ; The global shared parameter matrices σ1;
Number of clients N ; Total communication round T ; Global matrices update epoch number Eglobal; LoRA
matrices update epoch number Elora ;
Output: Personalized model parameter matrices θT

i for each client.
for t = 1 to T do

Client-side:
for i = 1 to N in parallel do

Initializing σt
i with σt.

Updating τ t
i by equation 6 for Elora epochs to obtain τ t+1

i .
Updating σt

i by equation 7 for Eglobal epochs to obtain σt+1
i .

Sending σt+1
i to the server.

end for
Server-side:
Aggregating a global model σt+1 by equation 8.
Sending σt+1 to each client i.

end for

Fig. 3, the yellow ⋆ and red △ denote the optimum points of the global model on all clients’ data
(global loss minimum point) and the personalized model on the client’s data (local loss minimum
point), respectively. Under the influence of non-IID, there is a big difference between global knowl-
edge and local knowledge of clients. This makes the local minimum point far away from the global
minimum point. The client’s personalized model θ is decomposed into the sum of a shared part σ
and a personalized part τ . Since we first train the personalized part, the client-specific knowledge is
mostly learned by τ and the shift of θ to the local minimum point is mainly done by τ . Therefore,
when training σ, it moves less towards the local minimum point (i.e., less affected by non-IID data),
so it can better extract general knowledge.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Dataset. Our experiments are conducted on three datasets: CIFAR-10 Krizhevsky et al. (2010),
CIFAR-100 Krizhevsky et al. (2009), and Tiny ImageNet Le & Yang (2015). To evaluate the effec-
tiveness of our approach in various scenarios, we adopt the Dirichlet non-IID setting, a commonly
used framework in current FL research Hsu et al. (2019); Lin et al. (2020); Wu et al. (2022). In
this setup, each client’s data is generated from a Dirichlet distribution represented as Dir(α). As
the value of α increases, the level of class imbalance in each client’s dataset gradually decreases.
Consequently, the Dirichlet non-IID setting allows us to test the performance of our methods across
a wide range of diverse non-IID scenarios. For a more intuitive understanding of this concept, we
offer a visualization of the data partitioning in Appendix A.

Baseline methods. To verify the efficacy of FedLoRA, we compare it with eight state-of-the-art
(SOTA) methods: FedAMP Huang et al. (2021), FedRep Collins et al. (2021), FedBN Li et al.
(2021c), FedPer Arivazhagan et al. (2019), FedRoD Chen & Chao (2022), pFedSD Jin et al. (2022),
pFedGate Chen et al. (2023), and FedCAC Wu et al. (2023). Among these methods, FedAMP forces
clients with similar data distributions to learn from each other. FedBN, FedPer, FedRep, FedRoD,
and FedCAC are parameter-decomposition-based methods that personalize parts of the parameters.
pFedSD and pFedGate are fine-tuning-based methods, whose goal is to adapt the global model to
the client’s local data. These methods cover the latest advancements in various directions of PFL.

Selection for hyper-parameters. We utilize the hyper-parameters specified in the respective papers
for each SOTA method. For the FL general hyper-parameters, we set the client number N = 40, the
local update epochs E = 5, the batch size B = 100, and the total communication round T = 300.
Each client is assigned 500 training samples and 100 test samples with the same data distribution.
In each experiment, we select the best mean accuracy across all clients as the performance metric.
Each experiment is repeated using three seeds, and the mean and standard deviation are reported. We
adopt the ResNet He et al. (2016) network structure. Specifically, we utilize ResNet-8 for CIFAR-10
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Table 1: Comparison results under Dirichlet non-IID on CIFAR-10, CIFAR-100, and Tiny Imagenet.

CIFAR-10 CIFAR-100 Tiny Imagenet

Method
α

0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0

FedAvg 60.39
±1.46

60.41
±1.36

60.91
±0.72

34.91
±0.86

32.78
±0.23

33.94
±0.39

21.26
±1.28

20.32
±0.91

17.20
±0.54

Local 81.91
±3.09

60.15
±0.86

52.24
±0.41

47.61
±0.96

22.65
±0.51

18.76
±0.63

24.07
±0.62

8.75
±0.30

6.87
±0.28

FedAMP
AAAI 2021

84.99
±1.82

68.26
±0.79

64.87
±0.95

46.68
±1.06

24.74
±0.58

18.22
±0.41

27.85
±0.71

10.70
±0.32

7.13
±0.21

FedRep
ICML 2021

84.59
±1.58

67.69
±0.86

60.52
±0.72

51.25
±1.37

26.97
±0.33

20.63
±0.42

30.83
±1.05

12.14
±0.28

8.37
±0.25

FedBN
ICLR 2021

83.55
±2.32

66.79
±1.08

62.20
±0.67

54.35
±0.63

36.94
±0.94

33.67
±0.12

33.34
±0.71

19.61
±0.35

16.57
±0.44

FedPer 84.43
±0.47

68.80
±0.49

64.92
±0.66

51.38
±0.94

28.25
±1.03

21.53
±0.50

32.33
±0.31

12.69
±0.42

8.67
±0.40

FedRoD
ICLR 2022

86.23
±2.12

72.34
±1.77

68.45
±1.94

60.19
±0.64

38.54
±1.12

33.67
±0.48

44.25
±0.40

27.02
±0.64

22.07
±0.79

pFedSD
TPDS 2023

86.34
±2.61

71.97
±2.07

67.21
±1.89

54.14
±0.77

41.06
±0.83

38.27
±0.20

39.31
±0.19

19.25
±1.80

15.91
±0.33

pFedGate
ICML 2023

87.25
±1.91

71.98
±1.61

67.85
±0.87

48.54
±0.39

27.47
±0.79

22.98
±0.03

37.59
±0.39

24.09
±0.67

19.69
±0.14

FedCAC
ICCV 2023

86.82
±1.18

69.83
±0.46

65.39
±0.51

57.22
±1.52

38.64
±0.63

32.59
±0.32

40.19
±1.20

23.70
±0.28

18.58
±0.62

FedLoRA 85.47
±2.06

72.78
±1.23

69.09
±1.14

63.65
±0.53

45.96
±1.19

42.98
±0.64

44.22
±0.55

28.25
±1.24

25.55
±0.13

and ResNet-10 for CIFAR-100 and Tiny ImageNet. In FedLoRA, we adopt the SGD optimizer with
a learning rate of 0.1.

4.2 COMPARISON WITH SOTA METHODS

In this section, we compare our FedLoRA with several SOTA methods. To ensure a comprehensive
evaluation, we consider three different non-IID degrees (i.e., α ∈ {0.1, 0.5, 1.0}) on CIFAR-10,
CIFAR-100, and Tiny Imagenet.

The results in Table 1 demonstrate that the performance of FedAMP is comparable to other SOTA
methods on the CIFAR-10 dataset, but experiences a notable decline on CIFAR-100 and Tiny Im-
agenet. This is primarily because of its limited capacity to leverage collaboration among clients
with diverse data distributions. In contrast, mainstream model decomposition methods such as
FedRep, FedBN, FedPer, FedRoD, and FedCAC enhance collaboration among clients by person-
alizing parameters sensitive to non-IID data while sharing others. Among these methods, FedRoD
distinguishes itself by introducing a balanced global classifier to facilitate comprehensive knowl-
edge exchange, underscoring the potential for improvements in client collaboration within current
model decomposition strategies. On the other hand, fine-tuning-based approaches like pFedSD and
pFedGate enable all clients to collaboratively train a global model, fostering extensive knowledge
exchange. However, this approach can lead to performance degradation in certain non-IID scenarios
due to mutual interference during joint training.

Notably, FedLoRA significantly outperforms all baseline methods in the majority of scenarios, par-
ticularly as α increases. FedLoRA achieves this by effectively decoupling general and client-specific
knowledge through parameter decomposition and mitigating the impact of non-IID through alternat-
ing training of full-rank and low-rank matrices.

4.3 ABLATION STUDIES

Effect of Rl and Rc. As we discuss in Section 3.3, Rl and Rc individually denote the ratio of the
low-rank matrix’s rank to the full-rank matrix’s rank in convolutional and fully-connected layers,
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Table 2: The effect of Rl and Rc on CIFAR-10, CIFAR-100, and Tiny Imagenet under Dirichlet
non-IID with α = 0.1.

Dataset
Rl

Rc 20% 40% 60% 80% 100%
C

IF
A

R
-1

0 20% 84.72 ± 2.07 84.97 ± 1.74 84.73 ± 2.33 84.80 ± 2.03 84.99 ± 2.19
40% 84.84 ± 2.19 84.96 ± 1.87 85.27 ± 2.04 84.97 ± 1.86 85.39 ± 2.01
60% 84.92 ± 1.90 85.35 ± 1.96 85.47 ± 2.06 85.07 ± 2.26 85.38 ± 1.76
80% 84.70 ± 1.98 85.05 ± 1.66 85.25 ± 2.00 85.01 ± 1.90 85.13 ± 1.95
100% 85.09 ± 1.95 85.23 ± 1.89 85.15 ± 1.66 84.88 ± 1.77 85.21 ± 1.62

C
IF

A
R

-1
00

20% 62.00 ± 0.60 62.66 ± 0.37 61.99 ± 0.97 62.48 ± 0.30 62.70 ± 0.83
40% 61.70 ± 0.28 62.49 ± 0.77 62.70 ± 0.59 63.65 ± 0.53 62.73 ± 0.60
60% 61.71 ± 0.30 62.88 ± 0.33 62.46 ± 0.53 63.12 ± 0.38 63.24 ± 0.66
80% 60.76 ± 0.14 62.54 ± 0.56 62.74 ± 0.54 62.15 ± 0.38 62.70 ± 0.57
100% 59.54 ± 0.98 60.97 ± 0.35 61.86 ± 0.74 61.96 ± 0.55 62.58 ± 0.51

Ti
ny

Im
ag

en
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Figure 4: Effect of Elora in Dirichlet non-IID scenario with α = 0.1.

respectively. They are two important hyper-parameters to control the learning ability of the low-
rank matrices. In this section, we evaluate the effect of Rl and Rc on model accuracy. We choose
Rl and Rc from {20%, 40%, 60%, 80%, 100%}.

The experimental results are presented in Table 2. Firstly, we observe that the optimal combina-
tions of (Rc, Rl) are (60%, 60%) for CIFAR-10, (80%, 40%) for CIFAR-100, (80%, 40%) for Tiny
Imagenet. This underscores the importance of setting the personalized parameter matrices to low
rank. Secondly, regarding the optimal combination as the focal point, model accuracy gradually
decreases as the rank increases. This occurs because, after this point, the personalized matrices gain
more learning capacity and begin to acquire some of the general knowledge. As a result, collabora-
tion among clients on the shared matrices diminishes. As the rank decreases, model accuracy also
gradually declines. This is because the personalized matrices fail to capture sufficient client-specific
knowledge. This aligns with our expectations. Thirdly, experimental results highlight that model
accuracy is more sensitive to changes in Rl than Rc. This suggests that the acquisition of client-
specific knowledge has a stronger correlation with the classifier than the feature extractor, consistent
with prior research such as FedPer, FedRep, and FedRoD.

Effect of Elora and Eglobal. In this section, we verify the effect of Elora and Eglobal on model accuracy.
For simplicity, we set Eglobal = E−Elora and only adjust the value of Elora. We conduct experiments
on three datasets under Dirichlet non-IID with α = 0.1 and sample Elora ∈ [0, E].

The experimental results are depicted in Fig. 4. When the Elora = 0, FedLoRA essentially degen-
erates to FedAvg, and the accuracy closely resembles the FedAvg accuracy presented in Table 1,
as expected. As Elora increases, the accuracy initially rises and then declines. When Elora = 5,
FedLoRA degenerates to local training with low-rank parameter matrices. However, due to the con-
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Table 3: The effect of alternating training in FedLoRA on three datasets.
METHODS CIFAR-10 CIFAR-100 TINY

SIMULTANEOUSLY 85.45 ± 1.83 61.18 ± 1.05 19.61 ± 0.58
ALTERNATINGLY 85.47 ± 2.06 63.65 ± 0.53 44.22 ± 0.55

Table 4: The effect of LoRA matrices on model capacity.

DATASETS & MODEL LOCAL LOCAL W/ LORA FEDAVG FEDAVG W/ LORA

CIFAR-10 & RESNET-8 81.91 ± 3.09 81.97 ± 2.62 60.39 ± 1.46 60.91 ± 0.53
CIFAR-100 & RESNET-10 47.61 ± 0.96 47.64 ± 0.79 34.91 ± 0.86 35.91 ± 0.70

straints imposed by these low-rank matrices on the model’s learning capacity, FedLoRA performs
less effectively compared to the Local as shown in Table 1.

Effect of Alternating training. As we discussed in Section 3.4, different from previous work that
trains personalized and shared components simultaneously, we propose to train the personalized part
first and then the global part to reduce the impact of non-IID and better extract general knowledge.
To evaluate this idea, in this experiment, we compare the performance of two training methods.

The experimental results on three datasets are shown in Table 3. We can see that when the learning
task is simple (e.g., a 10-classification task on CIFAR-10), the performance of alternating training
and simultaneous training of two matrices is similar. As the learning task becomes increasingly dif-
ficult, the performance improvement brought about by alternating training becomes more apparent.
This is because, in the case of a simple learning task, the variations in tasks among clients are rel-
atively minor, which facilitates the extraction of general knowledge. However, as the learning task
complexity increases, the differences in tasks among clients gradually expand, rendering the extrac-
tion of general knowledge more susceptible to non-IID effects. In such scenarios, the utilization of
our proposed alternating training method becomes increasingly crucial.

Effect of Model Capacity. In FedLoRA, we employ an additive decomposition technique on the
model. In theory, this approach should not alter the model’s capacity. However, in practical im-
plementation, the decomposed model introduces low-rank matrices, thereby increasing the number
of trainable parameters. This augmentation raises questions about whether the decomposed model
genuinely enhances the model’s capacity and whether the observed performance improvement is
primarily a result of the increased number of trainable parameters. To address these concerns, we
conducted an experiment to assess the impact on model capacity.

We conducted experiments using two configurations: CIFAR-10 with the ResNet-8 model and
CIFAR-100 with the ResNet-10 model. We established two controlled scenarios: 1) ‘Local’ and
‘Local w/ LoRA’ indicate models without and with LoRA matrices that are exclusively trained lo-
cally. 2) ‘FedAvg’ and ‘FedAvg w/ LoRA’ indicate models without and with LoRA matrices trained
using the FedAvg algorithm. The experimental results are shown in Table 4. Notably, we observe
that, in comparison to the original model, the model enhanced with low-rank matrices exhibits only
minimal performance improvement. This outcome underscores that our utilization of parameter
decomposition does not bring about significant alterations to the model’s capacity. Hence, the per-
formance gains achieved by FedLoRA are not solely attributed to modifications in the model itself.

5 CONCLUSION

In this paper, drawing inspiration from the area of fine-tuning LLMs, we propose a new PFL method
named FedLoRA. FedLoRA decomposes each model parameter matrix into a shared full-rank ma-
trix and a personalized low-rank matrix. To further enhance the acquisition of general knowledge,
we devise a training strategy that prioritizes the training of the low-rank matrix to absorb the in-
fluence of non-IID during local training. Our extensive experimental evaluations, conducted across
multiple datasets characterized by varying degrees of non-IID, unequivocally demonstrate the supe-
rior performance of our FedLoRA method when compared to SOTA methods.
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Figure 5: Visualization of data partitioning in Dirichlet non-IID scenarios with different α.

Table 5: The effect of partial client participation.

DATASETS 100% 90% 70% 50%

CIFAR-10 85.47±2.06 85.38±1.62 (-0.09) 85.25±1.67 (-0.22) 85.36±1.67 (-0.11)
CIFAR-100 63.65±0.53 63.01±0.10 (-0.64) 63.21±0.18 (-0.44) 63.13±1.05 (-0.52)
TINY 44.22±0.55 44.13±0.70 (-0.09) 44.10±0.26 (-0.12) 43.99±0.62 (-0.23)

A VISUALIZATION OF DATA PARTITIONING IN DIRICHLET NON-IID

To facilitate intuitive understanding, we utilize 20 clients on the 10-classification and 50-
classification datasets to visualize the data distribution of clients with different α values. As shown
in Figure 5, the horizontal axis represents the data class label index, and the vertical axis represents
the client ID. Red dots represent the data assigned to clients. The larger the dot is, the more data
the client has in this class. When α is small (e.g., α = 0.1), the overall data distributions of clients
vary greatly. However, the variety of client data distribution is low, and it is easy to have clients with
very similar data distributions. As the α increases, the extent of class imbalance within each client’s
dataset gradually diminishes, consequently leading to more difficult local tasks (i.e., the number of
classes involved and a reduction in the number of samples available for each class). Concurrently,
the dissimilarity in data distribution among different clients gradually diminishes, while the diver-
sity in client data distribution widens. Furthermore, comparing the 10-classification dataset and the
50-classification dataset, it can be seen that under the same α value, when the number of dataset
classes increases, the difference of client data distribution becomes larger, and the diversity of client
data distribution increases. It becomes more difficult to extract general knowledge among clients.

In summary, the Dirichlet non-IID configuration proves to be a potent approach for assessing the
performance of PFL methods across a spectrum of intricate and diverse non-IID scenarios.

B PARTIAL CLIENT PARTICIPATION

In our previous experiments, we assume all clients participate in FL training in each round. However,
some clients may be offline due to reasons such as unstable communication links. This is the partial

12



Under review as a conference paper at ICLR 2024

0 50 100 150 200 250 300
Communication Round

5

10

15

20

25

30

35

M
od

el
 D

iff
er

en
ce

Alternatingly
Simultaneously

(a) CIFAR-100

0 50 100 150 200 250 300
Communication Round

5

10

15

20

25

30

35

M
od

el
 D

iff
er

en
ce

Alternatingly
Simultaneously

(b) Tiny Imagenet

Figure 6: Effect of training logic on average model difference of σi, 1 ≤ i ≤ N and σ in Dirichlet
non-IID scenario with α = 0.1.

client participation problem that is common in FL. In this section, we evaluate the robustness of
FedLoRA to this problem. We consider the scenarios where 90%, 70%, and 50% clients participate
in each round and carry experiments on CIFAR-10, CIFAR-100, and Tiny Imagenet with α = 0.1.

The results are illustrated in Table 5. As we can see, in all scenarios, partial client participation does
not significantly affect accuracy compared to all client participation. This is attributed to FedLoRA’s
effectively separating general knowledge and client-specific knowledge, and the effect of non-IID is
reduced through alternate training. Ensure that client collaboration is not significantly affected by
outline clients in each round.

C THE EFFECT OF ALTERNATING TRAINING ON MODEL DIFFERENCE

As we discussed in Section 3.4 and Fig. 3, the primary objective of alternating training is to mitigate
the impact of data heterogeneity on the shared parameters, essentially reducing the deviation of
shared parameters to the local minimum point of the client. Consequently, employing alternating
training should lead to a reduction in the discrepancies among shared parameters across clients
during their local training phases. To validate the effectiveness of alternating training in achieving
this goal, we carried out additional experiments to compare the disparities in shared parameters
among clients when using alternating training as opposed to not using it. Specifically, we calculate
the average model distance between σi, 1 ≤ i ≤ N and σ by

1

N

N∑
i

||σt
i − σt||2 (9)

in each round t. The results are shown in Fig. 6. It is evident from the data that, across both
datasets, the utilization of alternating training significantly diminishes the differences in the shared
parameters among clients. This is consistent with our analysis in the paper.

D WHETHER FEDLORA SACRIFICES SOME CLIENTS’ ACCURACY

In previous experiments, we demonstrate the improvement of the averaged accuracy of all clients.
In this section, we focus on the individual improvement for each client and verify whether FedLoRA
sacrifices some clients’ accuracy. We plot each client’s accuracy in FedLoRA, FedAvg, and Local
(i.e., each client trains the model locally without collaboration) methods in the Dirichlet non-IID
scenario with α = 0.1. The results are shown in the Fig. 7.
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Figure 7: Test accuracy of each client in Dirichlet non-IID scenario with α = 0.1.

Table 6: Comparison results on larger datasets.

METHODS FEDAVG FEDPER FEDROD FEDLORA

AG NEWS 89.36 90.76 91.38 91.79
IMAGENET-SUBSET 18.55 29.37 32.45 35.67

Notice that the accuracy of all clients in the FedLoRA method is higher than that in the FedAvg and
Local methods, affirming that the use of FedLoRA does not lead to any deterioration in individual
client performance.

E ADDITIONAL EXPERIMENTS ON LARGER DATASETS

While the current mainstream FL work focuses on the algorithm’s performance on small image
datasets, in this section, we further verify the performance of FedLoRA on larger datasets as well as
other modality datasets.

Specifically, we conduct additional experiments on both a larger image dataset and a natural lan-
guage processing (NLP) dataset. For the larger image dataset, we selected a subset from ImageNet,
consisting of 400 classes with a total of 80,000 samples. We utilized the ResNet-10 model architec-
ture, with each client having 2,000 training samples generated following the Dirichlet distribution
with α = 0.1. For the NLP dataset, we opted for AG NEWS, a text 5-classification dataset with
120,000 samples. We employed the Transformer model architecture, with each client having 3,000
training samples generated following the Dirichlet distribution with α = 1.0. Additionally, for the
Transformer model, we applied model decomposition to the weights in the self-attention modules
and fully connected weights in the classifier module.

Table 6 displays the test accuracy results for these two datasets. It’s evident that FedLoRA consis-
tently outperforms other state-of-the-art methods on both datasets.
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