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ABSTRACT

Federated learning is an emerging distributed machine learning framework which
jointly trains a global model via a large number of local devices with data privacy
protections. Its performance suffers from the non-vanishing biases introduced by
the local inconsistent optimal and the rugged client-drifts by the local over-fitting.
In this paper, we propose a novel and practical method, FedSpeed, to alleviate
the negative impacts posed by these problems. Concretely, FedSpeed applies the
prox-correction term on the current local updates to efficiently reduce the biases
introduced by the prox-term, a necessary regularizer to maintain the strong local
consistency. Furthermore, FedSpeed merges the vanilla stochastic gradient with
a perturbation computed from an extra gradient ascent step in the neighborhood,
thereby alleviating the issue of local over-fitting. Our theoretical analysis indicates
that the convergence rate is related to both the communication rounds T and local
intervals K with a upper bound O(1/T ) if setting a proper local interval. Moreover,
we conduct extensive experiments on the real-world dataset to demonstrate the
efficiency of our proposed FedSpeed, which performs significantly faster and
achieves the state-of-the-art (SOTA) performance on the general FL experimental
settings than several baselines including FedAvg, FedProx, FedCM, FedAdam,
SCAFFOLD, FedDyn, FedADMM, etc.

1 INTRODUCTION

Since McMahan et al. (2017) proposed federated learning (FL), it has gradually evolved into an
efficient paradigm for large-scale distributed training. Different from the traditional deep learning
methods, FL allows multi local clients to jointly train a single global model without data sharing.
However, FL is far from its maturity, as it still suffers from the considerable performance degradation
over the heterogeneously distributed data, a very common setting in the practical application of FL.

We recognize the main culprit leading to the performance degradation of FL as local inconsistency
and local heterogeneous over-fitting. Specifically, for canonical local-SGD-based FL method, e.g.,
FedAvg, the non-vanishing biases introduced by the local updates may eventually lead to inconsistent
local solution. Then, the rugged client-drifts resulting from the local over-fitting into inconsistent local
solutions may make the obtained global model degrading into the average of client’s local parameters.
The non-vanishing biases have been studied by several previous works Charles & Konečnỳ (2021);
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Malinovskiy et al. (2020) in different forms. The inconsistency due to the local heterogeneous data
will compromise the global convergence during the training process. Eventually it leads to serious
client-drifts which can be formulated as x∗ ̸=

∑
i∈[m] x

∗
i /m. Larger data heterogeneity may enlarge

the drifts, thereby degrading the practical training convergence rate and generalization performance.

In order to strengthen the local consistency during the local training process, and avoid the client-drifts
resulting from the local over-fitting, we propose a novel and practical algorithm, dubbed as FedSpeed.
Notably, FedSpeed incorporates two novel components to achieve SOTA performance. i) Firstly,
FedSpeed inherits a penalized prox-term to force the local offset to be closer to the initial point at
each communication round. However, recognized from Hanzely & Richtárik (2020); Khaled et al.
(2019) that the prox-term between global and local solutions may introduce undesirable local training
bias, we propose and utilize a prox-correction term to counteract the adverse impact. Indeed, in our
theoretical analysis, the implication of the prox-correction term could be considered as a momentum-
based term of the weighted local gradients. Via utilizing the historical gradient information, the
bias brought by the prox-term can be effectively corrected. ii) Secondly, to avoid the rugged local
over-fitting, FedSpeed incorporates a local gradient perturbation via merging the vanilla stochastic
gradient with an extra gradient, which can be viewed as taking an extra gradient ascent step for each
local update. Based on the analysis in Zhao et al. (2022); van der Hoeven (2020), we demonstrate
that the gradient perturbation term could be approximated as adding a penalized squared L2-norm of
the stochastic gradients to the original objective function, which can efficiently search for the flatten
local minima Andriushchenko & Flammarion (2022) to prevent the local over-fitting problems.

We also provide the theoretical analysis of our proposed FedSpeed and further demonstrate that its
convergence rate could be accelerated by setting an appropriate large local interval K. Explicitly,
under the non-convex and smooth cases, FedSpeed with an extra gradient perturbation could achieve
the fast convergence rate of O(1/T ), which indicates that FedSpeed achieves a tighter upper bound
with a proper local interval K to converge, without applying a specific global learning rate or assuming
the precision for the local solutions (Durmus et al., 2021; Wang et al., 2022). Extensive experiments
are tested on CIFAR-10/100 and TinyImagenet dataset with a standard ResNet-18-GN network under
the different heterogeneous settings, which shows that our proposed FedSpeed is significantly better
than several baselines, e.g. for FedAvg, FedProx, FedCM, FedPD, SCAFFOLD, FedDyn, on both the
stability to enlarge the local interval K and the test generalization performance in the actual training.

To the end, we summarize the main contributions of this paper as follows:

• We propose a novel and practical federated optimization algorithm, FedSpeed, which applies a
prox-correction term to significantly reduce the bias due to the local updates of the prox-term,
and an extra gradient perturbation to efficiently avoid the local over-fitting, which achieves a fast
convergence speed with large local steps and simultaneously maintains the high generalization.

• We provide the convergence rate upper bound under the non-convex and smooth cases and prove
that FedSpeed could achieve a fast convergence rate of O(1/T ) via enlarging the local training
interval K = O(T ) without any other harsh assumptions or the specific conditions required.

• Extensive experiments are conducted on the CIFAR-10/100 and TinyImagenet dataset to verify the
performance of our proposed FedSpeed. To the best of our interests, both convergence speed and
generalization performance could achieve the SOTA results under the general federated settings.
FedSpeed could outperform other baselines and be more robust to enlarging the local interval.

2 RELATED WORK

McMahan et al. (2017) propose the federated framework with the properties of jointly training with
several unbalance and non-iid local dataset via communicating with lower costs during the total
training stage. The general FL optimization involves a local client training stage and a global server
update operation Asad et al. (2020) and it has been proved to achieve a linear speedup property in
Yang et al. (2021). With the fast development of the FL, a series of efficient optimization method
are applied in the federated framework. Li et al. (2020b) and Kairouz et al. (2021) introduce a
detailed overview in this field. There are still many difficulties to be solved in the practical scenarios,
while in this paper we focus to highlight the two main challenges of the local inconsistent solution
and client-drifts due to heterogeneous over-fitting, which are two acute limitations in the federated
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optimization Li et al. (2020a); Yang et al. (2019); Konečnỳ et al. (2016); Liu et al. (2022); Shi et al.
(2023); Liu et al. (2023).

Local consistency. Sahu et al. (2018) study the non-vanishing biases of the inconsistent solution in
the experiments and apply a prox-term regularization. FedProx utilizes the bounded local updates
by penalizing parameters to provide a good guarantee of consistency. In Liang et al. (2019) they
introduce the local gradient tracking to reduce the local inconsistency in the local SGD method.
Charles & Konečnỳ (2021); Malinovskiy et al. (2020) show that the local learning rate decay can
balance the trade-off between the convergence rate and the local inconsistency with the rate of
O(ηl(K − 1)). Furthermore, Wang et al. (2021; 2020b) through a simple counterexample to show
that using adaptive optimizer or different hyper-parameters on local clients leads to an additional
gaps. They propose a local correction technique to alleviate the biases. Wang et al. (2020a); Tan et al.
(2022) consider the different local settings and prove that in the case of asynchronous aggregation, the
inconsistency bias will no longer be eliminated by local learning rate decay. Haddadpour et al. (2021)
compress the local offset and adopt a global correction to reduce the biases. Zhang et al. (2021) apply
the primal dual method instead of the primal method to solve a series of sub-problems on the local
clients and alternately updates the primal and dual variables which can achieve the fast convergence
rate of O( 1

T ) with the local solution precision assumption. Based on FedPD, Durmus et al. (2021)
propose FedDyn as a variants via averaging all the dual variables (the average quantity can then
be viewed as the global gradient) under the partial participation settings, which can also achieve
the same O( 1

T ) under the assumption that exact local solution can be found by the local optimizer.
Wang et al. (2022); Gong et al. (2022) propose two other variants to apply different dual variable
aggregation strategies under partial participation settings. These methods benefit from applying the
prox-term Li et al. (2019); Chen & Chao (2020) or higher efficient optimization methods Bischoff
et al. (2021); Yang et al. (2022) to control the local consistency.

Client-drifts. Karimireddy et al. (2020) firstly demonstrate the client-drifts for federated learning
framework to indicate the negative impact on the global model when each local client over-fits to
the local heterogeneous dataset. They propose SCAFFOLD via a variance reduction technique to
mitigate this drifts. Yu et al. (2019) and Wang et al. (2019) introduce the momentum instead of the
gradient to the local and global update respectively to improve the generalization performance. To
maintain the property of consistency, Xu et al. (2021) propose a novel client-level momentum term to
improve the local training process. Ozfatura et al. (2021) incorporate the client-level momentum with
local momentum to further control the biases. In recent Gao et al. (2022); Kim et al. (2022), they
propose a drift correction term as a penalized loss on the original local objective functions with a
global gradient estimation. Chen et al. (2020) and Chen et al. (2021; 2022) focus on the adaptive
method to alleviate the biases and improve the efficiency.

Our proposed FedSpeed inherits the prox-term at local update to guarantee the local consistency
during local training. Different from the previous works, we adopt an extra prox-correction term to
reduce the bias during the local training introduced by the update direction towards the last global
model parameters. This ensures that the local update could be corrected towards the global minima.
Furthermore, we incorporate a gradient perturbation update to enhance the generalization performance
of the local model, which merges a gradient ascent step.

3 METHODOLOGY

In this part, we will introduce the preliminaries and our proposed method. We will explain the implicit
meaning for each variables and demonstrate the FedSpeed algorithm inference in details.

Notations and preliminary. Let m be the number of total clients. We denote St as the set of active
clients at round t. K is the number of local updates and T is the communication rounds. (·)ti,k
denotes variable (·) at k-th iteration of t-th round in the i-th client. x is the model parameters. g is
the stochastic gradient computed by the sampled data. g̃ is the weighted quasi-gradient computed as
defined in Algorithm 1. ĝ is the prox-correction term. We denote ⟨·, ·⟩ as the inner product for two
vectors and ∥ · ∥ is the Euclidean norm of a vector. Other symbols are detailed at their references.

As the most FL frameworks, we consider to minimize the following finite-sum non-convex problem:

F (x) =
1

m

m∑
i=1

Fi (x) , (1)
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Algorithm 1 FedSpeed Algorithm Framework
Input: model parameters x0, total communication rounds T , local gradient controller ĝ−1

i = 0, penalized
weight λ.

Output: model parameters xT .
1: for t = 0, 1, 2, · · · , T − 1 do
2: select active clients-set St at round t
3: for client i ∈ St parallel do
4: communicate xt to local client i and set xt

i,0 = xt

5: for k = 0, 1, 2, · · · ,K − 1 do
6: sample a minibatch εti,k and do
7: compute unbiased stochastic gradient: gt

i,k,1 = ∇Fi(x
t
i,k; ε

t
i,k)

8: update the extra step: x̆t
i,k = xt

i,k + ρgt
i,k,1

9: compute unbiased stochastic gradient: gt
i,k,2 = ∇Fi(x̆

t
i,k; ε

t
i,k)

10: compute quasi-gradient: g̃t
i,k = (1− α)gt

i,k,1 + αgt
i,k,2

11: update the gradient descent step: xt
i,k+1 = xt

i,k − ηl
(
g̃t
i,k − ĝt−1

i + 1
λ
(xt

i,k − xt)
)

12: end for
13: ĝt

i = ĝt−1
i − 1

λ
(xt

i,K − xt)

14: communicate x̂t
i = xt

i,K − λĝt
i to the global server

15: end for
16: xt+1 = 1

S

∑
i∈St x̂

t
i

17: end for

where F : Rd → R, Fi(x) := Eεi∼Di
Fi(x, εi) is objective function in the client i, and εi represents

for the random data samples obeying the distribution Di. m is the total number of clients. In FL, Di

may differ across the local clients, which may introduce the client drifts by the heterogeneous data.

3.1 FEDSPEED ALGORITHM

In this part, we will introduce our proposed method to alleviate the negative impact of the heteroge-
neous data and reduces the communication rounds. We are inspired by the dynamic regularization
Durmus et al. (2021) for the local updates to eliminate the client drifts when T approaches infinite.

Our proposed FeedSpeed is shown in Algorithm 1. At the beginning of each round t, a subset
of clients St are required to participate in the current training process. The global server will
communicate the parameters xt to the active clients for local training. Each active local client
performs three stages: (1) computing the unbiased stochastic gradient gt

i,k,1 = ∇Fi(x
t
i,k; ε

t
i,k) with

a randomly sampled mini-batch data εti,k and executing a gradient ascent step in the neighbourhood
to approach x̆t

i,k; (2) computing the unbiased stochastic gradient gt
i,k,2 with the same sampled mini-

batch data in (1) at the x̆t
i,k and merging the gt

i,k,1 with gt
i,k,2 to introduce a basic perturbation to

the vanilla descent direction; (3) executing the gradient descent step with the merged quasi-gradient
g̃t
i,k, the prox-term ∥xt

i,k − xt∥2 and the local prox-correction term ĝt−1
i . After K iterations local

training, prox-correction term ĝt−1
i will be updated as the weighted sum of the current local offset

(xt
i,K − xt

i,0) and the historical offsets momentum. Then we communicate the amended model
parameters x̂t

i = xt
i,K − λĝt

i to the global server for aggregation. On the global server, a simple
average aggregation is applied to generate the current global model parameters xt+1 at round t.

Prox-correction term. In the general optimization, the prox-term ∥xt
i,k − xt∥2 is a penalized term

for solving the non-smooth problems and it contributes to strengthen the local consistency in the FL
framework by introducing a penalized direction in the local updates as proposed in Sahu et al. (2018).
However, as discussed in Hanzely & Richtárik (2020), it simply performs as a balance between the
local and global solutions, and there still exists the non-vanishing inconsistent biases among the
local solutions, i.e., the local solutions are still largely deviated from each other, implying that local
inconsistency is still not eliminated, which limits the efficiency of the federated learning framework.

To further strengthen the local consistency, we utilize a prox-correction term ĝt
i which could be

considered as a previous local offset momentum. According to the local update, we combine the
xt
i,k−1 term in the prox term and the local state, setting the weight as (1− ηl

λ ) multiplied to the basic
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local state. As shown in the local update in Algorithm 1 (Line.11), for ∀ x ∈ Rd we have:

xt
i,K − xt = −γλ

K−1∑
k=0

γk
γ
g̃t
i,k + γλĝt−1

i , (2)

where
∑K−1

k=0 γk =
∑K−1

k=0
ηl

λ

(
1− ηl

λ

)K−1−k
= γ. Proof details can be referred to the Appendix.

Firstly let ĝ−1
i = 0, Equation (2) indicates that the local offset will be transferred to a exponential

average of previous local gradients when applying the prox-term, and the updated formation of the
local offset is independent of the local learning rate ηl. This is different from the vanilla SGD-based
methods, e.g. FedAvg, which treats all local updates fairly. γk changes the importance of the historical
gradients. As K increases, previous updates will be weakened by exponential decay significantly
for ηl < λ. Thus, we apply the prox-correction term to balance the local offset. According to the
iterative formula for ĝt

i (Line.13 in Algorithm 1) and the equation (2), we can rewrite this update as:

ĝt
i = (1− γ)ĝt−1

i + γ
(K−1∑

k=0

γk
γ
g̃t
i,k

)
, (3)

where γ and γk is defined the same as in Equation (2). Proof details can be referred to the Appendix.

Note that ĝt
i performs as a momentum term of the historical local updates before round t, which

can be considered as a estimation of the local offset at round t. At each local iteration k of round t,
ĝt−1
i provides a correction for the local update to balance the impact of the prox-term to enhance the

contribution of those descent steps executed firstly at each local stages. It should be noted that ĝt−1
i

is different from the global momentum term mentioned in Wang et al. (2019) which aggregates the
average local updates to improve the generalization performance. After the local training, it updates
the current information. Then we subtract the current ĝt

i from the local models xt
i,K to counteract the

influence in the local stages. Finally it sends the post-processed parameters x̂t
i,K to the global server.

Gradient perturbation. Gradient perturbations (Foret et al., 2020a; Mi et al.; Zhao et al., 2022;
Zhong et al., 2022) significantly improves generalization for deep models. An extra gradient ascent
in the neighbourhood can effectively express the curvature near the current parameters. Referring
to the analysis in Zhao et al. (2022), we show that the quasi-gradient g̃, which merges the extra
ascent step gradient and the vanilla gradient, could be approximated as penalizing a square term of
the L2-norm of the gradient on the original function. On each local client to solve the stationary
point of minx{Fi(x) + β∥∇Fi(x)∥2} can search for a flat minima. Flatten loss landscapes will
further mitigate the local inconsistency due to the averaging aggregation on the global server on
heterogeneous dataset. Detailed discussions can be referred to the Appendix.

4 CONVERGENCE ANALYSIS

In this part we will demonstrate the theoretical analysis of our proposed FedSpeed and illustrate
the convergence guarantees under the specific hyperparameters. Due to the space limitations, more
details could be referred to the Appendix. Some standard assumptions are stated as follows.

Assumption 4.1 (L-Smoothness) For the non-convex function Fi holds the property of smoothness
for all i ∈ [m], i.e., ∥∇Fi(x)−∇Fi(y)∥ ≤ L∥x− y∥, for all x,y ∈ Rd.

Assumption 4.2 (Bounded Stochastic Gradient) The stochastic gradient gt
i,k = ∇Fi(x

t
i,k, ε

t
i,k)

with the randomly sampled data εti,k on the local client i is an unbiased estimator of ∇Fi with
bounded variance, i.e., E[gt

i,k] = ∇Fi(x
t
i,k) and E∥gt

i,k −∇Fi(x
t
i,k)∥2 ≤ σ2

l , for all xt
i,k ∈ Rd.

Assumption 4.3 (Bounded Heterogeneity) The dissimilarity of the dataset among the local clients
is bounded by the local and global gradients, i.e., E∥∇Fi(x)−∇F (x)∥2 ≤ σ2

g , for all x ∈ Rd.

Assumption 4.1 guarantees a Lipschitz continuity and Assumption 4.2 guarantees the stochastic
gradient is bounded by zero mean and constant variance. Assumption 4.3 is the heterogeneity bound
for the non-iid dataset, which is widely used in many previous works (Reddi et al., 2020; Yang et al.,
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2021; Xu et al., 2021; Wang et al., 2021; Karimi et al., 2021). Our theoretical analysis depends on
the above assumptions to explore the comprehensive properties in the local training process.

Proof sketch. To express the essential insights in the updates of the Algorithm 1, we introduce two
auxiliary sequences. Considering the ut = 1

m

∑
i∈[m] x

t
i,K as the mean averaged parameters of the

last iterations in the local training among the local clients. Based on {ut}, we introduce the auxiliary
sequences {zt = ut + 1−γ

γ (ut − ut−1)}t>0. Combining the local update and the Equation (3):

ut+1 = ut − λ
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ

(
γg̃t

i,k + (1− γ)ĝt−1
i

)
. (4)

If we introduce K virtual states ut
i,k, it could be considered as a momentum-based update of the prox-

correction term ĝt−1
i with the coefficient γ. And the prox-correction term ĝt

i = − 1
λ

(
ut
i,K − ut

i,0

)
,

which implies the global update direction in the local training process. And zt updates as:

zt+1 = zt − λ
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k, (5)

Detailed proofs can be referred in the Appendix. After mapping xt to ut, the local update could be
considered as a client momentum-like method with a normalized weight parameterized by γk. Further,
after mapping ut to zt, the entire update process will be simplified to a SGD-type method with the
quasi-gradients g̃. zt contains the penalized prox-term in the total local training stage. Though a
prox-correction term is applied to eliminate the local biases, xt maintains to be beneficial from the
update of penalizing the prox-term. The prox-correction term plays the role as exponential average of
the global offset. Then we introduce our proof of the convergence rate for the FedSpeed algorithm:

Theorem 4.4 Under the Assumptions 4.1-4.3, when the perturbation learning rate satisfies ρ ≤
1√
6αL

, and the local learning rate satisfies ηl ≤ min{ 1
32

√
3KL

, 2λ}, and the local interval satisfies
K ≥ λ/ηl, let κ = 1

2 − 3α2L2ρ2 − 1536η2l L
2K is a positive constant with selecting the proper ηl

and ρ, the auxiliary sequence zt in Equation (5) generated by executing the Algorithm 1 satisfies:

1

T

T−1∑
t=1

E∥∇F (zt)∥2 ≤ 2(F (z1)− F ∗)

λκT
+
64ηlL

2K

κmT

∑
i∈[m]

E∥ĝ0
i ∥2+

32λ2L2

κT
Et∥

1

m

∑
i∈[m]

ĝ0
i ∥2+Φ,

(6)
where F is a non-convex objective function F ∗ is the optimal of F . The term Φ is:

Φ =
1

κ

(
32λη2l L

2K(16σ2
g + σ2

l ) + λα2L2ρ2(3σ2
g + σ2

l )
)
, (7)

where α is the perturbation weight. More proof details can be referred to the Appendix.

Corollary 4.5 Let ρ = O(1/
√
T ) with the upper bound of ρ ≤ 1/

√
6αL, and let ηl = O(1/K)

with the lower bound of ηl ≥ λ/K, when the local interval K is long enough with K = O(T ), the
proposed FedSpeed achieves a fast convergence rate of O(1/T ).

Remark 4.6 Compared with the other prox-based works, e.g. for (Durmus et al., 2021; Wang et al.,
2022; Gong et al., 2022), their proofs rely on the harsh assumption that local client must approach
an exact stationary point or ϵ-inexact stationary point in the local training per round. It cannot be
strictly satisfied in the practical federated learning framework with the current theoretical analysis of
the last iteration point on the non-convex case. We relax this assumption through enlarging the local
interval and prove that federated prox-based methods can also achieve the convergence of O(1/T ).

Remark 4.7 Compared with the other current methods, FedSpeed can improve the convergence rate
by increasing the local interval K, which is a good property for the practical federated learning
framework. For the analysis of FedAvg (Yang et al., 2021), under the same assumptions, it achieves
O(1/

√
SKT +K/T ) which restricts the value of K to not exceed the order of T . Karimireddy et al.

(2020) contribute the convergence as O(1/
√
SKT ) under the constant local interval, and (Reddi

et al., 2020) proves the same convergence under the strict coordinated bounded variance assumption
for the global full gradient in the FedAdam. Our experiments also verify this characteristic in
Section 5.3. Most current algorithms are affected by increasing K in the training while FedSpeed
shows the good stability under the enlarged local intervals and shrunk communication rounds.
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(a) 10% participation of 100 clients on CIFAR-10.
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(b) 2% participation of 500 clients on CIFAR-10.
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(c) 2% participation of 500 clients on CIFAR-100.
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(d) 2% participation of 500 clients on TinyImagenet.

Figure 1: The top-1 accuracy in communication rounds of all compared methods on CIFAR-10/100
and TinyImagenet. Communication rounds are set as 1500 for CIFAR-10/100, 3000 for TinyImagenet.
In each group, the left shows the performance on IID dataset while the right shows the performance
on the non-IID dataset, which are split by setting heterogeneity weight of the Dirichlet as 0.6.

5 EXPERIMENTS

In this part, we firstly introduce our experimental setups. We present the convergence and generaliza-
tion performance in Section 5.2, and study ablation experiments in Section 5.3.

5.1 SETUP

Dataset and backbones. We test the experiments on CIFAR-10, CIFAR-100 Krizhevsky et al. (2009)
and TinyImagenet. Due to the space limitations we introduce these datasets in the Appendix. We
follow the Hsu et al. (2019) to introduce the heterogeneity via splitting the total dataset by sampling
the label ratios from the Dirichlet distribution. We train and test the performance on the standard
ResNet-18 He et al. (2016) backbone with the 7×7 filter size in the first convolution layer with
BN-layers replaced by GN Wu & He (2018); Hsieh et al. (2020) to avoid the invalid aggregation.

Implementation details. We select each hyper-parameters within the appropriate range and present
the combinations under the best performance. To fairly compare these baseline methods, we fix the
most hyper-parameters for all methods under the same setting. For the 10% participation of total 100
clients training, we set the local learning rate as 0.1 initially and set the global learning rate as 1.0 for
all methods except for FedAdam which applies 0.1 on global server. The learning rate decay is set as
multiplying 0.998 per communication round except for FedDyn, FedADMM and FedSpeed which
apply 0.9995. Each active local client trains 5 epochs with batchsize 50. Weight decay is set as 1e-3
for all methods. The weight for the prox-term in FedProx, FedDyn, FedADMM and FedSpeed is
set as 0.1. For the 2% participation, the learning rate decay is adjusted to 0.9998 for FedDyn and
FedSpeed. Each active client trains 2 epochs with batchsize 20. The weight for the prox-term is set
as 0.001. The other hyper-parameters specific to each method will be introduced in the Appendix.

Baselines. We compare several classical and efficient methods with the proposed FedSpeed in our
experiments, which focus on the local consistency and client-drifts, including FedAvg McMahan
et al. (2017), FedAdam Reddi et al. (2020), SCAFFOLD Karimireddy et al. (2020), FedCM Xu et al.
(2021), FedProx Sahu et al. (2018), FedDyn Durmus et al. (2021) and FedADMM Wang et al. (2022).
FedAdam applies adaptive optimizer to improve the performance on the global updates. SCAFFOLD
and FedCM utilize the global gradient estimation to correct the local updates. FedProx introduces the
prox-term to alleviate the local inconsistency. FedDyn and FedADMM both employ the different
variants of the primal-dual method to reduce the local inconsistency. Due to the limited space, more
detailed description and discussions on these compared baselines are placed in the Appendix.
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Table 1: Test accuracy (%) on the CIFAR-10/100 and TinyImagenet under the 2% participation of
500 clients with IID and non-IID dataset. The heterogeneity is applied as Dirichlet-0.6 (DIR.).

Method CIFAR-10 CIFAR-100 TinyImagenet

IID. DIR. IID. DIR. IID. DIR.

FedAvg 77.01 75.21 40.68 39.33 33.58 32.71
FedProx 77.68 75.97 41.29 39.69 33.71 32.78

FedAdam 82.92 80.55 51.65 49.29 40.85 39.71
SCAFFOLD 80.11 77.71 47.38 46.33 38.03 37.54

FedCM 84.20 83.48 52.35 50.98 41.90 41.67
FedDyn 83.36 80.57 46.18 46.60 34.69 33.92

FedADMM 81.29 79.71 45.51 46.65 36.03 33.83
FedSpeed 85.80 84.79 53.93 52.88 43.38 42.75

5.2 EXPERIMENTS

CIFAR-10. Our proposed FedSpeed is robust to different participation cases. Figure 1 (a) shows the
results of 10% participation of total 100 clients. For the IID splits, FedSpeed achieves 6.1% ahead of
FedAvg as 88.5%. FedDyn suffers the instability when learning rate is small, which is the similar
phenomenon as mentioned in Xu et al. (2021). When introducing the heterogeneity, FedAdam suffers
from the increasing variance obviously with the accuracy dropping from 85.7% to 83.2%. Figure 1
(b) shows the impact from reducing the participation. FedAdam is lightly affected by this change
while the performance degradation of SCAFFOLD is significant which drops from 85.3% to 80.1%.

CIFAR-100 & TinyImagenet. As shown in Figure 1 (c) and (d), the performance of FedSpeed on
the CIFAR-100 and TinyImagenet with low participating setting performs robustly and achieves
approximately 1.6% and 1.8% improvement ahead of the FedCM respectively. As the participation is
too low, the impact from the heterogeneous data becomes weak gradually with a similar test accuracy.
SCAFFOLD is still greatly affected by a low participation ratio, which drops about 3.3% lower than
FedAdam. FedCM converges fast at the beginning of the training stage due to the benefits from
strong consistency limitations. FedSpeed adopts to update the prox-correction term and converges
faster with its estimation within several rounds and then FedSpeed outperforms other methods.

Table 1 shows the accuracy under the low participation ratio equals to 2%. Our proposed FedSpeed
outperforms on each dataset on both IID and non-IID settings. Table 1 shows the accuracy under the
low participation ratio equals to 2%. Our proposed FedSpeed outperforms on each dataset on both
IID and non-IID settings. We observe the similar results as mentioned in Reddi et al. (2020); Xu et al.
(2021). FedAdam and FedCM could maintain the low consistency in the local training stage with a
robust results to achieve better performance than others. While FedDyn is affected greatly by the
number of training samples in the dataset, which is sensitive to the partial participation ratios.

Large local interval for the prox-term. From the IID case to the non-IID case, the heterogeneous
dataset introduces the local inconsistency and leads to the severe client-drifts problem. Almost all the
baselines suffer from the performance degradation. High local consistency usually supports for a large
interval as for their bounded updates and limited offsets. Applying prox-term guarantees the local
consistency, but it also has an negative impact on the local training towards the target of weighted
local optimal and global server model. FedDyn and FedADMM succeed to apply the primal-dual
method to alleviate this influence as they change the local objective function whose target is reformed
by a dual variable. These method can mitigate the local offsets caused by the prox-term and they
improve about 3% ahead of the FedProx on CIFAR-10. However, the primal-dual method requires a
local ϵ-close solution. In the non-convex optimization it is difficult to determine the selection of local
training interval K under this requirement. Though Durmus et al. (2021) claim that 5 local epochs
are approximately enough for the ϵ-close solution, there is still an unpredictable local biases.

FedSpeed directly applies a prox-correction term to update K epochs and avoids the requirement for
the precision of local solution. This ensures that the local optimization stage does not introduce the
bias due to the error of the inexact solution. Moreover, the extra ascent step can efficiently improve
the performance of local model parameters. Thus, the proposed FedSpeed can improve 3% than
FedDyn and FedADMM and achieve the comparable performance as training on the IID dataset.
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0 500 1000 1500 2000
Total Epochs

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 To
p-

1 
Ac

c.

1
2
5
10
20

(b) FedCM.
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(c) SCAFFOLD.
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(d) FedSpeed.

Figure 2: Performance of FedAdam, FedCM, SCAFFOLD and FedSpeed with local epochs E =
1, 2, 5, 10, 20 on the 10% participation case of total 100 clients on CIFAR-10. We fix T × E = 2500
as the equaled total training epochs to illustrate the performance of increasing E and decreasing T .

An interesting experimental phenomenon is that the performance of SCAFFOLD gradually degrades
under the low participation ratio. It should be noticed that under the 10% participation case, SCAF-
FOLD performs as well as the FedCM. It benefits from applying a global gradient estimation to
correct the local updates, which can weaken the client-drifts by a quasi gradient towards to the global
optimal. Actually the estimation variance is related to the participation ratio, which means that
their efficiencies rely on the enough number of clients. When the participation ratio decreases to be
extremely low, their performance will also be greatly affected by the huge biases in the local training.

5.3 HYPERPARAMETERS SENSITIVITY

Local interval K. To explore the acceleration on T by applying a large interval K, we fix the total
training epochs E. It should be noted that K represents for the iteration and E represents for the
epoch. A larger local interval can be applied to accelerate the convergence in many previous works
theoretically, e.g. for SCAFFOLD and FedAdam, while empirical studies are usually unsatisfactory.
As shown in Figure 2, in the FedAdam and FedCM, when K increases from 1 to 20, the accuracy
drops about 13.7% and 10.6% respectively. SCAFFOLD is affected lightly while its performance is
much lower. In Figure 2 (d), FedSpeed applies the larger E to accelerate the communication rounds
T both on theoretical proofs and empirical results, which stabilizes to swing within 3.8% lightly.

Table 2: Performance of different ρ0 with α = 1.

ρ0 0 0.01 0.05 0.1 0.2

Acc. 83.97 84.6 85.38 85.72 84.35

Learning rate ρ for gradient perturbation. In
the simple analysis, ρ can be selected as a proper
value which has no impact on the convergence
complexity. By noticing that if α ̸= 0, ρ could
be selected irrelevant to ηl. To achieve a better
performance, we apply the ascent learning rate ρ = ρ0/∥∇Fi∥ to in the experiments, where ρ0 is a
constant value selected from the Table 2. ρ is consistent with the sharpness aware minimization Foret
et al. (2020b) which can search for a flat local minimal. Table 2 shows the performance of utilizing
the different ρ0 on CIFAR-10 by 500 communication rounds under the 10% participation of total 100
clients setting. Due to the space limitations more details could be referred to the Appendix.

6 CONCLUSION

In this paper, we propose a novel and practical federated method FedSpeed which applies a prox-
correction term to neutralize the bias due to prox-term in each local training stage and utilizes a
perturbation gradient weighted by an extra gradient ascent step to improve the local generalization
performance. We provide the theoretical analysis to guarantee its convergence and prove that
FedSpeed benefits from a larger local interval K to achieve a fast convergence rate of O(1/T ) without
any other harsh assumptions. We also conduct extensive experiments to highlight the significant
improvement and efficiency of our proposed FedSpeed, which is consistent with the properties of our
analysis. This work inspires the FL framework design to focus on the local consistency and local
higher generalization performance to implement the high-efficient method to federated learning.
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Zachary Charles and Jakub Konečnỳ. Convergence and accuracy trade-offs in federated learning and
meta-learning. In International Conference on Artificial Intelligence and Statistics, pp. 2575–2583.
PMLR, 2021.

Congliang Chen, Li Shen, Haozhi Huang, and Wei Liu. Quantized adam with error feedback. ACM
Transactions on Intelligent Systems and Technology (TIST), 12(5):1–26, 2021.

Congliang Chen, Li Shen, Wei Liu, and Zhi-Quan Luo. Efficient-adam: Communication-efficient
distributed adam with complexity analysis. arXiv preprint arXiv:2205.14473, 2022.

Hong-You Chen and Wei-Lun Chao. Fedbe: Making bayesian model ensemble applicable to federated
learning. arXiv preprint arXiv:2009.01974, 2020.

Xiangyi Chen, Xiaoyun Li, and Ping Li. Toward communication efficient adaptive gradient method.
In Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference, pp. 119–128,
2020.

Alp Emre Durmus, Zhao Yue, Matas Ramon, Mattina Matthew, Whatmough Paul, and Saligrama
Venkatesh. Federated learning based on dynamic regularization. In International Conference on
Learning Representations, 2021.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020a.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020b.

Liang Gao, Huazhu Fu, Li Li, Yingwen Chen, Ming Xu, and Cheng-Zhong Xu. Feddc: Fed-
erated learning with non-iid data via local drift decoupling and correction. arXiv preprint
arXiv:2203.11751, 2022.

Yonghai Gong, Yichuan Li, and Nikolaos M Freris. Fedadmm: A robust federated deep learning
framework with adaptivity to system heterogeneity. arXiv preprint arXiv:2204.03529, 2022.

Farzin Haddadpour, Mohammad Mahdi Kamani, Aryan Mokhtari, and Mehrdad Mahdavi. Federated
learning with compression: Unified analysis and sharp guarantees. In International Conference on
Artificial Intelligence and Statistics, pp. 2350–2358. PMLR, 2021.
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In this part, we will introduce the gradient perturbation, the proofs of the major equations and the
theorem, and some extra experiments. In Section A, we provide a explanation for understanding the
gradient perturbation step in our proposed FedSpeed. In Section C, we provide the full proofs of the
major equation in the text, some main lemmas and the theorem. In Section B, we provide the details
of the implementation of the experiments including the setups, dataset, hyper-parameters and some
extra experiments.

A GRADIENT PERTURBATION

A.1 UNDERSTANDING OF GRADIENT PERTURBATION

We propose the gradient perturbation in the local training stage instead of the traditional stochastic
gradient, which merges an extra gradient ascent step to the vanilla gradient by a hyper-parameter
α. While its ascent step usually approximates the worst point in the neighbourhood. This has
been studied in many previous works, e.g. for the form of extra gradient and the sharpness aware
minimization. In our studies, we perform the extra gradient ascent step instead of the descent step in
extra gradient method. It also could be considered as a variant of the sharpness aware minimization
method via weighted averaging the ascent step gradient and the vanilla gradient, instead of the
normalized gradient. Here we illustrate the implicit of this quasi-gradient g̃ in our proposed FedSpeed
and explain the positive efficiency for the local training from the perspective of objective functions.

Firstly we consider to minimize the non-convex problem Lp(x). To approach the stationary point
of Lp, we can simply introduce a penalized gradient term as a extra loss in Lp, which is to solve
the problem minx{L(x) ≜ Lp(x) +

β
2 ∥∇Lp(x)∥2}. The final optimization target is consistent with

the vanilla target, while penalizing gradient term can approach a flatten minimal empirically. We
compute the gradient form as follows:

∇L(x) = ∇Lp(x) +
β

2
∇∥∇Lp(x)∥2 = ∇Lp(x) + β∇2Lp(x) · ∇Lp(x). (8)

The update in Equation (8) contains second-order Hessian information, which involves a huge amount
of parameters for calculation. To further simplify the updates, we consider an approximation for the
gradient form. We expand the function Lp via Taylor expansion as:

Lp(x+∆) = Lp(x) +∇Lp(x)∆ +
1

2
∆T∇2Lp(x)∆ +R∆,

where R∆ = O(∥∆∥2) is the infinitesimal to ∥∆∥2, which is directly omitted in our approximation.

Thus we have the gradient form on ∆ as:

∇Lp(x+∆) ≈ ∇Lp(x) +∇2Lp(x)∆.

R∆ is relevant to ∆. We set the ∆ = ρ∇Lp(x) and then we have:

∇2Lp(x)∇Lp(x) ≈
1

ρ

(
∇Lp

(
x+ ρ∇Lp(x)

)
−∇Lp(x)

)
. (9)

Thus we connect Equation (8) and Equation (9), we have:

∇L(x) = ∇Lp(x) + β∇2Lp(x) · ∇Lp(x)

≈ ∇Lp(x) +
β

ρ

(
∇Lp

(
x+ ρ∇Lp(x)

)
−∇Lp(x)

)
=
(
1− β

ρ

)
∇Lp(x) +

β

ρ
∇Lp

(
x+ ρ∇Lp(x)

)
= (1− α)∇Lp(x) + α∇Lp

(
x+ ρ∇Lp(x)

)
.

Here we can see that the balance weight α in our proposed method is actually the ratio of the
gradient penalized weight β and the gradient ascent step size ρ. To fix the step size ρ, increasing α
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means increasing the gradient penalized weight β, which facilitates searching for a flatten stationary
point to improve the generalization performance. While the second term of ∇L(x) can not be directly
computed for its nested form, we approximate the second term with the chain rule as follows:

∇Lp

(
x+ ρ∇Lp(x)

)
≈ ∇Lp(θ)|θ=x+ρ∇Lp(x).

Finally we have:
∇L(x) ≈ (1− α)∇Lp(x) + α∇Lp(θ)|θ=x+ρ∇Lp(x). (10)

The Equation (10) provides an understanding for the weighted quasi gradient g̃ on the local training
stage in our proposed FedSpeed. We select an appropriate 0 ≤ β ≤ ρ to satisfy the update of
perturbation gradient. It executes a gradient ascent step firstly with the step size ρ to x̆. Then it
generates the stochastic gradient by the same sampled mini-batch data as the ascent step at x̆. The
quasi-gradient is merged as Equation (10) to execute the gradient descent step.

This is just a simple approximation for the gradient perturbation to help for understanding the implicit
of the quasi-gradient and its performance in the training stage. Actually the error of the approximation
depends a lot on ρ. The smaller ρ, the higher the accuracy of this estimation, but the smaller ρ, the
less efficient the optimizer performs. Similar understanding can be referred in the (Qu et al., 2022;
Caldarola et al., 2022; Andriushchenko & Flammarion, 2022).

B EXPERIMENTS

B.1 SETUPS

Table 3: Dataset introductions.
Dataset Training Data Test Data Class Size

CIFAR-10 50,000 10,000 10 3×32×32
CIFAR-100 50,000 10,000 100 3×32×32

TinyImagenet 100,000 10,000 200 3×64×64

Dataset and Backbones. Extensive experiments are tested on CIFAR-10/100 dataset. We test on
the two different settings as 10% participation of total 100 clients and 2% participation of total 500
clients. CIFAR-10 dataset contains 50,000 training data and 10,000 test data in 10 classes. Each data
sample is a 3×32×32 color image. CIFAR-100 Krizhevsky et al. (2009) includes 50,000 training
data and 10,000 test data in 100 classes as 500 training samples per class. TinyImagenet involves
100,000 training images and 10,000 test images in 200 classes for 3×64×64 color images, as shown
in Table 3. To fairly compare with the other baselines, we train and test the performance on the
standard ResNet-18 He et al. (2016) backbone with the 7×7 filter size in the first convolution layer
as implemented in the previous works, e.g. for Karimireddy et al. (2020); Durmus et al. (2021); Xu
et al. (2021). We follow the Hsieh et al. (2020) to replace the batch normalization layer with group
normalization layer Wu & He (2018), which can be aggregated directly by averaging. These are all
common setups in many previous works.

Dataset Partitions. To fairly compare with the other baselines, we follow the Hsu et al. (2019)
to introduce the heterogeneity via splitting the total dataset by sampling the label ratios from the
Dirichlet distribution. An additional parameter is used to control the level of the heterogeneity of the
entire data partition. In order to visualize the distribution of heterogeneous data, we make the heat
maps of the label distribution in different dataset, as shown in Figure 3. Since the heat map of 500
clients cannot be displayed normally, we show 100 clients case. It could be seen that for heterogeneity
weight equals to 0.6, about 10% to 20% of the categories dominate on each client, which is white
block in the Figure 3. The IID dataset is totally averaged in each client.

Data Argumentation. For CIFAR-10/100, we follow the implementation in the Karimireddy et al.
(2020); Durmus et al. (2021) to normalize the pixel value within a specific mean and std value
in our code, which are [0.491, 0.482, 0.447] for mean, [0.247, 0.243, 0.262] for std and [0.5071,
0.4867, 0.4408] for mean, [0.2675, 0.2565, 0.2761] for std. We randomly flip the training samples
and randomly crop the images enlarged with the padding equal to 4. For TinyImagenet, the same
argumentation is applied except for the padding equal to 8.
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Figure 3: Heat maps for different dataset under heterogeneity weight equals to 0.6 for Dirichlet
distribution.

Baselines. FedAvg McMahan et al. (2017) is proposed as the basic framework in the federated
learning. And FedOpt improves it as a two-stage optimizer with a local and global optimizer update
alternatively. Yang et al. (2021) proves a specific ηg (not the average weight) can achieve faster
convergence (non-dominant term). FedAdam Reddi et al. (2020) utilizes a adaptive optimizer on
the global server and SGD optimizer on the clients, which average the averaged local gradients as a
quasi-gradient for global server to implement the adaptive update. SCAFFOLD Karimireddy et al.
(2020) applies the variance reduction technique , i.e. SVRG, to approximate the global gradient as the
averaged local gradients and transfer an extra variable to the client per round. This implementation
can accelerate the convergence rate of the non-dominant term theoretically and achieve a high
performance empirically. FedCM Xu et al. (2021) proposes a client-level momentum to merge
the global update as a momentum buffer to the local updates, which extremely reduces the local
consistency. Though it introduces a unpredictable biases into the local updates, it achieves the SOTA
performance ahead of other methods. FedProx Sahu et al. (2018) implements the prox-point optimizer
into the FL framework on local updates with a regularization prox-term regularizer. It limits the
local updates towards the initial point at the start of each local stage. Many previous works have
analyzed its advantages and weaknesses. Durmus et al. (2021); Wang et al. (2022); Gong et al.
(2022) use different variants of primal-dual method into FL and achieve nice satisfactory in the
FL framework. It does not need a heterogeneity bounded assumption theoretically, which requires
a high local convergence guarantees. Our proposed FedSpeed achieve the same convergence rate
without assuming the local exact solution and we provide the local interval bound to achieve this
faster convergence. Both theoretical analysis and empirical results verifies the performance of our
proposed FedSpeed.

B.2 EXPERIMENTS

B.3 HYER-PARAMETERS

Hyper-parameters Selections. We fix the local learning rate as 0.1 and global learning rate as
1.0 for average, except for the FedAdam which is applied 0.1. The penalized weight of prox-term
in FedProx, FedDyn, FedADMM and FedSpeed is selected from the [0.001, 0.01, 0.1, 0.5]. The
learning rate decay is fixed as 0.998 expect for the FedDyn, FedADMM and FedSpeed is selected
from [0.998, 0.999, 0.9995, 0.99995]. The perturbation weight is selected from [0, 0.5, 0.75, 0.875,
0.9375, 1]. The batchsize is selected from [20, 50]. The local interval K is selected from [1, 2, 5,
10, 20]. For the specific parameters in FedAdam, the momentum weight is set as 0.1 and the second
order momentum weight is set as 0.01. The minimal value is set as 0.001 to prevent the calculation of
dividing by 0. The client-level momentum weight of FedCM is set as 0.1.
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Table 4: Communication rounds required to achieve the target accuracy. On CIFAR-10/100 it trains
1,500 rounds and on TinyImagenet it trains 3,000 rounds. ”-” means the test accuracy can not achieve
the target accuracy within the fixed training rounds. DIR represents for the Dirichlet distribution with
the heterogeneity weight equal to 0.6. Local interval K is set as 5 on CIFAR-10 (100-10%) and 2 on
others. Other hyper-parameters are introduced above.

Dataset CIFAR-10 (100-10%) CIFAR-10 (500-2%)

Heterogeneity IID. DIR. IID. DIR.

Target Acc. (%) 80.0 85.0 80.0 85.0 75.0 82.5 75.0 82.5

FedAvg 344 - 472 - 772 - 1357 -

FedProx 338 - 465 - 720 - 1151 -

FedAdam 324 1343 689 - 613 1476 878 -

SCAFFOLD 207 654 272 - 628 - 967 -

FedCM 109 620 192 1092 325 1160 449 1399

FedDyn 121 400 166 - 547 - 673 -

FedADMM 169 917 174 756 505 1440 687 -

FedSpeed 136 280 169 380 495 926 662 1148

Dataset CIFAR-100 (500-2%) TinyImagenet (500-2%)

Heterogeneity IID. DIR. IID. DIR.

Target Acc. 40.0 50.0 40.0 50.0 33.0 40.0 33.0 40.0

FedAvg 1013 - - - 1615 - - -

FedProx 957 - - - 1588 - - -

FedAdam 614 1277 847 - 1151 2495 1584 -

SCAFFOLD 720 - 784 - 949 - 1187 -

FedCM 505 1150 526 1336 661 1360 817 1843

FedDyn 661 - 703 - 1419 - 2559 -

FedADMM 687 - 715 - 921 - 2711 -

FedSpeed 522 973 541 1038 684 1373 962 1885

Here we briefly introduce the selection of the hyperparameters in FedSpeed.

(1) ηl is the learning rate which is a basic hyperparameters in the deep learning, and usually we do
not finetune this for the fair comparison in the experiments. We just select the same and common
settings as the previous works mentioned.

(2) λ is the coefficient for the prox-term, which is proposed in the FedProx and a lot of prox-based
federated methods adopt this hyperparameter widely both in personalized-FL and centralized-FL. The
selection of this hyperparameter has been studied in many previous works which verify its efficiency.
Usually the selection of λ are in {10, 100} on the CIFAR-10/100 dataset, and we test it also works
on the TinyImagenet.

(3) ρ is the ascent step learning rate. Like many extra gradient method, the selection of ρ is usually
related to the local learning rate ηl. In order not to unduly affect the performance of the gradient
descent, the learning rate for the extra gradient step ρ is usually set not much larger than the learning
rate for the gradient descent step ηl. Obviously, if ρ is set very small, the updated state of the extra
gradient steps will be very limited, which makes this operation have no effect. Therefore, the selection
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of ρ usually matches that of ηl. In our experiments, the ηl is set as 0.1, which is a common selection
in the previous works. We test the selection of ρ in {0, 0.01, 0.05, 0.1, 0.2} which represents for
{”no extra gradient”, ”0.1ηl”, ”0.5ηl, ”1ηl”, ”2ηl”}. The best performing selection is ρ = 1ηl in
CIFAR-10 (details in Section 5.3 paragraph ”Learning rate ρ for the gradient perturbation”). We also
test this selection on the CIFAR-100 and TinyImagenet, and it also works well. We recommend that
the selection of ρ should be kept comparable to the learning rate ηl.

(4) α is the ratio for merging the gradient of the extra ascent step. In FedSpeed, the α is in the range
of [0, 1]. The same, if α is set very small, which means it does not merge the gradient of the ascent
steps. In our experiments, we test the selection of α in {0, 0.5, 0.75, 0.875, 0.9375, 1.0}. The best
performing selection is α = 0.9375 in CIFAR-10. In fact α = 1 also works well (details in Section
5.3 paragraph ”Perturbation weight α”). Thus, about α, we recommend that it should be close to 1.0,
e.g. for 0.9, 0.99, 1.0. This also verifies the improvements of the ascent steps.

B.3.1 BEST PERFORMING HYPER-PARAMETERS.

For fair comparison, the learning rate is fixed for all the methods.

For CIFAR-10 dataset, we select the batchsize as 50 for 100 clients and 20 for 500 clients. The total
dataset is 50,000 and there are 100 images under a single client if it is set as 500 clients. Thus we
decay it to 20 for 5 iterations per local epoch. The local epochs is set as 5, the same as the experiments
of Karimireddy et al. (2020); Durmus et al. (2021); Xu et al. (2021) etc. and their performance is
matching. We select the local interval K as 5. The prox-term weight is selected as 0.1. The learning
rate decay is selected as 0.9995 for prox-term based methods. We train the total dataset for 1,500
communication rounds.

For CIFAR-100 dataset, we select the 500 clients with 2% participation ratio in the experiments.
Thus for each hyper-parameters we fine-tune a little. The batchsize is selected as 20 to avoid too little
iterations per local epoch. The local epochs is set as 2 for the final results comparison. The ablation
study on local interval K indicates that our proposed FedSpeed outperforms significantly than other
methods when K is large. Thus to compare the performance more clearly, we select the 2 as the local
epochs. We decay the prox-term weight as 0.01 for prox-term based methods. The learning rate decay
is selected as 0.99995 for prox-based methods. We train 1,500 rounds and then test the performance.

For TinyImagenet dataset, the most selections are the same as for the CIFAR-100 dataset. The
prox-term weight is selected as 0.1 and the learning rate decay is selected as 0.9995. Total 3,000
communication rounds are implemented in the training stage.

B.3.2 SPEED COMPARISON.

Table 4 shows the communication rounds required to achieve the target test accuracy. At the beginning
of training, FedCM performs faster than others and usually achieve a high accuracy finally. FedSpeed
is faster in the middle and late stages of training. We bold the data for the top-2 in each test and
generally FedCM and FedSpeed significantly performs well on the training speed.

Figure 4 shows the performance of different learning rate decay and prox-term weight for FedSpeed.

B.3.3 TIME COST

Table 5: Training wall-clock time comparison.

α1 Times (s/Round) Rounds Total (s) Cost Ratio

FedAvg 10.44 - - -
FedProx 11.33 - - -

FedAdam 14.74 1343 19795.8 4.31×
SCAFFOLD 14.34 654 9378.3 2.03×

FedCM 13.22 622 8222.8 1.78×
FedDyn 14.11 400 5644.0 1.22×

FedSpeed 16.42 281 4614.0 1×
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(a) Prox-term weight=0.5.
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(b) Prox-term weight=0.1.
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(c) Prox-term weight=0.01.
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(d) Prox-term weight=0.001.

Figure 4: Performance of different ascent step size ρ under different prox-term weights of
[0.001, 0.01, 0.1, 0.5].

We test the time on the A100-SXM4-40GB GPU and show the performance in the Table B.3.3.
Experimental setups are the same as the CIFAR-10 10% participation among total 100 clients on the
DIR-0.6 dataset. The rounds in the table are the communication rounds required that the test accuracy
achieves accuracy 85%. ”-” means it can not achieve the target accuracy.

FedSpeed is slower due to the requirement of computing an extra gradient. So it gets slower in one
single update, approximately 1.57× wall-clock time costs than FedAvg. But its convergence process
is very fast. For the final convergence speed, FedSpeed still has a considerable advantage over other
algorithms. The issue is possibly one of the improvements for FedSpeed in the future. For example,
introduces a single-call gradient method to save half the costs during backpropagation. We are also
currently trying to introduce new module to save the cost.

B.3.4 DIFFERENT HETEROGENEITY.

Table 6: Comparison on different heterogeneous dataset.

α1 IID Dir-0.6 Dir-0.3 Drops (i.i.d. > Dir-0.6) Drops (Dir-0.6 > Dir-0.3)

FedAvg 77.01 75.21 71.96 1.80 3.25
FedAdam 82.92 80.55 76.87 2.37 3.68

SCAFFOLD 80.11 77.71 74.34 2.40 3.37
FedCM 84.20 83.48 81.02 0.72 2.46
FedDyn 83.36 80.57 77.33 2.79 3.24

FedSpeed 85.80 84.79 82.68 1.01 2.11

We test on the Dir-0.3 setups on CIFAR-10 and show the results as Table B.3.4, the other settings are
the same as the test in the text. The (i.i.d. > Dir-0.6) is the difference between the IID dataset and the
Dir-0.6 dataset and (Dir-0.6 > Dir-0.3) is the difference between the Dir-0.6 dataset and the DIR-0.3
dataset. FedSpeed can outperform the others on the Dir-0.3 setups whose heterogeneity is much
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Figure 5: (a) and (b) show the loss curves on the CIFAR-10 IID/DIR-0.6 dataset. The FedSpeed
achieves the best and stable performance in the training. (c) and (d) show the loss curve of FedCM
and FedSpeed on the CIFAR-10 DIR-0.6 dataset with increasing the local epochs from E = 1 to 20.

stronger than Dir-0.6 setups. the heterogeneity becomes stronger, FedSpeed can still maintain a stable
generalization performance. The correction term helps to correct the biases during the local training,
while the gradient perturbation term helps to resist the local over-fitting on the heterogeneous dataset.
FedSpeed can benefit from avoiding falling into the biased optima.

B.3.5 ABLATION STUDIES

Table 7: Ablation studies on different modules.
Prox-term Prox-correction term Gradient perturbation Accuracy (%)

- - - 81.92√ - - 82.24
√ √ - 83.94
√ - √ 83.88
√ √ √ 85.70

From the practical training point of view, compared with the vanilla FedAvg, FedSpeed adds three
main modules: (1) prox-term, (2) prox-correction term, and (3) gradient perturbation. We test the
performance of 500 communication rounds of the different combination of the modules above on the
CIFAR-10 with the settings of 10% participating ratio of total 100 clients. The TableB.3.5 shows
their performance.

From the table above, we can clearly see the performance of different modules. The prox-term is
proposed by the FedProx. But due to some issues we point out in our paper, this term has also
a negative impact on the performance in FL. When the prox-correction term is introduced in, it
improves the performance from 82.24% to 83.94%. When the gradient perturbation is introduced in,
it improves the performance from 82.24% to 83.88%. While FedSpeed applies them together and
achieves a 3.46% improvement.

Different performance of these modules:

As introduced in our paper, the prox-term simply performs as a balance between the local and global
solutions, and there still exists the non-vanishing inconsistent biases among the local solutions, i.e.,
the local solutions are still largely deviated from each other, implying that local inconsistency is still
not eliminated. Thus we utilize the prox-correction term to correct the inconsistent biases during the
local training. About the function of gradient perturbation, we refer to a theoretical explanation in
the main text, and its proof is provided in the supplementary material due to the space limitations.
This perturbation is similar to utilize a penalized gradient term to the objective function during local
optimization process. The additional penalty will bring better properties to the local state, e.g. for
flattened minimal and smoothness. For federated learning, the smoother the local minima is, the
more flatness the model merged on the server will be. FedSpeed benefits from these two modules to
improve the performance and achieves the SOTA results.
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B.3.6 LOSS CURVE COMPARISON

According to the Figure 5, in (a) and (b) we can see the common FedAvg method fail to resist the local
over-fitting and finally does not approach a stable state in the training, while FedSpeed can converge
stably and efficiently, which if far faster than other baselines. (c) and (d) show the empirical studies
of increasing the local interval. FedCM is the second SOTA-performing method in our baselines,
while it still can not speed up by increasing local interval in the practical training. As shown in
(c), increasing local interval almost does not have any benefits to FedCM, and the communication
rounds can not be reduced. While in (d), FedSpeed succeed to apply a larger local interval to reduce
the communication rounds. When K is increasing, to achieve the similar performance, the total
communication rounds is nearly decreasing as K×, which is a useful property that is very efficient in
practical training.

In our paper, what we claim is that if a federated learning method could adopt a large K, it is a
good property. Unfortunately, most SGD-type algorithms cannot increase the convergence rate by
increasing K. Some useful techniques are adopt in the FL framework to improve the performance,
e.g. variance reduction, gradient tracking and regularization term (mainly the prox-based methods).
FedSpeed is a prox-based method which incorporates the correction term and extra ascent gradient to
improve the performance. In fact, it has been proven that prox-based methods have the potential to
apply the larger local interval in the local training under the requirement of local minimal solution per
communication round. We theoretically prove that FedSpeed can achieve the fast rate without this
harsh assumption and it can apply the large K in the local client. Yang et al. (2021) have proven that
if FedAvg change the partial participation to the full participation (Local-SGD-type), the dominant
term of convergence rate will change from O(

√
K√
nT

) to O( 1√
mKT

), which will be relaxed to K

times faster. Full participation usually achieves higher theoretical rate than the partial participation.
VRL-SGD Liang et al. (2019) can theoretically improve the efficiency by adopting a larger order of
local interval K = O(

√
T ) than FedAvg, while FedSpeed can adopt K = O(T ).

B.3.7 ABLATION STUDY OF PERTURBATION WEIGHT α

Table 8: Performance of different α with ρ0 = 0.1.

α 0 0.5 0.75 0.875 0.9375 1.0

Acc. 83.97 84.36 84.91 85.46 85.74 85.72

Perturbation weight α. α determines
the degree of influence of the perturba-
tion gradient term to the vanilla stochas-
tic gradient on the local training stage.
It is a trade-off to balance the ratio of
the perturbation term. We select the α from 0 to 1 and find FedSpeed can converge with any α ∈ [0, 1].
Though the theoretical analysis demonstrates that by applying a α > 0 in the term Φ will not increas-
ing the extra orders. And the experimental results shown in Table 8, indicates that the generalization
performance improves by increasing α.

C PROOFS FOR ANALYSIS

In this part we will demonstrate the proofs of all formula mentioned in this paper. Each formula is
presented in the form of a lemma.

C.1 PROOF OF EQUATION (2)

Equation (2) shows the update in the total local training stage.

Lemma C.1 For ∀ xt
i,k ∈ Rd and i ∈ St, we denote δti,k = xt

i,k − xt
i,k−1 with setting δti,0 = 0, and

∆t
i,K =

∑K
k=0 δ

t
i,k = xt

i,K − xt
i,0, under the update rule in Algorithm Algorithm 1, we have:

∆t
i,K = −λγ

K−1∑
k=0

γk
γ
g̃t
i,k + γλĝt−1

i , (11)

where
∑K−1

k=0 γk =
∑K−1

k=0
ηl

λ

(
1− ηl

λ

)K−1−k
= γ = 1− (1− ηl

λ )
K .
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Proof 1 According to the update rule of Line.11 in Algorithm Algorithm 1, we have:

δk = ∆t
i,k −∆t

i,k−1 = xt
i,k − xt

i,k−1

= −ηl
(
g̃t
i,k−1 − ĝt−1

i +
1

λ
(xt

i,k−1 − xt
i,0)
)
= −ηl(g̃

t
i,k−1 − ĝt−1

i +
1

λ
∆t

i,k−1).

Then We can formulate the iterative relationship of ∆t
i,k as:

∆t
i,k = ∆t

i,k−1 − ηl(g̃
t
i,k−1 − ĝt−1

i +
1

λ
∆t

i,k−1) = (1− ηl
λ
)∆t

i,k−1 − ηl(g̃
t
i,k−1 − ĝt−1

i ).

Taking the iteration on k and we have:

xt
i,K − xt

i,0 = ∆t
i,K = (1− ηl

λ
)K∆t

i,0 − ηl

K−1∑
k=0

(1− ηl
λ
)K−1−k(g̃t

i,k − ĝt−1
i )

(a)
= −ηl

K−1∑
k=0

(1− ηl
λ
)K−1−k(g̃t

i,k − ĝt−1
i )

= −λ

K−1∑
k=0

ηl
λ
(1− ηl

λ
)K−1−k(g̃t

i,k − ĝt−1
i )

= −λ

K−1∑
k=0

ηl
λ
(1− ηl

λ
)K−1−kg̃t

i,k +
(
1− (1− ηl

λ
)K
)
λĝt−1

i

= −λγ

K−1∑
k=0

γk
γ
g̃t
i,k + γλĝt−1

i .

(a) applies ∆t
i,0 = δti,0 = 0.

C.2 PROOF OF EQUATION (3)

Equation (3) shows the update of the prox-correction term, which utilizes the weighted sum of the
previous local offsets as a bias controller for eliminating the non-vanishing bias resulting from the
prox-term.

Lemma C.2 Under the update rule in Algorithm Algorithm 1, we have:

ĝt
i = (1− γ)ĝt−1

i + γ
K−1∑
k=0

γk
γ
g̃t
i,k. (12)

where
∑K−1

k=0 γk =
∑K−1

k=0
ηl

λ

(
1− ηl

λ

)K−1−k
= γ = 1− (1− ηl

λ )
K .

Proof 2 According to the update rule of Line.13 in Algorithm Algorithm 1, we have:

ĝt
i = ĝt−1

i − 1

λ
(xt

i,K − xt
i,0)

(a)
= ĝt−1

i +
ηl
λ

K−1∑
k=0

(
1− ηl

λ

)K−1−k
(g̃t

i,k − ĝt−1
i )

= ĝt−1
i +

ηl
λ

K−1∑
k=0

(
1− ηl

λ

)K−1−k
g̃t
i,k − ηl

λ

(K−1∑
k=0

(
1− ηl

λ

)K−1−k
)
ĝt−1
i

= ĝt−1
i +

ηl
λ

K−1∑
k=0

(
1− ηl

λ

)K−1−k
g̃t
i,k − ηl

λ

1− (1− ηl

λ )
K

ηl

λ

ĝt−1
i

= (1− ηl
λ
)K ĝt−1

i +
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λ

K−1∑
k=0

(
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g̃t
i,k
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= (1− γ)ĝt−1
i + γ

K−1∑
k=0

γk
γ
g̃t
i,k.

(a) applies the Lemma C.1.

C.3 PROOF OF EQUATION (4) AND (5)

Lemma C.3 Considering the ut+1 = 1
m

∑
i∈[m] x

t
i,K is the mean averaged parameters among the

last iteration of local clients at time t, the auxiliary sequence
{
zt = ut + 1−γ

γ (ut − ut−1)
}
t>0

satisfies the update rule as:

zt+1 = zt − λ
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k. (13)

Proof 3 Firstly, according to the lemma C.1 and Line.14 and Line.16 in Algorithm 1, we have:

ut+1 − ut =
1

m

∑
i∈[m]

(xt
i,K − xt−1

i,K )

=
1

m

∑
i∈[m]

(xt
i,K − xt

i,0 − λĝt−1
i )

=
1

m

∑
i∈[m]

(−λγ

K−1∑
k=0

γk
γ
g̃t
i,k + λγĝt

i − λĝt−1
i )

= −λ
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ

(
γg̃t

i,k + (1− γ)ĝt−1
i

)
.

This could be considered as a momentum-like term with the coefficient of γ. Here we define a virtual
observation sequence {ut} and its update rule is:

ut
i,k+1 = ut

i,k − λ
γk
γ

(
γg̃t

i,k + (1− γ)ĝt−1
i

)
,

ut+1
i,0 = ut+1 =

1

m

∑
i∈[m]

ut
i,K .

According to the lemma C.2 and above update rule, we can get that:

ĝt
i = (1− γ)ĝt−1

i + γ

K−1∑
k=0

γk
γ
g̃t
i,k

= − 1

λ
(ut

i,K − ut
i,0)− γ

K−1∑
k=0

γk
γ
g̃t
i,k + γ

K−1∑
k=0

γk
γ
g̃t
i,k = − 1

λ
(ut

i,K − ut
i,0).

This function indicates that the virtual sequence ut could be considered as a momentum-based update
method with a global correction term to guide the local update, and the correction term is calculated
from the offset of the virtual observation sequence during the training process at round t.

Then we expand the the auxiliary sequence zt as:

zt+1 − zt = (ut+1 − ut) +
1− γ

γ
(ut+1 − ut)− 1− γ

γ
(ut − ut−1)
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=
1

γ
(ut+1 − ut)− 1− γ

γ
(ut − ut−1)

= −λ
1

m

∑
i∈[m]

((K−1∑
k=0

γk
γ
g̃t
i,k

)
+

1− γ

γ
ĝt−1
i

)
− 1− γ

γ
(ut − ut−1)

= −λ
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k − 1− γ

γ

1

m

∑
i∈[m]

λĝt−1
i − 1− γ

γ
(ut − ut−1)

= −λ
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k − 1− γ

γ

1

m

∑
i∈[m]

(ut − ut−1 + λĝt−1
i )

= −λ
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k − 1− γ

γ

1

m

∑
i∈[m]

(xt−1
i,K − xt−2

i,K + λĝt−1
i )

= −λ
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k − 1− γ

γ

1

m

∑
i∈[m]

(xt−1
i,K − xt−1

i,0 + λĝt−1
i − λĝt−2

i )

= −λ
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k.

C.4 PROOF OF THEOREM 4.5

Firstly we state some important lemmas applied in the proof.

Lemma C.4 (Bounded global update) The global update 1
m

∑
i∈[m] ĝ

t
i holds the upper bound of:

Et∥
1

m

∑
i∈[m]

ĝt−1
i ∥2 ≤ 1

γ

Et∥
1

m

∑
i∈[m]

ĝt−1
i ∥2 − Et∥

1

m

∑
i∈[m]

ĝt
i∥2
+ Et∥

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k∥2.

Proof 4 According to the lemma C.2,we have:

1

m

∑
i∈[m]

ĝt
i = (1− γ)

1

m

∑
i∈[m]

ĝt−1
i + γ

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k.

Take the L2-norm and we have:

∥ 1

m

∑
i∈[m]

ĝt
i∥2 = ∥(1− γ)

1

m

∑
i∈[m]

ĝt−1
i + γ

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k∥2

≤ (1− γ)∥ 1

m

∑
i∈[m]

ĝt−1
i ∥2 + γ∥ 1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k∥2.

Thus we have the following recursion,

Et∥
1

m

∑
i∈[m]

ĝt−1
i ∥2 ≤ 1

γ

Et∥
1

m

∑
i∈[m]

ĝt−1
i ∥2 − Et∥

1

m

∑
i∈[m]

ĝt
i∥2
+ Et∥

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k∥2.
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Lemma C.5 (Bounded local update) The local update ĝt
i holds the upper bound of:

1

m

∑
i∈[m]

Et∥ĝt−1
i ∥2 ≤ P

γ

1

m

∑
i∈[m]

(
Et∥ĝt−1

i ∥2 − Et∥ĝt
i∥2
)
+

24PL2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2

+ 12PEt∥∇F (zt)∥2 + P (12σ2
g + σ2

l ),

where 1
P = 1− 24λ2L2(1−2γ)2

γ2 .

Proof 5 According to the lemmaC.2, we have:

ĝt
i = (1− γ)ĝt−1

i + γ

K−1∑
k=0

γk
γ
g̃t
i,k.

Take the L2-norm and we have:

∥ĝt
i∥2 = ∥(1− γ)ĝt−1

i + γ
K−1∑
k=0

γk
γ
g̃t
i,k∥2

(a)

≤ (1− γ)∥ĝt−1
i ∥2 + γ∥

K−1∑
k=0

γk
γ
g̃t
i,k∥2

(b)

≤ (1− γ)∥ĝt−1
i ∥2 + γ

K−1∑
k=0

γk
γ
∥g̃t

i,k∥2

= (1− γ)∥ĝt−1
i ∥2 +

K−1∑
k=0

γk∥g̃t
i,k∥2.

(a) and (b) apply the Jensen inequality.
Thus we have the following recursion:

1

m

∑
i∈[m]

Et∥ĝt−1
i ∥2 ≤ 1

γ

1

m

∑
i∈[m]

(
Et∥ĝt−1

i ∥2 − Et∥ĝt
i∥2
)
+

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥g̃t

i,k∥2.

Here we provide a loose upper bound as a constant for the quasi-stochastic gradient:

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥g̃t

i,k∥2

=
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥(1− α)gt

i,k,1 + αgt
i,k,2∥2

=
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥gt

i,k,1 + α(gt
i,k,2 − gt

i,k,1)∥2

≤ 2

m

∑
i∈[m]

K−1∑
k=0

γk
γ

(
Et∥∇Fi(x

t
i,k)∥2 + α2Et∥∇Fi(x̆

t
i,k)−∇Fi(x

t
i,k)∥2

)
+ σ2

l

≤ 2

m

∑
i∈[m]

K−1∑
k=0

γk
γ

(
Et∥∇Fi(x

t
i,k)∥2 + α2L2ρ2Et∥∇Fi(x

t
i,k)∥2

)
+ σ2

l

≤ 4

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥∇Fi(x

t
i,k)−∇Fi(z

t) +∇Fi(z
t)−∇F (zt) +∇F (zt)∥2 + σ2

l
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≤ 12L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − zt∥2 + 12Et∥∇F (zt)∥2 + (12σ2
g + σ2

l )

≤ 12L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt + xt − ut + ut − zt∥2

+ 12Et∥∇F (zt)∥2 + (12σ2
g + σ2

l )

≤ 24L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2 + 24L2∥xt − ut + ut − zt∥2 + (12σ2
g + σ2

l )

+ 12Et∥∇F (zt)∥2

≤ 24L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2 + 24L2λ2(1− 2γ)2

γ2

1

m

∑
i

Et∥ĝt−1
i ∥2

+ 12Et∥∇F (zt)∥2 + (12σ2
g + σ2

l ).

We applies the Jensen inequality, the basic inequality ∥
∑n

i=1 ai∥2 ≤ n
∑n

i=1 ∥ai∥2, and the upper

bound of ρ ≤ 1
αL . Combining the above inequalities, let 1

P = 1− 24L2λ2(1−2γ2)
γ2 is the constant, we

have:

1

m

∑
i∈[m]

Et∥ĝt−1
i ∥2 ≤ P

γ

1

m

∑
i∈[m]

(
Et∥ĝt−1

i ∥2 − Et∥ĝt
i∥2
)
+

24PL2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2

+ 12PEt∥∇F (zt)∥2 + P (12σ2
g + σ2

l ).

C.4.1 L-SMOOTHNESS OF THE FUNCTION F

For the general non-convex case, according to the Assumptions and the smoothness of F , we take the
conditional expectation at round t+ 1 and expand the F (zt+1) as:

Et[F (zt+1)] ≤ F (zt) + Et⟨∇F (zt), zt+1 − zt⟩+ L

2
Et∥zt+1 − zt∥2

= F (zt) + ⟨∇F (zt),Et[z
t+1]− zt⟩+ L

2
Et∥zt+1 − zt∥2

= F (zt) + Et⟨∇F (zt),−λ
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k⟩+

L

2
Et∥zt+1 − zt∥2

= F (zt)− λEt⟨∇F (zt),
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k −∇F (zt) +∇F (zt)⟩

+
L

2
Et∥zt+1 − zt∥2

= F (zt)− λ∥∇F (zt)∥2 −λEt⟨∇F (zt),
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k −∇F (zt)⟩

︸ ︷︷ ︸
R1

+
L

2
Et∥zt+1 − zt∥2︸ ︷︷ ︸

R2

.
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C.4.2 BOUNDED R1

Note that R1 can be bounded as:

R1 = −λEt⟨∇F (zt),
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k −∇F (zt)⟩

(a)
= −λEt⟨∇F (zt),

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k − 1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
∇Fi(z

t)⟩

(b)
=

λ

2
∥∇F (zt)∥2 + λ

2
Et∥

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ

(
Eg̃t

i,k −∇Fi(z
t)
)
∥2 − λ

2m2
Et∥

∑
i∈[m]

K−1∑
k=0

γk
γ
Eg̃t

i,k∥2

(c)

≤ λ

2
∥∇F (zt)∥2 + λ

2

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥Eg̃t

i,k −∇Fi(z
t)∥2

︸ ︷︷ ︸
R1.a

− λ

2m2
Et∥

∑
i∈[m]

K−1∑
k=0

γk
γ
Eg̃t

i,k∥2.

(a) applies the fact that 1
m

∑
i∈[m] ∇Fi(z

t) = ∇F (zt). (b) applies −⟨x,y⟩ = 1
2

(
∥x∥2 + ∥y∥2 −

∥x+ y∥2
)
. (c) applies the Jensen’s inequality and the fact that

∑K−1
k=0

γk

γ = 1.
According to the update rule we have:
Eg̃t

i,k = (1− α)E
[
gt
i,k,1

]
+ αE

[
gt
i,k,2

]
= (1− α)E

[
∇Fi(x

t
i,k; ε

t
i,k)
]
+ αE

[
∇Fi(x̆

t
i,k; ε

t
i,k)
]

= (1− α)∇Fi(x
t
i,k) + α∇Fi(x̆

t
i,k) = (1− α)∇Fi(x

t
i,k) + α∇Fi(x

t
i,k + ρgt

i,k,1).

Let ρ ≤ 1√
3αL

, thus we could bound the term R1.a as follows:

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥Eg̃t

i,k −∇Fi(z
t)∥2

=
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥(1− α)∇Fi(x

t
i,k) + α∇Fi(x

t
i,k + ρgt

i,k,1)−∇Fi(z
t)∥2

=
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥∇Fi(x

t
i,k)−∇Fi(z

t) + α
(
∇Fi(x

t
i,k + ρgt

i,k,1)−∇Fi(x
t
i,k)
)
∥2

≤ 2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥∇Fi(x

t
i,k)−∇Fi(z

t)∥2 + 2α2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥∇Fi(x̆

t
i,k)−∇Fi(x

t
i,k)∥2

≤ 2L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − zt∥2 + 2α2L2ρ2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥gt

i,k,1∥2

=
2L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt + xt − ut + ut − zt∥2 + 2α2L2ρ2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥gt

i,k,1∥2

≤ 4L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2 + 4L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥(xt − ut) + (ut − zt)∥2

+
2α2L2ρ2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥gt

i,k,1 −∇Fi(x
t
i,k)∥2 +

2α2L2ρ2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥∇Fi(x

t
i,k)∥2

≤ 4L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2 + 2α2L2ρ2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥∇Fi(x

t
i,k)∥2 + 2α2L2ρ2σ2

l
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+ 4L2Et∥(xt − ut) + (ut − zt)∥2

=
4L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2 + 2α2L2ρ2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥∇Fi(x

t
i,k)∥2 + 2α2L2ρ2σ2

l

+ 4L2Et∥ −
1

m

∑
i∈[m]

λĝt−1
i +

γ − 1

γ
(ut − ut−1)∥2

=
4L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2 + 2α2L2ρ2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥∇Fi(x

t
i,k)∥2 + 2α2L2ρ2σ2

l

+ 4L2Et∥
1

m

∑
i∈[m]

(
(ut − ut−1 + λĝt−1

i )− 1

γ
(ut − ut−1 + λĝt−1

i ) + (
1− 2γ

γ
)λĝt−1

i

)
∥2

=
4L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2 + 2α2L2ρ2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥∇Fi(x

t
i,k)∥2 + 2α2L2ρ2σ2

l

+
4λ2L2(1− 2γ)2

γ2
Et∥

1

m

∑
i∈[m]

ĝt−1
i ∥2

=
4L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2 + 4λ2L2(1− 2γ)2

γ2
Et∥

1

m

∑
i∈[m]

ĝt−1
i ∥2 + 2α2L2ρ2σ2

l

+
2α2L2ρ2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥∇Fi(x

t
i,k)−∇Fi(z

t) +∇Fi(z
t)−∇F (zt) +∇F (zt)∥2

(a)

≤ 4L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2 + 4λ2L2(1− 2γ)2

γ2
Et∥

1

m

∑
i∈[m]

ĝt−1
i ∥2 + 2α2L2ρ2σ2

l

+
2L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − zt∥2 + 6α2L2ρ2σ2
g + 6α2L2ρ2Et∥∇F (zt)∥2

≤ 8L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2 + 8λ2L2(1− 2γ)2

γ2
Et∥

1

m

∑
i∈[m]

ĝt−1
i ∥2 + 2α2L2ρ2σ2

l

+ 6α2L2ρ2σ2
g + 6α2L2ρ2Et∥∇F (zt)∥2.

(b)

≤ 8L2

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥xt

i,k − xt∥2 + 8λ2L2(1− 2γ)2

γ3

Et∥
1

m

∑
i∈[m]

ĝt−1
i ∥2 − Et∥

1

m

∑
i∈[m]

ĝt
i∥2


+
8λ2L2(1− 2γ)2

γ2
Et∥

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k∥2 + 2α2L2ρ2σ2

l + 6α2L2ρ2σ2
g + 6α2L2ρ2Et∥∇F (zt)∥2.

(a) applies the bound of ρ as ρ ≤ 1√
3αL

. (b) applies the lemma C.4. These others use the fact
E[x− E[x]]2 = E[x2]− [E[x]]2 and ∥x+ y∥2 ≤ (1 + a)∥x∥2 + (1 + 1

a )∥y∥
2.

We denote ct = 1
m

∑
i∈m

∑K−1
k=0 (γk/γ)Et∥xt

i,k − xt∥2 term as the local offset after k iterations
updates, we firstly consider the ctk = 1

m

∑
i∈m Et∥xt

i,k − xt∥2 and it can be bounded as:

ctk =
1

m

∑
i∈[m]

Et∥xt
i,k − xt∥2 =

1

m

∑
i∈[m]

Et∥xt
i,k − xt

i,k−1 + xt
i,k−1 − xt

i,0∥2

=
1

m

∑
i∈[m]

Et∥ − ηl(g̃
t
i,k−1 − ĝt−1

i ) + (1− ηl
λ
)(xt

i,k−1 − xt
i,0)∥2
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≤ (1 + a)(1− ηl
λ
)2

1

m

∑
i∈[m]

Et∥xt
i,k−1 − xt

i,0∥2 + (1 +
1

a
)
η2l
m

∑
i∈[m]

Et∥g̃t
i,k−1 − ĝt−1

i ∥2

= (1 + a)(1− ηl
λ
)2ctk−1 + (1 +

1

a
)
η2l
m

∑
i∈[m]

Et∥(1− α)gt
i,k−1,1 + αgt

i,k−1,2 − ĝt−1
i ∥2

= (1 +
1

a
)
η2l
m

∑
i∈[m]

Et∥∇Fi(x
t
i,k−1)− ĝt−1

i + α(∇Fi(x̆
t
i,k−1)−∇Fi(x

t
i,k−1))∥2

+ (1 +
1

a
)η2l σ

2
l + (1 + a)(1− ηl

λ
)2ctk−1

≤ (1 +
1

a
)
3η2l
m

∑
i∈[m]

(
Et∥∇Fi(x

t
i,k−1)∥2 + Et∥ĝt−1

i ∥2 + α2L2ρ2Et∥∇Fi(x
t
i,k−1)∥2

)
+ (1 +

1

a
)η2l σ

2
l + (1 + a)(1− ηl

λ
)2ctk−1

≤ (1 +
1

a
)
4η2l
m

∑
i∈[m]

Et∥∇Fi(x
t
i,k−1)∥2 + (1 +

1

a
)
3η2l
m

∑
i∈[m]

Et∥ĝt−1
i ∥2 + (1 +

1

a
)η2l σ

2
l

+ (1 + a)(1− ηl
λ
)2ctk−1

≤ (1 +
1

a
)
4η2l
m

∑
i∈[m]

Et∥∇Fi(x
t
i,k−1)−∇Fi(x

t) +∇Fi(x
t)−∇Fi(z

t) +∇Fi(z
t)−∇F (zt)

+∇F (zt)∥2 + (1 +
1

a
)
3η2l
m

∑
i∈[m]

Et∥ĝt−1
i ∥2 + (1 +

1

a
)η2l σ

2
l + (1 + a)(1− ηl

λ
)2ctk−1

≤ (1 +
1

a
)
16η2l L

2

m

∑
i∈[m]

Et∥xt
i,k−1 − xt∥2 + (1 +

1

a
)16η2l L

2∥xt − zt∥2 + (1 +
1

a
)η2l (16σ

2
g + σ2

l )

+ (1 +
1

a
)16η2l ∥∇F (zt)∥2 + (1 +

1

a
)
3η2l
m

∑
i∈[m]

Et∥ĝt−1
i ∥2 + (1 + a)(1− ηl

λ
)2ctk−1

≤
[
(1 + a)(1− ηl

λ
)2 + (1 +

1

a
)16η2l L

2

]
ctk−1 + (1 +

1

a
)η2l (16σ

2
g + σ2

l )

+ (1 +
1

a
)16η2l Et∥∇F (zt)∥2 + (1 +

1

a
)η2l

[
3 +

16λ2L2(1− 2γ)2

γ2

]
1

m

∑
i∈[m]

Et∥ĝt−1
i ∥2

=

[
(1 + a)(1− ηl

λ
)2 + (1 +

1

a
)16η2l L

2

]
ctk−1 + (1 +

1

a
)η2l (16σ

2
g + σ2

l )

+ (1 +
1

a
)η2l L

2 (88P − 16) ct + (1 +
1

a
)
2η2l (P − 1)

3
(12σ2

g + σ2
l )

+ (1 +
1

a
)16η2l Et∥∇F (zt)∥2 + (1 +

1

a
)η2l (44P − 8)Et∥∇F (zt)∥2

+ (1 +
1

a
)
2η2l (P − 1)

3γ

1

m

∑
i∈[m]

(
Et∥ĝt−1

i ∥2 − Et∥ĝt
i∥2
)

When P satisfies the condition of P ≤ 2, which means 1
P = 1− 24λ2L2(1−2γ)2

γ2 ≥ 1
2 , then we have

the constant of 2(P−1)
3 ≤ 2

3 < 1, let the last 12σ2
g enlarged to 16σ2

g for convenience, we have:

ctk ≤
[
(1 + a)(1− ηl

λ
)2 + (1 +

1

a
)16η2l L

2

]
ctk−1 + 2(1 +

1

a
)η2l (16σ

2
g + σ2

l ) + 160(1 +
1

a
)η2l L

2ct
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96(1 +
1

a
)η2l Et∥∇F (zt)∥2 + 2(1 +

1

a
)
η2l
γ

1

m

∑
i∈[m]

(
Et∥ĝt−1

i ∥2 − Et∥ĝt
i∥2
)
.

Here we get the recursion formula between the ctk and ctk−1. Actually we need to upper bound the
ct =

∑K−1
k=0 (γk/γ)c

t
k, thus let the weight satisfies that:

(1 + a)(1− ηl
λ
)2 + (1 +

1

a
)16η2l L

2 ≤ γK−2

γK−1
=

γK−3

γK−2
= · · · = γ1

γ0
= 1− ηl

λ
,

let ηl ≤ λ and thus we have:

ct =

K−1∑
k=0

γk
γ
ctk

≤ 2(1 +
1

a
)
η2l
γ

K−1∑
k′=0

k
′
−1∑

k=0

γk

(16σ2
g + σ2

l + 48Et∥∇F (zt)∥2 + 80L2ct

+
1

mγ

∑
i∈[m]

(
Et∥ĝt−1

i ∥2 − Et∥ĝt
i∥2
))

(a)

≤ 2(1 +
1

a
)η2l

K−1∑
k′=0

(
K−1∑
k=0

γk
γ

)(
16σ2

g + σ2
l + 48Et∥∇F (zt)∥2 + 80L2ct

+
1

mγ

∑
i∈[m]

(
Et∥ĝt−1

i ∥2 − Et∥ĝt
i∥2
))

= 2(1 +
1

a
)η2l K

16σ2
g + σ2

l + 48Et∥∇F (zt)∥2 + 1

mγ

∑
i∈[m]

(
Et∥ĝt−1

i ∥2 − Et∥ĝt
i∥2
)

+ 160(1 +
1

a
)η2l L

2Kct.

(a) enlarge the sum from k
′

to K − 1 where k
′ ≤ K − 1.

Let ηl satisfies the upper bound of ηl ≤ 1√
320(1+1/a)KL

for convenience, we can bound the ct as:

ct = 4(1 +
1

a
)η2l K

16σ2
g + σ2

l + 48Et∥∇F (zt)∥2 + 1

mγ

∑
i∈[m]

(
Et∥ĝt−1

i ∥2 − Et∥ĝt
i∥2
) .

Let the a satisfies a = 1 for convenience, we summarize the extra terms above and bound the term
R1.a as:

R1.a =
1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
Et∥E[g̃t

i,k]−∇Fi(z
t)∥2

≤ 8L2ct +
8λ2L2(1− 2γ)2

γ3

Et∥
1

m

∑
i∈[m]

ĝt−1
i ∥2 − Et∥

1

m

∑
i∈[m]

ĝt
i∥2
+ 2α2L2ρ2σ2

l

+
8λ2L2(1− 2γ)2

γ2
Et∥

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k∥2 + 6α2L2ρ2σ2

g + 6α2L2ρ2Et∥∇F (zt)∥2

≤ 8λ2L2(1− 2γ)2

γ3

Et∥
1

m

∑
i∈[m]

ĝt−1
i ∥2 − Et∥

1

m

∑
i∈[m]

ĝt
i∥2
+ 2α2L2ρ2σ2

l + 6α2L2ρ2σ2
g
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+
8λ2L2(1− 2γ)2

γ2
Et∥

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k∥2 +

64η2l L
2K

mγ

∑
i∈[m]

(
Et∥ĝt−1

i ∥2 − Et∥ĝt
i∥2
)

+ 3072η2l L
2KEt∥∇F (zt)∥2 + 6α2L2ρ2Et∥∇F (zt)∥2 + 64η2l L

2K(16σ2
g + σ2

l ).

thus we can bound the R1 as follow:

R1 ≤ λ

2
Et∥∇F (zt)∥2 + λ

2
R1.a− λ

2m2
Et∥

∑
i∈[m]

K−1∑
k

γk
γ
E[g̃t

i,k]∥2

≤
(
λ

2
+ 3λα2L2ρ2 + 1536λη2l L

2K

)
Et∥∇F (zt)∥2 + 32ληlL

2K

γm

∑
i∈[m]

(
E∥ĝt−1

i ∥2 − E∥ĝt
i∥2
)

+
4λ3L2(1− 2γ)2

γ3

Et∥
1

m

∑
i∈[m]

ĝt−1
i ∥2 − Et∥

1

m

∑
i∈[m]

ĝt
i∥2
+ λα2L2ρ2(3σ2

g + σ2
l )

+
4λ3L2(1− 2γ)2

γ2
Et∥

1

m

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k∥2 + 32λη2l L

2K(16σ2
g + σ2

l ).

We notice that R1 contains the same term with a negative weight, thus we can set another constrains
for λ to eliminate this term. We will prove it in the next part.

C.4.3 BOUNDED GLOBAL GRADIENT

As we have bounded the term R1 and R2, according to the smoothness inequality, we combine the
inequalities above and get the inequality:

Et[F (zt+1)] ≤ F (zt)− λ∥∇F (zt)∥2 +R1+
L

2
R2

= F (zt)−
(
λ

2
− 3λα2L2ρ2 − 1536λη2l L

2K

)
∥∇F (zt)∥2 + λα2L2ρ2(3σ2

g + σ2
l )

+
(4λ3L2(1− 2γ)2

γ2
+

λ2L

2m2
− λ

2m2

)
Et∥

∑
i∈[m]

K−1∑
k=0

γk
γ
g̃t
i,k∥2

+
32ληlL

2K

γm

∑
i∈[m]

(
E∥ĝt−1

i ∥2 − E∥ĝt
i∥2
)
+ 32λη2l L

2K(16σ2
g + σ2

l )

+
4λ3L2(1− 2γ)2

γ3

Et∥
1

m

∑
i∈[m]

ĝt−1
i ∥2 − Et∥

1

m

∑
i∈[m]

ĝt
i∥2
 .

We follow as Yang et al. (2021) to set λ that it satisfies 4λ3L2(1−2γ)2

γ2 + λ2L
2m2 − λ

2m2 ≤ 0, which is
easy to verified that λ has a upper bound for the quadratic inequality. Thus, the stochastic gradient
term is diminished by this λ. We denote the constant λκ = λ

2 − 3λα2L2ρ2 − 1536λη2l L
2K and κ

could be considered as a constant. We can select two constants c1 ∈ (0, 1
2 ), c2 ∈ (0, 1

2 ) and they
satisfy c1 + c2 ∈ (0, 1

2 ), we let 1
2 − 3α2L2ρ2 > 1

2 − c1 and 1
2 − 1536η2l L

2K > 1
2 − c2, where

the ρ and ηl satisfy ρ <
√
c1√

3αL
< 1√

6αL
and ηl <

√
c2

16
√
6KL

< 1
32

√
3KL

. Then we can bound the
κ = 1

2 − 3α2L2ρ2 − 1536η2l L
2K > 1

2 − c1 − c2 > 0, and the term 1
κ < 2

1−2c1−2c2
which is a

constant upper bound.

We take the full expectation on the bounded global gradient as:

λκE∥∇F (zt)∥2 ≤
(
EF (zt)− EF (zt+1)

)
+

32ληlL
2K

γm

∑
i∈[m]

(
E∥ĝt−1

i ∥2 − E∥ĝt
i∥2
)
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+
4λ3L2(1− 2γ)2

γ3

Et∥
1

m

∑
i∈[m]

ĝt−1
i ∥2 − Et∥

1

m

∑
i∈[m]

ĝt
i∥2


+ 32λη2l L
2K(16σ2

g + σ2
l ) + λα2L2ρ2(3σ2

g + σ2
l ).

Take the full expectation and telescope sum on the inequality above and applying the fact that
F ∗ ≤ F (x) for x ∈ Rd, we have:

1

T

T−1∑
t=1

Et∥∇F (zt)∥2 ≤ 1

λκT

(
F (z1)− Et[F (zT )]

)
+

32ηlL
2K

κγmT

∑
i∈[m]

(
E∥ĝ0

i ∥2 − E∥ĝt
i∥2
)

+
4λ2L2(1− 2γ)2

κγ3T

Et∥
1

m

∑
i∈[m]

ĝ0
i ∥2 − Et∥

1

m

∑
i∈[m]

ĝt
i∥2


+
1

κ

(
32λη2l L

2K(16σ2
g + σ2

l ) + λα2L2ρ2(3σ2
g + σ2

l )
)

≤ 1

λκT

(
F (z0)− F ∗)

)
+

32ηlL
2K

κγmT

∑
i∈[m]

E∥ĝ0
i ∥2

+
4λ2L2(1− 2γ)2

κγ3T
Et∥

1

m

∑
i∈[m]

ĝ0
i ∥2

+
1

κ

(
32λη2l L

2K(16σ2
g + σ2

l ) + λα2L2ρ2(3σ2
g + σ2

l )
)

Here we summarize the conditions and some constrains in the above conclusion. Firstly we should
note that γ = 1 − (1 − ηl

λ )
K < 1 when ηl ≤ 2λ. Thus we have 1/γ > 1. When K satisfies

that K ≥ λ
ηl

, (1 − ηl

λ )
K ≤ e−

ηl
λ K ≤ e−1, and then γ > 1 − e−1 and 1/γ < e

e−1 < 2. To let
κ = 1

2 − 3α2L2ρ2 − 1536η2l L
2K > 0 hold, ρ and ηl satisfy that ρ < 1√

6αL
and ηl <

1
32

√
3KL

.

1

T

T−1∑
t=1

E∥∇F (zt)∥2 ≤ 2(F (z1)− F ∗)

λκT
+

64ηlL
2K

κT

1

m

∑
i∈[m]

E∥ĝ0
i ∥2 +

32λ2L2

κT
Et∥

1

m

∑
i∈[m]

ĝ0
i ∥2

+
1

κ

(
32λη2l L

2K(16σ2
g + σ2

l ) + λα2L2ρ2(3σ2
g + σ2

l )
)
.
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