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Abstract

Implicit Neural Representations (INRs) are in-
creasingly popular methods for representing a va-
riety of signals (Sitzmann et al., 2020b; Park et al.,
2019; Mildenhall et al., 2021). Given their advan-
tages over traditional signal representations, there
are strong incentives to leverage them for signal
compression. Here we focus on image compres-
sion, where recent INR-based approaches learn a
base INR network shared across images, and in-
fer/quantize a latent representation for each image
in a second stage (Dupont et al., 2022; Schwarz &
Teh, 2022; Schwarz et al., 2023). In this work, we
view these approaches as special cases of nonlin-
ear transform coding (NTC), and instead propose
an end-to-end approach directly optimized for
rate-distortion (R-D) performance. We essentially
perform NTC with an INR-based decoder, achiev-
ing significantly faster training and improved R-D
performance, although still falling short of that
of state-of-the-art NTC approaches. By viewing
an INR base network as a convolutional decoder
with 1x1 convolutions, we can also better under-
stand its inferior R-D performance through this
inherent architectural constraint.

1. Introduction
Implicit Neural Representations (INR) have gained popu-
larity as a promising approach for representing a variety
of data types, including images (Stanley, 2007; Sitzmann
et al., 2020b; Chen et al., 2021; Karras et al., 2021), signed
distance functions (Park et al., 2019; Sitzmann et al., 2020a),
and 3D scenes (Sitzmann et al., 2019; Jiang et al., 2020;
Mildenhall et al., 2021). These methods use a neural net-
work to map an input coordinate to the corresponding signal
value, and offers advantages over traditional signal represen-
tations such as memory efficiency and resolution indepen-

*Equal contribution 1Department of Computer Science, Uni-
versity of California, Irvine. Correspondence to: Tuan Pham
<tuan.pham@uci.edu>.

Published as a workshop paper at ICML 2023 Neural Compression
Workshop.

0 50000 100000 150000 200000
Iteration

20

25

30

35

40

P
S

N
R

 (d
B

)

AE-SIREN
COIN++

Figure 1. Training curves for AE-SIREN (ours) and COIN++
(Dupont et al., 2022). We optimize only on a distortion loss to be
able to compare with COIN++.

dence. However, it is still an open question how they can be
best used for data compression.

Early works using INRs for neural image compression train
a separate neural network to represent each image (Dupont
et al., 2021; Strümpler et al., 2022), and are quickly sur-
passed in R-D performance by more recent methods that rep-
resent each image by a latent tensor and employ a base net-
work shared across all images (Dupont et al., 2022; Schwarz
& Teh, 2022; Schwarz et al., 2023). In most methods, the
INR network or latent tensor parameters are optimized with-
out a rate constraint, and are quantized and entropy-coded
in a post-processing stage, potentially leaving R-D perfor-
mance on the table. Moreover, the per-image optimization
with gradient descent or meta-learning is not only computa-
tionally expensive but can also result in training instability
and slow convergence (see Figure 1).

In this work, we view existing INR-based compression ap-
proaches through the nonlinear transform coding (NTC)
framework, and propose a hybrid approach combining the
best of both worlds. We view the INR as a decoder, and re-
place the typical INR-style iterative encoding with a learned
encoder network performing amortized inference. This al-
lows end-to-end training with learned quantization and en-
tropy modeling, directly optimized for R-D performance.

More specifically, our contributions are as follows:

• We formulate existing INR-based compression in the
NTC framework, allowing us to develop an end-to-end
hybrid method and better understand the limitation of
INRs for image compression.
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• We experiment with two autoencoder architectures
based on two choices of INR — SIREN (Sitzmann
et al., 2020b) and LIIF (Chen et al., 2021). Compared
with COIN++ (Dupont et al., 2022), we demonstrate
superior R-D performance on the CIFAR and Kodak
datasets, as well as faster training (see Fig. 1).

2. Background
2.1. Nonlinear Transform Coding

In nonlinear transform coding (Ballé et al., 2021), an en-
coder f maps a given image x to a continuous latent repre-
sentation y; y is then quantized to ŷ, entropy-coded, and
sent to the decoder g, which computes a reconstruction
x̂ = g(ŷ). The various components are jointly optimized
on an R-D objective. See (Yang et al., 2023) for background.

2.2. Implicit Neural Representation

Implicit Neural Representation utilizes a neural network to
map the input coordinates to desired output features. NeRF
(Mildenhall et al., 2021) employs MLP with ReLU activa-
tion and positional embedding to accurately represent 3D
scenes. SIREN (Sitzmann et al., 2020b) uses a MLP with
sine activation to capture complex, high-frequency patterns,
resulting in high-quality reconstructions.

However, a single neural network may not have sufficient
capacity to represent a large or complex image, and training
each network from scratch can be computationally expen-
sive. Therefore, Mehta et al. (2021); Chen et al. (2021);
Müller et al. (2022) proposed to represent each image by a
latent tensor y and a base network gθ shared across all im-
ages. Given a coordinate c (e.g., a pixel location (12, 50)),
the reconstruction at coordinate c is computed as

x̂c = gθ(y, c). (1)

The base network gθ in (Mehta et al., 2021; Dupont et al.,
2022) consists of a (1). modulator network gmod, which
computes modulation tensors α = gmod(y) intended to
capture the image content; and (2). a SIREN network whose
hidden activations are modulated by α (similarly to FiLM
(Perez et al., 2018)), and computes x̂c = gSIREN(α, c).

Some INR methods also employ explicit spatial structures in
the latent feature y to represent data. Those structures could
be 2D grid for images (Chen et al., 2021), or 3D voxels for
3D scenes (Jiang et al., 2020; Chan et al., 2022; Müller et al.,
2022; Fridovich-Keil et al., 2022). Interpolation techniques
are then used to compute the feature value for any queried
output coordinate using nearby features on the grid.

For images, Local Implicit Image Function (LIIF) (Chen
et al., 2021) has proved effective for tasks that require spatial
consistency and coherence, such as image super-resolution.

In LIIF, each continuous image is represented as a 2D fea-
ture map y ∈ RH×W×D. Then a decoding MLP takes the
2D coordinates and queries the local latent codes around the
coordinates as inputs and predicts the colors.

2.3. INR-based Neural Image Compression

At a high level, INRs essentially allow signals to be recon-
structed on the basis of network parameters, and INR-based
compression approaches additionally quantize and entropy
code these parameters to achieve bit-rate reduction.

Early work using INR for image compression (Dupont et al.,
2021) trains and quantizes a separate SIREN network for
each image. Parallel to INR research (Mehta et al., 2021),
more recent methods (Dupont et al., 2022; Schwarz & Teh,
2022; Schwarz et al., 2023) also adopt the paradigm of a per-
instance latent representation y and a base network gθ. Here,
only the per-instance latent is quantized and communicated,
and the compression cost of the base network is considered
negligible when amortized over the instances.

Furthermore, Dupont et al. (2022); Strümpler et al. (2022)
propose to reduce the computation burden of INR-style iter-
ative encoding (Dupont et al., 2021) with meta-learning, and
Schwarz et al. (2023) apply NTC on the continuous repre-
sentations y in a second stage to enable learned quantization
and entropy coding.

3. Method
3.1. Autoencoding INR

In this section, we propose to hybridize Nonlinear Trans-
form Coding (NTC) and existing INR-based compression
methods in an end-to-end fashion. Our method essentially
performs NTC with an INR-based decoder.

To motivate our method, we view existing INR-based ap-
proaches (Dupont et al., 2022; Schwarz & Teh, 2022) as
special cases of nonlinear transform coding. The base net-
work gθ (1) shared by all image instances can be naturally
viewed as a decoder in NTC. This is often a learned neural
network, but can also be meta-learned initialization (Dupont
et al., 2022; Schwarz & Teh, 2022; Strümpler et al., 2022),
or more generally any computation instruction shared be-
tween the sending and receiving parties ahead of time (thus,
the “decoder” in COIN (Dupont et al., 2021) is the neu-
ral network library). Given a decoder g, and coordinates
c viewed as side information, the encoder (x, c) → y is
implemented by iterative optimization, typically minimiz-
ing a distortion via argminy ∥xc − g(y, c)∥2. The entropy
model is then typically estimated in the second stage by
quantizing the resulting latent representations of training
instances and fitting an entropy model on them (Dupont
et al., 2022; Schwarz & Teh, 2022).
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Based on this perspective, we propose to adopt the whole
NTC framework for INR-based compression, replacing the
INR-style iterative encoder by an amortized inference net-
work f , and learn to quantize and compress the latents
with a learned entropy model. All components are trained
end-to-end on a rate-distortion loss. As we will show, this
drastically speeds up inference (encoding) and training, and
results in improved rate-distortion performance. Further,
an INR-based decoder g allows us to retain the advantage
of the INR representation, and enables tasks such as im-
age super-resolution and computing the image gradient or
Laplacian; see Fig. 2.

Figure 2. Image gradient and Laplacian computed from our autoen-
coding INR. Note we take the partial derivative ∂g(c,ŷ)

∂c
.

COIN++ (Dupont et al., 2022) proposes to speed up iterative
encoding with meta-learning. We note that this precisely
corresponds to semi-amortized variational inference (SVI)
(Kim et al., 2018), where the encoder simply maps every
instance to the same meta-learned initialization of y. We ex-
perimented with SVI in our hybrid approach as well, where
we further updated the encoder prediction with additional
iterative inference steps, but did not find significant improve-
ment.

3.2. INR as 1x1 convolutions

Viewing the INR base network as a convolutional decoder,
we also propose implementing its MLP operations via 1x1
convolutions. Specifically, given an image, if we group
the coordinate vectors/embeddings of all the pixel locations
into a 3D tensor C, such that C(i,j) indexes the coordinate
vector/embedding at pixel (i, j), then the required MLP
operations on each C(i,j) (such as in SIREN) can be done
in parallel by applying 1x1 convolutions on the tensor C.
This allows us to efficiently render all the pixels of a image
reconstruction in parallel.

Conceptually, formulating an INR network in terms of 1x1
convolutions also illustrates its potential strengths and weak-
nesses for compression. Essentially, it affords us the flexi-
bility of decoding the reconstruction at each pixel location
independently of others. However, images and other natural
signals tend to locally exhibit high degrees of correlation
and redundancy, and enforcing an independent computation
path when reconstructing/rendering each pixel can be more
computationally expensive and sub-optimal in compression
performance, compared to if we allow larger kernel sizes
like in the convolutional decoders of NTC methods.

3.3. Choice of encoder

To avoid bottlenecks in reconstruction quality, an encoder
should ideally be capable of inverting the generative proce-
dure computed by the decoder. For convolutional decoders
in popular NTC approaches (Ballé et al., 2016; Cheng et al.,
2020), the encoders are often also convolutional neural net-
works (CNN) with similar capacity to the decoder. In our
case of an INR based decoder, it is unclear a priori what
choice of an encoder can best amortize the iterative opti-
mization in a standard INR encoding procedure.

We experimented with various encoder architectures, such
as image transformers (Dosovitskiy et al., 2020; Liu et al.,
2021) and a set transformer (Nguyen & Grover, 2022), but
found a basic CNN with GDN activation from Ballé et al.
(2016) to give the best performance.

3.4. Architectures

Below we describe two variants of our hybrid NTC-INR ar-
chitectures, AE-SIREN and AE-LIIF, depending on whether
a SIREN decoder or a LIIF decoder is used. We use a fac-
torized entropy model (Ballé et al., 2016) for simplicity, but
note that more expressive prior (Ballé et al., 2018; Minnen
et al., 2018) could be easily used to improve performance
further.

3.4.1. AE-SIREN ARCHITECTURE

Encoder. As SIREN uses a dense latent representation,
we use an extra linear layer to flatten the output of our CNN
encoder. To improve reconstruction quality, the encoder also
receives the positional embedding computed by the SIREN
network gSIREN, concatenated with the usual image input x.

Decoder. The decoder g follows a similar design to Mehta
et al. (2021), using a SIREN network gSIREN modulated
with a modulation network gmod. We modulate the acti-
vation of the i-th hidden layer of the SIREN network by
multiplying it with a modulation vector αi, i.e., ϕi (hi) =
αi ⊙ sin (Wihi + bi). This provides an efficient method
for conditioning the output of the SIREN network on the
instance-specific latent modulation.

To generate modulation vectors αi, we use a modulation
network with Sine activation. This network takes a quan-
tized latent vector ŷ as input, and generates a sequence of
modulation vectors {α1, ..., αL} for L hidden layers of the
SIREN network. It is defined as:

h′
0 = sin (W′

0ŷ + b′
0) ,

αi+1 = h′
i+1 = sin

(
W′

i+1 [h
′
i ŷ]

T
+ b′

i+1

) (2)

Our modulated SIREN decoder has several differences com-
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pared to COIN++. Rather than using the FiLM layers shift
and scale vectors, we choose to modulate the hidden features
of the SIREN network through element-wise multiplication.
Additionally, we replace the linear modulation network used
in COIN++ with a deep MLP with sine activation. We found
this combination to perform better in the NTC framework.

3.4.2. AE-LIIF ARCHITECTURE

We use the CNN encoder (Ballé et al., 2016) to directly en-
code an image x to its representation y. For the decoder, we
adopt the LIIF architecture (Chen et al., 2021) unchanged,
consisting of a feature aggregation module followed by an
MLP. We give a more detailed description in the Appendix.

It should be noted that our training process does not incor-
porate multi-scale training within the LIIF representation.
However, it is straightforward to incorporate this into our
training, thereby developing a model capable of concur-
rently performing image compression and super-resolution.

4. Experiments
We evaluate our AE-SIREN and AE-LIIF architectures on
CIFAR-10 (Krizhevsky et al., 2009) and Kodak datasets
(Kodak, 1992). For Kodak dataset, we follow COIN++
(Dupont et al., 2022) to train our models with random 32×
32 crop from the Vimeo-90k (Xue et al., 2019) dataset, and
evaluate by splitting each Kodak image into 32×32 patches.

We compare our model against INR-based compression
methods COIN (Dupont et al., 2021) and COIN++ (Dupont
et al., 2022); convolutional autoencoder based methods
BMS (Ballé et al., 2018) and CST (Cheng et al., 2020);
and traditional codecs JPEG (Wallace, 1992), JPEG2000
(Skodras et al., 2001), BPG (Bellard, 2014).
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Figure 3. Rate distortion performance on CIFAR-10.

The rate-distortion curves of our models, alongside those of
the benchmark models, are showed in Figure 3 and Figure
4. We additionally show our qualitative results on Kodak
dataset in the appendix. Both AE-SIREN and AE-LIIF
demonstrate superior performance over INR-based com-
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Figure 4. Rate distortion performance on Kodak.

pression techniques such as COIN and COIN++. In the
CIFAR-10 dataset, AE-LIIF’s performance closely mirrors
that of the Hyperprior model (Ballé et al., 2018), despite
that we are using a factorized prior. However, this perfor-
mance margin is worse on the Kodak dataset. We postulate
that this is due to our use of a smaller patch size (32× 32),
in contrast to the 256 × 256 patch size employed by the
baseline convolutional autoencoder methods.

Furthermore, it is notable that AE-LIIF significantly sur-
passes AE-SIREN in the high bit-rate regime, which in-
dicates the critical role of spatial information. However,
we concede that advanced conditional approaches for the
SIREN decoder, like the ones proposed by (Schwarz & Teh,
2022; Schwarz et al., 2023), may help improve the perfor-
mance of AE-SIREN.

5. Discussion
INR-based methods have quickly moved away from repre-
senting each signal by a separate network (Dupont et al.,
2021; Mildenhall et al., 2021), to much stronger methods
employing a base network g that captures common struc-
tures among the signals (Dupont et al., 2022; Müller et al.,
2022). The latter methods can be understood as implement-
ing a learned, parametric form of vector quantization, a core
idea underlying NTC (Ballé et al., 2021). Our work es-
sentially implements the full NTC approach for INR-based
image compression, and demonstrates the possibility of re-
placing INR-style iterative encoding with a learned encoder
network. Our interpretation of an INR network as a convo-
lutional decoder blurs the line between NTC and INR-based
approaches, and raises interesting questions about the role
of INR in compression. Future work may explore similar
hybrid approaches and amortized inference methods for non-
image data, such as 3D scenes, where a direct application
of NTC may no longer be computationally feasible.
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Sitzmann, V., Zollhöfer, M., and Wetzstein, G. Scene repre-
sentation networks: Continuous 3d-structure-aware neu-
ral scene representations. Advances in Neural Information
Processing Systems, 32, 2019.

Sitzmann, V., Chan, E., Tucker, R., Snavely, N., and Wet-
zstein, G. Metasdf: Meta-learning signed distance func-
tions. Advances in Neural Information Processing Sys-
tems, 33:10136–10147, 2020a.

Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and Wet-
zstein, G. Implicit neural representations with periodic
activation functions. Advances in Neural Information
Processing Systems, 33:7462–7473, 2020b.

Skodras, A., Christopoulos, C., and Ebrahimi, T. The jpeg
2000 still image compression standard. IEEE Signal
processing magazine, 18(5):36–58, 2001.

Stanley, K. O. Compositional pattern producing networks: A
novel abstraction of development. Genetic programming
and evolvable machines, 8:131–162, 2007.
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A. Architecture details
A.1. AE-SIREN architecture
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Figure 5. Our AE-SIREN architecture. Representation y from the encoder is quantized (Q) to ŷ, which is compressed into a bitstream using
an arithmetic encoder AE and decompressed by an arithmetic decoder AD. The modulation network gmod then takes this decompressed ŷ
as input to calculate the modulations for each linear layer of the SIREN network gSIREN.

A.2. AE-LIIF architecture
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Figure 6. Our AE-LIIF architecture. The spatial LIIF representation y is quantized and compressed. After decompression, we use the LIIF
decoder gLIIF to reconstruct the image.

Our AE-LIIF architecture is shown in Figure 6. Following LIIF, we first perform feature unfolding, which concatenates the
3× 3 neighbor latent codes in ŷ.

ŷjk = Concat
(
{ŷj+l,k+m}l,m∈{−1,0,1}

)
(3)

Given the concatenated features, we calculate the RGB color at coordinate c with local ensemble:
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x̂ (c) =
∑

t∈{00,01,10,11}

St

S
· fθ (z∗t , c− c∗t ) (4)

where x̂(c) is the RGB color at coordinate c of the reconstructed image x̂, z∗t are the nearest latent code in top-left, top-right,
bottom-left, bottom-right in ŷ, c∗t is the coordinate of z∗t , St is the area of the rectangle between c and c∗t , and S =

∑
St is

the weight normalizer.

B. Experiment details
Our model is implemented in Pytorch (Paszke et al., 2019), and trained on NVIDIA A6000 and NVIDIA TITAN RTX gpus.
The RGB color values are normalized in the range [0, 1], while the coordinates are normalized in the range [−1, 1] for both
SIREN and LIIF.

We measure reconstruction performance using PSNR (in dB), defined as PSNR = −10 log10(MSE). For bit-rate, we
measure the exact bits per pixel (bpp).

B.1. Hyperparameters

Our hyperparameters used for training are shown in Table 1 and Table 2.

Table 1. Hyperparameters used for AE-SIREN experiments.
Hyperparameter Value

Encoder

Number of channels 512
Number of layers 4
Filter sizes 5× 5
Strides 2
Padding 2
Activation GDN

Decoder

Number of layers 5
Number of hidden units 512
Activation sin
Activation ω0 30.0 for first layer, 1.0 for other layers

Training

Rate-distortion λ for CIFAR-10 0.01, 0.025, 0.05, 0.1, 1.0, 5.0, 15.0
Latent y dimension for CIFAR-10 512, 512, 512, 512, 1024, 1024, 2048
Rate-distortion λ for Kodak 0.001, 0.0025, 0.005, 0.01, 0.05, 0.1, 0.25
Latent y dimension for Kodak 128, 128, 128, 192, 192, 256, 512
Model learning rate 1e− 4
Auxiliary learning rate 1e− 4
Optimizer Adam

C. Qualitative results
We show the qualitative results for different models in Figure 7, 8, 9, 10.
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Table 2. Hyperparameters used for AE-LIIF experiments.
Hyperparameter Value

Encoder

Number of channels 128 or 192
Number of layers 4
Filter sizes 5× 5
Strides 2
Padding 2
Activation GDN

Decoder
Number of layers 5
Number of hidden units 256
Activation ReLU

Training

Rate-distortion λ
0.0018, 0.0035, 0.0067, 0.013, 0.025,
0.0483, 0.0932, 0.18, 0.35

Latent y dimension 12, 12, 12, 12, 12, 20, 20, 20, 32
Model learning rate 1e− 4
Auxiliary learning rate 1e− 3
Optimizer Adam
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Figure 7. Qualitative results for AE-SIREN on Kodak images. From left to right: original images, decompressed images, and residuals.
The model used has the average PSNR of 33.92 and 1.50 bpp.
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Figure 8. Qualitative results for AE-SIREN on Kodak images. From left to right: original images, decompressed images, and residuals.
The model used has the average PSNR of 25.56 and 0.13 bpp.
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Figure 9. Qualitative results for AE-LIIF on Kodak images. From left to right: original images, decompressed images, and residuals. The
model used has the average PSNR of 38.04 and 2.26 bpp.
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Figure 10. Qualitative results for AE-LIIF on Kodak images. From left to right: original images, decompressed images, and residuals.
The model used has the average PSNR of 26.13 and 0.21 bpp.


