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Abstract

Understanding longer narratives or participat-001
ing in conversations requires tracking of dis-002
course entities that have been mentioned. In-003
definite noun phrases, such as a dog, fre-004
quently introduce discourse entities but this005
behavior is modulated by sentential operators006
such as negation. For example, a dog in Arthur007
doesn’t own a dog does not introduce a dis-008
course entity due to the presence of negation.009
In this work, we adapt the psycholinguistic010
assessment of language models paradigm to011
higher-level linguistic phenomena and intro-012
duce an English evaluation suite that targets013
the knowledge of the interactions between sen-014
tential operators and indefinite noun phrases.015
We use this evaluation suite for a fine-grained016
investigation of the entity tracking abilities017
of the Transformer-based models GPT-2 and018
GPT-3. We find that while the models are to019
a certain extent sensitive to the interactions we020
investigate, they are all challenged by the pres-021
ence of multiple noun phrases and their behav-022
ior is not systematic, which suggests that even023
models at the scale of GPT-3 do not fully ac-024
quire basic entity tracking abilities.025

1 Introduction026

In order to understand longer narratives or to par-027

ticipate in conversations, humans and natural lan-028

guage understanding systems have to keep track029

of the entities that have been mentioned in the dis-030

course. For example, when someone tells you that031

Arthur owns a dog, they have introduced the entity032

of a person named Arthur and the entity of a dog033

owned by Arthur into the discourse. Once entities034

have been introduced to the discourse, it is natural035

to refer back to them either with noun phrases or036

pronouns to elaborate further on their actions and037

properties, e.g., by saying It has a red collar to038

elaborate on the dog’s properties.039

While no fully-specified account exists of how040

humans achieve this feat, many existing theories041

are based on the idea that humans maintain mental 042

files (e.g., Heim, 1982; Murez and Recanati, 2016), 043

i.e., explicit memory representations for each entity 044

that encode all properties of an entity and its rela- 045

tion to other entities. When engaging in a conver- 046

sation or reading a longer narrative, humans then 047

update these representations as they encounter new 048

entities or new information about existing entities. 049

Large pre-trained language models (LMs) such 050

as GPT-2 (Radford et al., 2019) and GPT-3 (Brown 051

et al., 2020), which in recent years have become 052

the dominant foundation for many natural language 053

understanding and generation tasks, lack explicit 054

representations of discourse entities. It remains 055

largely an open question to what extent LMs can 056

match human behavior with respect to tracking 057

discourse entities. 058

The most extensive investigation of this phe- 059

nomenon has been through evaluations with the 060

LAMBADA dataset (Paperno et al., 2016). LAM- 061

BADA consists of a cloze task for which a LM 062

has to predict the last word of naturalistic passages 063

extracted from a corpus. Solving this task requires 064

keeping track of longer contexts, and making a cor- 065

rect guess frequently requires keeping track of the 066

entities mentioned in the passage. 067

While datasets such as LAMBADA are an invalu- 068

able resource for monitoring high-level progress 069

of LMs in their ability to track discourse entities, 070

such datasets lack the granularity to determine for 071

which contexts LMs can and cannot properly track 072

discourse entities. In this work, we draw inspira- 073

tion from recent targeted evaluation suites geared 074

at lower linguistic levels (e.g., Marvin and Linzen, 075

2018; Hu et al., 2020b), and introduce a targeted 076

evaluation suite for tracking of discourse entities in 077

English. In particular, we focus on the interactions 078

between different sentential operators and embed- 079

ding verbs and indefinite noun phrases (see, e.g., 080

Karttunen 1976 and Section 3); for example, we 081

evaluate whether a language model correctly infers 082
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that because a sentence with a negation, such as083

Arthur doesn’t own a dog, does not introduce a dis-084

course entity for a dog, further elaborations about085

such a non-existent dog should be pragmatically086

odd, and, as such, their probability should be low087

compared to matched controls.088

To evaluate to what extent language models089

are sensitive to these interactions, we adapt the090

psycholinguistic assessment of language models091

paradigm (Futrell et al., 2019) for discourse entity092

tracking and discuss the methodological challenges093

that arise with using this paradigm for discourse094

phenomena. We introduce two expert-created eval-095

uation suites and use them to evaluate GPT-2 and096

GPT-3 models. We find that while all the models097

we evaluated show some sensitivity to preceding098

context, they lack systematicity and are challenged099

when contexts contain multiple noun phrases.100

We will release our evaluation suites along with101

the results from human experiments and all code102

for model evaluation upon publication.103

2 Related Work104

The majority of systematic evaluations of autore-105

gressive and masked language models so far have106

focused on the level of syntax, targeting abilities107

such as subject-verb agreement (e.g., Linzen et al.,108

2016; Marvin and Linzen, 2018; Gulordava et al.,109

2018; Hu et al., 2020b), anaphora agreement and110

binding constraints (e.g., Marvin and Linzen, 2018;111

Futrell et al., 2019; Warstadt et al., 2020; Hu et al.,112

2020a), or filler-gap dependencies (e.g., Wilcox113

et al., 2018; Chowdhury and Zamparelli, 2018;114

Da Costa and Chaves, 2020). At higher linguistic115

levels, Ettinger (2020) compared BERT’s (Devlin116

et al., 2019) behavior on sentences with negation117

to data from neurolinguistic experiments with hu-118

mans; Pandia and Ettinger (2021) investigated to119

what extent pre-trained language models can ex-120

tract relevant information from the preceding con-121

text, both in the presence and in the absence of122

distractors; and Pandia et al. (2021) investigated123

whether language models can predict connectives124

(e.g., but) for two given sentences.125

More closely related to our work, in the domain126

of discourse and reference, Upadhye et al. (2020)127

investigated whether GPT-2 and Transformer-XL128

(Dai et al., 2019) exhibit similar referential biases129

in their continuations as humans, i.e., they asked130

whether models provided with a sentence with131

two referents are biased similarly as humans when132

choosing the referent for the next sentence. Kim 133

et al. (2019) used an acceptability judgment task 134

to determine whether different contextual language 135

models make correct distinctions between definite 136

and indefinite noun phrases. 137

Sorodoc et al. (2020) and Tenney et al. (2019) 138

used probing methods to investigate whether repre- 139

sentations of LSTM- and Transfomer-based models 140

contain information about coreference, which also 141

provides some indication of entity tracking abil- 142

ities. Further, Clark et al. (2019) investigated to 143

what extent attention weights of BERT indicate 144

coreference. These studies found that all evaluated 145

representations contain some information about 146

coreference but not consistently for all entities. 147

3 Background 148

English indefinite noun phrases (NPs) of the form 149

a NOUN interact with the context in complex ways 150

(see, e.g., Karttunen, 1976; Webber, 1979; Heim, 151

1982, for more extensive discussions of this phe- 152

nomenon). In affirmative statements, the indefinite 153

NP generally introduces a new entity to the dis- 154

course. However, several sentential operators and 155

clause-embedding verbs modulate this behavior. 156

For example, consider the following contrast be- 157

tween an affirmative and a negated sentence, where 158

# indicates a pragmatically odd continuation: 159

(1) a. Arthur owns a dog and it follows him 160

everywhere he goes. 161

b. Arthur doesn’t own a dog and # it fol- 162

lows him everywhere he goes. 163

While in the affirmative sentence, the indefinite NP 164

introduces a novel discourse entity, the negation in 165

(1b) prevents the NP from introducing a new entity. 166

In (1b), it is therefore pragmatically odd to refer 167

back to a dog with the pronoun it. 168

The implicative manage to and the negative im- 169

plicative fail to in (2a-b) give rise to a similar con- 170

trast: The NP under manage to introduces a dis- 171

course entity, the NP under fail to does not. 172

(2) a. Sue managed to write a book. It was a 173

real page-turner. 174

b. Sue failed to write a book. # It was a 175

real page-turner. 176

Similarly, indefinite NPs embedded under the 177

factive know and the non-factive doubt introduce 178

and fail to introduce a discourse entity, respec- 179

tively: 180
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(3) a. I know that Michael baked a cake. It181

was delicious.182

b. I doubt that Michael baked a cake. # It183

was delicious.184

Lastly, modals such as want also block the in-185

troduction of a discourse entity, as shown in the186

following contrast:187

(4) a. Mary got a pet rat and it is very loud at188

night.189

b. Mary wants to get a pet rat and # it is190

very loud at night.191

While these patterns generally hold, there are192

exceptions to these rules. For example, in the first193

sentence in (5), which could be paraphrased as194

(6), the indefinite scopes over the negation and195

therefore it is okay to refer back to the mistake in196

the following sentence.197

(5) Mary didn’t find a (specific) mistake. It198

was in the footnote.199

(6) There was a (specific) mistake which Mary200

did not find. It was in the footnote.201

However, without additional context, listeners202

generally do not infer these so-called specific in-203

terpretations of sentences with an indefinite NP, so204

like Karttunen (1976), we will largely ignore these205

cases throughout the remainder of this paper.206

4 Experiments207

To what extent are GPT-2 and GPT-3 sensitive to208

the contrasts that we presented in Section 3? To209

investigate this question, we adapted the methodol-210

ogy commonly used for syntactic evaluation of lan-211

guage models (e.g., Futrell et al., 2019) and created212

minimal pairs of contexts that differ in whether213

they introduce a discourse entity or not. In Ex-214

periment 1, we focus on contexts with a single215

indefinite NP, and in Experiment 2, we focus on216

sentences with multiple indefinite NPs.217

4.1 Experiment 1218

Methodology If a language model is sensitive to219

contexts that differ in whether a discourse entity220

is introduced or not, we expect the probability of221

continuations that refer back to the noun phrase in222

the previous context to be higher when a discourse223

entity has been introduced than when it has not.224

Thus, if we have a pair of sentences, such as225

(7) a. Cref: John owns a dog.226

b. Cnonref : John doesn’t own a dog. 227

and a referential continuation,1 such as 228

(8) R: It has a red collar. 229

then we expect that

P (R | Cref) > P (R | Cnonref).

However, directly comparing these probabilities 230

may be problematic given that P (X | Cref) and 231

P (X | Cnonref) are different probability distri- 232

butions. In theory it could be, for example, that 233

P (X | Cref) assigns a very high probability to ex- 234

actly one continuation and therefore its entropy is 235

lower than the entropy of P (X | Cnonref). In this 236

case, it could be that the inequality above does not 237

hold despite the fact that continuations that refer 238

back to the noun phrase in the previous context are 239

ranked higher in the affirmative than in the negated 240

case. To overcome this issue, we make use of a 241

non-referential control continuation, such as N: 242

(9) N: It is not a big deal. 243

This continuation no longer refers back to a noun 244

phrase and is therefore a valid continuation for both 245

affirmative and negated contexts. Instead of using 246

the inequality above, we thus compare the rela- 247

tive probabilities of the referential and the control 248

continuations: 249

P (R | Cref)

P (R | Cref) + P (N | Cref)
(1) 250

>
P (R | Cnonref)

P (R | Cnonref) + P (N | Cnonref)
251

These relative probabilities are less sensitive to 252

the entropy of the distribution: If there is a highly 253

likely continuation (that is neither the referential 254

nor the control continuation) for one context but not 255

the other, the model should still assign relatively 256

less probability mass to the referential continuation 257

compared to the control continuation. 258

Models We evaluate two autoregressive language 259

models, GPT-2 and GPT-3. GPT-2 models were 260

trained on the WebText corpus which contains an 261

estimated 8 billion tokens; GPT-3 models were 262

1The psycholinguistic assessment of language models
paradigm generally focuses on the probability of individual
words rather than sequences to evaluate syntactic phenomena.
However, considering that the coreference of it (or other ref-
erential expressions) is modulated by an entire sentence or
clause (see the contrast between (8) and (9), which both con-
tain the pronoun it), we compare probabilities of sequences.
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trained on about 500 billion tokens. For GPT-2,263

we evaluate models of four different sizes (GPT-264

2: 117M parameters, GPT-2 M: 345M, GPT-2 L:265

762M, GPT-2 XL: 1.5B) that are available through266

the HuggingFace Transformers library (Wolf et al.,267

2020). For GPT-3, we evaluate the largest available268

model (“davinci”) through the OpenAI API which269

is assumed to have about 175B parameters.2270

Materials We manually constructed an evalua-271

tion set of 16 base contexts and plausible continua-272

tions. Each base context contains different nouns273

and verbs to minimize lexical effects. From these274

16 contexts, we constructed four contrasts for each275

context, as shown in Table 1, which in total yielded276

64 items. We chose to manually construct contexts277

as opposed to automatically generating sentences278

from a grammar to guarantee semantic and prag-279

matic well-formedness of contexts and continua-280

tions.281

Human evaluation As we mentioned in Sec-282

tion 3, the referential continuations are not nec-283

essarily pragmatically odd if the indefinite noun284

phrase in the context is interpreted as a specific285

noun phrase. We therefore conducted an online286

experiment on Prolific to verify that native En-287

glish speakers disprefer the referential continua-288

tions when no discourse entity is introduced, as289

follows. After two practice items, each participant290

performed two trials with sentences from the eval-291

uation set. On each trial, participants saw a context292

along with a referential and the non-referential con-293

tinuation, and they were asked to indicate their294

preferred continuation by selecting the continua-295

tion that “makes more sense” given the context. For296

each context, we collected preference judgments297

from 10 participants. The experiment took on aver-298

age about 2 minutes to complete and participants299

received $0.45 in compensation (∼$14/hr).300

Results and discussion Figure 1 shows the pro-301

portion of items for which the relative probability302

of the referential continuation (RRP) is higher for303

the context that introduces a discourse entity (DEC)304

than for the context that does not (NDEC), i.e., the305

proportion of items for which Eq. 1 holds. For306

three of the four contrasts (affirmative-negation,307

affirmative-modal, managed-failed) GPT-2 and308

2The model size of GPT-3 is not publicly available but the
EleutherAI project estimated the model size by comparing
the performance of the models available through the API
to published results: https://blog.eleuther.ai/
gpt3-model-sizes/.

GPT-3 models exhibited the expected pattern for 309

almost all items in our evaluation set. For the know- 310

doubt contrast, however, all models performed ap- 311

proximately at chance, suggesting that the models 312

are not sensitive to this contrast. 313

Figure 2 also shows the results from the human 314

experiment. Participants preferred the referential 315

continuation more following the DECs than fol- 316

lowing the NDECs for all items of the affirmative- 317

negation and managed-failed contrasts. Further, for 318

these two contrasts, participants overwhelmingly 319

selected the referential continuation for the DECs 320

and the non-referential continuation for the NDECs. 321

This result confirms that the stimuli bring about the 322

theoretically expected contrast in humans. 323

For the affirmative-modal and the know-doubt 324

contrasts, the results from human participants are 325

less clear-cut. Overall, participants also preferred 326

the referential continuation more in the DECs than 327

in the NDECs. However, for several items, the op- 328

posite was the case and the referential continuation 329

was preferred as much or even more in the NDECs 330

than in the DECs. Moreover, unlike in the other 331

two contrasts, participants selected the referential 332

continuation in the NDECs at a high rate.3 333

Considering that the results from the human ex- 334

periment are not predicted by Karttunen’s theory, 335

the model results from the affirmative-modal and 336

the know-doubt contrast should also be interpreted 337

with caution. However, while the lower proportion 338

of expected relative probabilities in the know-doubt 339

condition may suggest that the models are behav- 340

ing similarly to humans, this is not the case. If one 341

considers the results on an item-by-item basis, they 342

differ from the human results and there is a lot of 343

variability across models such that the five models 344

agree only on less than 33% of items. 345

In summary, GPT-2 and GPT-3 overall behaved 346

similarly to humans and generally favored the ref- 347

3For contexts with modals, some participants commented
that they selected the referential continuation because they
assumed that the past tense of the continuation was a gram-
matical mistake. That is, if the tense had been different, the
continuation would have been sensible. For example, for the
context Michael wants to bake a cake the continuation and it
will be the best thing at the picnic is acceptable and differs
from the continuation that was presented in the experiment,
and it was the best thing at the picnic, only in its tense.

For contexts with doubt, participants frequently seemed to
interpret the referential continuation as a reason for the doubt.
For example, for the context I doubt that Carla got a pet rat.,
participants frequently chose the referential continuation It is
very noisy at night., presumably because they considered that
the rat being noisy made it unlikely that Carla would have got
it.
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Contrast Contexts Referential continuation Non-referential continuation

affirmative-negation
Michael baked a cake

and it was the best thing at the picnic. and it’s not a big deal.
Michael didn’t bake a cake

affirmative-modal
Michael baked a cake

and it was the best thing at the picnic. and it’s not a big deal.
Michael wants to bake a cake

know-doubt
I know that Michael baked a cake.

It was the best thing at the picnic. It’s not a big deal.
I doubt that Michael baked a cake.

managed-failed
Michael managed to bake a cake.

It was the best thing at the picnic. It’s not a big deal.
Michael failed to bake a cake.

Table 1: Example contexts and continuations for one base context in Experiment 1.

affirmative − negation affirmative − modal know − doubt managed − failed
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Figure 1: Results from Experiment 1. Each bar indicates the proportion of items for which the relative probability
of the referential continuation (RRP) is higher for the context that introduces a discourse entity than for the context
that does not, i.e., the expected pattern. Dashed lines indicate chance performance levels, and error bars indicate
bootstrapped 95% confidence intervals.

erential continuation more when the preceding sen-348

tence introduced a discourse entity. This behavior349

could be due to at least the following two reasons.350

It could be that the models indeed correctly com-351

bine the sentential operators with the indefinite352

noun phrase and therefore assign a higher prob-353

ability to a referential continuation in the DECs.354

However, it could also be that this result is due to355

more spurious correlations; for example, it could be356

that the model learned that clauses with operators357

such as negation, modals, or negative implicatives358

are often followed by clauses with a non-referential359

it. In the second experiment, we tease apart these360

two explanations and further try to overcome the361

issues with the stimuli that we observed for the362

affirmative-modal and know-doubt contrasts.363

4.2 Experiment 2364

Materials and method We again constructed 16365

base contexts that are similar to the ones used in366

Experiment 1. However, in this experiment, each367

context contains two indefinite noun phrases with368

different nouns that are embedded under two dif-369

ferent sentential operators. For example, for the370

affirmative-negation contrast, one of the two noun 371

phrases is embedded under negation, such as a cat 372

in the following example. 373

(10) John owns a dog but he doesn’t own a cat. 374

In such a context, it is natural to continue with 375

a sentence that refers back to the dog, whereas it 376

is unnatural to refer back to a cat. We therefore 377

compared the models’ probability of a sentence that 378

refers back to an entity that has been introduced 379

in the context (11a) to a sentence that refers to an 380

entity that has not been introduced (11b). 381

(11) a. The dog follows him wherever he goes. 382

b. # The cat follows him wherever he 383

goes. 384

On top of these coreferential continuations, we 385

also constructed non-coreferential continuations 386

for contexts such as (10). These continuations 387

contain one of the nouns present in the context 388

but do not refer back to entities in the previous 389

context. For the non-coreferential continuations, 390

models should assign a higher probability to the 391

continuation with a noun for which no discourse 392

entity had been introduced in the context. 393
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Context Coreferential continuations Non-coreferential continuations

Mary found a shirt at the store but she didn’t find a hat. The shirt/#hat is blue. The hat/#shirt that she tried on didn’t fit.
Mary found a hat at the store but she didn’t find a shirt. The hat/#shirt is blue. The shirt/#hat that she tried on didn’t fit.
Mary didn’t find a shirt at the store but she found a hat. The hat/#shirt is blue. The shirt/#hat that she tried on didn’t fit.
Mary didn’t find a hat at the store but she found a shirt. The shirt/#hat is blue. The hat/#shirt that she tried on didn’t fit.

Table 2: Example contexts and continuations for the affirmative-negation contrast for one base context.

affirmative − negation affirmative − modal know − doubt managed − failed
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Figure 2: Results from Experiment 2. Dashed lines indicate chance performance levels.

(12) a. The cat that he liked had been adopted394

by someone else.395

b. # The dog that he liked had been396

adopted by someone else.397

For each of the four contrasts and each base con-398

text, we constructed four contexts that crossed the399

order of the sentential operators and the order of400

the two nouns used in a context, resulting in 4 con-401

texts per base context and contrast. For each base402

context, we further constructed two coreferential403

continuations (one for each noun) and two non-404

coreferential continuations (one for each noun). In405

total, this yielded 512 items. Table 2 shows all the406

contexts and continuations for one base context for407

the affirmative-negation contrast.408

Compared to the methods and materials in Ex-409

periment 1, this setup has several advantages. First,410

given that we are comparing two continuations for411

a fixed context, both continuations come from the412

same probability distribution and therefore we no413

longer need a generic control continuation. Sec-414

ond, it is less likely that models can make use of415

spurious correlations since each context contains416

two types of sentential operators and, for exam-417

ple, a heuristic of associating negation with non- 418

referential it would no longer lead to the expected 419

behavior. Third, given that all continuations are on 420

topic (as compared to the generic control condition 421

in Experiment 1), humans likely show more con- 422

sistency in their preferences. Lastly, given that this 423

design allows us to construct stimuli with exactly 424

the same tokens in different orders, we can also 425

assess the systematicity of the model behavior. 426

We again verified the theoretically predicted pref- 427

erences in a human experiment.4 428

Results and discussion Figure 2 shows the ac- 429

curacy from the model and human experiments for 430

the coreferential and non-coreferential continua- 431

tions. As this figure shows, humans exhibited the 432

theoretically expected behavior for all contrasts for 433

almost all items and chose the coreferential con- 434

tinuation with the noun for which an entity had 435

been introduced in the context, and chose the non- 436

coreferential continuation for the noun for which 437

4For practical reasons, we included two items from this
experiment in the human experiment described above. To rule
out interference between similar items, no two items within
the same experimental list were derived from the same base
context.
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affirmative − negation affirmative − modal know − doubt managed − failed
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Figure 3: Systematicity of model behavior in Experiment 2. An item counts as correct if all four orders of noun
phrases and sentential operators (e.g., X owns a A but doesn’t own a B; X owns a B but doesn’t own a A; X doesn’t
own a A but owns a B; and X doesn’t own a B but owns a A) lead to the correct result. The dashed line indicates
chance performance and the error bars indicate bootstrapped 95% confidence intervals.

no entity had been introduced. This suggests that438

the materials do not exhibit the same shortcomings439

as in Experiment 1, and that comparisons of models440

to human behavior are valid for all four contrasts.441

If we turn to the model results, there is more442

variability in performance across models and con-443

trasts. For the coreferential continuations, all mod-444

els except the smallest GPT-2 model performed445

above chance for three of the four contrasts. For446

the affirmative-modal contrast, however, only GPT-447

3 performed significantly above chance. More-448

over, all GPT-2 models perform worse for the non-449

coreferential continuations.450

More generally, unlike humans, all models in451

this experiment performed below ceiling, which452

suggests that while models exhibit a tendency to453

choose the right continuation, they do not reliably454

do so. Further, model size does have an impact on455

the performance on this task: The smallest GPT-2456

model performed consistently worst, and GPT-3,457

the largest model that we evaluated, performed458

consistently best. This dependence on model size459

is particularly pronounced in the non-coreferential460

condition: While the GPT-3 model consistently per-461

formed above chance in all contrasts, most smaller462

models either performed at chance or in some cases,463

such as the GPT-2 for the items in the affirmative-464

negation contrast, had a bias to select the non-465

coreferential continuation with the noun that in-466

troduced a discourse entity in the context. The467

lower performance for the non-coreferential contin-468

uations is not surprising given that for these exam-469

ples, a model not only has to correctly infer which470

noun phrase introduces a discourse entity but ad-471

ditionally that the noun phrase in the continuation472

does not refer back to anything in the preceding473

context. 474

Systematicity As mentioned above, this experi- 475

mental design also allows us to assess how sensi- 476

tive the behavior of the different models is to the 477

different orders of sentential operators and nouns 478

in the context. Figure 3 shows the proportion of 479

items for which the model exhibited the expected 480

behavior for all four possible orders. Overall, the 481

performance of all models according to this stricter 482

criterion is much lower than the simple by-item 483

measure highlighting that even the predictions by 484

GPT-3 are sensitive to the exact combination and 485

order of sentential operators and nouns. However, 486

there once again is a clear trend that larger models 487

behave more systematically than smaller ones, sug- 488

gesting that larger models and models trained on 489

more data learn more stable generalizations. This 490

trend is in part driven by smaller models being less 491

sensitive to the preceding context: The two small- 492

est GPT-2 models assigned the highest probability 493

to the continuation with one of the two nouns inde- 494

pendent of the combination of sentential operators 495

and nouns in the context in 52.3% and 43.8% of the 496

cases, respectively. That is, for all four contexts, 497

as shown for one example in Table 2, the small- 498

est GPT-2 model assigned a higher probability to 499

the same continuation independent of which noun 500

phrase introduced a discourse entity more than half 501

of the time. GPT-3, on the other hand, only exhib- 502

ited this behavior for 7% of the items, suggesting 503

that it is much more sensitive to the context. 504

In summary, the results from Experiment 2 sug- 505

gest that all the Transformer-based models we eval- 506

uated are considerably less reliable in determining 507

whether a noun phrase introduces a discourse entity 508
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or not when multiple noun phrases are present. This509

is in particular true for the smaller GPT-2 models510

but especially if one considers systematicity, the511

predictions of GPT-3 are also sensitive to minor512

changes in the preceding context.513

5 General Discussion514

In his seminal work in 1976, Karttunen introduced515

several challenges for natural language understand-516

ing systems that aim to track which entities are517

introduced in a larger discourse. In this work, we518

evaluated to what extent we made progress on these519

challenges in the past decades. In two sets of exper-520

iments, we found that Transformer-based models521

are to some extent sensitive to different interactions522

between sentential operators and indefinite noun523

phrases. At the same time, however, we found524

in Experiment 2 that models lack systematicity in525

their behavior, which suggests that models do not526

combine indefinite noun phrases and sentential op-527

erators as humans do.528

Learnability of meaning On the one hand, these529

results provide direct evidence for shortcomings of530

language models with respect to tracking entities.531

On the other hand, more broadly, these results also532

provide interesting data points with regards to the533

recent debate on whether language models could534

theoretically mimic human language understand-535

ing. Bender and Koller (2020) recently presented536

several thought experiments and argued that since537

LMs are only trained on form and do not have538

access to meaning or intentions, they can never ex-539

hibit human-like language understanding. Given540

that we evaluated the largest available GPT-3 model541

and still found that the model behavior is inconsis-542

tent despite its enormous amount of parameters543

and training data, our results suggest that at least544

current language model architectures indeed strug-545

gle with human-like understanding. Interestingly546

though, while the thought experiments by (Bender547

and Koller, 2020) focus on lack of world knowl-548

edge due to the lack of grounding of language mod-549

els, our results suggest that additionally, language550

models fail at learning the meaning of more ab-551

stract words such as negation markers or embed-552

ding verbs. This is also in line with recent results,553

which showed that smaller models fail to learn the554

meaning of negation and discourse connectives.555

(Ettinger, 2020; Pandia et al., 2021). Lastly, the556

fact that GPT-2 and GPT-3 have been exposed to or-557

ders of magnitude more language data than human558

learners are and still do not fully succeed at track- 559

ing discourse entities underscores that there are 560

differences between how humans and LMs learn. 561

NLG evaluation We further believe that evalua- 562

tion suites targeting discourse phenomena, such as 563

the ones presented here, can serve a complementary 564

role to natural language generation (NLG) bench- 565

marks (e.g., Gehrmann et al., 2021) and human 566

studies for evaluating NLG systems. This seems 567

particularly relevant considering that Clark et al. 568

(2021) recently found that untrained crowdworkers, 569

who serve as participants in the majority of human 570

evaluation studies, cannot distinguish between sto- 571

ries written by humans and stories generated by 572

GPT-3. Our experiments, however, show that there 573

is a considerable gap between humans and GPT- 574

3 for basic discourse phenomena, and therefore 575

targeted evaluation suites should be an important 576

measure for tracking progress of NLG models. 577

Potential solutions Considering the still modest 578

performance of GPT-3, it seems unlikely that train- 579

ing models on even more data is going to lead 580

to human-like discourse entity processing by lan- 581

guage models. Instead, we consider the following 582

modifications to models to likely lead to more sys- 583

tematic entity tracking. First, there have been some 584

successes in augmenting language models with ex- 585

plicit entity memory representations (e.g., Weston 586

et al., 2014; Sukhbaatar et al., 2015; Rashkin et al., 587

2020; Cheng and Erk, 2020), and likely such archi- 588

tectural changes could also help in the contexts that 589

we evaluated in this work. Second, considering 590

that the models seem to struggle to learn the mean- 591

ing of sentential operators, it may be necessary to 592

provide additional supervision, for example using 593

treebanks annotated with meaning representations, 594

such as the Groningen Meaning Bank (Bos et al., 595

2017). Relatedly, models may also benefit from 596

more grounded learning scenarios. Humans likely 597

differentiate between Arthur owns a dog and Arthur 598

doesn’t own a dog because only in the former case, 599

a dog refers to something in the real world and if a 600

model was immersed in more grounded scenarios 601

it would likely be able to infer this difference. 602

We hope that our evaluation suite will be a valu- 603

able resource for assessing progress of future mod- 604

els such as the ones sketched above, and that it will 605

help pave the way for improved discourse entity 606

processing in NLU systems. 607
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Ethics Statement608

Risks, limitations, and intended use We con-609

sider the main risk of this work that the evaluation610

suite may be used to make overstating claims about611

model abilities in the future. In particular, should612

future models achieve very high or even perfect613

accuracy on the evaluation suite, then such results614

may be seen as evidence for human-like abilities615

of discourse entity processing. We therefore want616

to emphasize that achieving high accuracy on this617

evaluation suite is a necessary but not necessar-618

ily sufficient requirement for a model to exhibit619

human-like entity tracking abilities.620

Further, it seems likely that models fine-tuned on621

similar examples, would perform a lot better on this622

evaluation suite, and therefore researchers should623

only use this dataset for out-of-domain evaluations624

in which the model has not been trained on similar625

examples.626

Finally, we only evaluated models trained on627

English data in this work and it is conceivable that628

entity tracking abilities of models trained on other629

languages differ from the results reported here.630

Human subject experiments As we mentioned631

in Section 4.1, we recruited crowdworkers from632

Prolific to validate the experimental stimuli. Par-633

ticipants were based in the US and on average re-634

ceived compensation of about $14/hour, which is635

almost twice the minimum wage in most states in636

the US. The experiment has been pre-approved by637

the IRB of our institution, and there were no risks638

associated with participation.639
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A Human experiment details 890

Participants completed two practice trials to get 891

familiarized with the task, followed by four critical 892

trials with two filler trials randomly interspersed. 893

Figure 4 shows the initial instructions including an 894

explanation of risks and benefits as approved by 895

the IRB of our institution, and Figure 5 shows an 896

example trial. Participation was limited to people 897

living in the US whose native language is English. 898

B Model experiment details 899

For the experiments with GPT-2, we used the LM- 900

Scorer library5 and ran the experiments on a node 901

with a 3.7Ghz CPU and 32GB of RAM. In total, 902

all evaluations required approximately 8h of CPU 903

time. For the experiments with GPT-3, we used 904

the offical OpenAI API6. For all experiments, we 905

compared raw, untransformed probabilities, i.e., 906

the temperature parameter was set to 0. 907

5https://github.com/simonepri/
lm-scorer/

6https://beta.openai.com
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Figure 4: Initial instructions for human experiment.
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Figure 5: Example trial of human experiment.
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