

000 001 002 003 004 005 BEYOND DAGS: A LATENT PARTIAL CAUSAL MODEL 006 FOR MULTIMODAL LEARNING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

030 ABSTRACT 031

032 Directed Acyclic Graphs (DAGs) are a standard tool in causal modeling, but
033 their suitability for capturing the complexity of large-scale multimodal data is
034 questionable. In practice, real-world multimodal datasets are often collected from
035 heterogeneous generative processes that do not conform to a single DAG. Instead,
036 they may involve multiple, and even opposing, DAG structures with inverse causal
037 directions. To address this gap, in this work, we first propose a novel latent partial
038 causal model tailored for multimodal data representation learning, featuring two
039 latent coupled variables parts connected by an undirected edge, to represent the
040 transfer of knowledge across modalities. Under specific statistical assumptions,
041 we establish an identifiability result, demonstrating that representations learned
042 by MultiModal Contrastive Learning (MMCL) correspond to the latent coupled
043 variables up to a trivial transformation. This result deepens our understanding of
044 the why MMCL works, highlights its potential for representation disentanglement,
045 and expands the utility of pre-trained models like CLIP. Synthetic experiments
046 confirm the robustness of our findings, even when the assumptions are partially
047 violated. Most importantly, experiments on a pre-trained CLIP model embodies
048 disentangled representations, enabling few-shot learning and improving domain
049 generalization across diverse real-world datasets. Together, these contributions
050 push the boundaries of MMCL, both in theory and in practical applications.
051
052

053 1 INTRODUCTION

054 Recent advances in multimodal learning have demonstrated remarkable capabilities across vision,
055 language, and beyond (Liang et al., 2024; Lymperiaou & Stamou, 2024; Li et al., 2024). Representative
056 models, such as CLIP, achieve this by aligning different modalities through MultiModal
057 Contrastive Learning (MMCL) (Radford et al., 2021). A crucial factor behind their success is that
058 these models are trained on large-scale multimodal datasets, enabling them to learn rich, high-quality
059 cross-modal representations. Despite its remarkable empirical success, understanding the underlying
060 mechanisms of multimodal learning is essential, not only to explain its current achievements but
061 also to identify opportunities for further improvements (Liang et al., 2024). Recent works have also
062 analyzed multimodal learning through the lens of latent causal models (Daunhawer et al., 2023; Yao
063 et al., 2024; Gresele et al., 2020). These approaches examine the relationship between representations
064 learned by multimodal learning from observed data and the high-level latent causal variables
065 underlying such data, a line of inquiry referred to as identifiability analysis. By demonstrating that
066 learned representations can, in principle, recover these latent causal variables, such analyses provide
067 a causality-grounded explanation for the success of multimodal models. *Crucially, most of these*
068 *latent causal models rely on the assumption that the latent causal variables follow a Directed Acyclic*
069 *Graph (DAG) structure.* See Appendix A for more related work.

070 We argue that such a DAG assumption may be inappropriate for capturing the underlying generative
071 processes of large-scale multimodal data, which underpin state-of-the-art multimodal models. This
072 argument is supported by the following observation that large-scale multimodal data often arise from
073 heterogeneous causal mechanisms that correspond to different, and sometimes even conflicting, DAG
074 structures (Schölkopf et al., 2012). For instance, in the context of text–image paired data, some pairs
075 are generated through a text-to-image causal mechanism, where a textual instruction serves as the
076 input from which the corresponding image is produced (Ramesh et al., 2021). In contrast, some
077 pairs arise from an image-to-text pipeline, where images are first collected from the internet and

054 subsequently annotated with descriptive text by experts (Sharma et al., 2018). These two distinct
 055 causal mechanisms illustrate that large-scale multimodal data may arise from fundamentally opposite
 056 causal directions. Consequently, the common DAG assumption may be overly restrictive, failing to
 057 capture the diverse and sometimes conflicting generative processes underlying such data (see Sec. 2
 058 for a detailed discussion). As a result, although prior works on identifiability analysis under DAG
 059 assumptions (Daunhawer et al., 2023; Yao et al., 2023; Gresele et al., 2020) have provided valuable
 060 theoretical insights, they are often restricted to specific, small-scale multimodal data, where a DAG
 061 structure is sufficient to capture the underlying generative process. As a direct consequence of this
 062 modeling choice, these studies largely remain confined to simulation experiments, and offer limited
 063 guidance for applying advanced multimodal models trained on large-scale data, e.g., CLIP-like
 064 models, to real-world applications. To this end, this paper makes the following contributions:

- 065 • *A Novel Latent Partial Causal Model (Sec. 2)*. We propose a novel latent partial causal generative
 066 model, specifically designed for modeling the multimodal data generation process. Instead of relying
 067 on the DAGs assumption, our model introduces latent coupled variables, connected by undirected
 068 edges, to effectively capture transferable knowledge across different modalities.
- 069 • *Identifiability Guarantee (Sec. 3 and 4)*. We developed theoretical analyses specifically tailored to
 070 the proposed generative model, under certain statistical assumptions, showing that the representations
 071 learned by MMCL are related to the latent coupled variables up to a simple transformation, thereby
 072 providing a theoretical explanation for the success of MMCL.
- 073 • *Disentanglement Potential of MMCL (Sec. 5)*. Our theoretical results reveal the component-wise
 074 disentanglement potential of MMCL, which pushes the boundaries of how pre-trained models, such
 075 as CLIP-like models, can be leveraged. *To the best of our knowledge, this is the first work to provide*
 076 *guarantees for the component-wise disentanglement potential of MMCL*.
- 077 • *Extensive Experimental Results (Sec. 6)*. We validate our theoretical findings under ideal conditions
 078 via simulations and demonstrate their robustness even when the underlying assumptions are partially
 079 violated. Extensive experiments on pre-trained CLIP model across various tasks, such as few-shot
 080 learning, domain generalization, and disentangled representation learning, on over 16 real-world
 081 datasets substantiate the practical effectiveness of our findings.

082 In summary, our work provides a principled explanation for the success of MMCL and, importantly,
 083 highlights its potential for learning disentangled representations. Although our theoretical findings
 084 rely on certain assumptions that may not be fully verifiable in practice, similar to most existing works
 085 on identifiability analysis, simulations demonstrate the robustness of our results even when these
 086 assumptions are partially violated. In addition, extensive experiments with pre-trained CLIP models
 087 across diverse real-world tasks provide strong evidence that the theoretical insights can translate into
 088 practical benefits. Taken together, these findings relax the conventional reliance on DAG assumptions
 089 in advanced MMCL, while maintaining applicability and effectiveness in real-world scenarios.

091 2 GENERATIVE MODEL: THE LATENT PARTIAL CAUSAL MODEL

093 In this section, we introduce a latent partial causal model that captures the generative mechanisms of
 094 multimodal data. Before presenting the model, we outline a key observation about such data.

096 **Diversity in generative process of large-scale multimodal data.** We argue that real-world large-
 097 scale multimodal data often entails multiple, complex generative processes that may not be fully
 098 captured by a single DAG structure. To illustrate this (see Figure 1), let latent variables \mathbf{z}_x and \mathbf{z}_t
 099 denote shared semantic factors. For example, \mathbf{z}_x may correspond to high-level visual concepts such
 100 as object category or scene type in an image, while \mathbf{z}_t may capture the semantic content of a sentence,
 101 such as topic or intent. To model modality-specific characteristics, we introduce additional latent
 102 variables \mathbf{m}_x and \mathbf{m}_t . For instance, \mathbf{m}_x may represent image-specific factors such as background
 103 noise or visual artifacts, whereas \mathbf{m}_t could encode linguistic aspects such as sentence structure or
 104 grammatical patterns. Together, $(\mathbf{z}_x, \mathbf{m}_x)$ and $(\mathbf{z}_t, \mathbf{m}_t)$ generate the observed variables \mathbf{x} (image)
 105 and \mathbf{t} (text), respectively.

106 In the left DAG model of Figure 1, the latent confounder \mathbf{c} represents a shared source of variation that
 107 influences both latent variables \mathbf{z}_x and \mathbf{z}_t , which correspond to latent semantic factors generating the
 observed variables \mathbf{x} (e.g., image) and \mathbf{t} (e.g., text), respectively. This confounder captures a common

Figure 1: Possible DAG structures underlying large-scale multimodal data: Left: A latent confounder influences both z_x and z_t . Middle: z_t influences z_x through an intermediate mediator b , serving as a bottleneck for transferable knowledge. Right: A symmetric inverse relationship where z_x influences z_t via b . These DAGs illustrate that a single DAG assumption may not hold when modeling large-scale multimodal data with heterogeneous generative processes.

underlying context or concept connecting the two modalities. For example, if the image and text are related to the topic "sports," c could encapsulate this shared theme, influencing the generation of both the visual and textual data. The middle DAG depicts a structure where b represents transferable knowledge. Specifically, b serves as the bridge, deriving information from the text latent variable z_t and informing the image latent space z_x . This scenario aligns with the generative process where text serves as a guiding input for image generation, e.g., text-to-image generation. A classical example is the MNIST dataset (LeCun & Cortes, 2005). In contrast, the DAG on the right represents an image-guided text generation process, e.g., image captioning. Here, the high-level latent information in the image influences the high-level latent variable in the generated caption. A classical example is the CelebA dataset (Jiang et al., 2021).

Current advanced multimodal models, such as CLIP (Liang et al., 2022), are typically trained on vast collections of multimodal data, which may in fact arise from a mixture of the three scenarios illustrated in Figure 1 (potentially with additional DAG assumptions not depicted). In this context, restricting the generative modeling of large-scale multimodal data to a single DAG structure may be inadequate to capture the inherent diversity of real-world multimodal dependencies.

The Proposed Latent Partial Causal Models. Instead of DAGs structure, we propose latent partial causal model, designed to represent the generative process for multimodal data, as illustrated in Figure 2. In it, the latent space is partitioned into two components, each corresponding to a specific modality, such as image and text. To capture unique characteristics within each domain, the model incorporates modality-specific latent variables, m_x and m_t . In addition, to capture transferable knowledge between these modalities, the model introduces an undirected edge between the latent coupled variables, z_x and z_t . Further, the observations are generated through distinct processes that link the latent variables to the observed data. Specifically, images (x) are generated by the function $g_x(m_x, z_x)$, while text (t) is produced by $g_t(m_t, z_t)$. Besides the justification mentioned in Figure 1, this modeling approach is also grounded in the intricate dependencies between modalities. For instance, the adage "a picture is worth a thousand words" highlights the richness and detail of visual data, as supported by Gropper (1963); Hum et al. (2011). However, this perspective is not universally applicable, as Reinert (1976) argues that textual information can often convey more precise meanings. Similarly, Fidler et al. (2013) reinforces the complementary nature of text, asserting that "a sentence is worth a thousand pixels" in its ability to succinctly express complex ideas.

Figure 2: The proposed latent partial causal model. z_x and z_t are latent coupled variables, and m_x , m_t are modality-specific.

3 A FIRST LOOK: THE RECOVERY POTENTIAL OF MMCL

Given the proposed generative model, our goal is to analyze how MMCL framework, trained with observed data x and t , can recover the true latent variables z_x and z_t , up to a simple transformation. Before this, we provide an intuitive motivation for why MCL is expected to achieve this. MMCL leverages a loss function designed to maximize similarity between embeddings of real paired data while minimizing similarity for incorrect pairs. The loss function is defined as Zhang et al. (2022b);

162 Radford et al. (2021):
163

164
$$\mathcal{L} = -\frac{1}{N} \sum_{i=1}^N \log \frac{e^{-d(\mathbf{f}_x(\mathbf{x}_i), \mathbf{f}_t(\mathbf{t}_i))/\tau}}{\sum_{j=1}^N e^{-d(\mathbf{f}_x(\mathbf{x}_i), \mathbf{f}_t(\mathbf{t}_j))/\tau}} - \frac{1}{N} \sum_{i=1}^N \log \frac{e^{-d(\mathbf{f}_x(\mathbf{x}_i), \mathbf{f}_t(\mathbf{t}_i))/\tau}}{\sum_{j=1}^N e^{-d(\mathbf{f}_x(\mathbf{x}_j), \mathbf{f}_t(\mathbf{t}_i))/\tau}}, \quad (1)$$

165
166
167

168 where d denotes a distance metric, e.g., cosine similarity on hypersphere or L1 norm on convex
169 bodies, τ is a learnable temperature hyper-parameter, N denotes the sample size, which means that
170 we have N positive pairs and $N^2 - N$ negative pairs, \mathbf{f}_x denote the encoder on one modality \mathbf{x} ,
171 i.e., image, similarly, \mathbf{f}_t denote the encoder on another \mathbf{t} , i.e., text. To understand the multimodal
172 contrastive loss further, we investigate its asymptotics:
173174 **Theorem 3.1** (Asymptotics of \mathcal{L}). *For fixed $\tau > 0$, as the sample size $N \rightarrow \infty$, the (normalized)
175 multimodal contrastive loss converges to*

176
$$\lim_{N \rightarrow \infty} \mathcal{L} - 2 \log N = 2 \mathbb{E}_{(\mathbf{x}, \mathbf{t}) \sim p(\mathbf{x}, \mathbf{t})} [d(\mathbf{f}_x(\mathbf{x}), \mathbf{f}_t(\mathbf{t}))/\tau] + \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \left[\log \mathbb{E}_{\mathbf{t} \sim p(\mathbf{t})} [e^{-d(\mathbf{f}_x(\mathbf{x}), \mathbf{f}_t(\mathbf{t}))/\tau}] \right] \quad (2)$$

177
178
$$+ \mathbb{E}_{\mathbf{t} \sim p(\mathbf{t})} \left[\log \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} [e^{-d(\mathbf{f}_x(\mathbf{x}), \mathbf{f}_t(\mathbf{t}))/\tau}] \right].$$

179

180 The proof is provided in Appendix B. This is a generalization of Theorem 1 in Wang & Isola (2020).
181182 **Insights into Latent Variable Recovery** The loss function in Eq. (2) connects directly to two
183 fundamental principles in latent variable recovery: Prior Matching and Information Preservation.
184 These principles are crucial for methods like nonlinear independent component analysis (ICA)
185 (Hyvärinen et al., 2001), which recover latent independent variables from observed data.
186187

- *Prior Matching*: This constrains the solution space using prior knowledge, addressing the
188 non-uniqueness problem that often arises in latent variable recovery.
- *Information Preservation*: This ensures that the solution space fully captures the complexity
189 of the latent variables derived from the observed data.

190192 **Prior Matching** The first term in Eq. (2) promotes alignment between representations of real data
193 pairs across modalities, enforcing that one modality (i.e., text) acts as a prior signal for the other (i.e.,
194 image). Minimizing this term drives cross-modal alignment and incorporates prior knowledge, which
195 is key for recovering latent variables.
196197 **Information Preservation** The last two terms in Eq. (2) are closely related to ensuring that the
198 learned representations capture the full complexity of the latent variables. These terms can be
199 approximated by optimizing the following expression (proof in Appendix C):
200

201
$$-H(p(\mathbf{f}_x(\mathbf{x})), p(\mathbf{f}_t(\mathbf{t}))) - H(p(\mathbf{f}_t(\mathbf{t})), p(\mathbf{f}_x(\mathbf{x}))), \quad (3)$$

202

203 where $H(\cdot, \cdot)$ denotes cross-entropy. The objective function in Eq. (2) is symmetric between \mathbf{x} and
204 \mathbf{t} . Intuitively, if $p(\mathbf{f}_x(\mathbf{x}))$ and $p(\mathbf{f}_t(\mathbf{t}))$ are not equal, the solution deviates, increasing the objective
205 value and introducing asymmetry in the last two terms. For the optimal solution, the two distributions
206 must align. When $p(\mathbf{f}_x(\mathbf{x})) = p(\mathbf{f}_t(\mathbf{t}))$, the cross-entropy in Eq. (3) reduces to entropy, and if \mathbf{f}_x and
207 \mathbf{f}_t transform \mathbf{x} and \mathbf{t} into uniformly distributed random variables, Eq. (3) reaches its optimal value.
208 This highlights the importance of finding transformations \mathbf{f}_x and \mathbf{f}_t that preserve information by fully
209 capturing the latent variable structure.
210211 **A Novel Unified Perspective on Contrastive Loss** Previous research has primarily focused on
212 contrastive loss in the context of single modality, emphasizing two main perspectives: 1) alignment-
213 uniformity (Wang & Isola, 2020), which is closely related to prior matching, and 2) information
214 preservation (Oord et al., 2018). However, these two perspectives have largely been treated separately.
215 In this work, we offer a novel insight by combining these two perspectives within the multimodal
216 context for latent variable recovery. This insight motivates our belief that MMCL holds significant
217 potential for recovering latent variables.
218

216 4 FROM POTENTIAL TO PRINCIPLES: IDENTIFIABILITY GUARANTEE
217

218 Given the initiative analysis in Section 3, which highlights the potential of MMCL for recovering
219 latent variables, we now move forward to rigorous identifiability analysis, which provide theoretical
220 guarantees that MMCL can indeed recover the true latent variables, by parameterizing the proposed
221 latent partial causal model. We examine two distinct types of parameterization in latent spaces,
222 hyperspheres and convex bodies, under specific assumptions, respectively.
223

224 4.1 IDENTIFIABILITY ANALYSIS ON HYPERSPHERE
225

226 On hypersphere, we parameterize the proposed latent partial causal generative models as following:
227

228
$$p(\mathbf{z}_x) = |\mathcal{Z}|^{-1}, \quad p(\mathbf{z}_t|\mathbf{z}_x) = C_p^{-1} e^{(k\mathbf{z}_t^T \mathbf{z}_x)}, \quad \mathbf{x} = \mathbf{g}_x(\mathbf{z}_x, \mathbf{m}_x), \quad \mathbf{t} = \mathbf{g}_t(\mathbf{z}_t, \mathbf{m}_t), \quad (4)$$

229 where \mathcal{Z} denotes the space of latent factors \mathbf{z}_x and \mathbf{z}_t . We assume that \mathcal{Z} is the unit hypersphere
230 \mathbb{S}^{M-1} , aligning with the commonly used normalization in contrastive loss. We do not enforce any
231 further assumptions for \mathbf{m}_x and \mathbf{m}_t . For \mathbf{g}_x and \mathbf{g}_t , we assume them to be nonlinear, and invertible
232 (*i.e.*, injective) mapping and differentiable, ensuring the information in latent space can be recovered.
233 In addition, we assume that $p(\mathbf{z}_x)$ follows a uniform distribution, and $p(\mathbf{z}_t|\mathbf{z}_x)$ follows a von Mises-
234 Fisher (vMF) distribution, considering the constraint of unit hypersphere. Given these assumptions,
235 we first establish that the minimization of the symmetric cross-entropy Eq. (2) converges to a
236 symmetric cross entropy, as follows:
237

238 **Theorem 4.1.** (*\mathcal{L} converges to the symmetric cross-entropy*) *Under the assumptions defined in Eqs.*
239 *(4) for the proposed latent partial causal model, the necessary condition $\mathbf{f}_x \circ \mathbf{g}_x = \mathbf{f}_t \circ \mathbf{g}_t$, denoted*
240 *as \mathbf{h} , for the optimal normalized multimodal contrastivelosss given by Eq. (2) leads to the following*
241 *reduction of the loss itself:*
242

243
$$\lim_{N \rightarrow \infty} \mathcal{L} - 2 \log N + 2 \log |\mathcal{Z}| = \mathbb{E}_{\mathbf{z}_x \sim p(\mathbf{z}_x)} [H(p(\mathbf{z}_t|\mathbf{z}_x), q_{\mathbf{h}}(\mathbf{z}_t|\mathbf{z}_x))] + \mathbb{E}_{\mathbf{z}_t \sim p(\mathbf{z}_t)} [H(p(\mathbf{z}_x|\mathbf{z}_t), q_{\mathbf{h}}(\mathbf{z}_x|\mathbf{z}_t))], \quad (5)$$

244 where H is the cross entropy, the conditional distributions $q_{\mathbf{h}}(\mathbf{z}_t|\mathbf{z}_x)$ and $q(\mathbf{z}_x|\mathbf{z}_t)$ are parameterized
245 by the following:
246

247
$$q_{\mathbf{h}}(\mathbf{z}_x|\mathbf{z}_t) = C_q(\mathbf{z}_t)^{-1} e^{(\mathbf{h}(\mathbf{z}_x)^T \mathbf{h}(\mathbf{z}_t)/\tau)} q_{\mathbf{h}}(\mathbf{z}_t|\mathbf{z}_x) = C_q(\mathbf{z}_x)^{-1} e^{(\mathbf{h}(\mathbf{z}_t)^T \mathbf{h}(\mathbf{z}_x)/\tau)}, \quad (6)$$

248 with
249

250
$$C_q(\mathbf{z}_t) = \int e^{(\mathbf{h}(\mathbf{z}_x)^T \mathbf{h}(\mathbf{z}_t)/\tau)} d\mathbf{z}_x, \quad C_q(\mathbf{z}_x) = \int e^{(\mathbf{h}(\mathbf{z}_x)^T \mathbf{h}(\mathbf{z}_t)/\tau)} d\mathbf{z}_t.$$

251 Refer to Appendix D.1 for proof. This is a generalization of Theorem 1 in [Zimmermann et al. \(2021\)](#).
252

253 **Bridge Between Modalities** By addressing key asymmetries arising from modality differences,
254 such as modality-specific variables \mathbf{m}_x and \mathbf{m}_t , along with distinct generative processes \mathbf{g}_x and
255 \mathbf{g}_t , we derive the result in Theorem 4.1. This result is pivotal as it establishes a critical connection
256 between MMCL and traditional single-modal contrastive learning. In particular, Theorem 4.1 enables
257 the transfer of insights and results from single-modal settings to the multimodal context. As a result,
258 we present the following corollary:
259

260 **Corollary 1.** *By leveraging Theorem 4.1, the minimization of Eq. (5) identifies the latent variables*
261 *\mathbf{z}_x (and symmetrically, \mathbf{z}_t) up to a linear transformation. Specifically, the representations $\mathbf{f}_x(\mathbf{x})$,*
262 *learned by the minimization of Eq. (5), are linearly related to the underlying latent variables \mathbf{z}_x in*
263 *the proposed latent partial causal model, as follows: $\mathbf{f}_x(\mathbf{x}) = \mathbf{A}\mathbf{z}_x + \mathbf{c}$, where \mathbf{A} is an orthogonal*
264 *matrix and \mathbf{c} is a constant vector.*
265

266 For further details, see Appendix D.2.
267

268 **Success of MMCL** Corollary 1 shows that minimizing Eq. (5) (or equivalently, the multimodal
269 contrastive loss in Eq. (1)) identifies the latent variables \mathbf{z}_x (and symmetrically, \mathbf{z}_t) up to a linear
270 transformation. This means that the representations $\mathbf{f}_x(\mathbf{x})$, learned through MMCL, are directly
271 related to the latent variables \mathbf{z}_x via a linear transformation, *i.e.*, $\mathbf{f}_x(\mathbf{x}) = \mathbf{A}\mathbf{z}_x + \mathbf{c}$. A similar
272 result holds for \mathbf{z}_t . This finding highlights the effectiveness of MMCL, suggesting that its success

in practical applications stems from its ability to recover latent coupled variables. This recovery preserves essential, transferable knowledge across modalities, enabling the learned representations to capture high-level transferable information while discarding model-specific details. Such properties are key to the robustness and transferability of MMCL representations.

4.2 IDENTIFIABILITY ANALYSIS ON CONVEX BODIES

We now extend the previous identifiability result to convex bodies, *e.g.*, the hyperrectangle $[a_1, b_1] \times \dots \times [a_M, b_M]$. On convex bodies, we parameterize the proposed generative models by the following:

$$p(\mathbf{z}_x) = |\mathcal{Z}_c|^{-1}, \quad p(\mathbf{z}_t|\mathbf{z}_x) = C_p(\mathbf{z}_x)^{-1} e^{-\delta(\mathbf{z}_t, \mathbf{z}_x)/\lambda}, \quad \mathbf{x} = \mathbf{g}_x(\mathbf{z}_x, \mathbf{m}_x), \quad \mathbf{t} = \mathbf{g}_t(\mathbf{z}_t, \mathbf{m}_t), \quad (7)$$

where δ is a distance metric induced by a norm. We consider a convex body in \mathbb{R}^M , denoted as \mathcal{Z}_c , where we assume that $p(\mathbf{z}_x)$ follows a uniform distribution, and the conditional distribution $p(\mathbf{z}_t|\mathbf{z}_x)$ follows an exponential distribution. Again, we do not enforce any further assumptions for \mathbf{m}_x and \mathbf{m}_t . For \mathbf{g}_x and \mathbf{g}_t , we assume them to be nonlinear, invertible and differentiable mapping, ensuring information in latent space can be recovered. Given these assumptions, we have the following result:

Theorem 4.2. (*\mathcal{L} converges to the symmetric cross-entropy*) Under the assumptions defined in Eq. (7) for the proposed latent partial causal model, the necessary condition $\mathbf{f}_x \circ \mathbf{g}_x = \mathbf{f}_t \circ \mathbf{g}_t$, denoted as \mathbf{h} , for the optimal normalized multimodal contrastive loss given by Eq. (2) leads to the following reduction of the loss itself:

$$\lim_{N \rightarrow \infty} \mathcal{L} - 2 \log N + 2 \log |\mathcal{Z}_c| = \mathbb{E}_{\mathbf{z}_x \sim p(\mathbf{z}_x)} [H(p(\mathbf{z}_t|\mathbf{z}_x), q_{\mathbf{h}}(\mathbf{z}_t|\mathbf{z}_x))] + \mathbb{E}_{\mathbf{z}_t \sim p(\mathbf{z}_t)} [H(p(\mathbf{z}_x|\mathbf{z}_t), q_{\mathbf{h}}(\mathbf{z}_x|\mathbf{z}_t))], \quad (8)$$

where H is the cross entropy, the conditional distributions $q_{\mathbf{h}}(\mathbf{z}_t|\mathbf{z}_x)$ and $q(\mathbf{z}_x|\mathbf{z}_t)$ are parameterized by the following:

$$q_{\mathbf{h}}(\mathbf{z}_x|\mathbf{z}_t) = C_q(\mathbf{z}_t) e^{-\delta(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t))/\tau}, \quad q(\mathbf{z}_t|\mathbf{z}_x) = C_q(\mathbf{z}_x) e^{-\delta(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t))/\tau}, \quad (9)$$

with

$$C_q(\mathbf{z}_t) = \int e^{-\delta(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t))/\tau} d\mathbf{z}_x, \quad C_q(\mathbf{z}_x) = \int e^{-\delta(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t))/\tau} d\mathbf{z}_t.$$

Bridge Between Modalities In convex bodies, Theorem 4.2, introduced for the first time in this work, plays a key role in bridging MMCL with traditional contrastive learning by addressing the asymmetric challenges arising from modality differences. Building on this theorem, we have:

Corollary 2. *The minimization of Eq. (8) in theorem 4.2 identifies the latent variables \mathbf{z}_x (symmetrically, \mathbf{z}_t) up to a permutation transformation, i.e., the representations $\mathbf{f}_x(\mathbf{x})$, learned by the minimization of Eq. (8), is related to the underlying \mathbf{z}_x in the proposed partial causal model as follows: $\mathbf{f}_x(\mathbf{x}) = \mathbf{P}\mathbf{z}_x + \mathbf{c}$, where \mathbf{P} is an permutation matrix with scaling, \mathbf{c} is a constant vector.*

For completeness, see details in Appendix E.2.

Success of MMCL Similar to Corollary 1 on hyperspheres, Corollary 2 establishes that, on convex bodies, the representations $\mathbf{f}_x(\mathbf{x})$ learned by MMCL are related to the true latent variables \mathbf{z}_x as $\mathbf{f}_x(\mathbf{x}) = \mathbf{P}\mathbf{z}_x + \mathbf{c}$. This provides a foundation for the success of MMCL on convex bodies.

5 FROM PRINCIPLES TO PRACTICE: DISENTANGLEMENT IN CLIP MODELS

In theory, both Corollaries 1 and 2 suggest a disentanglement potential of CLIP-like models trained by MMCL, under the assumption that the variables in \mathbf{z}_x (and symmetrically, \mathbf{z}_t) are mutually independent. we explore how these theoretical insights can be translated into practical guidance for the effective use of CLIP-like models.

Corollary 1 shows that the representations $\mathbf{f}_x(\mathbf{x})$ learned by MMCL are linearly related to the true latent variables \mathbf{z}_x via an orthogonal transformation, *i.e.*, $\mathbf{f}_x(\mathbf{x}) = \mathbf{A}\mathbf{z}_x + \mathbf{c}$. This result holds under two key conditions: (1) the true latent variables are sampled from a hyperspherical latent space, and (2) the inference model, *e.g.*, CLIP-like models, is trained in a hyperspherical inference space. Notably, CLIP-like models naturally satisfy condition (2), as they typically employ L2

324
 325 Table 1: Assessing identifiability up to linear (left) and permutation (right) transformations under
 326 varying assumptions. The first row in (left) and the first two rows in (right) represent settings that
 327 align with our assumptions in Corollary 1 and Corollary 2, while the others show results for violated
 328 assumptions. S: Space, Sp: Sphere, U: Uniform, v: vMF ($k = 1$), L: Laplace ($\lambda = 0.05$), N: Normal
 329 ($\delta = 0.05$), B: Box, Un: Unbounded, G: GenNorm ($\beta = 3$).

Generative process			Model		
S	$p(\mathbf{z}_x)$	$p(\mathbf{z}_x \mathbf{z}_t)$	S	$q(\mathbf{z}_x \mathbf{z}_t)$	R^2
Sp	U	v	Sp	v	99.5 \pm 0.1
Sp	U	L	Sp	v	99.4 \pm 0.2
Sp	U	N	Sp	v	98.7 \pm 0.3
B	U	N	Un	N	90.5 \pm 0.2
B	U	L	Un	N	92.2 \pm 0.3
B	U	L	Un	G	99.1 \pm 0.4
B	U	N	Un	G	91.2 \pm 0.3
Sp	N ($\delta = 1$)	L	Sp	v	96.3 \pm 0.3
Sp	N ($\delta = 1$)	N	Sp	v	95.9 \pm 0.2
Un	L ($\lambda = 1$)	N	Un	N	88.5 \pm 0.3
Un	N ($\delta = 1$)	N	Un	N	89.2 \pm 0.2

Generative process			Model		
S	$p(\mathbf{z}_x)$	$p(\mathbf{z}_x \mathbf{z}_t)$	S	$q(\mathbf{z}_x \mathbf{z}_t)$	MCC
B	U	L	B	L	99.1 \pm 0.1
B	U	G	B	G	97.2 \pm 0.3
B	U	N	B	N	98.6 \pm 0.2
B	U	L	B	N	99.1 \pm 0.1
B	U	G	B	L	98.4 \pm 0.1
B	U	L	Un	L	95.6 \pm 0.2
B	U	G	Un	G	96.4 \pm 0.2

343 normalization, constraining representations to the unit sphere. Therefore, under condition (1) holds,
 344 the representations from CLIP-like models can be passed through linear unmixing method (e.g.,
 345 FastICA (Hyvärinen, 1999)) to resolve the mixing matrix \mathbf{A} , resulting in disentangled representations.
 346 It is worth to note that the geometry of the hypersphere, specifically the unit $M - 1$ -dimensional
 347 hypersphere, places an upper bound on the number of independent variables, i.e., $M - 1$ at most.

348 Unlike Corollary 1, Corollary 2 shows that the learned representations $\mathbf{f}_x(\mathbf{x})$ from MMCL are already
 349 disentangled, i.e., $\mathbf{f}_x(\mathbf{x}) = \mathbf{P}\mathbf{z}_x + \mathbf{c}$. This result mainly requires two conditions: (1) the true latent
 350 variables \mathbf{z}_x are sampled from a convex body latent space, and (2) the inference space of the model is
 351 also constrained to a convex body. However, CLIP-like models typically violate the second condition,
 352 as they operate in a hyperspherical inference space due to L2 normalization, even through we assume
 353 that the first condition may hold. Nevertheless, the insight from Corollary 2 remains useful with
 354 appropriate adjustments. In particular, the Corollary relies on the existence of an isometric mapping
 355 from the latent space to the representation space (see Eq. (48) in Appendix). Although a global
 356 isometry from a convex body to a hypersphere is not feasible, it is reasonable to assume a local
 357 isometry between the convex body and small regions of the hypersphere. Based on this, we propose
 358 first applying Principal Component Analysis (PCA) to the representations $\mathbf{f}_x(\mathbf{x})$. Then, FastICA can
 359 be used to account for the orthogonal transformation introduced by PCA, enabling the extraction of
 360 the final disentangled representations. This PCA+ICA pipeline thus enables effective use of CLIP-like
 361 models under the result of Corollary 2.

362 **Remark 1.** *By leveraging the disentanglement capabilities of CLIP-like models, we can improve
 363 performance on tasks that benefit from disentangled representations, such as few-shot learning
 364 and domain generalization. This observation further motivates exploration of the disentanglement
 365 potential inherent in CLIP-like models across a broad range of downstream applications.*

366 6 SYNTHETIC EXPERIMENTS AND REAL-WORLD EVALUATION

367 **Synthetic Experiments** In our initial experiments, we use synthetic data to validate our main
 368 identifiability results on hyperspheres and convex bodies, while also empirically assessing their
 369 robustness under significant violations of assumptions. We first sample $p(\mathbf{z}_x)$ according to the
 370 distributions listed in Table 1. Additionally, we generate paired samples from the conditional
 371 distribution $p(\mathbf{z}_t|\mathbf{z}_x)$ following the distributions specified in the same table. Beyond hyperspheres,
 372 our experiments also consider bounded and unbounded spaces. Each experiment is repeated three
 373 times for every setting. For more details regarding experiments, refer to Appendix K.

374 To evaluate linear identifiability result in Corollary 1, we fit a linear regression model between the
 375 ground-truth \mathbf{z}_x and representations $\mathbf{f}_x(\mathbf{x})$ learned by MMCL and report the coefficient of determination (R^2).
 376 Further, to evaluate permutation identifiability result in Corollary 2, we employ the

378
379
380
381
382
383
384
385
386
387388
389 Figure 3: Disentangled Representations learned by combining pre-trained CLIP and FastICA. The
390 results are aligned with our disentanglement findings.
391

mean correlation coefficient (MCC) between the ground-truth \mathbf{z}_x and representations $\mathbf{f}_x(\mathbf{x})$ learned by MMCL. The first row in Table 1 (left) and the first two rows in Table 1 (right), corresponding to the setting where the assumptions are satisfied, verify the identifiability results on hypersphere and convex bodies, respectively. Our empirical investigations have yielded a critical insight: discrepancies in the assumptions concerning marginal and conditional distributions, as well as the nature of the spaces (hypersphere and convex body), do not significantly impact performance. This robustness is demonstrated by the results detailed in Table 1 (left) for the hypersphere space and Table 1 (right) for convex bodies. This might be attributed to the fact that the loss function described in Eq. (2) predominantly relies on expectation computations, inherently allowing for a wide range of approximations. If we can approximate the expectation calculations consistently across various distributions and spaces, it is reasonable that the identifiability results remain well within acceptable bounds.

Real-World Evaluation with Pretrained CLIP In real data, the true latent coupled variables are unknown. Therefore, we evaluate our theoretical findings from the perspective of disentanglement as discussed in Section 5. Again, we emphasize that, in contrast to previous studies on identifiability for MMCL (Daunhauer et al., 2023; Yao et al., 2023; Greselle et al., 2020), which rely on simulation experiments, this work validates identifiability through empirical analysis on real datasets and pre-trained CLIP model. This underscores the practicality of our theoretical contributions.

Disentangled representations for CelebA data According to Section 5, we first extract representations from the pre-trained CLIP model and then apply FastICA to these representations to achieve final representations for CelebA data (Liu et al., 2015). We expect these final representations to exhibit clear signs of disentanglement. To validate this, we proceed to train a decoder that reconstructs observational data using these extracted representations. Figure 3 illustrates the effectiveness of our method through latent space traversals. Specifically, it visualizes changes in reconstructions as we traverse one dimension of the latent space at a time, showcasing 4 out of 16 attributes uncovered by our approach. Additional

408
409 Table 2: Quantitative results for 2-shot learning and domain
410 generalization by different methods. ①: Linear Probe, ②:
411 Linear Probe with FastICA, and ③: Linear Probe with PCA
412 and FastICA.
413

ENCODERS	METHODS	SOURCE		TARGET (IMAGENET-)				
		IMAGENET	V2	SKETCH	R	A	Avg.	
RN50	①	31.95	26.48	8.41	20.74	7.44	15.77	
	②	34.06	28.74	8.37	21.72	10.15	17.25	
	③	34.12	28.68	11.55	25.57	10.15	18.99	
RN101	①	37.64	31.45	13.71	31.09	11.85	20.03	
	②	39.58	33.15	13.49	30.29	14.77	22.93	
	③	39.86	33.58	17.93	35.48	14.20	25.29	
ViT32	①	38.23	32.00	16.17	33.67	12.88	23.68	
	②	40.21	33.97	16.54	34.79	15.72	25.26	
	③	39.34	33.44	19.02	36.98	14.69	26.03	
ViT16	①	44.97	38.11	22.06	43.86	25.99	32.51	
	②	45.52	39.38	22.55	45.33	30.47	34.43	
	③	46.57	40.66	26.67	49.69	31.48	37.13	

426 results are available in Appendix H. This achievement not only validates our identifiability results,
427 but also offers a new research line, i.e., learning disentangled representations by CLIP, or exploring
428 how this disentanglement potential relate to the manipulation of pre-trained vision models, such as
429 diffusion models.

430 **Few-shot learning and domain generalization** The goal of disentangled representations is to
431 learn representations that transfer easily and robustly to downstream tasks, making them well-suited

432 for few-shot learning and resilient to distribution shifts (Fumero et al., 2023). We thus focus on
 433 few-shot learning and domain generalization tasks to further evaluate our disentanglement findings.
 434 We extract representations from a limited set of labeled samples using a pre-trained CLIP model,
 435 combined with FastICA to align with the hypersphere, and with PCA followed by FastICA to align
 436 with convex body. These representations are then used to train a linear classifier. We evaluate the
 437 methods on ImageNet (Deng et al., 2009) for few-shot learning and test robustness on ImageNet-V2
 438 (Recht et al., 2019), ImageNet-Sketch (Wang et al., 2019), ImageNet-R (Hendrycks et al., 2021a),
 439 and ImageNet-A (Hendrycks et al., 2021b). Table 2 presents the performance metrics of the proposed
 440 methods in few-shot learning (the ‘SOURCE’ column) and domain generalization (the ‘TARGET’
 441 columns). Analyzing the data in the ‘SOURCE’ column reveals that the proposed methods outperform
 442 the baseline approach, which trains a linear classifier using representations directly obtained from
 443 pre-trained CLIP (i.e., the Linear Probe). This superior performance validates our disentanglement
 444 findings. The ‘TARGET’ column further reinforces the benefits of disentanglement. Refer to
 445 Appendix I for more results.

446 **Leveraging the Disentanglement Potential of 447 CLIP-like Models for Few-Shot Learning**

448 In the final experiments, we demonstrate how the disentanglement potential pushes the boundaries of leveraging
 449 pre-trained models, e.g., CLIP. Recent progress shows that pre-trained CLIP’s adaptability can be sig-
 450 nificantly improved with just a few labeled training samples. The key to leveraging pre-trained CLIP
 451 for few-shot learning is effectively utilizing its extracted representations from limited labeled data, as
 452 Tip-Adapter and Tip-Adapter-F methods proposed in the work (Zhang et al., 2022a). As we claim, leveraging
 453 disentangled potential of pre-trained CLIP can enhance performance on tasks that rely on disentangled
 454 representations, including few-shot learning. Therefore, rather than using CLIP’s raw representations,
 455 we apply FastICA to extract disentangled representations for few-shot tasks. This can be implemented
 456 in a plug-and-play way. As shown in Figure 4, incorporating FastICA in the methods in (Zhang
 457 et al., 2022a), termed Tip-Adapter with FastICA and Tip-Adapter-F with FastICA, results in better
 458 performance, across 11 datasets. See Appendix J for more details.

466 **7 CONCLUSION AND DISCUSSIONS**

469 In this work, we propose a novel latent partial causal model for multimodal data that moves beyond
 470 the traditional DAG structure, using latent coupled variables connected by undirected edges to capture
 471 transferable knowledge across modalities. We establish a theoretical link between this generative
 472 model and MMCL, showing that the representations learned by MMCL correspond to latent variables
 473 in the generative model, with linear and permutation transformations in hypersphere and convex
 474 body spaces, respectively. Our results provide the first theoretical guarantees for the disentanglement
 475 capabilities of MMCL, with applications in tasks like few-shot learning and domain generalization.
 476 Unlike prior simulation-based studies, our work demonstrates the real-world utility of MMCL and
 477 offers insights into leveraging pre-trained models like CLIP for disentangled representations. Our
 478 model challenges conventional DAG assumptions and provides a flexible, practical framework that
 479 enhances the effectiveness of MMCL.

480 One of the main limitations of this work lies in the parametric assumptions, e.g., Eqs. (4) and (7),
 481 which may not strictly hold in real-world applications. However, simulation experiments in settings
 482 where some of these assumptions are violated indicate that the theoretical results still largely hold
 483 (e.g., Table 1). Furthermore, empirical evaluations, including learning disentangled representations on
 484 face images (e.g., Figure 3), few-shot learning and domain generalization on ImageNet-type datasets
 485 (e.g., Table 2), and few-shot learning across 11 cross-domain datasets (e.g., Figure 4), demonstrate
 the practical advantages of our theoretical findings, providing additional support for their relevance.

467 **Figure 4:** Comparison of accuracy (%)
 468 achieved by different few-shot CLIP adap-
 469 tation methods across 11 datasets.

486 **Ethics Statement.** This study complies with the ethical standards of ICLR. It relies exclusively on
 487 public datasets and does not pose foreseeable negative impacts.
 488

489 **Reproducibility Statement.** We provide thorough descriptions of the methodology and experi-
 490 ments. The code and instructions will be openly available once the paper is published.
 491

492 **REFERENCES**
 493

494 Yuanhao Ban and Yinpeng Dong. Pre-trained adversarial perturbations. *Advances in Neural Infor-
 495 mation Processing Systems*, 35:1196–1209, 2022.

496 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101-mining discriminative compo-
 497 nents with random forests. In *Computer Vision–ECCV 2014: 13th European Conference, Zurich,
 498 Switzerland, September 6–12, 2014, Proceedings, Part VI 13*, pp. 446–461. Springer, 2014.

500 Ricky TQ Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of
 501 disentanglement in variational autoencoders. *Advances in neural information processing systems*,
 502 31, 2018.

503 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describ-
 504 ing textures in the wild. In *Proceedings of the IEEE conference on computer vision and pattern
 505 recognition*, pp. 3606–3613, 2014.

507 Imant Daunhawer, Alice Bizeul, Emanuele Palumbo, Alexander Marx, and Julia E Vogt. Identifiability
 508 results for multimodal contrastive learning. *arXiv preprint arXiv:2303.09166*, 2023.

509 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 510 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 511 pp. 248–255. Ieee, 2009.

513 Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
 514 examples: An incremental bayesian approach tested on 101 object categories. In *2004 conference
 515 on computer vision and pattern recognition workshop*, pp. 178–178. IEEE, 2004.

516 Sanja Fidler, Abhishek Sharma, and Raquel Urtasun. A sentence is worth a thousand pixels. In
 517 *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*, pp. 1995–2002,
 518 2013.

519 Marco Fumero, Florian Wenzel, Luca Zancato, Alessandro Achille, Emanuele Rodolà, Stefano Soatto,
 520 Bernhard Schölkopf, and Francesco Locatello. Leveraging sparse and shared feature activations
 521 for disentangled representation learning. *Advances in Neural Information Processing Systems*, 36:
 522 27682–27698, 2023.

524 Luigi Gresele, Paul K Rubenstein, Arash Mehrjou, Francesco Locatello, and Bernhard Schölkopf.
 525 The incomplete rosetta stone problem: Identifiability results for multi-view nonlinear ica. In
 526 *Uncertainty in Artificial Intelligence*, pp. 217–227. PMLR, 2020.

527 George L Gropper. Why is a picture worth a thousand words? *Audio Visual Communication Review*,
 528 11(4):75–95, 1963.

530 Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle
 531 for unnormalized statistical models. In *Proceedings of the thirteenth international conference on
 532 artificial intelligence and statistics*, pp. 297–304. JMLR Workshop and Conference Proceedings,
 533 2010.

534 Xiangteng He and Yuxin Peng. Fine-grained image classification via combining vision and language.
 535 In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 5994–
 536 6002, 2017.

538 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
 539 and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected
 Topics in Applied Earth Observations and Remote Sensing*, 12(7):2217–2226, 2019.

540 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 541 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
 542 The many faces of robustness: A critical analysis of out-of-distribution generalization. *ICCV*,
 543 2021a.

544 Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
 545 examples. *CVPR*, 2021b.

546 Yu Huang, Chenzhuang Du, Zihui Xue, Xuanyao Chen, Hang Zhao, and Longbo Huang. What makes
 547 multi-modal learning better than single (provably). *Advances in Neural Information Processing
 548 Systems*, 34:10944–10956, 2021.

549 Noelle J Hum, Perrin E Chamberlin, Brittany L Hambright, Anne C Portwood, Amanda C Schat, and
 550 Jennifer L Bevan. A picture is worth a thousand words: A content analysis of facebook profile
 551 photographs. *Computers in Human Behavior*, 27(5):1828–1833, 2011.

552 A. Hyvärinen, J. Karhunen, and E. Oja. *Independent Component Analysis*. Adaptive and Cognitive
 553 Dynamic Systems: Signal Processing, Learning, Communications and Control. Wiley, 2001.

554 Aapo Hyvärinen. Fast and robust fixed-point algorithms for independent component analysis. *IEEE
 555 transactions on Neural Networks*, 10(3):626–634, 1999.

556 Aapo Hyvärinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive learning
 557 and nonlinear ica. *Advances in neural information processing systems*, 29, 2016.

558 Aapo Hyvärinen and Hiroshi Morioka. Nonlinear ica of temporally dependent stationary sources. In
 559 *Artificial Intelligence and Statistics*, pp. 460–469. PMLR, 2017.

560 Aapo Hyvärinen and Petteri Pajunen. Nonlinear independent component analysis: Existence and
 561 uniqueness results. *Neural networks*, 12(3):429–439, 1999.

562 Aapo Hyvärinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ica using auxiliary variables and
 563 generalized contrastive learning. In *The 22nd International Conference on Artificial Intelligence
 564 and Statistics*, pp. 859–868. PMLR, 2019.

565 Heinrich Jiang. Uniform convergence rates for kernel density estimation. In *International Conference
 566 on Machine Learning*, pp. 1694–1703. PMLR, 2017.

567 Yuming Jiang, Ziqi Huang, Xingang Pan, Chen Change Loy, and Ziwei Liu. Talk-to-edit: Fine-
 568 grained facial editing via dialog. In *Proceedings of International Conference on Computer Vision
 569 (ICCV)*, 2021.

570 Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvärinen. Variational autoencoders
 571 and nonlinear ica: A unifying framework. In *International Conference on Artificial Intelligence
 572 and Statistics*, pp. 2207–2217. PMLR, 2020.

573 Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In *International Conference on
 574 Machine Learning*, pp. 2649–2658. PMLR, 2018.

575 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 576 categorization. In *Proceedings of the IEEE international conference on computer vision workshops*,
 577 pp. 554–561, 2013.

578 Yann LeCun and Corinna Cortes. The mnist database of handwritten digits. 2005. URL <https://api.semanticscholar.org/CorpusID:60282629>.

579 Chunyuan Li, Zhe Gan, Zhengyuan Yang, Jianwei Yang, Linjie Li, Lijuan Wang, Jianfeng Gao, et al.
 580 Multimodal foundation models: From specialists to general-purpose assistants. *Foundations and
 581 Trends® in Computer Graphics and Vision*, 16(1-2):1–214, 2024.

582 Paul Pu Liang, Amir Zadeh, and Louis-Philippe Morency. Foundations & trends in multimodal
 583 machine learning: Principles, challenges, and open questions. *ACM Computing Surveys*, 56(10):
 584 1–42, 2024.

594 Victor Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Y Zou. Mind the
 595 gap: Understanding the modality gap in multi-modal contrastive representation learning. *Advances
 596 in Neural Information Processing Systems*, 35:17612–17625, 2022.

597

598 Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Spheredface: Deep
 599 hypersphere embedding for face recognition. In *Proceedings of the IEEE conference on computer
 600 vision and pattern recognition*, pp. 212–220, 2017.

601 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
 602 *Proceedings of International Conference on Computer Vision (ICCV)*, December 2015.

603

604 Timo Lüddecke and Alexander Ecker. Image segmentation using text and image prompts. In
 605 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 606 7086–7096, 2022.

607 Maria Lymperaiou and Giorgos Stamou. A survey on knowledge-enhanced multimodal learning.
 608 *Artificial Intelligence Review*, 57(10):284, 2024.

609

610 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
 611 visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013.

612 Ryumei Nakada, Halil Ibrahim Gulluk, Zhun Deng, Wenlong Ji, James Zou, and Linjun Zhang.
 613 Understanding multimodal contrastive learning and incorporating unpaired data. In *International
 614 Conference on Artificial Intelligence and Statistics*, pp. 4348–4380. PMLR, 2023.

615

616 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 617 of classes. In *2008 Sixth Indian conference on computer vision, graphics & image processing*, pp.
 618 722–729. IEEE, 2008.

619 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
 620 coding. *arXiv preprint arXiv:1807.03748*, 2018.

621

622 Naima Otberdout, Mohamed Daoudi, Anis Kacem, Lahoucine Ballihi, and Stefano Berretti. Dynamic
 623 facial expression generation on hilbert hypersphere with conditional wasserstein generative ad-
 624 versarial nets. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(2):848–863,
 625 2020.

626 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *2012
 627 IEEE conference on computer vision and pattern recognition*, pp. 3498–3505. IEEE, 2012.

628

629 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 630 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 631 models from natural language supervision. In *International conference on machine learning*, pp.
 632 8748–8763. PMLR, 2021.

633 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 634 and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine
 635 learning*, pp. 8821–8831. Pmlr, 2021.

636

637 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
 638 generalize to imagenet? In *International conference on machine learning*, pp. 5389–5400. PMLR,
 639 2019.

640 Harry Reinert. One picture is worth a thousand words? not necessarily! *Modern Language Journal*,
 641 pp. 160–168, 1976.

642

643 Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, and Hrishikesh Khandeparkar. A
 644 theoretical analysis of contrastive unsupervised representation learning. In *International Conference
 645 on Machine Learning*, pp. 5628–5637. PMLR, 2019.

646 Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, and Joris Mooij. On
 647 causal and anticausal learning. In *Proceedings of the 29th International Conference on International
 Conference on Machine Learning*, pp. 459–466, 2012.

648 Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
 649 hypernymed, image alt-text dataset for automatic image captioning. In *Proceedings of the 56th*
 650 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 651 2556–2565, 2018.

652 Bernard W Silverman. *Density estimation for statistics and data analysis*. Routledge, 2018.

653 Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
 654 classes from videos in the wild. *arXiv preprint arXiv:1212.0402*, 2012.

655 Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In *Computer
 656 Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
 657 Part XI 16*, pp. 776–794. Springer, 2020.

658 Julius Von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel
 659 Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably
 660 isolates content from style. *Advances in neural information processing systems*, 34:16451–16467,
 661 2021.

662 Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations
 663 by penalizing local predictive power. In *Advances in Neural Information Processing Systems*, pp.
 664 10506–10518, 2019.

665 Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
 666 ment and uniformity on the hypersphere. In *International Conference on Machine Learning*, pp.
 667 9929–9939. PMLR, 2020.

668 Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
 669 Large-scale scene recognition from abbey to zoo. In *2010 IEEE computer society conference on
 670 computer vision and pattern recognition*, pp. 3485–3492. IEEE, 2010.

671 Dingling Yao, Danru Xu, Sébastien Lachapelle, Sara Magliacane, Perouz Taslakian, Georg Martius,
 672 Julius von Kügelgen, and Francesco Locatello. Multi-view causal representation learning with
 673 partial observability. *arXiv preprint arXiv:2311.04056*, 2023.

674 Dingling Yao, Danru Xu, Sébastien Lachapelle, Sara Magliacane, Perouz Taslakian, Georg Martius,
 675 Julius von Kügelgen, and Francesco Locatello. Multi-view causal representation learning with
 676 partial observability. In *The Twelfth International Conference on Learning Representations*, 2024.

677 Renrui Zhang, Wei Zhang, Rongyao Fang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and
 678 Hongsheng Li. Tip-adapter: Training-free adaption of clip for few-shot classification. In *European
 679 conference on computer vision*, pp. 493–510. Springer, 2022a.

680 Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D Manning, and Curtis P Langlotz. Con-
 681 trastive learning of medical visual representations from paired images and text. In *Machine
 682 Learning for Healthcare Conference*, pp. 2–25. PMLR, 2022b.

683 Yaoyao Zhong, Weihong Deng, Jiani Hu, Dongyue Zhao, Xian Li, and Dongchao Wen. Sface:
 684 Sigmoid-constrained hypersphere loss for robust face recognition. *IEEE Transactions on Image
 685 Processing*, 30:2587–2598, 2021.

686 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
 687 vision-language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 688 Pattern Recognition*, pp. 16816–16825, 2022a.

689 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
 690 language models. *International Journal of Computer Vision*, 130(9):2337–2348, 2022b.

691 Roland S Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, and Wieland Brendel.
 692 Contrastive learning inverts the data generating process. In *International Conference on Machine
 693 Learning*, pp. 12979–12990. PMLR, 2021.

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

Appendix

Table of Contents

A	Related Work	15
B	The Proof of Theorem 3.1	16
C	Relation with Recovering All Information	16
D	The Proof of identifiability on hypersphere	17
D.1	The Proof of Theorem 4.1	17
D.2	Identifiability result on hypersphere	19
E	The Proof of identifiability on convex bodies	20
E.1	The Proof of Theorem 4.2	20
E.2	Identifiability result on Convex Bodies	22
F	Differences from Previous Analysis for Mutilmodal Contrastive Learning	23
G	Differences from Previous Analyses for Single-Modal Contrastive Learning	23
H	More Results on CelebA	24
I	More Results on ImageNet-Type Data	28
J	More Results on Few-Shot Learning Task	30
K	Implementation Details	31
L	Discussions on FastICA vs. PCA Followed by FastICA	33
M	Acknowledgment of LLMs Usage	33
N	High-Level Discussion and Rationale for the used Assumptions	33
N.1	Rationale and Interpretation of Assumptions	33
N.2	Limitations and Practical Implications	34
O	A Formal Definition of Disentanglement	34
P	Quantitative Validation on High-Dimensional Image	34
Q	ICA-Disentangled Text-Alignment Module	35

745

746

747

748

749

750

751

752

753

754

755

756 **A RELATED WORK**
 757

758 **Multimodal contrastive representation learning** Multi-modal contrastive representation learning,
 759 driven by underlying transferable knowledge across modalities, aims to coalesce inputs from these
 760 diverse sources into a cohesive representation space. This is typically achieved using a symmetric
 761 version of the standard contrastive loss (Ord et al., 2018; Gutmann & Hyvärinen, 2010), a method
 762 designed to align accurate pairings while distinguishing incorrect ones (He & Peng, 2017; Radford
 763 et al., 2021). Although this approach has proven successful in a range of downstream tasks (Radford
 764 et al., 2021; Zhou et al., 2022a;b; Lüddecke & Ecker, 2022; Ban & Dong, 2022), there remains a
 765 gap in our comprehensive theoretical and empirical understanding of the representations it learns.
 766 Recently, there has been a growing interest in exploring multi-modal contrastive learning from various
 767 perspectives. For instance, the study by Liang et al. (2022) provides insights into the modality gap
 768 inherent in multi-modal contrastive learning. Similarly, the research presented by Nakada et al. (2023)
 769 establishes a link between general multimodal contrastive loss and SVD analysis. Additionally,
 770 Huang et al. (2021) posits that learning with multiple modalities can lead to a reduced population risk
 771 compared to using a subset of these modalities. Diverging from these approaches, our work delves
 772 into multi-modal contrastive representation learning by examining its connection with generative
 773 models.

774 Past research has sought to comprehend the representations derived from standard single-modality
 775 contrastive learning, examining them through the lens of alignment and uniformity (Wang & Isola,
 776 2020), showing guarantees on the performance of the learned representations on the average classifi-
 777 cation task (Saunshi et al., 2019), or in terms of the identifiability of latent variables (Zimmermann
 778 et al., 2021; Von Kügelgen et al., 2021). Building on these foundations, our work takes a foreword
 779 step. We demonstrate that multi-modal contrastive learning can identify latent coupled variables,
 780 extending the insights from previous studies into the realm of multi-modality. Refer to Section G for
 781 more details.

782 Very recently, several studies have emerged, focusing on multi-modal settings (Daunhawer et al., 2023;
 783 Yao et al., 2023). A clear distinction is that: the proposed model captures transferable knowledge
 784 across modalities by an undirected edge between latent coupled variables, while previous works often
 785 achieve it by introducing shared variables (Daunhawer et al., 2023; Yao et al., 2023). Notably, our
 786 modeling approach is more general, as it can be reduced to the shared variables used in previous
 787 works (Daunhawer et al., 2023; Yao et al., 2023) by enforcing an identical mapping on the undirected
 788 edge between latent coupled variables. Some of these works have only achieved partial identifiability
 789 of coupled variables (Daunhawer et al., 2023; Yao et al., 2023), specifically identifying latent content
 790 variables but not latent style variables. In contrast, our work achieves comprehensive identifiability
 791 results for all latent coupled variables, offering a deeper level of understanding. Our research also
 792 diverges from the approach taken in Gresele et al. (2020) in two key ways: Firstly, we model
 793 transferable knowledge across modalities using conditional distributions, whereas the latter utilizes
 794 identical variables for this purpose. Secondly, while Gresele et al. (2020) relies on the premise that the
 795 mapping from the latent space to observations must be constrained by component-wise corrupters to
 796 ensure identifiability, our findings do not necessitate such constraints. Refer to Section F for details.

797 **Nonlinear ICA** Nonlinear Independent Component Analysis (ICA) aims to unravel latent indepen-
 798 dent variables from observational data that has been subject to a nonlinear mixture of these latent
 799 factors. However, as pointed out in the seminal work by Hyvärinen & Pajunen (1999), solving this
 800 problem is generally infeasible without specific underlying assumptions. A prominent direction in
 801 contemporary research leverages the concept of distributional changes in latent variables, which leads
 802 to the creation of multi-domain observational data. This approach has been extensively explored and
 803 developed in a series of studies (Hyvärinen & Morioka, 2016; 2017; Hyvärinen et al., 2019; Khe-
 804 makhem et al., 2020), each contributing to a deeper understanding and more refined methodologies
 805 in the field of Nonlinear ICA. We build upon this body of research by incorporating co-occurrence
 806 patterns observed across multiple modalities. It is important to note the distinct difference between
 807 multi-domain and multi-modal approaches. The former typically implies a consistent mapping from
 808 the latent space to the observational space across all domains, whereas the latter accommodates
 809 different mappings for each modality. Additionally, while multi-domain approaches generally assume
 810 a totally shared latent variables across all domains, multi-modal methods allow for the existence of
 811 modality-specific latent variables.

B THE PROOF OF THEOREM 3.1

Theorem 3.1. (The asymptotics of \mathcal{L}) For fixed $\tau > 0$, as the sample size $N \rightarrow \infty$, the (normalized) multimodal contrastive loss converges to

$$\begin{aligned} \lim_{N \rightarrow \infty} \mathcal{L} - 2 \log N = & 2 \mathbb{E}_{(\mathbf{x}, \mathbf{t}) \sim p(\mathbf{x}, \mathbf{t})} \left[d(\mathbf{f}_x(\mathbf{x}), \mathbf{f}_t(\mathbf{t})) / \tau \right] + \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \left[\log \mathbb{E}_{\mathbf{t} \sim p(\mathbf{t})} \left[e^{-d(\mathbf{f}_x(\mathbf{x}), \mathbf{f}_t(\mathbf{t})) / \tau} \right] \right] \quad (10) \\ & + \mathbb{E}_{\mathbf{t} \sim p(\mathbf{t})} \left[\log \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \left[e^{-d(\mathbf{f}_x(\mathbf{x}), \mathbf{f}_t(\mathbf{t})) / \tau} \right] \right]. \end{aligned}$$

Proof. This proof is done by mainly depending on the Continuous Mapping Theorem and the law of large numbers.

$$\begin{aligned}
\lim_{N \rightarrow \infty} \mathcal{L} - 2 \log N &= \lim_{N \rightarrow \infty} \left(-\frac{1}{N} \sum_{i=1}^N \log \frac{e^{-d(\mathbf{f}_x(\mathbf{x}_i), \mathbf{f}_t(\mathbf{t}_i))/\tau}}{\sum_{j=1}^N e^{-d(\mathbf{f}_x(\mathbf{x}_i), \mathbf{f}_t(\mathbf{t}_j))/\tau}} \right. \\
&\quad \left. - \frac{1}{N} \sum_{i=1}^N \log \frac{e^{-d(\mathbf{f}_x(\mathbf{x}_i), \mathbf{f}_t(\mathbf{t}_i))/\tau}}{\sum_{j=1}^N e^{-d(\mathbf{f}_x(\mathbf{x}_j), \mathbf{f}_t(\mathbf{t}_i))/\tau}} \right) - 2 \log N, \\
&= \lim_{N \rightarrow \infty} \left(\frac{2}{N} \sum_{i=1}^N d(\mathbf{f}_x(\mathbf{x}_i), \mathbf{f}_t(\mathbf{t}_i)) / \tau + \frac{1}{N} \sum_{i=1}^N \log \sum_{j=1}^N e^{-d(\mathbf{f}_x(\mathbf{x}_i), \mathbf{f}_t(\mathbf{t}_j))/\tau} \right. \\
&\quad \left. + \frac{1}{N} \sum_{i=1}^N \log \sum_{j=1}^N e^{-d(\mathbf{f}_x(\mathbf{x}_j), \mathbf{f}_t(\mathbf{t}_i))/\tau} \right) - 2 \log N \\
&= \lim_{N \rightarrow \infty} \left(\frac{2}{N} \sum_{i=1}^N d(\mathbf{f}_x(\mathbf{x}_i), \mathbf{f}_t(\mathbf{t}_i)) / \tau + \frac{1}{N} \sum_{i=1}^N \log \frac{1}{N} \sum_{j=1}^N e^{-d(\mathbf{f}_x(\mathbf{x}_i), \mathbf{f}_t(\mathbf{t}_j))/\tau} \right. \\
&\quad \left. + \frac{1}{N} \sum_{i=1}^N \log \frac{1}{N} \sum_{j=1}^N e^{-d(\mathbf{f}_x(\mathbf{x}_j), \mathbf{f}_t(\mathbf{t}_i))/\tau} + \frac{2}{N} \sum_{i=1}^N \log N \right) - 2 \log N \\
&= 2 \mathbb{E}_{(\mathbf{x}, \mathbf{t}) \sim p(\mathbf{x}, \mathbf{t})} [d(\mathbf{f}_x(\mathbf{x}), \mathbf{f}_t(\mathbf{t})) / \tau] + \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \left[\log \mathbb{E}_{\mathbf{t} \sim p(\mathbf{t})} [e^{-d(\mathbf{f}_x(\mathbf{x}), \mathbf{f}_t(\mathbf{t}))/\tau}] \right] \\
&\quad + \mathbb{E}_{\mathbf{t} \sim p(\mathbf{t})} \left[\log \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} [e^{-d(\mathbf{f}_x(\mathbf{x}), \mathbf{f}_t(\mathbf{t}))/\tau}] \right].
\end{aligned}$$

C. RELATION WITH RECOVERING ALL INFORMATION

In this section, we show

$$\begin{aligned} & \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \left[\log \mathbb{E}_{\mathbf{t} \sim p(\mathbf{t})} \left[e^{-d(\mathbf{f}_x(\mathbf{x}), \mathbf{f}_t(\mathbf{t}))/\tau} \right] \right] + \mathbb{E}_{\mathbf{t} \sim p(\mathbf{t})} \left[\log \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \left[e^{-d(\mathbf{f}_x(\mathbf{x}), \mathbf{f}_t(\mathbf{t}))/\tau} \right] \right] \\ & \approx -H(p(\mathbf{f}_x(\mathbf{x})), p(\mathbf{f}_t(\mathbf{t}))) - H(p(\mathbf{f}_t(\mathbf{t})), p(\mathbf{f}_x(\mathbf{x}))). \end{aligned}$$

Considering the symmetry evident in both the left and right sides of the equation, let us focus our attention on the initial term on the left and its corresponding counterpart on the right.

$$\begin{aligned} & \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \left[\log \mathbb{E}_{\mathbf{t} \sim p(\mathbf{t})} \left[e^{-d(\mathbf{f}_x(\mathbf{x}), \mathbf{f}_t(\mathbf{t}))/\tau} \right] \right] \\ &= \lim_{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^N \log \frac{1}{N} \sum_{j=1}^N e^{-d(\mathbf{f}_x(\mathbf{x}_i), \mathbf{f}_t(\mathbf{t}_j))/\tau} \end{aligned} \quad (11)$$

$$\approx \lim_{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^N \log p_{\text{KDE}}(\mathbf{f}_x(\mathbf{x}_i)) + \log Z_{\text{KDE}} \quad (12)$$

$$= -H(p(\mathbf{f}_x(\mathbf{x}), p(\mathbf{f}_t(\mathbf{t}))) + \log Z_{\text{KDE}} \quad (13)$$

Transitioning from Eq. (11) to Eq. (12), we employ kernel density estimation, wherein the choice of kernel is influenced by the distance metric used. For instance, on a hypersphere, a von Mises-Fisher kernel is suitable, whereas on convex bodies, a Laplace kernel aligns well with the L1 norm. In this context, $\log Z_{\text{KDE}}$ represents the normalization constant associated with the kernel. The inherent symmetry in this setup allows us to logically deduce the equation. Note that since here the bandwidth τ can be optimized in MMCL, if true distribution is the same as the chosen kernel, Eq. (12) is equal to Eq. (11), *i.e.*, \approx in Eq. (12) can be $=$. Under certain conditions the kernel density estimation will converge to the real distribution, in that case \approx in Eq. (12) can also be $=$ (Silverman, 2018). Specifically, kernel density estimation converges to the true density $p(\mathbf{f}_x(\mathbf{x}))$ under the following assumptions:

- The kernel $K_\tau(\mathbf{z}, \mathbf{z}') = e^{-d(\mathbf{z}, \mathbf{z}')/\tau}$ is a smooth, symmetric density function (e.g., Gaussian-like).
- The number of samples $N \rightarrow \infty$, and the bandwidth $\tau \rightarrow 0$, such that $N\tau^d \rightarrow \infty$.
- The true density $p(\mathbf{f}_t(\mathbf{t}))$ is smooth (e.g., twice differentiable with bounded second derivatives).

These conditions ensure that $p_{\text{KDE}}(\mathbf{f}_x(\mathbf{x}_i))$ converges to the true density.

D THE PROOF OF IDENTIFIABILITY ON HYPERSPHERE

D.1 THE PROOF OF THEOREM 4.1

Theorem 4.1. (*\mathcal{L} converges to the symmetric cross-entropy*) Under the assumptions defined in Eq. (4) for the proposed latent partial causal model, the necessary condition $\mathbf{f}_x \circ \mathbf{g}_x = \mathbf{f}_t \circ \mathbf{g}_t$, denoted as \mathbf{h} , for the optimal normalized multimodal contrastive loss given by Eq. (2) leads to the following reduction of the loss itself:

$$\lim_{N \rightarrow \infty} \mathcal{L} - 2 \log N = \mathbb{E}_{\mathbf{z}_x \sim p(\mathbf{z}_x)} \left[H(p(\mathbf{z}_t|\mathbf{z}_x), q_{\mathbf{h}}(\mathbf{z}_t|\mathbf{z}_x)) \right] + \mathbb{E}_{\mathbf{z}_t \sim p(\mathbf{z}_t)} \left[H(p(\mathbf{z}_x|\mathbf{z}_t), q_{\mathbf{h}}(\mathbf{z}_x|\mathbf{z}_t)) \right] \quad (14)$$

where H is the cross entropy, the conditional distributions $q_{\mathbf{h}}(\mathbf{z}_t|\mathbf{z}_x)$ and $q(\mathbf{z}_x|\mathbf{z}_t)$ are parameterized by the following:

$$q_{\mathbf{h}}(\mathbf{z}_x|\mathbf{z}_t) = C_q(\mathbf{z}_t)^{-1} e^{(\mathbf{h}(\mathbf{z}_x)^T \mathbf{h}(\mathbf{z}_t)/\tau)}, \quad (15)$$

$$q_{\mathbf{h}}(\mathbf{z}_t|\mathbf{z}_x) = C_q(\mathbf{z}_x)^{-1} e^{(\mathbf{h}(\mathbf{z}_t)^T \mathbf{h}(\mathbf{z}_x)/\tau)}, \quad (16)$$

with

$$C_q(\mathbf{z}_t) = \int e^{(\mathbf{h}(\mathbf{z}_x)^T \mathbf{h}(\mathbf{z}_t)/\tau)} d\mathbf{z}_x,$$

$$C_q(\mathbf{z}_x) = \int e^{(\mathbf{h}(\mathbf{z}_x)^T \mathbf{h}(\mathbf{z}_t)/\tau)} d\mathbf{z}_t.$$

To proof Theorem 4.1, we first introduce the following Lemma.

Lemma 1. Consider the unit hypersphere space, given uniform prior $p(\mathbf{z}_x)$, $p(\mathbf{z}_x) = |\mathcal{Z}|^{-1}$ where $\mathcal{Z} \subseteq \mathbb{R}^M$ denotes the space of \mathbf{z}_x , and conditional distribution $p(\mathbf{z}_t|\mathbf{z}_x) = C_p(k) \exp(k \mathbf{z}_x^T \mathbf{z}_t)$, $p(\mathbf{z}_t)$ follows a uniform distribution.

918 *Proof.* By Bayesian theorem, $p(\mathbf{z}_t) = \int p(\mathbf{z}_t|\mathbf{z}_x)p(\mathbf{z}_x)d\mathbf{z}_x = |\mathcal{Z}|^{-1} \int p(\mathbf{z}_t|\mathbf{z}_x)d\mathbf{z}_x =$
 919 $|\mathcal{Z}|^{-1}C_p(k) \int \exp(k\mathbf{z}_x^T \mathbf{z}_t)d\mathbf{z}_x$, then due to the unit hypersphere space, we have $\int \exp(k\mathbf{z}_x^T \mathbf{z}_t)d\mathbf{z}_x =$
 920 $C_p(k)^{-1}$. As a result, we obtain $p(\mathbf{z}_t) = |\mathcal{Z}|^{-1}$. \square
 921

922 **Lemma 2.** *The normalized multimodal contrastive loss in Eq. (2) has an optimal global solution of 0, which can be attained under the following conditions:*
 923

924

- 925 • $\mathbf{h}_x(\mathbf{m}_x, \mathbf{z}_x) = \mathbf{h}_t(\mathbf{m}_t, \mathbf{z}_t)$ almost surely, for pair $((\mathbf{m}_x, \mathbf{z}_x), (\mathbf{m}_t, \mathbf{z}_t))$, (C1),
- 926 • \mathbf{h}_x and \mathbf{h}_t map $(\mathbf{m}_x, \mathbf{z}_x)$ and $(\mathbf{m}_t, \mathbf{z}_t)$, respectively, to uniform variables on hypersphere, (C2),

927
 928 *Proof.* First, it is well known that traditional contrastive loss in single modality has an optimal global
 929 solution of $\log N$ (Oord et al., 2018; Tian et al., 2020), as a result, the multimodal contrastive loss Eq.
 930 1 has an optimal global solution of $2\log N$. For completeness, let us focus on the first term in Eq. 1:
 931

$$932 -\frac{1}{N} \sum_{i=1}^N \log \frac{e^{-d(\mathbf{f}_x(\mathbf{x}_i), \mathbf{f}_t(\mathbf{t}_i))/\tau}}{\sum_{j=1}^N e^{-d(\mathbf{f}_x(\mathbf{x}_i), \mathbf{f}_t(\mathbf{t}_j))/\tau}}, \quad (17)$$

933 Under optimal contrastive learning conditions, the distance for positive pairs satisfies:
 934 $e^{-d(\mathbf{f}_x(\mathbf{x}_i), \mathbf{f}_t(\mathbf{t}_i))/\tau} = 1$, for negative pairs $(\mathbf{x}_i, \mathbf{x}_j)$ where $i \neq j$: $e^{-d(\mathbf{f}_x(\mathbf{x}_i), \mathbf{f}_t(\mathbf{t}_j))/\tau} = \epsilon$, where
 935 ϵ is a small value. As a result, for each i , the denominator can be expressed as: $1 + (N-1)\epsilon$.
 936 Therefore, the first term in Eq. 1 reduces to: $-\frac{1}{N} \sum_{i=1}^N \log \frac{1}{1 + (N-1)\epsilon}$. Clearly, when N is large,
 937 the first term in Eq. 1 equals to $\log N$. Given that the second term is symmetric, we conclude
 938 that Eq. 1 has an optimal global solution of $2\log N$. Therefore, Eq. 10 achieves a global optimal
 939 solution of 0. Moreover, this optimum is unique up to isometries and permutations. Minimizing
 940 the loss requires each positive pair to dominate its softmax denominator, which is only achieved
 941 when their embeddings are maximally aligned. Simultaneously, negative pairs must be mapped as
 942 far apart as possible under the bounded metric to minimize their influence. This configuration, tight
 943 positive alignment and maximal negative separation, is geometrically rigid: any deviation increases
 944 the loss. Thus, except for distance-preserving transformations and index permutations, the solution is
 945 unique. Achieving the global minimum of Eq. 10 therefore necessitates maximizing the alignment
 946 of positive pairs. This occurs if and only if $\mathbf{h}_x(\mathbf{m}_x, \mathbf{z}_x) = \mathbf{h}_t(\mathbf{m}_t, \mathbf{z}_t)$ almost surely, for real pair
 947 $((\mathbf{m}_x, \mathbf{z}_x), (\mathbf{m}_t, \mathbf{z}_t))$, (marked as (C1)). Thus, we obtain a minimum solution of 0 for the first term.
 948 Next, considering the remaining two terms in Eq. 10, as detailed in Appendix C, we see an equivalent
 949 expression: $-H(p(\mathbf{f}_x(\mathbf{x}), p(\mathbf{f}_t(\mathbf{t}))) - H(p(\mathbf{f}_x(\mathbf{x}), p(\mathbf{f}_t(\mathbf{t}))) + 2\log Z_{\text{KDE}}$. When both \mathbf{h}_x and \mathbf{h}_t
 950 map $(\mathbf{m}_x, \mathbf{z}_x)$ and $(\mathbf{m}_t, \mathbf{z}_t)$, respectively, to uniform variables on hypersphere (marked as (C2)),
 951 it reduces to $-2H(p(\mathbf{f}_x(\mathbf{x})) + 2\log Z_{\text{KDE}}$. Note that the entropy of a uniform distribution on the
 952 hypersphere \mathbb{S}^{M-1} is $\log(\frac{2\pi^{M/2}}{\Gamma(M/2)})$, where Γ is the gamma function. Together with the fact that the
 953 normalization constant of uniform distribution on hypersphere is $\log(\frac{2\pi^{M/2}}{\Gamma(M/2)})$ (i.e., $\log Z_{\text{KDE}}$), we
 954 arrive at the optimal solution of 0 for the last two terms. \square
 955

956 **Proof sketch** The proof of Theorem 4.1 hinges on demonstrating the equality between the right-
 957 hand side of Eq. (14) and Eq. (10). Let us define $\mathbf{h}_x = \mathbf{f}_x \circ \mathbf{g}_x$ and $\mathbf{h}_t = \mathbf{f}_t \circ \mathbf{g}_t$. In Step I, using
 958 Lemma 2, we show that (1) $\mathbf{f}_x \circ \mathbf{g}_x = \mathbf{f}_t \circ \mathbf{g}_t$, and (2) they are independent of the modality-specific
 959 variables \mathbf{m}_x and \mathbf{m}_t . In Step II, by defining $\mathbf{h} = \mathbf{f}_x \circ \mathbf{g}_x = \mathbf{f}_t \circ \mathbf{g}_t$ and applying both the generative
 960 model from Eq. (4) and the inference model from Eqs. (15)-(16), we establish the theorem.
 961

962 **Step I** Consider C1 in Lemma 2, e.g., $\mathbf{h}_x(\mathbf{m}_x, \mathbf{z}_x) = \mathbf{h}_t(\mathbf{m}_t, \mathbf{z}_t)$ almost surely, for pair
 963 $((\mathbf{m}_x, \mathbf{z}_x), (\mathbf{m}_t, \mathbf{z}_t))$, by differentiating it with respect to \mathbf{m}_x , we have:

$$964 \frac{\partial \mathbf{h}_x(\mathbf{m}_x, \mathbf{z}_x)}{\partial \mathbf{m}_x} = \frac{\partial \mathbf{h}_t(\mathbf{m}_t, \mathbf{z}_t)}{\partial \mathbf{m}_x} = 0, \quad (18)$$

965 , due to the independence between \mathbf{m}_x and $(\mathbf{m}_t, \mathbf{z}_t)$. Similarly, by differentiating it with respect to
 966 \mathbf{m}_t , we have:

$$967 \frac{\partial \mathbf{h}_t(\mathbf{m}_t, \mathbf{z}_t)}{\partial \mathbf{m}_t} = \frac{\partial \mathbf{h}_x(\mathbf{m}_x, \mathbf{z}_x)}{\partial \mathbf{m}_t} = 0. \quad (19)$$

972 Based on Eqs. (18) and (19), we conclude that both \mathbf{h}_x and \mathbf{h}_t are independent of the modality-
973 specific variables \mathbf{m}_x and \mathbf{m}_t , respectively, *i.e.*, $\mathbf{h}_x(\mathbf{m}_x, \mathbf{z}_x) = \mathbf{h}_x(\mathbf{z}_x)$ and $\mathbf{h}_t(\mathbf{m}_t, \mathbf{z}_t) = \mathbf{h}_t(\mathbf{z}_t)$.
974 As a result, we have $\mathbf{h}_x(\mathbf{z}_x) = \mathbf{h}_t(\mathbf{z}_t)$, for all real pairs $(\mathbf{z}_x, \mathbf{z}_t)$ sampled from the conditional
975 distribution $p(\mathbf{z}_t | \mathbf{z}_x)$ defined in Eq. (4). Note that this expression also holds true for $\mathbf{z}_t = \mathbf{z}_x$ (*e.g.*,
976 when \mathbf{z}_t is sampled with the same value as \mathbf{z}_x), which implies $\mathbf{h}_x(\mathbf{z}_x) = \mathbf{h}_t(\mathbf{z}_x)$. As a result, we can
977 obtain: $\mathbf{h}_x = \mathbf{h}_t$.

978
979 **Step II** According to the results above: $\mathbf{h}_x(\mathbf{m}_x, \mathbf{z}_x) = \mathbf{h}_x(\mathbf{z}_x)$, $\mathbf{h}_t(\mathbf{m}_t, \mathbf{z}_t) = \mathbf{h}_t(\mathbf{z}_x)$, and $\mathbf{h}_x = \mathbf{h}_t$
980 from Step I, by defining $\mathbf{h} \stackrel{\text{def}}{=} \mathbf{h}_x = \mathbf{h}_t$, we can rewrite Eq. (10) as:

$$982 \begin{aligned} 2 \mathbb{E}_{(\mathbf{z}_x, \mathbf{z}_t) \sim p(\mathbf{z}_x, \mathbf{z}_t)} [d(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t)) / \tau] &+ \mathbb{E}_{\mathbf{z}_x \sim p(\mathbf{z}_x)} \left[\log \mathbb{E}_{\mathbf{z}_t \sim p(\mathbf{z}_t)} [e^{-d(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t)) / \tau}] \right] \\ &+ \mathbb{E}_{\mathbf{z}_t \sim p(\mathbf{z}_t)} \left[\log \mathbb{E}_{\mathbf{z}_x \sim p(\mathbf{z}_x)} [e^{-d(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t)) / \tau}] \right]. \end{aligned} \quad (20)$$

983 We then connect the right-hand side of Eq. (14) with Eq. (20). To this end, since the two terms in the
984 right-hand side of Eq. (14) are symmetrical, we focus on one of the two terms for convenience, *e.g.*,
985 $\mathbb{E}_{\mathbf{z}_x \sim p(\mathbf{z}_x)} [H(p(\mathbf{z}_t | \mathbf{z}_x)), q_{\mathbf{h}}(\mathbf{z}_t | \mathbf{z}_x)]$. Based on Lemma 1, it can be shown that:

$$986 \mathbb{E}_{\mathbf{z}_x \sim p(\mathbf{z}_x)} [H(p(\mathbf{z}_t | \mathbf{z}_x)), q_{\mathbf{h}}(\mathbf{z}_t | \mathbf{z}_x)] \quad (21)$$

$$987 = \mathbb{E}_{\mathbf{z}_x \sim p(\mathbf{z}_x)} \left[\mathbb{E}_{\mathbf{z}_t \sim p(\mathbf{z}_t | \mathbf{z}_x)} [-\log q_{\mathbf{h}}(\mathbf{z}_t | \mathbf{z}_x)] \right] \quad (22)$$

$$988 = \mathbb{E}_{(\mathbf{z}_x, \mathbf{z}_t) \sim p(\mathbf{z}_x, \mathbf{z}_t)} \left[-\mathbf{h}(\mathbf{z}_x)^T \mathbf{h}(\mathbf{z}_t) / \tau + \log C_q(\mathbf{z}_x) \right] \quad (23)$$

$$989 = \mathbb{E}_{(\mathbf{z}_x, \mathbf{z}_t) \sim p(\mathbf{z}_x, \mathbf{z}_t)} \left[-\mathbf{h}(\mathbf{z}_x)^T \mathbf{h}(\mathbf{z}_t) / \tau \right] + \mathbb{E}_{(\mathbf{z}_x) \sim p(\mathbf{z}_x)} [\log C_q(\mathbf{z}_x)] \quad (24)$$

$$990 = \mathbb{E}_{(\mathbf{z}_x, \mathbf{z}_t) \sim p(\mathbf{z}_x, \mathbf{z}_t)} \left[-\mathbf{h}(\mathbf{z}_x)^T \mathbf{h}(\mathbf{z}_t) / \tau \right] + \mathbb{E}_{(\mathbf{z}_x) \sim p(\mathbf{z}_x)} \left[\log \int e^{(\mathbf{h}(\mathbf{z}_x)^T \mathbf{h}(\mathbf{z}_t) / \tau)} d\mathbf{z}_x \right] \quad (25)$$

1000 Since $p(\mathbf{z}_x) = |\mathcal{Z}|^{-1}$, and $p(\mathbf{z}_t) = |\mathcal{Z}|^{-1}$ by Lemma 1, Eq. (25) simplifies to:

$$1001 = - \mathbb{E}_{(\mathbf{z}_x, \mathbf{z}_t) \sim p(\mathbf{z}_x, \mathbf{z}_t)} [(\mathbf{h}(\mathbf{z}_x)^T \mathbf{h}(\mathbf{z}_t)) / \tau] + \mathbb{E}_{\mathbf{z}_x \sim p(\mathbf{z}_x)} \left[\log \mathbb{E}_{\mathbf{z}_t \sim p(\mathbf{z}_t)} [e^{(\mathbf{h}(\mathbf{z}_x)^T \mathbf{h}(\mathbf{z}_t)) / \tau}] \right] + \log |\mathcal{Z}| \quad (26)$$

1002 On hypersphere space with radius r , due to $\|\mathbf{h}(\mathbf{z}_x) - \mathbf{h}(\mathbf{z}_t)\| = 2r - 2\mathbf{h}(\mathbf{z}_x)^T \mathbf{h}(\mathbf{z}_t)$, Eq. 26 simplifies
1003 to:

$$1004 = \mathbb{E}_{(\mathbf{z}_x, \mathbf{z}_t) \sim p(\mathbf{z}_x, \mathbf{z}_t)} [d(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t)) / \tau] + \mathbb{E}_{\mathbf{z}_x \sim p(\mathbf{z}_x)} \left[\log \mathbb{E}_{\mathbf{z}_t \sim p(\mathbf{z}_t)} [e^{-d(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t)) / \tau}] \right] \quad (27)$$

1005 Similarly, for the second term in the right-hand side of Eq. (14), we can proof that:

$$1006 \begin{aligned} \mathbb{E}_{(\mathbf{z}_t) \sim p(\mathbf{z}_t)} [H(p(\mathbf{z}_x | \mathbf{z}_t)), q_{\mathbf{h}}(\mathbf{z}_x | \mathbf{z}_t)] &= \mathbb{E}_{(\mathbf{z}_x, \mathbf{z}_t) \sim p(\mathbf{z}_x, \mathbf{z}_t)} [d(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t)) / \tau] \\ &+ \mathbb{E}_{\mathbf{z}_t \sim p(\mathbf{z}_t)} \left[\log \mathbb{E}_{\mathbf{z}_x \sim p(\mathbf{z}_x)} [e^{-d(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t)) / \tau}] \right] + \log |\mathcal{Z}|. \end{aligned} \quad (28)$$

1007 By combining Eq. (27) and Eq. (28), we can conclude the proof.

1008 D.2 IDENTIFIABILITY RESULT ON HYPERSPHERE

1009 Theorem 4.1 represents a adaptation of Theorem 1 from (Zimmermann et al., 2021) in the context of
1010 multi-modal setting. Specifically, within the confines of a single-modal framework, Theorem 4.1 is
1011 consistent with the findings presented in Theorem 1 in (Zimmermann et al., 2021). Consequently, this
1012 alignment allows us to employ Propositions 1 and 2 from (Zimmermann et al., 2021) to demonstrate
1013 that the global minimization of the objective outlined in Eq. (5), as specified in Theorem 4.1, identifies

1026 the latent variables \mathbf{z}_x , as well as \mathbf{z}_x , up to linear transformations. For completeness, a brief proof
 1027 is provided herein, with comprehensive details available in the original work. Clearly, the global
 1028 minimum of the cross-entropy between two distributions is reached if they match by value and have
 1029 the same support. Therefore, for the optimal solution of the objective loss Eq. (14) in Theorem 4.1,
 1030 we have:

$$1031 \quad p(\mathbf{z}_t|\mathbf{z}_x) = q_{\mathbf{h}}(\mathbf{z}_t|\mathbf{z}_x), \quad (29)$$

1033 This expression also holds true for $\mathbf{z}_t = \mathbf{z}_x$; additionally using that \mathbf{h} maps from a unit hypersphere to
 1034 one with radius $\sqrt{\tau k}$, we have:

$$1035 \quad C_p^{-1} e^{(k\mathbf{z}_x^T \mathbf{z}_x)} = C_q(\mathbf{z}_x)^{-1} e^{(\mathbf{h}(\mathbf{z}_x)^T \mathbf{h}(\mathbf{z}_x)/\tau)},$$

$$1037 \quad \Leftrightarrow C_p = C_q(\mathbf{z}_x) \quad (30)$$

1038 As the normalization constants are identical we get for all $\mathbf{z}_x, \mathbf{z}_t$,

$$1040 \quad k\mathbf{z}_x^T \mathbf{z}_t = \mathbf{h}(\mathbf{z}_x)^T \mathbf{h}(\mathbf{z}_t)/\tau, \quad (31)$$

1042 here we can see that \mathbf{h} maintains the dot product, which implies that \mathbf{h} must be an orthogonal
 1043 linear transformation by using Proposition 2 in [Zimmermann et al. \(2021\)](#). As a result, Theorem 4.1
 1044 supports the conclusion that the latent variables \mathbf{z}_x (and \mathbf{z}_t) can be identified up to an orthogonal
 1045 linear transformation, *i.e.*, the recovered latent variables $\mathbf{f}_x(\mathbf{x})$ (note that $\mathbf{h}(\mathbf{z}_x) = \mathbf{f}_x(\mathbf{x})$), obtained
 1046 by the minimization of Eq. (5), is linearly related to the true \mathbf{z}_x as follows: $\mathbf{f}_x(\mathbf{x}) = \mathbf{A}\mathbf{z}_x + \mathbf{c}$, where
 1047 \mathbf{A} represents an orthogonal matrix, and \mathbf{c} is a constant vector.

E THE PROOF OF IDENTIFIABILITY ON CONVEX BODIES

E.1 THE PROOF OF THEOREM 4.2

Theorem 4.2. (*\mathcal{L} converges to the symmetric cross-entropy*) *Under the assumptions defined in Eq. (7) for the proposed latent partial causal model, the necessary condition $\mathbf{f}_x \circ \mathbf{g}_x = \mathbf{f}_t \circ \mathbf{g}_t$, denoted as \mathbf{h} , for the optimal normalized multimodal contrastiveloss given by Eq. (2) leads to the following reduction of the loss itself:*

$$1057 \quad \lim_{N \rightarrow \infty} \mathcal{L} - 2 \log N = \mathbb{E}_{\mathbf{z}_x \sim p(\mathbf{z}_x)} [H(p(\mathbf{z}_t|\mathbf{z}_x), q_{\mathbf{h}}(\mathbf{z}_t|\mathbf{z}_x))] + \mathbb{E}_{(\mathbf{z}_t) \sim p(\mathbf{z}_t)} [H(p(\mathbf{z}_x|\mathbf{z}_t), q_{\mathbf{h}}(\mathbf{z}_x|\mathbf{z}_t))] \quad (32)$$

1060 where H is the cross entropy, the conditional distributions $q_{\mathbf{h}}(\mathbf{z}_t|\mathbf{z}_x)$ and $q_{\mathbf{h}}(\mathbf{z}_x|\mathbf{z}_t)$ are parameterized
 1061 by the following:

$$1062 \quad q_{\mathbf{h}}(\mathbf{z}_x|\mathbf{z}_t) = C_q(\mathbf{z}_t)^{-1} e^{-\delta(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t))/\tau}, \quad (33)$$

$$1064 \quad q_{\mathbf{h}}(\mathbf{z}_t|\mathbf{z}_x) = C_q(\mathbf{z}_x)^{-1} e^{-\delta(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t))/\tau}, \quad (34)$$

1065 with

$$1067 \quad C_q(\mathbf{z}_t) = \int e^{-\delta(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t))/\tau} d\mathbf{z}_x,$$

$$1069 \quad C_q(\mathbf{z}_x) = \int e^{-\delta(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t))/\tau} d\mathbf{z}_t.$$

1071 Similar to the proof [D.1](#), we first introduce the following Lemma.

Lemma 3. *For random variables $\mathbf{z}_x \in \mathcal{Z}_c$ and $\mathbf{z}_t \in \mathcal{Z}_c$, assume that $p(\mathbf{z}_x) = 1/|\mathcal{Z}_c|$ if $\mathbf{z}_x \in \mathcal{Z}_c$ and 0
 1073 otherwise, and assume that conditional distribution $p(\mathbf{z}_t|\mathbf{z}_x) = C(\mathbf{z}_x) \exp(-\delta(\mathbf{z}_x, \mathbf{z}_t)/\lambda)$, where
 1074 δ is a symmetric metric induced by a norm, then $p(\mathbf{z}_t)$ converges to uniform distribution on \mathcal{Z}_c as
 1075 $\lambda \rightarrow 0_+$.*

1078 *Proof.* The proof can be done by the fact that as $\lambda \rightarrow 0$, the condition distribution $p(\mathbf{z}_t|\mathbf{z}_x)$ converges
 1079 to a delta distribution, resulting that $p(\mathbf{z}_t) = p(\mathbf{z}_x)$. More specifically, as we will let $\lambda \rightarrow 0$ in
 the procedure, it is notable that the normalize $C(\mathbf{z}_x)$ actually depend on λ and should be write as

1080 $C(\mathbf{z}_x, \lambda)$ in a more formal way. With simple integration trick, it would be straightforward to show
 1081 that $C(\mathbf{z}_x, \lambda)$ can be decomposed as $C(\mathbf{z}_x, \lambda) = \frac{1}{\lambda} C'(\mathbf{z}_x)$.
 1082

1083 By definition we have

$$\begin{aligned} 1084 \quad p(\mathbf{z}_t) &= \int_{\mathbf{z}_x \in \mathcal{Z}_c} p(\mathbf{z}_x) p(\mathbf{z}_t | \mathbf{z}_x) d\mathbf{z}_x \\ 1085 \\ 1086 &= \int_{\mathbf{z}_x \in \mathcal{Z}_c} p(\mathbf{z}_x) \frac{1}{\lambda} C'(\mathbf{z}_x) \exp(-\delta(\mathbf{z}_x, \mathbf{z}_t)/\lambda) d\mathbf{z}_x \\ 1087 \\ 1088 &= \lim_{N \rightarrow +\infty} \sum_{i=1}^N \frac{1}{\lambda} C'(\mathbf{z}_{x_i}) \exp(-\delta(\mathbf{z}_{x_i}, \mathbf{z}_t)/\lambda), \forall i, \mathbf{z}_{x_i} \sim p(\mathbf{z}_x) \end{aligned} \quad (35)$$

1090 then obviously we have that

$$\begin{aligned} 1092 \quad \lim_{\lambda \rightarrow 0_+} p(\mathbf{z}_t) &= \lim_{\lambda \rightarrow 0_+} \lim_{N \rightarrow +\infty} \sum_{i=1}^N \frac{1}{\lambda} C'(\mathbf{z}_{x_i}) \exp(-\delta(\mathbf{z}_{x_i}, \mathbf{z}_t)/\lambda) \\ 1093 \\ 1094 &= \lim_{\lambda \rightarrow 0_+} \lim_{N \rightarrow +\infty} \sum_{i=1}^N \frac{1}{\lambda} C' \exp(-\delta(\mathbf{z}_{x_i}, \mathbf{z}_t)/\lambda), \end{aligned} \quad (36)$$

1097 where $C' = \int_{-\infty}^{\infty} \exp(-\delta(\mathbf{0}, \mathbf{z}_t)) d\mathbf{z}_t$. It is obvious that (36) can be viewed as a Kernel Density
 1098 Estimation over samples $\mathbf{z}_{x_i} \sim p(\mathbf{z}_x)$, and obviously $\lim_{\tau \rightarrow 0_+} p(\mathbf{z}_t)$ will converge to $p(\mathbf{z}_x)$ (which
 1099 is uniform distribution) under quite mild condition (for details of the convergence, refer to Jiang
 1100 (2017)). \square

1101 **Proof sketch** Similar to hypersphere, the proof of Theorem 4.2 can be done by demonstrating
 1102 that the right-hand side of Eq. (32) is equal to the right-hand side of Eq. (10) on convex bodies.
 1103 To achieve this, using Lemma 2, we show that $\mathbf{f}_x \circ \mathbf{g}_x = \mathbf{f}_t \circ \mathbf{g}_t$, and they are independent of the
 1104 modality-specific variables \mathbf{m}_x and \mathbf{m}_t , respectively. Finally, by defining $\mathbf{h} = \mathbf{f}_x \circ \mathbf{g}_x = \mathbf{f}_t \circ \mathbf{g}_t$, and
 1105 using the inference model (33) and (34), we obtain our result.

1107 **Step I** On convex bodies, and define $\mathbf{h}_x = \mathbf{f}_x \circ \mathbf{g}_x$ and $\mathbf{h}_t = \mathbf{f}_t \circ \mathbf{g}_t$. Consider C1 in Lemma 2,
 1108 e.g., $\mathbf{h}_x(\mathbf{m}_x, \mathbf{z}_x) = \mathbf{h}_t(\mathbf{m}_t, \mathbf{z}_t)$ almost surely, for pair $((\mathbf{m}_x, \mathbf{z}_x), (\mathbf{m}_t, \mathbf{z}_t))$. Similar to Step I in
 1109 Appendix D.1, by differentiating it with respect to \mathbf{m}_x and \mathbf{m}_t , respectively, we can conclude that
 1110 both \mathbf{h}_x and \mathbf{h}_t are independent of the modality-specific variables \mathbf{m}_x and \mathbf{m}_t , respectively, i.e.,
 1111 $\mathbf{h}_x(\mathbf{m}_x, \mathbf{z}_x) = \mathbf{h}_x(\mathbf{z}_x)$ and $\mathbf{h}_t(\mathbf{m}_t, \mathbf{z}_t) = \mathbf{h}_t(\mathbf{z}_t)$. Further, since $\mathbf{h}_x(\mathbf{z}_x) = \mathbf{h}_t(\mathbf{z}_t)$ hold, for all real
 1112 pairs $(\mathbf{z}_x, \mathbf{z}_t)$ sampled from the conditional distribution $p(\mathbf{z}_t | \mathbf{z}_x)$ defined in Eq. (7), this expression
 1113 also holds true for $\mathbf{z}_t = \mathbf{z}_x$, which implies $\mathbf{h}_x(\mathbf{z}_x) = \mathbf{h}_t(\mathbf{z}_x)$. As a result, we can obtain: $\mathbf{h}_x = \mathbf{h}_t$.

1114 **Step II** According to the results above: $\mathbf{h}_x(\mathbf{m}_x, \mathbf{z}_x) = \mathbf{h}_x(\mathbf{z}_x)$, $\mathbf{h}_t(\mathbf{m}_t, \mathbf{z}_t) = \mathbf{h}_t(\mathbf{z}_t)$, and $\mathbf{h}_x = \mathbf{h}_t$,
 1115 by defining $\mathbf{h} \stackrel{\text{def}}{=} \mathbf{f}_x \circ \mathbf{g}_x = \mathbf{f}_t \circ \mathbf{g}_t$, we can rewrite Eq. (10) as:

$$\begin{aligned} 1117 \quad 2 \mathbb{E}_{(\mathbf{z}_x, \mathbf{z}_t) \sim p(\mathbf{z}_x, \mathbf{z}_t)} [d(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t))/\tau] &+ \mathbb{E}_{\mathbf{z}_x \sim p(\mathbf{z}_x)} \left[\log \mathbb{E}_{\mathbf{z}_t \sim p(\mathbf{z}_t)} [e^{-d(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t))/\tau}] \right] \\ 1118 \\ 1119 &+ \mathbb{E}_{\mathbf{z}_t \sim p(\mathbf{z}_t)} \left[\log \mathbb{E}_{\mathbf{z}_x \sim p(\mathbf{z}_x)} [e^{-d(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t))/\tau}] \right]. \end{aligned} \quad (37)$$

1121 We then connect the right-hand side of Eq. (32) with Eq. (37). To this end, since the two terms in the
 1122 right-hand side of Eq. (32) are symmetrical, we focus on one of the two terms for convenience, e.g.,

1123 $\mathbb{E}_{\mathbf{z}_x \sim p(\mathbf{z}_x)} [H(p(\mathbf{z}_t | \mathbf{z}_x)), q_{\mathbf{h}}(\mathbf{z}_t | \mathbf{z}_x)]$. It can be shown that:

$$\mathbb{E}_{\mathbf{z}_x \sim p(\mathbf{z}_x)} [H(p(\mathbf{z}_t | \mathbf{z}_x)), q_{\mathbf{h}}(\mathbf{z}_t | \mathbf{z}_x)] \quad (38)$$

$$= \mathbb{E}_{\mathbf{z}_x \sim p(\mathbf{z}_x)} \left[\mathbb{E}_{\mathbf{z}_t \sim p(\mathbf{z}_t | \mathbf{z}_x)} [-\log q_{\mathbf{h}}(\mathbf{z}_t | \mathbf{z}_x)] \right] \quad (39)$$

$$= \mathbb{E}_{(\mathbf{z}_x, \mathbf{z}_t) \sim p(\mathbf{z}_x, \mathbf{z}_t)} [\delta(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t))/\tau + \log C_q(\mathbf{z}_x)] \quad (40)$$

$$= \mathbb{E}_{(\mathbf{z}_x, \mathbf{z}_t) \sim p(\mathbf{z}_x, \mathbf{z}_t)} [\delta(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t))/\tau] + \mathbb{E}_{(\mathbf{z}_x) \sim p(\mathbf{z}_x)} [\log C_q(\mathbf{z}_x)] \quad (41)$$

$$= \mathbb{E}_{(\mathbf{z}_x, \mathbf{z}_t) \sim p(\mathbf{z}_x, \mathbf{z}_t)} [\delta(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t))/\tau] + \mathbb{E}_{(\mathbf{z}_x) \sim p(\mathbf{z}_x)} \left[\log \int e^{(-\delta(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t))/\tau)} d\mathbf{z}_x \right] \quad (42)$$

1134 Since $p(\mathbf{z}_x) = |\mathcal{Z}|^{-1}$, and $p(\mathbf{z}_t) = |\mathcal{Z}|^{-1}$ by Lemma 3, Eq. (42) is equal to:
 1135

$$1136 = \mathbb{E}_{(\mathbf{z}_x, \mathbf{z}_t) \sim p(\mathbf{z}_x, \mathbf{z}_t)} [\delta(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t)) / \tau] + \mathbb{E}_{\mathbf{z}_x \sim p(\mathbf{z}_x)} \left[\log \mathbb{E}_{\mathbf{z}_t \sim p(\mathbf{z}_t)} [e^{-\delta(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t)) / \tau}] \right] + \log |\mathcal{Z}_c| \\ 1137 \\ 1138 \quad (43)$$

1139
 1140 Similarly, for the second term in the right-hand side of Eq. (32), we can proof that:
 1141

$$1142 \\ 1143 \mathbb{E}_{(\mathbf{z}_t) \sim p(\mathbf{z}_t)} [H(p(\mathbf{z}_x | \mathbf{z}_t), q_{\mathbf{h}}(\mathbf{z}_x | \mathbf{z}_t))] = \mathbb{E}_{(\mathbf{z}_x, \mathbf{z}_t) \sim p(\mathbf{z}_x, \mathbf{z}_t)} [\delta(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t)) / \tau] \\ 1144 \\ 1145 \quad + \mathbb{E}_{\mathbf{z}_t \sim p(\mathbf{z}_t)} \left[\log \mathbb{E}_{\mathbf{z}_x \sim p(\mathbf{z}_x)} [e^{-\delta(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t)) / \tau}] \right] + \log |\mathcal{Z}_c|. \\ 1146 \\ 1147 \quad (44)$$

1148 By combining Eq. (43) and Eq. (45), we can conclude the proof.
 1149

1150 E.2 IDENTIFIABILITY RESULT ON CONVEX BODIES 1151

1152 Theorem 4.2 represents a symmetrical adaptation of Theorem 3 from (Zimmermann et al., 2021). This
 1153 alignment allows us to employ Propositions 4, Lemma 1 and Lemma A from (Zimmermann et al.,
 1154 2021) to demonstrate that the global minimization of the objective outlined in Eq. (32), as specified
 1155 in Theorem 4.2, identifies the latent variables \mathbf{z}_x , as well as \mathbf{z}_x , up to linear transformations. For
 1156 completeness, a brief proof is provided herein, with comprehensive details available in the original
 1157 work. Clearly, the global minimum of the cross-entropy between two distributions is reached if they
 1158 match by value and have the same support. Therefore, for the optimal solution of the objective loss
 1159 Eq. (10) in Theorem 4.2, we have:
 1160

$$p(\mathbf{z}_t | \mathbf{z}_x) = q_{\mathbf{h}}(\mathbf{z}_t | \mathbf{z}_x), \quad (46)$$

1161 This expression also holds true for $\mathbf{z}_t = \mathbf{z}_x$, we have:
 1162

$$1163 C_p(\mathbf{z}_x)^{-1} e^{-\delta(\mathbf{z}_x, \mathbf{z}_x) / \lambda} = C_q(\mathbf{z}_x)^{-1} e^{-\delta(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_x)) / \tau}, \\ 1164 \Leftrightarrow C_p(\mathbf{z}_x) = C_q(\mathbf{z}_x) \quad (47)$$

1165 As the normalization constants are identical we get for all $\mathbf{z}_x, \mathbf{z}_t$,
 1166

$$1167 \delta(\mathbf{z}_x, \mathbf{z}_t) = \lambda \delta(\mathbf{h}(\mathbf{z}_x), \mathbf{h}(\mathbf{z}_t)) / \tau. \quad (48)$$

1168 Then, by limiting δ be an L^α metric for $\alpha \geq 1, \alpha \neq 2$ or the α -th power of such an L^α metric, using the
 1169 Theorems 5 and 6 in Zimmermann et al. (2021), \mathbf{h} is a composition of input independent permutations,
 1170 sign flips and rescaling. In other words, Theorem 4.2 establishes that the latent variables \mathbf{z}_x (and \mathbf{z}_t)
 1171 are identifiable up to a permutation transformation, *i.e.*, the recovered latent variable $\mathbf{f}_x(\mathbf{x})$, obtained
 1172 through the minimization of Eq. (8), is related to the true \mathbf{z}_x as follows: $\mathbf{f}_x(\mathbf{x}) = \mathbf{P}\mathbf{z}_x + \mathbf{c}$, where \mathbf{P}
 1173 represents an permutation matrix with scaling, and \mathbf{c} is a constant vector.
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 **F DIFFERENCES FROM PREVIOUS ANALYSIS FOR MULTIMODAL**
 1189 **CONTRASTIVE LEARNING**
 1190

1191 This work differs from previous works focusing on identifiability analysis for multimodal settings
 1192 ([Daunhawer et al., 2023](#); [Yao et al., 2023](#); [Gresele et al., 2020](#)) across the following three key
 1193 dimensions.

1194 **Modeling Setting** This work proposes modeling transferable knowledge across modalities by
 1195 latent coupled variables. In contrast, previous works ([Daunhawer et al., 2023](#); [Yao et al., 2023](#);
 1196 [Gresele et al., 2020](#)) often achieve this by introducing the same/shared variables. The advantages of
 1197 employing latent coupled variables are thoroughly justified in Section ???. Loosely speaking, From the
 1198 perspective of model flexibility, the proposed model can be considered a generalization of previous
 1199 works. This generalization is apparent as the proposed model seamlessly reduces to a single-modal
 1200 setting when the mixing functions from latent space to observed space are enforced to be identical,
 1201 and specific variables are omitted.

1202 **Identifiability Results** The identifiability results obtained in this work diverge from those found
 1203 in previous works ([Daunhawer et al., 2023](#); [Yao et al., 2023](#)), both in terms of breadth and depth
 1204 of identifiability, due to the introduction of the undirected edge between \mathbf{z}_x and \mathbf{z}_t . a) *Breadth of*
 1205 *Identifiability*: Unlike earlier works that often achieve only partial identifiability of latent coupled
 1206 variables \mathbf{z}_x or \mathbf{z}_t , e.g., latent content variables but not latent style variables ([Daunhawer et al.,](#)
 1207 [2023](#); [Yao et al., 2023](#)), our model extends this scope to ensure complete identifiability of latent
 1208 coupled variables \mathbf{z}_x and \mathbf{z}_t . b) *Depth of Identifiability*: In terms of depth, this work identifies latent
 1209 coupled variables \mathbf{z}_x and \mathbf{z}_t up to linear or permutation transformations. As a result, after applying
 1210 a linear ICA method, we can obtain component-wise identifiability, i.e., recovering independent
 1211 latent variables up to permutation and scaling. This level of precision offers an enhancement over
 1212 the block identifiability result in previous studies ([Daunhawer et al., 2023](#); [Yao et al., 2023](#)), which
 1213 only identifying latent variables up to a nonlinear invertible mapping, even for independent latent
 1214 variables. *The differences above in both breadth and depth of identifiability results enable us, for*
 1215 *the first time, to unveil the component-wise disentanglement capabilities of multimodal contrastive*
 1216 *representation learning.*

1217 **Practical Significance in Real Applications** Prior studies ([Daunhawer et al., 2023](#); [Yao et al., 2023](#);
 1218 [Gresele et al., 2020](#)) have predominantly relied on simulation experiments, which often encounter a
 1219 substantial gap between the assumptions made in theoretical analyses and the practical conditions of
 1220 real-world applications. In contrast, our work bridges this gap by validating our theoretical findings
 1221 using pre-trained CLIP models on over 16 diverse real-world datasets. This empirical approach not
 1222 only substantiates the practical effectiveness of our theoretical results but also demonstrates their
 1223 applicability and robustness in real-world multimodal settings, highlighting a significant departure
 1224 from previous work in terms of real-world applicability.

1226 **G DIFFERENCES FROM PREVIOUS ANALYSES FOR SINGLE-MODAL**
 1227 **CONTRASTIVE LEARNING**
 1228

1229 This work sets itself apart from prior studies focused on the analysis of single-modal contrastive
 1230 learning ([Zimmermann et al., 2021](#); [Von Kügelgen et al., 2021](#)) in the following key aspects.

1231 **Problem Context** Previous works primarily address single-modal scenarios, whereas our proposed
 1232 model extends this framework to the more complex multimodal domain. This extension can be viewed
 1233 as a generalization of prior approaches. Specifically, our model naturally reduces to a single-modal
 1234 setting when the mixing functions from the latent space to the observed space are identical, and
 1235 certain variables are omitted. By expanding the scope to multimodal data, our approach addresses the
 1236 limitations of prior studies and provides a more comprehensive understanding of contrastive learning.

1237 **Technical Perspective** Addressing multimodal settings requires significantly broader technical
 1238 developments compared to single-modal analyses. To this end, we developed Theorem 3.1, which
 1239 generalizes the asymptotic analysis of contrastive learning to the multimodal context, providing

1242 a robust theoretical foundation. Bridging the gap between single-modal and multimodal settings
 1243 also necessitated novel theoretical insights. For instance, Theorem 4.1 and Theorem 4.2 establish
 1244 critical connections between multimodal contrastive learning and traditional single-modal frameworks,
 1245 enabling a unified understanding across these domains. These results not only expand the applicability
 1246 of contrastive learning but also highlight the intricate dependencies introduced by multimodal data.
 1247

1248 **New Insights** In the multimodal context, a key challenge is effectively modeling the connections
 1249 between different modalities. This motivates the central insight of our work: latent coupled variables,
 1250 linked by a unidirectional edge, provide a foundation for exploring whether partial causal models are
 1251 sufficient for multimodal learning. As highlighted in the introduction, we offer theoretical support
 1252 for the success of multimodal contrastive learning, including guarantees for its disentanglement
 1253 capabilities. From a practical perspective, we recommend refining representations from pre-trained
 1254 CLIP-like models rather than using them directly. Specifically, applying linear ICA methods, such as
 1255 FastICA (aligned with assumptions on the hypersphere), or combining PCA and FastICA (aligned
 1256 with assumptions on convex bodies), can enhance performance on tasks that rely on disentangled
 1257 representations. These insights not only validate the robustness of our theoretical findings but also
 1258 emphasize their practical significance in real-world applications.
 1259

H MORE RESULTS ON CELEBA

1260 Figures 5 - 7 illustrate the 16 distinct disentangled representations obtained using pre-trained CLIP
 1261 with FastICA. Interestingly, our method achieves competitive results compared to specialized disen-
 1262 tanglement techniques, such as FactorVAE (Kim & Mnih, 2018) and β -TCVAE (Chen et al., 2018).
 1263 Specifically, FactorVAE identified 8 disentangled attributes, while β -TCVAE reported 15, whereas
 1264 our approach successfully discerns 16 distinct disentangled representations.
 1265

1266 It is important to note that this comparison is not meant to position our method as a more effective
 1267 disentanglement technique. Rather, our experiments are designed solely to validate our theoretical
 1268 findings. We present this comparison to provide insight into the potential of leveraging CLIP
 1269 for learning disentangled representations, thereby motivating future research in this direction. A
 1270 particularly interesting avenue could be exploring how disentanglement capabilities relate to the
 1271 manipulation of pre-trained vision models, such as diffusion models.
 1272

1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296
1297
1298
1299
1300
1301

1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327

1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341

1342
1343
1344
1345
1346
1347
1348
1349

Figure 5: Disentangled Representations learned by combining pre-train CLIP and FastICA.

1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368

1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383

1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397

1398
 1399
 1400
 1401
 1402
 1403

Figure 6: Disentangled Representations learned by combining pre-train CLIP and FastICA.

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

(a) Face Height

(b) Hair Style

(c) Hair length

(d) Age

Figure 7: Disentangled Representations learned by combining pre-train CLIP and FastICA.

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458 I MORE RESULTS ON IMAGENET-TYPE DATA
14591460 Table 3: Quantitative results for 16-shot transfer learning and domain generalization by different
1461 methods. Lin. P. (Linear Probe).
1462

ENCODERS	METHODS	SOURCE		TARGET (IMAGENET-)			
		IMAGENET	V2	SKETCH	R	A	AVG.
RN50	LIN. P.	55.36	45.45	18.22	34.09	12.52	27.77
	LIN. P. w/ FASTICA	57.82	47.78	19.77	38.05	13.15	29.69
	LIN. P. w/ PCA AND FASTICA	57.37	47.67	20.39	38.76	12.89	29.93
RN101	LIN. P.	60.98	50.36	25.80	46.61	18.64	35.35
	LIN. P. w/ FASTICA	61.86	51.85	27.29	49.29	19.89	37.08
	LIN. P. w/ PCA AND FASTICA	61.58	51.44	28.86	50.32	19.97	37.64
ViT32	LIN. P.	60.76	50.92	28.81	49.18	19.72	37.15
	LIN. P. w/ FASTICA	61.94	51.95	30.30	51.82	20.81	38.72
	LIN. P. w/ PCA AND FASTICA	62.00	52.39	30.39	51.61	20.96	38.84
ViT16	LIN. P.	67.17	57.01	35.43	60.96	35.41	47.20
	LIN. P. w/ PCA AND FASTICA	68.12	58.45	38.41	63.89	37.17	49.48
	LIN. P. w/ FASTICA	67.96	58.38	38.75	65.45	38.28	50.22

1477 Table 4: Quantitative results for 8-shot transfer learning and domain generalization by different
1478 methods. Lin. P. (Linear Probe).
1479

ENCODERS	METHODS	SOURCE		TARGET (IMAGENET-)			
		IMAGENET	V2	SKETCH	R	A	AVG.
RN50	LIN. P.	49.33	40.83	15.06	31.23	10.99	24.53
	LIN. P. w/ FASTICA	51.99	43.58	15.47	34.35	12.85	26.56
	LIN. P. w/ PCA AND FASTICA	51.42	42.93	17.28	35.53	12.33	27.02
RN101	LIN. P.	55.41	46.04	23.38	43.26	16.88	32.39
	LIN. P. w/ FASTICA	56.59	47.47	22.09	44.59	18.39	33.14
	LIN. P. w/ PCA AND FASTICA	55.84	46.59	23.68	44.94	18.25	33.37
ViT32	LIN. P.	55.17	46.11	25.53	45.32	18.35	33.83
	LIN. P. w/ FASTICA	56.90	47.96	27.62	49.13	20.31	36.26
	LIN. P. w/ PCA AND FASTICA	55.83	46.55	26.54	46.77	18.80	34.67
ViT16	LIN. P.	61.82	52.34	32.26	55.93	32.63	43.29
	LIN. P. w/ FASTICA	63.55	54.81	34.21	61.54	38.21	47.29
	LIN. P. w/ PCA AND FASTICA	63.47	54.32	35.83	61.88	37.35	47.36

1494 Table 5: Quantitative results for 4-shot transfer learning and domain generalization by different
1495 methods. Lin. P. (Linear Probe).
1496

ENCODERS	METHODS	SOURCE		TARGET (IMAGENET-)			
		IMAGENET	V2	SKETCH	R	A	AVG.
RN50	LIN. P.	41.34	33.67	11.55	26.27	9.67	20.29
	LIN. P. w/ FASTICA	44.10	36.07	12.75	30.15	11.64	22.65
	LIN. P. w/ PCA AND FASTICA	42.86	35.38	12.29	28.81	9.79	21.57
RN101	LIN. P.	48.23	39.53	18.80	38.10	14.32	27.69
	LIN. P. w/ FASTICA	49.43	41.02	17.49	39.33	15.25	28.27
	LIN. P. w/ PCA AND FASTICA	49.01	40.25	19.26	39.71	14.75	28.49
ViT32	LIN. P.	47.82	39.53	21.51	40.94	15.99	29.49
	LIN. P. w/ FASTICA	49.43	40.66	22.66	41.78	16.41	30.38
	LIN. P. w/ PCA AND FASTICA	49.48	41.09	23.72	43.48	16.77	31.27
ViT16	LIN. P.	54.30	46.06	27.58	50.76	29.24	38.41
	LIN. P. w/ FASTICA	56.65	48.18	28.27	55.50	33.39	41.33
	LIN. P. w/ PCA AND FASTICA	56.16	47.46	30.21	55.49	31.71	41.22

1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531

Table 6: Quantitative results for 1-shot transfer learning and domain generalization by different methods. Lin. P. (Linear Probe).

ENCODERS	METHODS	SOURCE		TARGET (IMAGENET-)			
		IMAGENET	V2	SKETCH	R	A	Avg.
RN50	LIN. P.	21.74	18.24	5.68	15.41	6.55	11.47
	LIN. P. w/ FASTICA	23.22	19.68	6.37	13.84	7.21	11.77
	LIN. P. w/ FASTICA	24.06	20.26	6.85	17.54	8.05	13.18
RN101	LIN. P.	26.05	21.48	9.90	23.85	10.17	16.35
	LIN. P. w/ FASTICA	27.50	23.33	8.35	17.87	10.71	15.07
	LIN. P. w/ PCA AND FASTICA	28.50	24.17	11.63	26.38	12.28	18.62
ViT32	LIN. P.	26.99	22.99	11.93	25.25	11.56	17.93
	LIN. P. w/ FASTICA	29.21	24.80	9.97	21.23	12.23	17.06
	LIN. P. w/ PCA AND FASTICA	29.05	24.45	12.39	27.61	12.56	19.25
ViT16	LIN. P.	32.42	27.64	16.34	34.28	21.84	25.02
	LIN. P. w/ FASTICA	34.35	29.31	13.91	28.61	23.24	23.77
	LIN. P. w/ PCA AND FASTICA	35.20	30.26	19.17	38.87	26.41	28.68

1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

1566 **J MORE RESULTS ON FEW-SHOT LEARNING TASK**
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576

1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Figure 8: More results on few-shot learning task: A comparison of top-1 accuracy (%) achieved by various few-shot CLIP adaptation methods across 11 datasets, including ImageNet (Deng et al., 2009), Caltech101 (Fei-Fei et al., 2004), FGVCaircraft (Maji et al., 2013), UCF101 (Soomro et al., 2012), EuroSAT (Helber et al., 2019), Flowers102 (Nilsback & Zisserman, 2008), StanfordCars (Krause et al., 2013), DTD (Cimpoi et al., 2014), Food101 (Bossard et al., 2014), OxfordPets (Parkhi et al., 2012), and, SUN397 (Xiao et al., 2010). The x-axis indicates the number of training examples per class. The incorporation of FastICA notably enhances the performance of the original methods, Tip-Adapter and Tip-Adapter-F, proposed by (Zhang et al., 2022a).

1620 **K IMPLEMENTATION DETAILS**
 1621

1622 We perform all experiments using the GPU RTX 4090, equipped with 32 GB of memory.
 1623

1624 **Synthetic Data** We consider latent coupled variables \mathbf{z}_x and \mathbf{z}_t , each with a dimensionality of 10.
 1625 Additionally, we have modality-specific latent variables \mathbf{m}_x and \mathbf{m}_t , both set to a dimension of 5.
 1626 The process begins with sampling from the marginal distribution $p(\mathbf{z}_x)$, and the samples of modality-
 1627 specific latent variables \mathbf{m}_x and \mathbf{m}_t are obtained by sampling from Gaussian distributions with zero
 1628 mean and one variance. We then create real pairs by sampling from the conditional distribution
 1629 $p(\mathbf{z}_t|\mathbf{z}_x)$. The observational data \mathbf{x} and \mathbf{t} are generated using two different Multi-Layer Perceptrons
 1630 (MLPs). Specifically, we utilize MLPs comprising three hidden layers with leaky ReLU units and
 1631 random weights. To ensure the invertibility of the MLP g , we carefully control the condition number
 1632 of the weight matrices. For our encoders concerning both \mathbf{z}_t and \mathbf{z}_x , we adopt an MLP architecture
 1633 with leaky ReLU units.

1634 **Evaluation:** To evaluate the linear identifiability result established in Corollary 1, we assess how
 1635 well the learned representations $\hat{\mathbf{z}}_x$ preserve the structure of the ground-truth latent variables \mathbf{z}_x up to
 1636 a linear transformation. Specifically, we perform the following steps:
 1637

1. **Learned Representations Extraction:** We first obtain representations $\hat{\mathbf{z}}_x$ learned by multi-modal
 1639 contrastive learning.
2. **Linear Regression Fitting:** We fit a linear regression model of the form:

$$\hat{\mathbf{z}}_x = \hat{\mathbf{A}}\mathbf{z}_x + \hat{\mathbf{c}} + \epsilon,$$

1643 where $\hat{\mathbf{A}}$ is a learned transformation matrix, $\hat{\mathbf{c}}$ is an offset vector, and ϵ represents residual
 1644 errors.

3. **Coefficient of Determination (R^2) Computation:** We compute the R^2 score, defined as:

$$R^2 = 1 - \frac{\sum_i \|\hat{\mathbf{z}}_{x,i} - (\hat{\mathbf{A}}\mathbf{z}_{x,i} + \hat{\mathbf{c}})\|^2}{\sum_i \|\hat{\mathbf{z}}_{x,i} - \bar{\hat{\mathbf{z}}}_x\|^2},$$

1649 where $\bar{\hat{\mathbf{z}}}_x$ is the mean of $\hat{\mathbf{z}}_x$. This metric quantifies how well the learned representations can
 1650 be linearly mapped to the true latent variables.

4. **Analysis Under Different Assumption Violations:** We repeat the evaluation under settings
 1652 that both satisfy and violate the theoretical assumptions, as listed in Table 1, allowing us to
 1653 empirically assess the robustness of the identifiability results.
 1654

1655 By reporting the R^2 scores across different conditions, we quantify the extent to which multimodal
 1656 contrastive learning successfully recovers the latent variables up to a linear transformation.
 1657

1658 to evaluate permutation identifiability result in Corollary 2, we employ the mean correlation coefficient
 1659 (MCC) between the ground-truth \mathbf{z}_x and representations $\mathbf{f}_x(\mathbf{x})$ learned by multimodal contrastive
 1660 learning. To compute MCC, we follow these steps:

1. **Compute Correlation Coefficients:** We first calculate the correlation coefficients between
 1662 all pairs of ground-truth source variables and representations learned by multimodal con-
 1663 trastive learning. Specifically, for each pair of source component $\mathbf{z}_{x,i}$ and recovered latent
 1664 component $\hat{\mathbf{z}}_{x,j}$, we compute the Pearson correlation coefficient:

$$\rho_{i,j} = \frac{\text{Cov}(\mathbf{z}_{x,i}, \hat{\mathbf{z}}_{x,j})}{\sigma_{\mathbf{z}_{x,i}} \sigma_{\hat{\mathbf{z}}_{x,j}}}, \quad (49)$$

1668 where $\text{Cov}(\cdot, \cdot)$ denotes the covariance, and $\sigma_{\mathbf{z}_{x,i}}$ and $\sigma_{\hat{\mathbf{z}}_{x,j}}$ are the standard deviations of
 1669 the respective components.

2. **Solve the Linear Sum Assignment Problem:** Since the estimated components may be
 1671 permuted relative to the ground-truth variables, we solve a linear sum assignment problem
 1672 to determine the optimal one-to-one mapping between the ground-truth and the learned
 1673 representations. The goal is to maximize the total absolute correlation across all assigned
 1674 pairs.

1674	ReLU(BN(ConvTranspose2d(512, 512, kernelsize=1, stride=1, padding=0)))
1675	ReLU(BN(ConvTranspose2d(512, 64, kernelsize=4, stride=1, padding=0)))
1676	ReLU(BN(ConvTranspose2d(64, 64, kernelsize=4, stride=1, padding=0)))
1677	ReLU(BN(ConvTranspose2d(64, 32, kernelsize=4, stride=1, padding=0)))
1678	ReLU(BN(ConvTranspose2d(32, 32, kernelsize=4, stride=1, padding=0)))
1679	ConvTranspose2d(32, 3, kernelsize=4, stride=2, padding=1)

Table 7: Decoder for the image data.

3. **Compute the Mean Correlation Coefficient (MCC):** Given the optimal assignment of the ground-truth variables to the learned representations, we compute the mean of the absolute values of the assigned correlation coefficients:

$$\text{MCC} = \frac{1}{d} \sum_{i=1}^d |\rho_{i,\pi(i)}|, \quad (50)$$

where $\pi(i)$ denotes the index of the assigned representation corresponding to the i th latent variable, and d is the number of latent variables.

A high MCC indicates that the learned representation closely match the true source variables, up to permutation transformations, thereby validating the identifiability of the learned representations.

Disentangled Representation Learning on CelebA To obtain disentangled representations for the CelebA dataset, we initially employ the FastICA implementation available in the scikit-learn software on the representations extracted from the pretrained ViT-B/32 encoder. Subsequently, we train the decoder, as outlined in Table 7, utilizing Mean Squared Error (MSE) loss.

Experiments of Linear Probe In our experiments with ImageNet-Type data, we utilized the PCA and FastICA implementations provided by scikit-learn. For our proposed method, which combines PCA and ICA, we configured the number of components to 500 for PCA, and for FastICA, we set it to 160 for 1, 2, and 4-shot learning scenarios, and 200 for 8 and 16-shot learning scenarios. When employing ICA alone, we chose to use 300 components. For the proposed method with ICA only, we set number of components to 300. Following the setting of linear probe in CLIP, we train a logistic regression classifier using scikit-learn’s L-BFGS implementation, with maximum 1,000 iterations. We determine the L2 regularization strength using a hyperparameter sweep on the validation sets over the range between 10^{-6} and 10^6 , with 96 logarithmically spaced steps. To save compute required for the sweeps, we perform a parametric binary search and iteratively halves the interval around the peak until it reaches a resolution of 8 steps per decade. The hyperparameter sweeps are performed on a validation split of each dataset.

FastICA as a plug-and-play Tool. We incorporate FastICA in the framework proposed in (Zhang et al., 2022a) to enhance its ability for few shot learning. The framework consists of two primary modules: one keeps the zero-shot capabilities of pre-trained CLIP, ensuring effective utilization of prior knowledge, while the other, the cache module, constitutes the central contribution of the work. The cache module endeavors to transfer knowledge from labeled training samples. Given the above, we integrate FastICA into the cache module, preserving the invaluable prior knowledge derived from the zero-shot abilities of pre-trained CLIP. For parameter settings in FastICA, we opted for 100 components for the majority of datasets. Specifically, we assigned 350 components for the ImageNet dataset, 300 components for the OxfordPets dataset, and 50 components for the EuroSAT dataset. A learning rate of 0.1 was employed for implementation. For the remaining parameter settings, we adhered to the specifications outlined by (Zhang et al., 2022a).

1728 L DISCUSSIONS ON FASTICA VS. PCA FOLLOWED BY FASTICA

1729
 1730 Our theoretical findings are based on two distinct assumptions: one on the hypersphere (Sec. 4.1)
 1731 and the other on convex bodies (Sec. 4.2). Each of these assumptions motivates a corresponding
 1732 practical method for real applications, namely FastICA, and PCA followed by FastICA, respectively.
 1733 In practice, however, the true latent generative process is typically unknown, making it difficult to
 1734 determine a priori which method is more appropriate. From an empirical standpoint, we observe that
 1735 face image datasets, such as CelebA, tend to align more closely with the hypersphere assumption.
 1736 This observation is supported both by our experiments on CelebA, where learning disentangled
 1737 representations under the hypersphere assumption improves performance, such as dynamic facial
 1738 expressions generation, dynamic facial expression transfer(Otberdout et al., 2020), face recognition
 1739 (Zhong et al., 2021; Liu et al., 2017). Moreover, consistent with the main motivation for learning
 1740 disentangled representations, we find that the representations obtained under the hypersphere as-
 1741 sumption lead to improved performance on related downstream tasks, further validating its practical
 1742 usefulness.

1743 M ACKNOWLEDGMENT OF LLMs USAGE

1744 We acknowledge that large language models (LLMs) were used in this work only for word-level
 1745 tasks, including correcting typos, improving grammar, and refining phrasing. No substantive content,
 1746 results, or scientific interpretations were generated by LLMs. All scientific ideas, analyses, and
 1747 conclusions presented in this manuscript are solely the work of the authors.

1748 N HIGH-LEVEL DISCUSSION AND RATIONALE FOR THE USED ASSUMPTIONS

1749 Our identifiability analysis, like most theoretical works on latent variable recovery, relies on specific
 1750 parametric assumptions about the underlying Data Generating Process (DGP) for \mathbf{z}_x and \mathbf{z}_t . While the
 1751 exact DGP of large-scale multimodal data is unknown, these assumptions are essential for theoretical
 1752 tractability and are motivated by prevalent machine learning practices and geometrical constraints.

1753 N.1 RATIONALE AND INTERPRETATION OF ASSUMPTIONS

1754 We introduce two sets of assumptions, primarily centered on the nature of the **latent space geometry**
 1755 and the **distributional modeling** of the coupled variables.

1756 Hypersphere Assumptions (Eq. 4)

- 1757 • **Latent Space Geometry (\mathbb{S}^{M-1}):** The assumption that the latent space resides on a Hyper-
 1758 sphere is motivated by consistency with models trained via MMCL. Specifically, modern
 1759 architectures like CLIP typically enforce L_2 normalization on their embeddings, which
 1760 geometrically constrains the learned representations to lie on the unit sphere. Therefore,
 1761 assuming the underlying generative factors are also on the hypersphere is a natural choice
 1762 for space matching. Moreover, this geometry is inspired by prior work in Zimmermann et al.
 1763 (2021), which demonstrates its potential for achieving disentanglement in the single-modal
 1764 contrastive learning context.
- 1765 • **Marginal Distribution $p(\mathbf{z}_x)$ as Uniform:** This represents a maximum-entropy assumption.
 1766 Essentially, in the absence of specific prior knowledge, we assume that the distribution of
 1767 the shared latent variables, \mathbf{z}_x , is uniform across the latent space.
- 1768 • **Conditional Distribution $p(\mathbf{z}_t|\mathbf{z}_x)$ as von Mises-Fisher (vMF) Distribution:** The vMF
 1769 distribution is the natural counterpart of the Gaussian distribution defined on a sphere. Its
 1770 parameterized form models the semantic coupling by formalizing the objective of MMCL:
 1771 given a factor \mathbf{z}_x , the distribution expects its positive pair \mathbf{z}_t to be concentrated nearby with
 1772 high probability. The alignment parameter $k\mathbf{z}_t^T \mathbf{z}_x$ precisely quantifies the strength of this
 1773 shared semantic information across modalities.

1774
 1775 **Convex Body Assumptions (Eq. 7)** The assumptions for the convex body (e.g., hyperrectangle)
 1776 case provide an alternative geometric setting, often preferred in classic disentanglement works.

- **Latent Space (\mathcal{Z}_c) as a Bounded Convex Body:** This definition specifies a non-spherical, bounded space, which is typically crucial for ensuring identifiability and has been used in previous related works Zimmermann et al. (2021).
- **Conditional Distribution $p(\mathbf{z}_t|\mathbf{z}_x)$ as Exponential Distribution:** The mathematical form $e^{-\delta(\mathbf{z}_t, \mathbf{z}_x)/\lambda}$ models the coupling relationship by assuming the likelihood decays exponentially with the distance (δ , a distance metric induced by a norm between the coupled variables). This implies that given \mathbf{z}_x , the paired variable \mathbf{z}_t is likely to be found in its immediate vicinity.

N.2 LIMITATIONS AND PRACTICAL IMPLICATIONS

While these assumptions are theoretically sufficient for identifiability, as we have shown, their strict adherence in real-world scenarios is challenging to verify. This difficulty arises because the true data-generating process is unknown, making direct verification of conditions generally impossible. As is common in practice, performance gains on downstream tasks are therefore used as a surrogate to assess the plausibility of the theoretical assumptions. In particular, if the methods derived from our identifiability theorems (e.g., using FastICA or PCA+FastICA to recover disentangled representations) consistently yield strong improvements across diverse downstream tasks—as demonstrated in our extensive experiments on few-shot learning and domain generalization—then it is reasonable to infer that the underlying assumptions are either satisfied or, more likely, approximated sufficiently well for the theory to be practically meaningful.

O A FORMAL DEFINITION OF DISENTANGLEMENT

Definition 1 (Component-wise Disentanglement). *A representation $\mathbf{f}_x(\mathbf{x})$ (and symmetrically, $\mathbf{f}_t(\mathbf{t})$) learned by MMCL is defined as **Component-wise Disentangled** if two conditions are met:*

1. **Factor Independence (Prerequisite):** *The components of the underlying latent coupled variable \mathbf{z}_x (and \mathbf{z}_t) are mutually statistically independent.*
2. **Identifiability up to Trivial Transformation:** *The representation $\mathbf{f}_x(\mathbf{x})$ (and symmetrically, $\mathbf{f}_t(\mathbf{t})$) is related to the true latent variable \mathbf{z}_x (and \mathbf{z}_t) through a simple, invertible transformation \mathbf{T} up to a constant \mathbf{c} :*

$$\mathbf{f}_x(\mathbf{x}) = \mathbf{T}\mathbf{z}_x + \mathbf{c} \quad \text{and symmetrically} \quad \mathbf{f}_t(\mathbf{t}) = \mathbf{T}'\mathbf{z}_t + \mathbf{c}'$$

where \mathbf{T} (and \mathbf{T}') is a matrix of trivial ambiguity, specifically:

- \mathbf{T} is an orthogonal matrix (in the hypersphere latent space, Corollary 1).
- \mathbf{T} is a permutation matrix with scaling (in the convex body latent space, Corollary 2).

This result guarantees that the shared, independent components of \mathbf{z}_x (and \mathbf{z}_t) can be uniquely recovered by resolving the ambiguity \mathbf{T} using post-hoc linear methods, such as FastICA.

P QUANTITATIVE VALIDATION ON HIGH-DIMENSIONAL IMAGE

To provide a more direct and quantitative assessment of our theory’s disentanglement capabilities in higher-dimensional and more complex settings, we utilize the *Multimodal3DIdent* dataset (Daunhawer et al., 2023), which provides paired image and text samples with complete ground-truth latent factors. We validate the identifiability of the shared latent variables (\mathbf{z}_x and \mathbf{z}_t) that jointly influence both the image and text modalities. For shared factors, we consider the object’s *shape* (7 discrete values) and its position (*object_xpos*, *object_ypos*, *object_zpos*). The remaining factors are treated as modality-specific; see Daunhawer et al. (2023) for further details. The table below presents the \mathbf{R}^2 scores for recovering the ground-truth shared latent factors from both the image (\mathbf{z}_x) and text (\mathbf{z}_t) factors.

The image branch (\mathbf{z}_x) achieves near-perfect recovery ($\mathbf{R}^2 \approx 0.97$), robustly validating our theoretical framework’s ability to identify and unmix latent factors from complex, high-dimensional inputs.

Modality	Representation	R^2 Score (Recovery of \mathbf{z})
Image	\mathbf{z}_x	0.97 ± 0.05
Text	\mathbf{z}_t	0.75 ± 0.04

Figure 9: A sample from Multimodal3DIdent (Left). The corresponding text is: ‘The top-right of the image shows a “tab:orange” colored head’. Identifiability Scores (R^2) (Right).

Recovery performance for the text representation (\mathbf{z}_t) is slightly lower ($R^2 \approx 0.75$) (Similar observations were also reported by Daunhawer et al. (2023).), which we attribute primarily to the violation of the idealized continuous assumptions inherent to the text modality—text factors (e.g., color) are often represented as discrete, named values, which conflicts with the continuous assumptions. Overall, these results suggest that our linear identifiability results extend effectively to high-dimensional image data.

Q ICA-DISENTANGLING TEXT-ALIGNMENT MODULE

To further validate our theoretical claims on disentangling text representations only, we introduce the following experiment.

We augment the Tip-Adapter framework with a dedicated Text-Alignment Module for few-shot learning, following the design in Figure 4. Specifically, for each query image, we first generate a textual caption using an external vision-language model (LLaVA), and then encode the caption using CLIP to obtain the text feature \mathbf{f}_t . Similarly, we encode the zero-shot classifier prototypes to obtain $\mathbf{f}_{t,\text{class}}$. To explicitly disentangle the latent factors in the text modality, we apply **Independent Component Analysis (ICA)** to both \mathbf{f}_t and $\mathbf{f}_{t,\text{class}}$. The resulting disentangled representations are then used to compute logits in the text branch, which are finally integrated with the original image-text matching logits to produce the final classification output. This setup allows us to isolate and evaluate the effect of text-only disentanglement on few-shot performance, without modifying the image representation.

Table 8: Few-shot classification results (%) comparing text features with ICA / without ICA.

Dataset	1-shot	2-shot	4-shot	8-shot	16-shot
Average	64.62 / 62.40	66.51 / 64.66	68.28 / 66.56	70.10 / 68.47	71.81 / 70.36
Caltech101	92.45 / 87.10	92.90 / 88.40	93.43 / 89.17	93.55 / 89.66	93.75 / 90.14
DTD	48.11 / 46.16	51.54 / 49.65	54.91 / 54.02	59.46 / 58.39	61.52 / 61.05
EuroSAT	60.32 / 55.27	64.33 / 61.64	69.86 / 65.60	72.43 / 68.04	75.74 / 70.69
FGVC	18.96 / 18.99	21.45 / 21.30	22.38 / 22.32	25.35 / 25.44	29.97 / 29.94
Food101	78.91 / 77.38	78.98 / 77.55	79.13 / 77.55	79.19 / 77.78	79.25 / 77.89
ImageNet	60.68 / 60.46	60.82 / 60.67	60.92 / 60.80	61.42 / 61.26	61.93 / 61.80
Oxford-Flowers	73.61 / 73.24	79.09 / 78.93	84.13 / 83.76	88.27 / 88.27	89.97 / 89.97
Oxford-Pets	85.91 / 86.07	87.11 / 86.92	86.32 / 86.37	87.33 / 87.11	88.17 / 88.25
Stanford-Cars	61.41 / 57.64	62.41 / 58.64	64.77 / 61.75	66.57 / 63.09	68.86 / 66.82
SUN397	63.41 / 61.32	64.57 / 62.71	66.05 / 64.22	67.35 / 65.57	68.41 / 66.80
UCF101	66.98 / 62.78	68.41 / 64.87	69.18 / 66.61	70.24 / 68.54	72.30 / 70.63