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ABSTRACT

Directed Acyclic Graphs (DAGs) are a standard tool in causal modeling, but
their suitability for capturing the complexity of large-scale multimodal data is
questionable. In practice, real-world multimodal datasets are often collected from
heterogeneous generative processes that do not conform to a single DAG. Instead,
they may involve multiple, and even opposing, DAG structures with inverse causal
directions. To address this gap, in this work, we first propose a novel latent partial
causal model tailored for multimodal data representation learning, featuring two
latent coupled variables parts connected by an undirected edge, to represent the
transfer of knowledge across modalities. Under specific statistical assumptions,
we establish an identifiability result, demonstrating that representations learned
by MultiModal Contrastive Learning (MMCL) correspond to the latent coupled
variables up to a trivial transformation. This result deepens our understanding of
the why MMCL works, highlights its potential for representation disentanglement,
and expands the utility of pre-trained models like CLIP. Synthetic experiments
confirm the robustness of our findings, even when the assumptions are partially
violated. Most importantly, experiments on a pre-trained CLIP model embodies
disentangled representations, enabling few-shot learning and improving domain
generalization across diverse real-world datasets. Together, these contributions
push the boundaries of MMCL, both in theory and in practical applications.

1 INTRODUCTION

Recent advances in multimodal learning have demonstrated remarkable capabilities across vision,
language, and beyond (Liang et al., 2024; Lymperaiou & Stamou, 2024; Li et al., 2024). Repre-
sentative models, such as CLIP, achieve this by aligning different modalities through MultiModal
Contrastive Learning (MMCL) (Radford et al., 2021). A crucial factor behind their success is that
these models are trained on large-scale multimodal datasets, enabling them to learn rich, high-quality
cross-modal representations. Despite its remarkable empirical success, understanding the underlying
mechanisms of multimodal learning is essential, not only to explain its current achievements but
also to identify opportunities for further improvements (Liang et al., 2024). Recent works have also
analyzed multimodal learning through the lens of latent causal models (Daunhawer et al., 2023; Yao
et al., 2024; Gresele et al., 2020). These approaches examine the relationship between representa-
tions learned by multimodal learning from observed data and the high-level latent causal variables
underlying such data, a line of inquiry referred to as identifiability analysis. By demonstrating that
learned representations can, in principle, recover these latent causal variables, such analyses provide
a causality-grounded explanation for the success of multimodal models. Crucially, most of these
latent causal models rely on the assumption that the latent causal variables follow a Directed Acyclic
Graph (DAG) structure. See Appendix A for more related work.

We argue that such a DAG assumption may be inappropriate for capturing the underlying generative
processes of large-scale multimodal data, which underpin state-of-the-art multimodal models. This
argument is supported by the following observation that large-scale multimodal data often arise from
heterogeneous causal mechanisms that correspond to different, and sometimes even conflicting, DAG
structures (Schölkopf et al., 2012). For instance, in the context of text–image paired data, some pairs
are generated through a text-to-image causal mechanism, where a textual instruction serves as the
input from which the corresponding image is produced (Ramesh et al., 2021). In contrast, some
pairs arise from an image-to-text pipeline, where images are first collected from the internet and
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subsequently annotated with descriptive text by experts (Sharma et al., 2018). These two distinct
causal mechanisms illustrate that large-scale multimodal data may arise from fundamentally opposite
causal directions. Consequently, the common DAG assumption may be overly restrictive, failing to
capture the diverse and sometimes conflicting generative processes underlying such data (see Sec. 2
for a detailed discussion). As a result, although prior works on identifiability analysis under DAG
assumptions (Daunhawer et al., 2023; Yao et al., 2023; Gresele et al., 2020) have provided valuable
theoretical insights, they are often restricted to specific, small-scale multimodal data, where a DAG
structure is sufficient to capture the underlying generative process. As a direct consequence of this
modeling choice, these studies largely remain confined to simulation experiments, and offer limited
guidance for applying advanced multimodal models trained on large-scale data, e.g., CLIP-like
models, to real-world applications. To this end, this paper makes the following contributions:

• A Novel Latent Partial Causal Model (Sec. 2). We propose a novel latent partial causal generative
model, specifically designed for modeling the multimodal data generation process. Instead of relying
on the DAGs assumption, our model introduces latent coupled variables, connected by undirected
edges, to effectively capture transferable knowledge across different modalities.
• Identifiability Guarantee (Sec. 3 and 4). We developed theoretical analyses specifically tailored to
the proposed generative model, under certain statistical assumptions, showing that the representations
learned by MMCL are related to the latent coupled variables up to a simple transformation, thereby
providing a theoretical explanation for the success of MMCL.
• Disentanglement Potential of MMCL (Sec. 5). Our theoretical results reveal the component-wise
disentanglement potential of MMCL, which pushes the boundaries of how pre-trained models, such
as CLIP-like models, can be leveraged. To the best of our knowledge, this is the first work to provide
guarantees for the component-wise disentanglement potential of MMCL.
• Extensive Experimental Results (Sec. 6). We validate our theoretical findings under ideal conditions
via simulations and demonstrate their robustness even when the underlying assumptions are partially
violated. Extensive experiments on pre-trained CLIP model across various tasks, such as few-shot
learning, domain generalization, and disentangled representation learning, on over 16 real-world
datasets substantiate the practical effectiveness of our findings.

In summary, our work provides a principled explanation for the success of MMCL and, importantly,
highlights its potential for learning disentangled representations. Although our theoretical findings
rely on certain assumptions that may not be fully verifiable in practice, similar to most existing works
on identifiability analysis, simulations demonstrate the robustness of our results even when these
assumptions are partially violated. In addition, extensive experiments with pre-trained CLIP models
across diverse real-world tasks provide strong evidence that the theoretical insights can translate into
practical benefits. Taken together, these findings relax the conventional reliance on DAG assumptions
in advanced MMCL, while maintaining applicability and effectiveness in real-world scenarios.

2 GENERATIVE MODEL: THE LATENT PARTIAL CAUSAL MODEL

In this section, we introduce a latent partial causal model that captures the generative mechanisms of
multimodal data. Before presenting the model, we outline a key observation about such data.

Diversity in generative process of large-scale multimodal data. We argue that real-world large-
scale multimodal data often entails multiple, complex generative processes that may not be fully
captured by a single DAG structure. To illustrate this (see Figure 1), let latent variables zx and zt
denote shared semantic factors. For example, zx may correspond to high-level visual concepts such
as object category or scene type in an image, while zt may capture the semantic content of a sentence,
such as topic or intent. To model modality-specific characteristics, we introduce additional latent
variables mx and mt. For instance, mx may represent image-specific factors such as background
noise or visual artifacts, whereas mt could encode linguistic aspects such as sentence structure or
grammatical patterns. Together, (zx,mx) and (zt,mt) generate the observed variables x (image)
and t (text), respectively.

In the left DAG model of Figure 1, the latent confounder c represents a shared source of variation that
influences both latent variables zx and zt, which correspond to latent semantic factors generating the
observed variables x (e.g., image) and t (e.g., text), respectively. This confounder captures a common
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czx ztmx mt
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bzx ztmx mt
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bzx ztmx mt
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Figure 1: Possible DAG structures underlying large-scale multimodal data: Left: A latent confounder
influences both zx and zt. Middle: zt influences zx through an intermediate mediator b, serving as a
bottleneck for transferable knowledge. Right: A symmetric inverse relationship where zx influences
zt via b. These DAGs illustrate that a single DAG assumption may not hold when modeling large-
scale multimodal data with heterogeneous generative processes.

underlying context or concept connecting the two modalities. For example, if the image and text are
related to the topic "sports," c could encapsulate this shared theme, influencing the generation of
both the visual and textual data. The middle DAG depicts a structure where b represents transferable
knowledge. Specifically, b serves as the bridge, deriving information from the text latent variable zt
and informing the image latent space zx. This scenario aligns with the generative process where text
serves as a guiding input for image generation, e.g., text-to-image generation. A classical example
is the MNIST dataset (LeCun & Cortes, 2005). In contrast, the DAG on the right represents an
image-guided text generation process, e.g., image captioning. Here, the high-level latent information
in the image influences the high-level latent variable in the generated caption. A classical example is
the CelebA dataset (Jiang et al., 2021).

Current advanced multimodal models, such as CLIP (Liang et al., 2022), are typically trained on
vast collections of multimodal data, which may in fact arise from a mixture of the three scenarios
illustrated in Figure 1 (potentially with additional DAG assumptions not depicted). In this context,
restricting the generative modeling of large-scale multimodal data to a single DAG structure may be
inadequate to capture the inherent diversity of real-world multimodal dependencies.

zx ztmx mt

x t

Figure 2: The proposed latent par-
tial causal model. zx and zt are
latent coupled variables, and mx,
mt are modality-specific.

The Proposed Latent Partial Causal Models. Instead of
DAGs structure, we propose latent partial causal model, de-
signed to represent the generative process for multimodal data,
as illustrated in Figure 2. In it, the latent space is partitioned
into two components, each corresponding to a specific modal-
ity, such as image and text. To capture unique characteristics
within each domain, the model incorporates modality-specific
latent variables, mx and mt. In addition, to capture transfer-
able knowledge between these modalities, the model introduces
an undirected edge between the latent coupled variables, zx
and zt. Further, the observations are generated through dis-
tinct processes that link the latent variables to the observed
data. Specifically, images (x) are generated by the function
gx(mx,zx), while text (t) is produced by gt(mt,zt). Besides the justification mentioned in Figure
1, this modeling approach is also grounded in the intricate dependencies between modalities. For
instance, the adage “a picture is worth a thousand words” highlights the richness and detail of visual
data, as supported by Gropper (1963); Hum et al. (2011). However, this perspective is not universally
applicable, as Reinert (1976) argues that textual information can often convey more precise meanings.
Similarly, Fidler et al. (2013) reinforces the complementary nature of text, asserting that “a sentence
is worth a thousand pixels” in its ability to succinctly express complex ideas.

3 A FIRST LOOK: THE RECOVERY POTENTIAL OF MMCL

Given the proposed generative model, our goal is to analyze how MMCL framework, trained with
observed data x and t, can recover the true latent variables zx and zt, up to a simple transformation.
Before this, we provide an intuitive motivation for why MCL is expected to achieve this. MMCL
leverages a loss function designed to maximize similarity between embeddings of real paired data
while minimizing similarity for incorrect pairs. The loss function is defined as Zhang et al. (2022b);
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Radford et al. (2021):

L = −
1

N

N

∑
i=1

log
e−d
(fx(xi),ft(ti))/τ

∑
N
j=1 e

−d(fx(xi),ft(tj))/τ
−

1

N

N

∑
i=1

log
e−d
(fx(xi),ft(ti))/τ

∑
N
j=1 e

−d(fx(xj),ft(ti))/τ
, (1)

where d denotes a distance metric, e.g., cosine similarity on hypersphere or L1 norm on convex
bodies, τ is a learnable temperature hyper-parameter, N denotes the sample size, which means that
we have N positive pairs and N2 − N negative pairs, fx denote the encoder on one modality x,
i.e., image, similarly, ft denote the encoder on another t, i.e., text. To understand the multimodal
contrastive loss further, we investigate its asymptotics:

Theorem 3.1 (Asymptotics of L). For fixed τ > 0, as the sample size N → ∞, the (normalized)
multimodal contrastive loss converges to

lim
N→∞

L − 2 logN =2 E
(x,t)∼p(x,t)

[d(fx(x), ft(t))/τ] + E
x∼p(x)

[ log E
t∼p(t)

[e−d
(fx(x),ft(t))/τ ]]

+ E
t∼p(t)

[ log E
x∼p(x)

[e−d
(fx(x),ft(t))/τ ]].

(2)

The proof is provided in Appendix B. This is a generalization of Theorem 1 in Wang & Isola (2020).

Insights into Latent Variable Recovery The loss function in Eq. (2) connects directly to two
fundamental principles in latent variable recovery: Prior Matching and Information Preservation.
These principles are crucial for methods like nonlinear independent component analysis (ICA)
(Hyvärinen et al., 2001), which recover latent independent variables from observed data.

• Prior Matching: This constrains the solution space using prior knowledge, addressing the
non-uniqueness problem that often arises in latent variable recovery.

• Information Preservation: This ensures that the solution space fully captures the complexity
of the latent variables derived from the observed data.

Prior Matching The first term in Eq. (2) promotes alignment between representations of real data
pairs across modalities, enforcing that one modality (i.e., text) acts as a prior signal for the other (i.e.,
image). Minimizing this term drives cross-modal alignment and incorporates prior knowledge, which
is key for recovering latent variables.

Information Preservation The last two terms in Eq. (2) are closely related to ensuring that the
learned representations capture the full complexity of the latent variables. These terms can be
approximated by optimizing the following expression (proof in Appendix C):

−H(p(fx(x)), p(ft(t))) −H(p(ft(t)), p(fx(x))), (3)

where H(⋅, ⋅) denotes cross-entropy. The objective function in Eq. (2) is symmetric between x and
t. Intuitively, if p(fx(x)) and p(ft(t)) are not equal, the solution deviates, increasing the objective
value and introducing asymmetry in the last two terms. For the optimal solution, the two distributions
must align. When p(fx(x)) = p(ft(t)), the cross-entropy in Eq. (3) reduces to entropy, and if fx and
ft transform x and t into uniformly distributed random variables, Eq. (3) reaches its optimal value.
This highlights the importance of finding transformations fx and ft that preserve information by fully
capturing the latent variable structure.

A Novel Unified Perspective on Contrastive Loss Previous research has primarily focused on
contrastive loss in the context of single modality, emphasizing two main perspectives: 1) alignment-
uniformity (Wang & Isola, 2020), which is closely related to prior matching, and 2) information
preservation (Oord et al., 2018). However, these two perspectives have largely been treated separately.
In this work, we offer a novel insight by combining these two perspectives within the multimodal
context for latent variable recovery. This insight motivates our belief that MMCL holds significant
potential for recovering latent variables.
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4 FROM POTENTIAL TO PRINCIPLES: IDENTIFIABILITY GUARANTEE

Given the initiative analysis in Section 3, which highlights the potential of MMCL for recovering
latent variables, we now move forward to rigorous identifiability analysis, which provide theoretical
guarantees that MMCL can indeed recover the true latent variables, by parameterizing the proposed
latent partial causal model. We examine two distinct types of parameterization in latent spaces,
hyperspheres and convex bodies, under specific assumptions, respectively.

4.1 IDENTIFIABILITY ANALYSIS ON HYPERSPHERE

On hypersphere, we parameterize the proposed latent partial causal generative models as following:

p(zx) = ∣Z∣
−1, p(zt∣zx) = C

−1
p e(kz

T
t zx), x = gx(zx,mx), t = gt(zt,mt), (4)

where Z denotes the space of latent factors zx and zt. We assume that Z is the unit hypersphere
SM−1, aligning with the commonly used normalization in constrastive loss. We do not enforce any
further assumptions for mx and mt. For gx and gt, we assume them to be nonlinear, and invertible
(i.e., injective) mapping and differentiable, ensuring the information in latent space can be recovered.
In addition, we assume that p(zx) follows a uniform distribution, and p(zt∣zx) follows a von Mises-
Fisher (vMF) distribution, considering the constraint of unit hypersphere. Given these assumptions,
we first establish that the minimization of the symmetric cross-entropy Eq. (2)) converges to a
symmetric cross entropy, as follows:
Theorem 4.1. (L converges to the symmetric cross-entropy) Under the assumptions defined in Eqs.
(4) for the proposed latent partial causal model, the necessary condition fx ○ gx = ft ○ gt, denoted
as h, for the optimal normalized multimodal contrastiveloss given by Eq. (2) leads to the following
reduction of the loss itself:

lim
N→∞

L − 2 logN + 2 log ∣Z∣ = E
zx∼p(zx)

[H(p(zt∣zx), qh(zt∣zx))] + E
zt∼p(zt)

[H(p(zx∣zt), qh(zx∣zt))],

(5)
where H is the cross entropy, the conditional distributions qh(zt∣zx) and q(zx∣zt) are parameterized
by the following:

qh(zx∣zt) = Cq(zt)
−1e(h(zx)Th(zt)/τ)qh(zt∣zx) = Cq(zx)

−1e(h(zt)Th(zx)/τ), (6)

with
Cq(zt) = ∫ e(h(zx)Th(zt)/τ)dzx,Cq(zx) = ∫ e(h(zx)Th(zt)/τ)dzt.

Refer to Appendix D.1 for proof. This is a generalization of Theorem 1 in Zimmermann et al. (2021).

Bridge Between Modalities By addressing key asymmetries arising from modality differences,
such as modality-specific variables mx and mt, along with distinct generative processes gx and
gt, we derive the result in Theorem 4.1. This result is pivotal as it establishes a critical connection
between MMCL and traditional single-modal contrastive learning. In particular, Theorem 4.1 enables
the transfer of insights and results from single-modal settings to the multimodal context. As a result,
we present the following corollary:
Corollary 1. By leveraging Theorem 4.1, the minimization of Eq. (5) identifies the latent variables
zx (and symmetrically, zt) up to a linear transformation. Specifically, the representations fx(x),
learned by the minimization of Eq. (5), are linearly related to the underlying latent variables zx in
the proposed latent partial causal model, as follows: fx(x) =Azx + c, where A is an orthogonal
matrix and c is a constant vector.

For further details, see Appendix D.2.

Success of MMCL Corollary 1 shows that minimizing Eq. (5) (or equivalently, the multimodal
contrastive loss in Eq. (1)) identifies the latent variables zx (and symmetrically, zt) up to a linear
transformation. This means that the representations fx(x), learned through MMCL, are directly
related to the latent variables zx via a linear transformation, i.e., fx(x) = Azx + c. A similar
result holds for zt. This finding highlights the effectiveness of MMCL, suggesting that its success
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in practical applications stems from its ability to recover latent coupled variables. This recovery
preserves essential, transferable knowledge across modalities, enabling the learned representations to
capture high-level transferable information while discarding model-specific details. Such properties
are key to the robustness and transferability of MMCL representations.

4.2 IDENTIFIABILITY ANALYSIS ON CONVEX BODIES

We now extend the previous identifiability result to convex bodies, e.g., the hyperrectangle [a1, b1] ×
... × [aM , bM ]. On convex bodies, we parameterize the proposed generative models by the following:

p(zx) = ∣Zc∣
−1, p(zt∣zx) = Cp(zx)

−1e−δ(zt,zx)/λ, x = gx(zx,mx), t = gt(zt,mt), (7)

where δ is a distance metric induced by a norm. We consider a convex body in RM , denoted as Zc,
where we assume that p(zx) follows a uniform distribution, and the conditional distribution p(zt∣zx)
follows an exponential distribution. Again, we do not enforce any further assumptions for mx and
mt. For gx and gt, we assume them to be nonlinear, invertible and differentiable mapping, ensuring
information in latent space can be recovered. Given these assumptions, we have the following result:
Theorem 4.2. (L converges to the symmetric cross-entropy) Under the assumptions defined in Eq.
(7) for the proposed latent partial causal model, the necessary condition fx ○ gx = ft ○ gt, denoted
as h, for the optimal normalized multimodal contrastiveloss given by Eq. (2) leads to the following
reduction of the loss itself:

lim
N→∞

L − 2 logN + 2 log ∣Zc∣ = E
zx∼p(zx)

[H(p(zt∣zx), qh(zt∣zx))] + E
zt∼p(zt)

[H(p(zx∣zt), qh(zx∣zt))],
(8)

where H is the cross entropy, the conditional distributions qh(zt∣zx) and q(zx∣zt) are parameterized
by the following:

qh(zx∣zt) = Cq(zt)e
−δ(h(zx),h(zt))/τ , qh(zt∣zx) = Cq(zx)e

−δ(h(zx),h(zt))/τ , (9)

with
Cq(zt) = ∫ e−δ(h(zx),h(zt))/τdzx,Cq(zx) = ∫ e−δ(h(zx),h(zt))/τdzt.

Bridge Between Modalities In convex bodies, Theorem 4.2, introduced for the first time in this
work, plays a key role in bridging MMCL with traditional contrastive learning by addressing the
asymmetric challenges arising from modality differences. Building on this theorem, we have:
Corollary 2. The minimization of Eq. (8) in theorem 4.2 identifies the latent variables zx (sym-
metrically, zt) up to a permutation transformation, i.e., the representations fx(x), learned by the
minimization of Eq. (8), is related to the underlying zx in the proposed partial causal model as
follows: fx(x) = Pzx + c, where P is an permutation matrix with scaling, c is a constant vector.

For completeness, see details in Appendix E.2.

Success of MMCL Similar to Corollary 1 on hyperspheres, Corollary 2 establishes that, on convex
bodies, the representations fx(x) learned by MMCL are related to the true latent variables zx as
fx(x) = Pzx + c. This provides a foundation for the success of MMCL on convex bodies.

5 FROM PRINCIPLES TO PRACTICE: DISENTANGLEMENT IN CLIP MODELS

In theory, both Corollaries 1 and 2 suggest a disentanglement potential of CLIP-like models trained
by MMCL, under the assumption that the variables in zx (and symmetrically, zt) are mutually
independent. we explore how these theoretical insights can be translated into practical guidance for
the effective use of CLIP-like models.

Corollary 1 shows that the representations fx(x) learned by MMCL are linearly related to the
true latent variables zx via an orthogonal transformation, i.e., fx(x) = Azx + c. This result holds
under two key conditions: (1) the true latent variables are sampled from a hyperspherical latent
space, and (2) the inference model, e.g., CLIP-like models, is trained in a hyperspherical inference
space. Notably, CLIP-like models naturally satisfy condition (2), as they typically employ L2
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Table 1: Assessing identifiability up to linear (left) and permutation (right) transformations under
varying assumptions. The first row in (left) and the first two rows in (right) represent settings that
align with our assumptions in Corollary 1 and Corollary 2, while the others show results for violated
assumptions. S: Space, Sp: Sphere, U: Uniform, v: vMF (k = 1), L: Laplace (λ = 0.05), N: Normal
(δ = 0.05), B: Box, Un: Unbounded, G: GenNorm (β = 3).

Generative process Model
———————————— ——————
S p(zx) p(zx∣zt) S q(zx∣zt) R2

Sp U v Sp v 99.5 ± 0.1
Sp U L Sp v 99.4 ± 0.2
Sp U N Sp v 98.7 ± 0.3

B U N Un N 90.5 ± 0.2
B U L Un N 92.2 ± 0.3
B U L Un G 99.1 ± 0.4
B U N Un G 91.2 ± 0.3

Sp N (δ = 1) L Sp v 96.3 ± 0.3
Sp N (δ = 1) N Sp v 95.9 ± 0.2

Un L (λ = 1) N Un N 88.5 ± 0.3
Un N (δ = 1) N Un N 89.2 ± 0.2

Generative process Model
———————————— ——————
S p(zx) p(zx∣zt) S q(zx∣zt) MCC

B U L B L 99.1 ± 0.1
B U G B G 97.2 ± 0.3

B U N B N 98.6± 0.2
B U L B N 99.1± 0.1
B U G B L 98.4± 0.1

B U L Un L 95.6± 0.2
B U G Un G 96.4± 0.2

normalization, constraining representations to the unit sphere. Therefore, under condition (1) holds,
the representations from CLIP-like models can be passed through linear unmixing method (e.g.,
FastICA (Hyvarinen, 1999)) to resolve the mixing matrix A, resulting in disentangled representations.
It is worth to note that the geometry of the hypersphere, specifically the unit M − 1-dimensional
hypersphere, places an upper bound on the number of independent variables, i.e., M − 1 at most.

Unlike Corollary 1, Corollary 2 shows that the learned representations fx(x) from MMCL are already
disentangled, i.e., fx(x) = Pzx + c. This result mainly requires two conditions: (1) the true latent
variables zx are sampled from a convex body latent space, and (2) the inference space of the model is
also constrained to a convex body. However, CLIP-like models typically violate the second condition,
as they operate in a hyperspherical inference space due to L2 normalization, even through we assume
that the first condition may hold. Nevertheless, the insight from Corollary 2 remains useful with
appropriate adjustments. In particular, the Corollary relies on the existence of an isometric mapping
from the latent space to the representation space (see Eq. (48) in Appendix). Although a global
isometry from a convex body to a hypersphere is not feasible, it is reasonable to assume a local
isometry between the convex body and small regions of the hypersphere. Based on this, we propose
first applying Principal Component Analysis (PCA) to the representations fx(x). Then, FastICA can
be used to account for the orthogonal transformation introduced by PCA, enabling the extraction of
the final disentangled representations. This PCA+ICA pipeline thus enables effective use of CLIP-like
models under the result of Corollary 2.

Remark 1. By leveraging the disentanglement capabilities of CLIP-like models, we can improve
performance on tasks that benefit from disentangled representations, such as few-shot learning
and domain generalization. This observation further motivates exploration of the disentanglement
potential inherent in CLIP-like models across a broad range of downstream applications.

6 SYNTHETIC EXPERIMENTS AND REAL-WORLD EVALUATION

Synthetic Experiments In our initial experiments, we use synthetic data to validate our main
identifiability results on hyperspheres and convex bodies, while also empirically assessing their
robustness under significant violations of assumptions. We first sample p(zx) according to the
distributions listed in Table 1. Additionally, we generate paired samples from the conditional
distribution p(zt∣zx) following the distributions specified in the same table. Beyond hyperspheres,
our experiments also consider bounded and unbounded spaces. Each experiment is repeated three
times for every setting. For more details regarding experiments, refer to Appendix K.

To evaluate linear identifiability result in Corollary 1, we fit a linear regression model between the
ground-truth zx and representations fx(x) learned by MMCL and report the coefficient of determi-
nation (R2). Further, to evaluate permutation identifiability result in Corollary 2, we employ the
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(a) Smile (b) Gender w/ Mustache (c) Glasses (d) Face Size

Figure 3: Disentangled Representations learned by combining pre-trained CLIP and FastICA. The
results are aligned with our disentanglement findings.

mean correlation coefficient (MCC) between the ground-truth zx and representations fx(x) learned
by MMCL. The first row in Table 1 (left) and the first two rows in Table 1 (right), corresponding to
the setting where the assumptions are satisfied, verify the identifiability results on hypersphere and
convex bodies, respectively. Our empirical investigations have yielded a critical insight: discrepancies
in the assumptions concerning marginal and conditional distributions, as well as the nature of the
spaces (hypersphere and convex body), do not significantly impact performance. This robustness is
demonstrated by the results detailed in Table 1 (left) for the hypersphere space and Table 1 (right) for
convex bodies. This might be attributed to the fact that the loss function described in Eq. (2) predomi-
nantly relies on expectation computations, inherently allowing for a wide range of approximations. If
we can approximate the expectation calculations consistently across various distributions and spaces,
it is reasonable that the identifiability results remain well within acceptable bounds.

Real-World Evaluation with Pretrained CLIP In real data, the true latent coupled variables are
unknown. Therefore, we evaluate our theoretical findings from the perspective of disentanglement as
discussed in Section 5. Again, we emphasize that, in contrast to previous studies on identifiability for
MMCL (Daunhawer et al., 2023; Yao et al., 2023; Gresele et al., 2020), which rely on simulation
experiments, this work validates identifiability through empirical analysis on real datasets and
pre-trained CLIP model. This underscores the practicality of our theoretical contributions.

Table 2: Quantitative results for 2-shot learning and domain
generalization by different methods. ①: Linear Probe, ②:
Linear Probe with FastICA, and ③: Linear Probe with PCA
and FastICA.

SOURCE TARGET (IMAGENET-)
———- ———————————————-

ENCODERS METHODS IMAGENET V2 SKETCH R A AVG.

RN50 ① 31.95 26.48 8.41 20.74 7.44 15.77
② 34.06 28.74 8.37 21.72 10.15 17.25
③ 34.12 28.68 11.55 25.57 10.15 18.99

RN101 ① 37.64 31.45 13.71 31.09 11.85 20.03
② 39.58 33.15 13.49 30.29 14.77 22.93
③ 39.86 33.58 17.93 35.48 14.20 25.29

VIT32 ① 38.23 32.00 16.17 33.67 12.88 23.68
② 40.21 33.97 16.54 34.79 15.72 25.26
③ 39.34 33.44 19.02 36.98 14.69 26.03

VIT16 ① 44.97 38.11 22.06 43.86 25.99 32.51
② 45.52 39.38 22.55 45.33 30.47 34.43
③ 46.57 40.66 26.67 49.69 31.48 37.13

Disentangled representations for
CelebA data According to Section 5,
we first extract representations from the
pre-trained CLIP model and then apply
FastICA to these representations to
achieve final representations for CelebA
data (Liu et al., 2015). We expect these
final representations to exhibit clear
signs of disentanglement. To validate
this, we proceed to train a decoder that
reconstructs observational data using
these extracted representations. Figure
3 illustrates the effectiveness of our
method through latent space traversals.
Specifically, it visualizes changes in
reconstructions as we traverse one
dimension of the latent space at a
time, showcasing 4 out of 16 attributes
uncovered by our approach. Additional
results are available in Appendix H. This achievement not only validates our identifiability results,
but also offers a new research line, i.e., learning disentangled representations by CLIP, or exploring
how this disentanglement potential relate to the manipulation of pre-trained vision models, such as
diffusion models.

Few-shot learning and domain generalization The goal of disentangled representations is to
learn representations that transfer easily and robustly to downstream tasks, making them well-suited
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for few-shot learning and resilient to distribution shifts (Fumero et al., 2023). We thus focus on
few-shot learning and domain generalization tasks to further evaluate our disentanglement findings.
We extract representations from a limited set of labeled samples using a pre-trained CLIP model,
combined with FastICA to align with the hypersphere, and with PCA followed by FastICA to align
with convex body. These representations are then used to train a linear classifier. We evaluate the
methods on ImageNet (Deng et al., 2009) for few-shot learning and test robustness on ImageNet-V2
(Recht et al., 2019), ImageNet-Sketch (Wang et al., 2019), ImageNet-R (Hendrycks et al., 2021a),
and ImageNet-A (Hendrycks et al., 2021b). Table 2 presents the performance metrics of the proposed
methods in few-shot learning (the ‘SOURCE’ column) and domain generalization (the ‘TARGET’
columns). Analyzing the data in the ‘SOURCE’ column reveals that the proposed methods outperform
the baseline approach, which trains a linear classifier using representations directly obtained from
pre-trained CLIP (i.e., the Linear Probe). This superior performance validates our disentanglement
findings. The ‘TARGET’ column further reinforces the benefits of disentanglement. Refer to
Appendix I for more results.

Figure 4: Comparison of accuracy (%)
achieved by different few-shot CLIP adap-
tation methods across 11 datasets.

Leveraging the Disentanglement Potential of
CLIP-like Models for Few-Shot Learning In the
final experiments, we demonstrate how the disentan-
glement potential pushes the boundaries of leverag-
ing pre-trained models, e.g., CLIP. Recent progress
shows that pre-trained CLIP’s adaptability can be sig-
nificantly improved with just a few labeled training
samples. The key to leveraging pre-trained CLIP
for few-shot learning is effectively utilizing its ex-
tracted representations from limited labeled data, as
Tip-Adapter and Tip-Adapter-F methods proposed in
the work (Zhang et al., 2022a). As we claim, leverag-
ing disentangled potential of pre-trained CLIP can en-
hance performance on tasks that rely on disentangled
representations, including few-shot learning. There-
fore, rather than using CLIP’s raw representations,
we apply FastICA to extract disentangled represen-
tations for few-shot tasks. This can be implemented
in a plug-and-play way. As shown in Figure 4, incorporating FastICA in the methods in (Zhang
et al., 2022a), termed Tip-Adapter with FastICA and Tip-Adapter-F with FastICA, results in better
performance, across 11 datasets. See Appendix J for more details.

7 CONCLUSION AND DISCUSSIONS

In this work, we propose a novel latent partial causal model for multimodal data that moves beyond
the traditional DAG structure, using latent coupled variables connected by undirected edges to capture
transferable knowledge across modalities. We establish a theoretical link between this generative
model and MMCL, showing that the representations learned by MMCL correspond to latent variables
in the generative model, with linear and permutation transformations in hypersphere and convex
body spaces, respectively. Our results provide the first theoretical guarantees for the disentanglement
capabilities of MMCL, with applications in tasks like few-shot learning and domain generalization.
Unlike prior simulation-based studies, our work demonstrates the real-world utility of MMCL and
offers insights into leveraging pre-trained models like CLIP for disentangled representations. Our
model challenges conventional DAG assumptions and provides a flexible, practical framework that
enhances the effectiveness of MMCL.

One of the main limitations of this work lies in the parametric assumptions, e.g., Eqs. (4) and (7),
which may not strictly hold in real-world applications. However, simulation experiments in settings
where some of these assumptions are violated indicate that the theoretical results still largely hold
(e.g., Table 1). Furthermore, empirical evaluations, including learning disentangled representations on
face images (e.g., Figure 3), few-shot learning and domain generalization on ImageNet-type datasets
(e.g., Table 2), and few-shot learning across 11 cross-domain datasets (e.g., Figure 4), demonstrate
the practical advantages of our theoretical findings, providing additional support for their relevance.
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A RELATED WORK

Multimodal contrastive representation learning Multi-modal contrastive representation learning,
driven by underlying transferable knowledge across modalities, aims to coalesce inputs from these
diverse sources into a cohesive representation space. This is typically achieved using a symmetric
version of the standard contrastive loss (Oord et al., 2018; Gutmann & Hyvärinen, 2010), a method
designed to align accurate pairings while distinguishing incorrect ones (He & Peng, 2017; Radford
et al., 2021). Although this approach has proven successful in a range of downstream tasks (Radford
et al., 2021; Zhou et al., 2022a;b; Lüddecke & Ecker, 2022; Ban & Dong, 2022), there remains a
gap in our comprehensive theoretical and empirical understanding of the representations it learns.
Recently, there has been a growing interest in exploring multi-modal contrastive learning from various
perspectives. For instance, the study by Liang et al. (2022) provides insights into the modality gap
inherent in multi-modal contrastive learning. Similarly, the research presented by Nakada et al. (2023)
establishes a link between general multimodal contrastive loss and SVD analysis. Additionally,
Huang et al. (2021) posits that learning with multiple modalities can lead to a reduced population risk
compared to using a subset of these modalities. Diverging from these approaches, our work delves
into multi-modal contrastive representation learning by examining its connection with generative
models.

Past research has sought to comprehend the representations derived from standard single-modality
contrastive learning, examining them through the lens of alignment and uniformity (Wang & Isola,
2020), showing guarantees on the performance of the learned representations on the average classifi-
cation task (Saunshi et al., 2019), or in terms of the identifiability of latent variables (Zimmermann
et al., 2021; Von Kügelgen et al., 2021). Building on these foundations, our work takes a foreword
step. We demonstrate that multi-modal contrastive learning can identify latent coupled variables,
extending the insights from previous studies into the realm of multi-modality. Refer to Section G for
more details.

Very recently, several studies have emerged, focusing on multi-modal settings (Daunhawer et al., 2023;
Yao et al., 2023). A clear distinction is that: the proposed model captures transferable knowledge
across modalities by an undirected edge between latent coupled variables, while previous works often
achieve it by introducing shared variables (Daunhawer et al., 2023; Yao et al., 2023). Notably, our
modeling approach is more general, as it can be reduced to the shared variables used in previous
works (Daunhawer et al., 2023; Yao et al., 2023) by enforcing an identical mapping on the undirected
edge between latent coupled variables. Some of these works have only achieved partial identifiability
of coupled variables (Daunhawer et al., 2023; Yao et al., 2023), specifically identifying latent content
variables but not latent style variables. In contrast, our work achieves comprehensive identifiability
results for all latent coupled variables, offering a deeper level of understanding. Our research also
diverges from the approach taken in Gresele et al. (2020) in two key ways: Firstly, we model
ransferable knowledge across modalities using conditional distributions, whereas the latter utilizes
identical variables for this purpose. Secondly, while Gresele et al. (2020) relies on the premise that the
mapping from the latent space to observations must be constrained by component-wise corrupters to
ensure identifiability, our findings do not necessitate such constraints. Refer to Section F for details.

Nonlinear ICA Nonlinear Independent Component Analysis (ICA) aims to unravel latent indepen-
dent variables from observational data that has been subject to a nonlinear mixture of these latent
factors. However, as pointed out in the seminal work by Hyvärinen & Pajunen (1999), solving this
problem is generally infeasible without specific underlying assumptions. A prominent direction in
contemporary research leverages the concept of distributional changes in latent variables, which leads
to the creation of multi-domain observational data. This approach has been extensively explored and
developed in a series of studies (Hyvarinen & Morioka, 2016; 2017; Hyvarinen et al., 2019; Khe-
makhem et al., 2020), each contributing to a deeper understanding and more refined methodologies
in the field of Nonlinear ICA. We build upon this body of research by incorporating co-occurrence
patterns observed across multiple modalities. It is important to note the distinct difference between
multi-domain and multi-modal approaches. The former typically implies a consistent mapping from
the latent space to the observational space across all domains, whereas the latter accommodates
different mappings for each modality. Additionally, while multi-domain approaches generally assume
a totally shared latent variables across all domains, multi-modal methods allow for the existence of
modality-specific latent variables.
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B THE PROOF OF THEOREM 3.1

Theorem 3.1. (The asymptotics of L) For fixed τ > 0, as the sample size N →∞, the (normalized)
multimodal contrastiveloss converges to

lim
N→∞

L − 2 logN =2 E
(x,t)∼p(x,t)

[d(fx(x), ft(t))/τ] + E
x∼p(x)

[ log E
t∼p(t)

[e−d
(fx(x),ft(t))/τ ]] (10)

+ E
t∼p(t)

[ log E
x∼p(x)

[e−d
(fx(x),ft(t))/τ ]].

Proof. This proof is done by mainly depending on the Continuous Mapping Theorem and the law of
large numbers.

lim
N→∞

L − 2 logN = lim
N→∞

( −
1

N

N

∑
i=1

log
e−d
(fx(xi),ft(ti))/τ

∑
N
j=1 e

−d(fx(xi),ft(tj))/τ

−
1

N

N

∑
i=1

log
e−d
(fx(xi),ft(ti))/τ

∑
N
j=1 e

−d(fx(xj),ft(ti))/τ
) − 2 logN,

= lim
N→∞

(
2

N

N

∑
i=1

d(fx(xi), ft(ti))/τ +
1

N

N

∑
i=1

log
N

∑
j=1

e−d
(fx(xi),ft(tj))/τ

+
1

N

N

∑
i=1

log
N

∑
j=1

e−d
(fx(xj),ft(ti))/τ) − 2 logN

= lim
N→∞

(
2

N

N

∑
i=1

d(fx(xi), ft(ti))/τ +
1

N

N

∑
i=1

log
1

N

N

∑
j=1

e−d
(fx(xi),ft(tj))/τ

+
1

N

N

∑
i=1

log
1

N

N

∑
j=1

e−d
(fx(xj),ft(ti))/τ +

2

N

N

∑
i=1

logN) − 2 logN

= 2 E
(x,t)∼p(x,t)

[d(fx(x), ft(t))/τ] + E
x∼p(x)

[ log E
t∼p(t)

[e−d
(fx(x),ft(t))/τ ]]

+ E
t∼p(t)

[ log E
x∼p(x)

[e−d
(fx(x),ft(t))/τ ]].

C RELATION WITH RECOVERING ALL INFORMATION

In this section, we show

E
x∼p(x)

[ log E
t∼p(t)

[e−d
(fx(x),ft(t))/τ ]] + E

t∼p(t)
[ log E

x∼p(x)
[e−d
(fx(x),ft(t))/τ ]]

≈ −H(p(fx(x)), p(ft(t))) −H(p(ft(t)), p(fx(x))).
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Considering the symmetry evident in both the left and right sides of the equation, let us focus our
attention on the initial term on the left and its corresponding counterpart on the right.

E
x∼p(x)

[ log E
t∼p(t)

[e−d
(fx(x),ft(t))/τ ]]

= lim
N→∞

1

N

N

∑
i=1

log
1

N

N

∑
j=1

e−d
(fx(xi),ft(tj))/τ (11)

≈ lim
N→∞

1

N

N

∑
i=1

log pKDE(fx(xi)) + logZKDE (12)

= −H(p(fx(x), p(ft(t))) + logZKDE, (13)

Transitioning from Eq. (11) to Eq. (12), we employ kernel density estimation, wherein the choice of
kernel is influenced by the distance metric used. For instance, on a hypersphere, a von Mises-Fisher
kernel is suitable, whereas on convex bodies, a Laplace kernel aligns well with the L1 norm. In this
context, logZKDE represents the normalization constant associated with the kernel. The inherent
symmetry in this setup allows us to logically deduce the equation. Note that since here the bandwidth
τ can be optimized in MMCL, if true distribution is the same as the chosen kernel, Eq. (12) is equal
to Eq. (11), i.e., ≈ in Eq. (12) can be =. Under certain conditions the kernel density estimation
will converge to the real distribution, in that case ≈ in Eq. (12) can also be = (Silverman, 2018).
Specifically, kernel density estimation converges to the true density p(fx(x)) under the following
assumptions:

• The kernel Kτ(z,z
′) = e−d(z,z

′)/τ is a smooth, symmetric density function (e.g., Gaussian-
like).

• The number of samples N →∞, and the bandwidth τ → 0, such that Nτd →∞.
• The true density p(ft(t)) is smooth (e.g., twice differentiable with bounded second deriva-

tives).

These conditions ensure that pKDE(fx(xi)) converges to the true density.

D THE PROOF OF IDENTIFIABILITY ON HYPERSPHERE

D.1 THE PROOF OF THEOREM 4.1

Theorem 4.1. (L converges to the symmetric cross-entropy) Under the assumptions defined in Eq.
(4) for the proposed latent partial causal model, the necessary condition fx ○ gx = ft ○ gt, denoted as
h, for the optimal normalized multimodal contrastive loss given by Eq. (2) leads to the following
reduction of the loss itself:

lim
N→∞

L − 2 logN = E
zx∼p(zx)

[H(p(zt∣zx), qh(zt∣zx))] + E
zt∼p(zt)

[H(p(zx∣zt), qh(zx∣zt))] (14)

where H is the cross entropy, the conditional distributions qh(zt∣zx) and q(zx∣zt) are parameterized
by the following:

qh(zx∣zt) = Cq(zt)
−1e(h(zx)Th(zt)/τ), (15)

qh(zt∣zx) = Cq(zx)
−1e(h(zt)Th(zx)/τ), (16)

with

Cq(zt) = ∫ e(h(zx)Th(zt)/τ)dzx,

Cq(zx) = ∫ e(h(zx)Th(zt)/τ)dzt.

To proof Theorem 4.1, we first introduce the following Lemma.
Lemma 1. Consider the unit hypersphere space, given uniform prior p(zx), p(zx) = ∣Z∣−1 where
Z ⊆ RM denotes the space of zx, and conditional distribution p(zt∣zx) = Cp(k) exp (kz

T
x zt), p(zt)

follows a uniform distribution.
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Proof. By Bayesian theorem, p(zt) = ∫ p(zt∣zx)p(zx)dzx = ∣Z∣−1 ∫ p(zt∣zx)dzx =

∣Z∣−1Cp(k) ∫ exp (kz
T
x zt)dzx, then due to the unit hypersphere space, we have ∫ exp (kzTx zt)dzx =

Cp(k)
−1. As a result, we obtain p(zt) = ∣Z∣

−1.

Lemma 2. The normalized multimodal contrastive loss in Eq. (2) has an optimal global solution of
0, which can be attained under the following conditions:

• hx(mx,zx) = ht(mt,zt) almost surely, for pair ((mx,zx), (mt,zt)), (C1),

• hx and ht map (mx,zx) and (mt,zt), respectively, to uniform variables on hypersphere,
(C2),

Proof. First, it is well known that traditional contrastive loss in single modality has an optimal global
solution of logN (Oord et al., 2018; Tian et al., 2020), as a result, the multimodal contrastive loss Eq.
1 has an optimal global solution of 2 logN . For completeness, let us focus on the first term in Eq. 1:

−
1

N

N

∑
i=1

log
e−d
(fx(xi),ft(ti))/τ

∑
N
j=1 e

−d(fx(xi),ft(tj))/τ
, (17)

Under optimal contrastive learning conditions, the distance for positive pairs satisfies:

e−d
(fx(xi),ft(ti))/τ = 1, for negative pairs (xi,xj) where i ≠ j: e−d

(fx(xi),ft(tj))/τ = ϵ, where
ϵ is a small value. As a result, for each i, the denominator can be expressed as: 1 + (N − 1)ϵ.
Therefore, the first term in Eq. 1 reduces to : − 1

N ∑
N
i=1 log

1
1+(N−1)ϵ . Clearly, when N is large,

the first term in Eq. 1 equals to logN . Given that the second term is symmetric, we conclude
that Eq. 1 has an optimal global solution of 2 logN . Therefore, Eq. 10 achieves a global optimal
solution of 0. Moreover, this optimum is unique up to isometries and permutations. Minimizing
the loss requires each positive pair to dominate its softmax denominator, which is only achieved
when their embeddings are maximally aligned. Simultaneously, negative pairs must be mapped as
far apart as possible under the bounded metric to minimize their influence. This configuration, tight
positive alignment and maximal negative separation, is geometrically rigid: any deviation increases
the loss. Thus, except for distance-preserving transformations and index permutations, the solution is
unique. Achieving the global minimum of Eq. 10 therefore necessitates maximizing the alignment
of positive pairs. This occurs if and only if hx(mx,zx) = ht(mt,zt) almost surely, for real pair
((mx,zx), (mt,zt)), (marked as (C1)). Thus, we obtain a minimum solution of 0 for the first term.
Next, considering the remaining two terms in Eq. 10, as detailed in Appendix C, we see an equivalent
expression: −H(p(fx(x), p(ft(t))) −H(p(fx(x), p(ft(t))) + 2 logZKDE. When both hx and ht

map (mx,zx) and (mt,zt), respectively, to uniform variables on hypersphere (marked as (C2)),
it reduces to −2H(p(fx(x)) + 2 logZKDE. Note that the entropy of a uniform distribution on the
hypersphere SM−1 is log( 2πM/2

Γ(M/2)), where Γ is the gamma function. Together with the fact that the

normalization constant of uniform distribution on hypersphere is log( 2πM/2
Γ(M/2)) (i.e., logZKDE), we

arrive at the optimal solution of 0 for the last two terms.

Proof sketch The proof of Theorem 4.1 hinges on demonstrating the equality between the right-
hand side of Eq. (14) and Eq. (10). Let us define hx = fx ○ gx and ht = ft ○ gt. In Step I, using
Lemma 2, we show that (1) fx ○ gx = ft ○ gt, and (2) they are independent of the modality-specific
variables mx and mt. In Step II, by defining h = fx ○ gx = ft ○ gt and applying both the generative
model from Eq. (4) and the inference model from Eqs. (15)-(16), we establish the theorem.

Step I Consider C1 in Lemma 2, e.g., hx(mx,zx) = ht(mt,zt) almost surely, for pair
((mx,zx), (mt,zt)), by differentiating it with respect to mx, we have:

∂hx(mx,zx)

∂mx
=
∂ht(mt,zt)

∂mx
= 0, (18)

, due to the independence between mx and (mt,zt). Similarly, by differentiating it with respect to
mt, we have:

∂ht(mt,zt)

∂mt
=
∂hx(mx,zx)

∂mt
= 0. (19)
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Based on Eqs. (18) and (19), we conclude that both hx and ht are independent of the modality-
specific variables mx and mt, respectively, i.e., hx(mx,zx) = hx(zx) and ht(mt,zt) = ht(zt).
As a result, we have hx(zx) = ht(zt), for all real pairs (zx,zt) sampled from the conditional
distribution p(zt∣zx) defined in Eq. (4). Note that this expression also holds true for zt = zx (e.g.,
when zt is sampled with the same value as zx), which implies hx(zx) = ht(zx). As a result, we can
obtain: hx = ht.

Step II According to the results above: hx(mx,zx) = hx(zx), ht(mt,zt) = ht(zx), and hx = ht

from Step I, by defining h
def
= hx = ht , we can rewrite Eq. (10) as:

2 E
(zx,zt)∼p(zx,zt)

[d(h(zx),h(zt))/τ] + E
zx∼p(zx)

[ log E
zt∼p(zt)

[e−d
(h(zx),h(zt))/τ ]]

+ E
zt∼p(zt)

[ log E
zx∼p(zx)

[e−d
(h(zx),h(zt))/τ ]]. (20)

We then connect the right-hand side of Eq. (14) with Eq. (20). To this end, since the two terms in the
right-hand side of Eq. (14) are symmetrical, we focus on one of the two terms for convenience, e.g.,

E
zx∼p(zx)

[H(p(zt∣zx)), qh(zt∣zx))]. Based on Lemma 1, it can be shown that:

E
zx∼p(zx)

[H(p(zt∣zx)), qh(zt∣zx))] (21)

= E
zx∼p(zx)

[ E
zt∼p(zt∣zx)

[− log qh(zt∣zx)]] (22)

= E
(zx,zt)∼p(zx,zt)

[ − h(zx)
Th(zt)/τ + logCq(zx)] (23)

= E
(zx,zt)∼p(zx,zt)

[ − h(zx)
Th(zt)/τ] + E

(zx)∼p(zx)
[logCq(zx)] (24)

= E
(zx,zt)∼p(zx,zt)

[ − h(zx)
Th(zt)/τ] + E

(zx)∼p(zx)
[log∫ e(h(zx)Th(zt)/τ)dzx] (25)

Since p(zx) = ∣Z∣
−1, and p(zt) = ∣Z∣

−1 by Lemma 1, Eq. (25) simplifies to:

= − E
(zx,zt)∼p(zx,zt)

[(h(zx)
Th(zt))/τ] + E

zx∼p(zx)
[ log E

zt∼p(zt)
[e
(h(zx)Th(zt))/τ ]] + log ∣Z∣ (26)

On hypersphere space with radius r, due to ∥h(zx)−h(zt)∥ = 2r−2h(zx)Th(zt), Eq. 26 simplifies
to:

= E
(zx,zt)∼p(zx,zt)

[d(h(zx),h(zt))/τ] + E
zx∼p(zx)

[ log E
zt∼p(zt)

[e−d
(h(zx)h(zt))/τ ]] (27)

Similarly, for the second term in the right-hand side of Eq. (14), we can proof that:

E
(zt)∼p(zt)

[H(p(zx∣zt)), qh(zx∣zt))] = E
(zx,zt)∼p(zx,zt)

[d(h(zx),h(zt))/τ]

+ E
zt∼p(zt)

[ log E
zx∼p(zx)

[e−d
(h(zx),h(zt))/τ ]] + log ∣Z∣.

(28)

By combining Eq. (27) and Eq. (28), we can conclude the proof.

D.2 IDENTIFIABILITY RESULT ON HYPERSPHERE

Theorem 4.1 represents a adaptation of Theorem 1 from (Zimmermann et al., 2021) in the context of
multi-modal setting. Specifically, within the confines of a single-modal framework, Theorem 4.1 is
consistent with the findings presented in Theorem 1 in (Zimmermann et al., 2021). Consequently, this
alignment allows us to employ Propositions 1 and 2 from (Zimmermann et al., 2021) to demonstrate
that the global minimization of the objective outlined in Eq. (5), as specified in Theorem 4.1, identifies
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the latent variables zx, as well as zx, up to linear transformations. For completeness, a brief proof
is provided herein, with comprehensive details available in the original work. Clearly, the global
minimum of the cross-entropy between two distributions is reached if they match by value and have
the same support. Therefore, for the optimal solution of the objective loss Eq. (14) in Theorem 4.1,
we have:

p(zt∣zx) = qh(zt∣zx), (29)

This expression also holds true for zt = zx; additionally using that h maps from a unit hypersphere to
one with radius

√
τk, we have:

C−1p e(kz
T
x zx) = Cq(zx)

−1e(h(zx)Th(zx)/τ),

⇔Cp = Cq(zx) (30)

As the normalization constants are identical we get for all zx,zt,

kzTx zt = h(zx)
Th(zt)/τ , (31)

here we can see that h maintains the dot product, which implies that h must be an orthogonal
linear transformation by using Proposition 2 in Zimmermann et al. (2021). As a result, Theorem 4.1
supports the conclusion that the latent variables zx (and zt) can be identified up to an orthogonal
linear transformation, i.e., the recovered latent variables fx(x) (note that h(zx) = fx(x)), obtained
by the minimization of Eq. (5), is linearly related to the true zx as follows: fx(x) =Azx + c, where
A represents an orthogonal matrix, and c is a constant vector.

E THE PROOF OF IDENTIFIABILITY ON CONVEX BODIES

E.1 THE PROOF OF THEOREM 4.2

Theorem 4.2. (L converges to the symmetric cross-entropy) Under the assumptions defined in Eq.
(7) for the proposed latent partial causal model, the necessary condition fx ○ gx = ft ○ gt, denoted
as h, for the optimal normalized multimodal contrastiveloss given by Eq. (2) leads to the following
reduction of the loss itself:

lim
N→∞

L − 2 logN = E
zx∼p(zx)

[H(p(zt∣zx)), qh(zt∣zx))] + E
(zt)∼p(zt)

[H(p(zx∣zt)), qh(zx∣zt))]

(32)

where H is the cross entropy, the conditional distributions qh(zt∣zx) and q(zx∣zt) are parameterized
by the following:

qh(zx∣zt) = Cq(zt)
−1e−δ(h(zx),h(zt))/τ , (33)

qh(zt∣zx) = Cq(zx)
−1e−δ(h(zx),h(zt))/τ , (34)

with

Cq(zt) = ∫ e−δ(h(zx),h(zt))/τdzx,

Cq(zx) = ∫ e−δ(h(zx),h(zt))/τdzt.

Similar to the proof D.1, we first introduce the following Lemma.
Lemma 3. For random variables zx ∈ Zc and zt = Zc, assume that p(zx) = 1/∣Zc∣ if zx ∈ Zc and 0
otherwise, and assume that conditional distribution p(zt∣zx) = C(zx) exp ( − δ(zx,zt)/λ), where
δ is a symmetric metric induced by a norm, then p(zt) converges to uniform distribution on Zc as
λ→ 0+.

Proof. The proof can be done by the fact that as λ→ 0, the condition distribution p(zt∣zx) converges
to a delta distribution, resulting that p(zt) = p(zx). More specifically, as we will let λ → 0 in
the procedure, it is notable that the normalize C(zx) actually depend on λ and should be write as
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C(zx, λ) in a more formal way. With simple integration trick, it would be straightforward to show
that C(zx, λ) can be decomposed as C(zx, λ) = 1

λ
C ′(zx).

By definition we have

p(zt) =∫
zx∈Zc

p(zx)p(zt∣zx)dzx

=∫
zx∈Zc

p(zx)
1

λ
C ′(zx) exp ( − δ(zx,zt)/λ)dzx

= lim
N→+∞

N

∑
i=1

1

λ
C ′(zxi) exp ( − δ(zxi ,zt)/λ),∀i, zxi ∼ p(zx)

(35)

then obviously we have that

lim
λ→0+

p(zt) = lim
λ→0+

lim
N→+∞

N

∑
i=1

1

λ
C ′(zxi) exp ( − δ(zxi ,zt)/λ)

= lim
λ→0+

lim
N→+∞

N

∑
i=1

1

λ
C ′ exp ( − δ(zxi ,zt)/λ),

(36)

where C ′ = ∫
∞
−∞ exp ( − δ(0,zt))dzt. It is obvious that (36) can be viewed as a Kernel Density

Estimation over samples zxi ∼ p(zx), and obviously limτ→0+ p(zt) will converge to p(zx) (which
is uniform distribution) under quite mild condition (for details of the convergence, refer to Jiang
(2017)).

Proof sketch Similar to hypersphere, the proof of Theorem 4.2 can be done by demonstrating
that the right-hand side of Eq. (32) is equal to the right-hand side of Eq. (10) on convex bodies.
To achieve this, using Lemma 2, we show that fx ○ gx = ft ○ gt, and they are independent of the
modality-specific variables mx and mt, respectively. Finally, by defining h = fx ○ gx = ft ○ gt, and
using the inference model (33) and (34), we obtain our result.

Step I On convex bodies, and define hx = fx ○ gx and ht = ft ○ gt. Consider C1 in Lemma 2,
e.g., hx(mx,zx) = ht(mt,zt) almost surely, for pair ((mx,zx), (mt,zt)). Similar to Step I in
Appendix D.1, by differentiating it with respect to mx and mt, respectively, we can conclude that
both hx and ht are independent of the modality-specific variables mx and mt, respectively, i.e.,
hx(mx,zx) = hx(zx) and ht(mt,zt) = ht(zt). Further, since hx(zx) = ht(zt) hold, for all real
pairs (zx,zt) sampled from the conditional distribution p(zt∣zx) defined in Eq. (7), this expression
also holds true for zt = zx, which implies hx(zx) = ht(zx). As a result, we can obtain: hx = ht.

Step II According to the results above: hx(mx,zx) = hx(zx), ht(mt,zt) = ht(zt), and hx = ht,
by defining h

def
= fx ○ gx = ft ○ gt , we can rewrite Eq. (10) as:

2 E
(zx,zt)∼p(zx,zt)

[d(h(zx),h(zt))/τ] + E
zx∼p(zx)

[ log E
zt∼p(zt)

[e−d
(h(zx),h(zt))/τ ]]

+ E
zt∼p(zt)

[ log E
zx∼p(zx)

[e−d
(h(zx),h(zt))/τ ]]. (37)

We then connect the right-hand side of Eq. (32) with Eq. (37). To this end, since the two terms in the
right-hand side of Eq. (32) are symmetrical, we focus on one of the two terms for convenience, e.g.,

E
zx∼p(zx)

[H(p(zt∣zx)), qh(zt∣zx))]. It can be shown that:

E
zx∼p(zx)

[H(p(zt∣zx)), qh(zt∣zx))] (38)

= E
zx∼p(zx)

[ E
zt∼p(zt∣zx)

[− log qh(zt∣zx)]] (39)

= E
(zx,zt)∼p(zx,zt)

[δ(h(zx),h(zt))/τ + logCq(zx)] (40)

= E
(zx,zt)∼p(zx,zt)

[δ(h(zx),h(zt))/τ] + E
(zx)∼p(zx)

[logCq(zx)] (41)

= E
(zx,zt)∼p(zx,zt)

[δ(h(zx),h(zt))/τ] + E
(zx)∼p(zx)

[log∫ e(−δ(h(zx),h(zt))/τ)dzx] (42)
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Since p(zx) = ∣Z∣
−1, and p(zt) = ∣Z∣

−1 by Lemma 3, Eq. (42) is equal to:

= E
(zx,zt)∼p(zx,zt)

[δ(h(zx),h(zt))/τ] + E
zx∼p(zx)

[ log E
zt∼p(zt)

[e−δ
(h(zx),h(zt))/τ ]] + log ∣Zc∣

(43)

Similarly, for the second term in the right-hand side of Eq. (32), we can proof that:

E
(zt)∼p(zt)

[H(p(zx∣zt)), qh(zx∣zt))] = E
(zx,zt)∼p(zx,zt)

[δ(h(zx),h(zt))/τ] (44)

+ E
zt∼p(zt)

[ log E
zx∼p(zx)

[e−δ
(h(zx),h(zt))/τ ]] + log ∣Zc∣.

(45)

By combining Eq. (43) and Eq. (45), we can conclude the proof.

E.2 IDENTIFIABILITY RESULT ON CONVEX BODIES

Theorem 4.2 represents a symmetrical adaptation of Theorem 3 from (Zimmermann et al., 2021). This
alignment allows us to employ Propositions 4, Lemma 1 and Lemma A from (Zimmermann et al.,
2021) to demonstrate that the global minimization of the objective outlined in Eq. (32), as specified
in Theorem 4.2, identifies the latent variables zx, as well as zx, up to linear transformations. For
completeness, a brief proof is provided herein, with comprehensive details available in the original
work. Clearly, the global minimum of the cross-entropy between two distributions is reached if they
match by value and have the same support. Therefore, for the optimal solution of the objective loss
Eq. (10) in Theorem 4.2, we have:

p(zt∣zx) = qh(zt∣zx), (46)

This expression also holds true for zt = zx, we have:

Cp(zx)
−1e−δ(zx,zx)/λ = Cq(zx)

−1e−δ(h(zx),h(zx))/τ ,

⇔Cp(zx) = Cq(zx) (47)

As the normalization constants are identical we get for all zx,zt,

δ(zx,zt) = λδ(h(zx),h(zt))/τ. (48)

Then, by limiting δ be an Lα metric for α ≥ 1, α ≠ 2 or the α-th power of such an Lα metric, using the
Theorems 5 and 6 in Zimmermann et al. (2021), h is a composition of input independent permutations,
sign flips and rescaling. In other words, Theorem 4.2 establishes that the latent variables zx (and zt)
are identifiable up to a permutation transformation, i.e., the recovered latent variable fx(x), obtained
through the minimization of Eq. (8), is related to the true zx as follows: fx(x) = Pzx + c, where P
represents an permutation matrix with scaling, and c is a constant vector.
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F DIFFERENCES FROM PREVIOUS ANALYSIS FOR MUTILMODAL
CONTRASTIVE LEARNING

This work differs from previous works focusing on identifiability analysis for multimodal settings
(Daunhawer et al., 2023; Yao et al., 2023; Gresele et al., 2020) across the following three key
dimensions.

Modeling Setting This work proposes modeling transferable knowledge across modalities by
latent coupled variables. In contrast, previous works (Daunhawer et al., 2023; Yao et al., 2023;
Gresele et al., 2020) often achieve this by introducing the same/shared variables. The advantages of
employing latent coupled variables are thoroughly justified in Section ??. Loosely speaking, From the
perspective of model flexibility, the proposed model can be considered a generalization of previous
works. This generalization is apparent as the proposed model seamlessly reduces to a single-modal
setting when the mixing functions from latent space to observed space are enforced to be identical,
and specific variables are omitted.

Identifiability Results The identifiability results obtained in this work diverge from those found
in previous works (Daunhawer et al., 2023; Yao et al., 2023), both in terms of breadth and depth
of identifiability, due to the introduction of the undirected edge between zx and zt. a) Breadth of
Identifiability: Unlike earlier works that often achieve only partial identifiability of latent coupled
variables zx or zt, e.g., latent content variables but not latent style variables (Daunhawer et al.,
2023; Yao et al., 2023), our model extends this scope to ensure complete identifiability of latent
coupled variables zx and zt. b) Depth of Identifiability: In terms of depth, this work identifies latent
coupled variables zx and zt up to linear or permutation transformations. As a result, after applying
a linear ICA method, we can obtain component-wise identifiability, i.e., recovering independent
latent variables up to permutation and scaling. This level of precision offers an enhancement over
the block identifiability result in previous studies (Daunhawer et al., 2023; Yao et al., 2023), which
only identifying latent variables up to a nonlinear invertible mapping, even for independent latent
variables. The differences above in both breadth and depth of identifiability results enable us, for
the first time, to unveil the component-wise disentanglement capabilities of multimodal contrastive
representation learning.

Practical Significance in Real Applications Prior studies (Daunhawer et al., 2023; Yao et al., 2023;
Gresele et al., 2020) have predominantly relied on simulation experiments, which often encounter a
substantial gap between the assumptions made in theoretical analyses and the practical conditions of
real-world applications. In contrast, our work bridges this gap by validating our theoretical findings
using pre-trained CLIP models on over 16 diverse real-world datasets. This empirical approach not
only substantiates the practical effectiveness of our theoretical results but also demonstrates their
applicability and robustness in real-world multimodal settings, highlighting a significant departure
from previous work in terms of real-world applicability.

G DIFFERENCES FROM PREVIOUS ANALYSES FOR SINGLE-MODAL
CONTRASTIVE LEARNING

This work sets itself apart from prior studies focused on the analysis of single-modal contrastive
learning (Zimmermann et al., 2021; Von Kügelgen et al., 2021) in the following key aspects.

Problem Context Previous works primarily address single-modal scenarios, whereas our proposed
model extends this framework to the more complex multimodal domain. This extension can be viewed
as a generalization of prior approaches. Specifically, our model naturally reduces to a single-modal
setting when the mixing functions from the latent space to the observed space are identical, and
certain variables are omitted. By expanding the scope to multimodal data, our approach addresses the
limitations of prior studies and provides a more comprehensive understanding of contrastive learning.

Technical Perspective Addressing multimodal settings requires significantly broader technical
developments compared to single-modal analyses. To this end, we developed Theorem 3.1, which
generalizes the asymptotic analysis of contrastive learning to the multimodal context, providing
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a robust theoretical foundation. Bridging the gap between single-modal and multimodal settings
also necessitated novel theoretical insights. For instance, Theorem 4.1 and Theorem 4.2 establish
critical connections between multimodal contrastive learning and traditional single-modal frameworks,
enabling a unified understanding across these domains. These results not only expand the applicability
of contrastive learning but also highlight the intricate dependencies introduced by multimodal data.

New Insights In the multimodal context, a key challenge is effectively modeling the connections
between different modalities. This motivates the central insight of our work: latent coupled variables,
linked by a unidirectional edge, provide a foundation for exploring whether partial causal models are
sufficient for multimodal learning. As highlighted in the introduction, we offer theoretical support
for the success of multimodal contrastive learning, including guarantees for its disentanglement
capabilities. From a practical perspective, we recommend refining representations from pre-trained
CLIP-like models rather than using them directly. Specifically, applying linear ICA methods, such as
FastICA (aligned with assumptions on the hypersphere), or combining PCA and FastICA (aligned
with assumptions on convex bodies), can enhance performance on tasks that rely on disentangled
representations. These insights not only validate the robustness of our theoretical findings but also
emphasize their practical significance in real-world applications.

H MORE RESULTS ON CELEBA

Figures 5 - 7 illustrate the 16 distinct disentangled representations obtained using pre-trained CLIP
with FastICA. Interestingly, our method achieves competitive results compared to specialized disen-
tanglement techniques, such as FactorVAE (Kim & Mnih, 2018) and β-TCVAE (Chen et al., 2018).
Specifically, FactorVAE identified 8 disentangled attributes, while β-TCVAE reported 15, whereas
our approach successfully discerns 16 distinct disentangled representations.

It is important to note that this comparison is not meant to position our method as a more effective
disentanglement technique. Rather, our experiments are designed solely to validate our theoretical
findings. We present this comparison to provide insight into the potential of leveraging CLIP
for learning disentangled representations, thereby motivating future research in this direction. A
particularly interesting avenue could be exploring how disentanglement capabilities relate to the
manipulation of pre-trained vision models, such as diffusion models.
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(a) Smile (b) Brightness

(c) Hair color (d) Eye shadow

(e) Gender w/ Mustache (f) Glasses

Figure 5: Disentangled Representations learned by combining pre-train CLIP and FastICA.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

(a) Face width (b) Face Size

(c) Background color (d) Skin color

(e) Azimuth (f) Background remove

Figure 6: Disentangled Representations learned by combining pre-train CLIP and FastICA.
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(a) Face Height (b) Hair Style

(c) Hair length (d) Age

Figure 7: Disentangled Representations learned by combining pre-train CLIP and FastICA.
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I MORE RESULTS ON IMAGENET-TYPE DATA

Table 3: Quantitative results for 16-shot transfer learning and domain generalization by different
methods. Lin. P. (Linear Probe).

SOURCE TARGET (IMAGENET-)
———- ———————————————-

ENCODERS METHODS IMAGENET V2 SKETCH R A AVG.

RN50 LIN. P. 55.36 45.45 18.22 34.09 12.52 27.77
LIN. P. W/ FASTICA 57.82 47.78 19.77 38.05 13.15 29.69

LIN. P. W/ PCA AND FASTICA 57.37 47.67 20.39 38.76 12.89 29.93

RN101 LIN. P. 60.98 50.36 25.80 46.61 18.64 35.35
LIN. P. W/ FASTICA 61.86 51.85 27.29 49.29 19.89 37.08

LIN. P. W/ PCA AND FASTICA 61.58 51.44 28.86 50.32 19.97 37.64

VIT32 LIN. P. 60.76 50.92 28.81 49.18 19.72 37.15
LIN. P. W/ FASTICA 61.94 51.95 30.30 51.82 20.81 38.72

LIN. P. W/ PCA AND FASTICA 62.00 52.39 30.39 51.61 20.96 38.84

VIT16 LIN. P. 67.17 57.01 35.43 60.96 35.41 47.20
LIN. P. W/ PCA AND FASTICA 68.12 58.45 38.41 63.89 37.17 49.48

LIN. P. W/ FASTICA 67.96 58.38 38.75 65.45 38.28 50.22

Table 4: Quantitative results for 8-shot transfer learning and domain generalization by different
methods. Lin. P. (Linear Probe).

SOURCE TARGET (IMAGENET-)
———- ———————————————-

ENCODERS METHODS IMAGENET V2 SKETCH R A AVG.

RN50 LIN. P. 49.33 40.83 15.06 31.23 10.99 24.53
LIN. P. W/ FASTICA 51.99 43.58 15.47 34.35 12.85 26.56

LIN. P. W/ PCA AND FASTICA 51.42 42.93 17.28 35.53 12.33 27.02

RN101 LIN. P. 55.41 46.04 23.38 43.26 16.88 32.39
LIN. P. W/ FASTICA 56.59 47.47 22.09 44.59 18.39 33.14

LIN. P. W/ PCA AND FASTICA 55.84 46.59 23.68 44.94 18.25 33.37

VIT32 LIN. P. 55.17 46.11 25.53 45.32 18.35 33.83
LIN. P. W/ FASTICA 56.90 47.96 27.62 49.13 20.31 36.26

LIN. P. W/ PCA AND FASTICA 55.83 46.55 26.54 46.77 18.80 34.67

VIT16 LIN. P. 61.82 52.34 32.26 55.93 32.63 43.29
LIN. P. W/ FASTICA 63.55 54.81 34.21 61.54 38.21 47.29

LIN. P. W/PCA AND FASTICA 63.47 54.32 35.83 61.88 37.35 47.36

Table 5: Quantitative results for 4-shot transfer learning and domain generalization by different
methods. Lin. P. (Linear Probe).

SOURCE TARGET (IMAGENET-)
———- ———————————————-

ENCODERS METHODS IMAGENET V2 SKETCH R A AVG.

RN50 LIN. P. 41.34 33.67 11.55 26.27 9.67 20.29
LIN. P. W/ FASTICA 44.10 36.07 12.75 30.15 11.64 22.65

LIN. P. W/ PCA AND FASTICA 42.86 35.38 12.29 28.81 9.79 21.57

RN101 LIN. P. 48.23 39.53 18.80 38.10 14.32 27.69
LIN. P. W/ FASTICA 49.43 41.02 17.49 39.33 15.25 28.27

LIN. P. W/ PCA AND FASTICA 49.01 40.25 19.26 39.71 14.75 28.49

VIT32 LIN. P. 47.82 39.53 21.51 40.94 15.99 29.49
LIN. P. W/ FASTICA 49.43 40.66 22.66 41.78 16.41 30.38

LIN. P. W/ PCA AND FASTICA 49.48 41.09 23.72 43.48 16.77 31.27

VIT16 LIN. P. 54.30 46.06 27.58 50.76 29.24 38.41
LIN. P. W/ FASTICA 56.65 48.18 28.27 55.50 33.39 41.33

LIN. P. W/ PCA AND FASTICA 56.16 47.46 30.21 55.49 31.71 41.22
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Table 6: Quantitative results for 1-shot transfer learning and domain generalization by different
methods. Lin. P. (Linear Probe).

SOURCE TARGET (IMAGENET-)
———- ———————————————-

ENCODERS METHODS IMAGENET V2 SKETCH R A AVG.

RN50 LIN. P. 21.74 18.24 5.68 15.41 6.55 11.47
LIN. P. W/ FASTICA 23.22 19.68 6.37 13.84 7.21 11.77
LIN. P. W/ FASTICA 24.06 20.26 6.85 17.54 8.05 13.18

RN101 LIN. P. 26.05 21.48 9.90 23.85 10.17 16.35
LIN. P. W/ FASTICA 27.50 23.33 8.35 17.87 10.71 15.07

LIN. P. W/ PCA AND FASTICA 28.50 24.17 11.63 26.38 12.28 18.62

VIT32 LIN. P. 26.99 22.99 11.93 25.25 11.56 17.93
LIN. P. W/ FASTICA 29.21 24.80 9.97 21.23 12.23 17.06

LIN. P. W/ PCA AND FASTICA 29.05 24.45 12.39 27.61 12.56 19.25

VIT16 LIN. P. 32.42 27.64 16.34 34.28 21.84 25.02
LIN. P. W/ FASTICA 34.35 29.31 13.91 28.61 23.24 23.77

LIN. P. W/ PCA AND FASTICA 35.20 30.26 19.17 38.87 26.41 28.68
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J MORE RESULTS ON FEW-SHOT LEARNING TASK

(a) Caltech101 (b) DTD (c) EuroSAT

(d) FGVCAircraft (e) Food101 (f) ImageNet

(g) Oxford Flowers (h) Oxford Pets (i) Stanford Cars

(j) SUN397 (k) UCF101

Figure 8: More results on few-shot learning task: A comparison of top-1 accuracy (%) achieved
by various few-shot CLIP adaptation methods across 11 datasets, including ImageNet (Deng et al.,
2009), Caltech101 (Fei-Fei et al., 2004), FGVCAircraft (Maji et al., 2013), UCF101 (Soomro et al.,
2012), EuroSAT (Helber et al., 2019), Flowers102 (Nilsback & Zisserman, 2008), StanfordCars
(Krause et al., 2013), DTD (Cimpoi et al., 2014), Food101 (Bossard et al., 2014), OxfordPets (Parkhi
et al., 2012), and, SUN397 (Xiao et al., 2010). The x-axis indicates the number of training examples
per class.The incorporation of FastICA notably enhances the performance of the original methods,
Tip-Adapter and Tip-Adapter-F, proposed by (Zhang et al., 2022a).
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K IMPLEMENTATION DETAILS

We perform all experiments using the GPU RTX 4090, equipped with 32 GB of memory.

Synthetic Data We consider latent coupled variables zx and zt, each with a dimensionality of 10.
Additionally, we have modality-specific latent variables mx and mt, both set to a dimension of 5.
The process begins with sampling from the marginal distribution p(zx), and the samples of modality-
specific latent variables mx and mt are obtained by sampling from Gaussian distributions with zero
mean and one variance. We then create real pairs by sampling from the conditional distribution
p(zt∣zx). The observational data x and t are generated using two different Multi-Layer Perceptrons
(MLPs). Specifically, we utilize MLPs comprising three hidden layers with leaky ReLU units and
random weights. To ensure the invertibility of the MLP g, we carefully control the condition number
of the weight matrices. For our encoders concerning both zt and zx, we adopt an MLP architecture
with leaky ReLU units.

Evaluation: To evaluate the linear identifiability result established in Corollary 1, we assess how
well the learned representations ẑx preserve the structure of the ground-truth latent variables zx up to
a linear transformation. Specifically, we perform the following steps:

1. Learned Representations Extraction: We first obtain representations ẑx learned by multi-
modal contrastive learning.

2. Linear Regression Fitting: We fit a linear regression model of the form:

ẑx = Âzx + ĉ + ϵ,

where Â is a learned transformation matrix, ĉ is an offset vector, and ϵ represents residual
errors.

3. Coefficient of Determination (R2) Computation: We compute the R2 score, defined as:

R2
= 1 −

∑i ∥ẑx,i − (Âzx,i + ĉ)∥
2

∑i ∥ẑx,i − ¯̂zx∥
2

,

where ¯̂zx is the mean of ẑx. This metric quantifies how well the learned representations can
be linearly mapped to the true latent variables.

4. Analysis Under Different Assumption Violations: We repeat the evaluation under settings
that both satisfy and violate the theoretical assumptions, as listed in Table 1, allowing us to
empirically assess the robustness of the identifiability results.

By reporting the R2 scores across different conditions, we quantify the extent to which multimodal
contrastive learning successfully recovers the latent variables up to a linear transformation.

to evaluate permutation identifiability result in Corollary 2, we employ the mean correlation coefficient
(MCC) between the ground-truth zx and representations fx(x) learned by multimodal contrastive
learning. To compute MCC, we follow these steps:

1. Compute Correlation Coefficients: We first calculate the correlation coefficients between
all pairs of ground-truth source variables and representations learned by multimodal con-
trastive learning. Specifically, for each pair of source component zx,i and recovered latent
component ẑx,j , we compute the Pearson correlation coefficient:

ρi,j =
Cov(zx,i, ẑx,j)

σzx,iσẑx,j

, (49)

where Cov(⋅, ⋅) denotes the covariance, and σzx,i and σẑx,j are the standard deviations of
the respective components.

2. Solve the Linear Sum Assignment Problem: Since the estimated components may be
permuted relative to the ground-truth variables, we solve a linear sum assignment problem
to determine the optimal one-to-one mapping between the ground-truth and the learned
representations. The goal is to maximize the total absolute correlation across all assigned
pairs.
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ReLU(BN(ConvTranspose2d(512, 512, kernelsize=1, stride=1, padding=0)))
ReLU(BN(ConvTranspose2d(512, 64, kernelsize=4, stride=1, padding=0)))
ReLU(BN(ConvTranspose2d(64, 64, kernelsize=4, stride=1, padding=0)))
ReLU(BN(ConvTranspose2d(64, 32, kernelsize=4, stride=1, padding=0)))
ReLU(BN(ConvTranspose2d(32, 32, kernelsize=4, stride=1, padding=0)))

ConvTranspose2d(32, 3, kernelsize=4, stride=2, padding=1)

Table 7: Decoder for the image data.

3. Compute the Mean Correlation Coefficient (MCC): Given the optimal assignment of the
ground-truth variables to the learned representations, we compute the mean of the absolute
values of the assigned correlation coefficients:

MCC =
1

d

d

∑
i=1
∣ρi,π(i)∣, (50)

where π(i) denotes the index of the assigned representation corresponding to the ith latent
variable, and d is the number of latent variables.

A high MCC indicates that the learned representation closely match the true source variables, up to
permutation transformations, thereby validating the identifiability of the learned representations.

Disentangled Representation Learning on CelebA To obtain disentangled representations for
the CelebA dataset, we initially employ the FastICA implementation available in the scikit-learn
software on the representations extracted from the pretrained ViT-B/32 encoder. Subsequently, we
train the decoder, as outlined in Table 7, utilizing Mean Squared Error (MSE) loss.

Experiments of Linear Probe In our experiments with ImageNet-Type data, we utilized the PCA
and FastICA implementations provided by scikit-learn. For our proposed method, which combines
PCA and ICA, we configured the number of components to 500 for PCA, and for FastICA, we set it
to 160 for 1, 2, and 4-shot learning scenarios, and 200 for 8 and 16-shot learning scenarios. When
employing ICA alone, we chose to use 300 components. For the proposed method with ICA only, we
set number of components to 300. Following the setting of linear probe in CLIP, we train a logistic
regression classifier using scikit-learn’s L-BFGS implementation, with maximum 1,000 iterations.
We determine the L2 regularization strength using a hyperparameter sweep on the validation sets over
the range between 10−6 and 106 , with 96 logarithmically spaced steps. To save compute required for
the sweeps, we perform a parametric binary search and iteratively halves the interval around the peak
until it reaches a resolution of 8 steps per decade. The hyperparameter sweeps are performed on a
validation split of each dataset.

FastICA as a plug-and-play Tool. We incorporate FastICA in the framework proposed in (Zhang
et al., 2022a) to enhance its ability for few shot learning. The framework consists of two primary
modules: one keeps the zero-shot capabilities of pre-trained CLIP, ensuring effective utilization of
prior knowledge, while the other, the cache module, constitutes the central contribution of the work.
The cache module endeavors to transfer knowledge from labeled training samples. Given the above,
we integrate FastICA into the cache module, preserving the invaluable prior knowledge derived from
the zero-shot abilities of pre-trained CLIP. For parameter settings in FastICA, we opted for 100
components for the majority of datasets. Specifically, we assigned 350 components for the ImageNet
dataset, 300 components for the OxfordPets dataset, and 50 components for the EuroSAT dataset.
A learning rate of 0.1 was employed for implementation. For the remaining parameter settings, we
adhered to the specifications outlined by (Zhang et al., 2022a).
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L DISCUSSIONS ON FASTICA VS. PCA FOLLOWED BY FASTICA

Our theoretical findings are based on two distinct assumptions: one on the hypersphere (Sec. 4.1)
and the other on convex bodies (Sec. 4.2). Each of these assumptions motivates a corresponding
practical method for real applications, namely FastICA, and PCA followed by FastICA, respectively.
In practice, however, the true latent generative process is typically unknown, making it difficult to
determine a priori which method is more appropriate. From an empirical standpoint, we observe that
face image datasets, such as CelebA, tend to align more closely with the hypersphere assumption.
This observation is supported both by our experiments on CelebA, where learning disentangled
representations under the hypersphere assumption improves performance, such as dynamic facial
expressions generation, dynamic facial expression transfer(Otberdout et al., 2020), face recognition
(Zhong et al., 2021; Liu et al., 2017). Moreover, consistent with the main motivation for learning
disentangled representations, we find that the representations obtained under the hypersphere as-
sumption lead to improved performance on related downstream tasks, further validating its practical
usefulness.

M ACKNOWLEDGMENT OF LLMS USAGE

We acknowledge that large language models (LLMs) were used in this work only for word-level
tasks, including correcting typos, improving grammar, and refining phrasing. No substantive content,
results, or scientific interpretations were generated by LLMs. All scientific ideas, analyses, and
conclusions presented in this manuscript are solely the work of the authors.

N HIGH-LEVEL DISCUSSION AND RATIONALE FOR THE USED ASSUMPTIONS

Our identifiability analysis, like most theoretical works on latent variable recovery, relies on specific
parametric assumptions about the underlying Data Generating Process (DGP) for zx and zt. While the
exact DGP of large-scale multimodal data is unknown, these assumptions are essential for theoretical
tractability and are motivated by prevalent machine learning practices and geometrical constraints.

N.1 RATIONALE AND INTERPRETATION OF ASSUMPTIONS

We introduce two sets of assumptions, primarily centered on the nature of the latent space geometry
and the distributional modeling of the coupled variables.

Hypersphere Assumptions (Eq. 4)

• Latent Space Geometry (SM−1): The assumption that the latent space resides on a Hyper-
sphere is motivated by consistency with models trained via MMCL. Specifically, modern
architectures like CLIP typically enforce L2 normalization on their embeddings, which
geometrically constrains the learned representations to lie on the unit sphere. Therefore,
assuming the underlying generative factors are also on the hypersphere is a natural choice
for space matching. Moreover, this geometry is inspired by prior work in Zimmermann et al.
(2021), which demonstrates its potential for achieving disentanglement in the single-modal
contrastive learning context.

• Marginal Distribution p(zx) as Uniform: This represents a maximum-entropy assumption.
Essentially, in the absence of specific prior knowledge, we assume that the distribution of
the shared latent variables, zx, is uniform across the latent space.

• Conditional Distribution p(zt∣zx) as von Mises-Fisher (vMF) Distribution: The vMF
distribution is the natural counterpart of the Gaussian distribution defined on a sphere. Its
parameterized form models the semantic coupling by formalizing the objective of MMCL:
given a factor zx, the distribution expects its positive pair zt to be concentrated nearby with
high probability. The alignment parameter kzTt zx precisely quantifies the strength of this
shared semantic information across modalities.

Convex Body Assumptions (Eq. 7 The assumptions for the convex body (e.g., hyperrectangle)
case provide an alternative geometric setting, often preferred in classic disentanglement works.
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• Latent Space (Zc) as a Bounded Convex Body: This definition specifies a non-spherical,
bounded space, which is typically crucial for ensuring identifiability and has been used in
previous related works Zimmermann et al. (2021).

• Conditional Distribution p(zt∣zx) as Exponential Distribution: The mathematical form
e−δ(zt,zx)/λ models the coupling relationship by assuming the likelihood decays expo-
nentially with the distance (δ, a distance metric induced by a norm between the coupled
variables. This implies that given zx, the paired variable zt is likely to be found in its
immediate vicinity.

N.2 LIMITATIONS AND PRACTICAL IMPLICATIONS

While these assumptions are theoretically sufficient for identifiability, as we have shown, their strict
adherence in real-world scenarios is challenging to verify. This difficulty arises because the true
data-generating process is unknown, making direct verification of conditions generally impossible.
As is common in practice, performance gains on downstream tasks are therefore used as a surrogate
to assess the plausibility of the theoretical assumptions. In particular, if the methods derived from our
identifiability theorems (e.g., using FastICA or PCA+FastICA to recover disentangled representations)
consistently yield strong improvements across diverse downstream tasks—as demonstrated in our
extensive experiments on few-shot learning and domain generalization—then it is reasonable to infer
that the underlying assumptions are either satisfied or, more likely, approximated sufficiently well for
the theory to be practically meaningful.

O A FORMAL DEFINITION OF DISENTANGLEMENT

Definition 1 (Component-wise Disentanglement). A representation fx(x) (and symmetrically, ft(t))
learned by MMCL is defined as Component-wise Disentangled if two conditions are met:

1. Factor Independence (Prerequisite): The components of the underlying latent coupled
variable zx (and zt) are mutually statistically independent.

2. Identifiability up to Trivial Transformation: The representation fx(x) (and symmetri-
cally, ft(t)) is related to the true latent variable zx (and zt) through a simple, invertible
transformation T up to a constant c:

fx(x) = Tzx + c and symmetrically ft(t) = T
′zt + c

′

where T (and T′) is a matrix of trivial ambiguity, specifically:

• T is an orthogonal matrix (in the hypersphere latent space, Corollary 1).
• T is a permutation matrix with scaling (in the convex body latent space, Corollary 2).

This result guarantees that the shared, independent components of zx (and zt) can be uniquely
recovered by resolving the ambiguity T using post-hoc linear methods, such as FastICA.

P QUANTITATIVE VALIDATION ON HIGH-DIMENSIONAL IMAGE

To provide a more direct and quantitative assessment of our theory’s disentanglement capabilities in
higher-dimensional and more complex settings, we utilize the Multimodal3DIdent dataset (Daunhawer
et al., 2023), which provides paired image and text samples with complete ground-truth latent factors.
We validate the identifiability of the shared latent variables (zx and zt) that jointly influence both the
image and text modalities. For shared factors, we consider the object’s shape (7 discrete values) and
its position (object_xpos, object_ypos, object_zpos). The remaining factors are treated
as modality-specific; see Daunhawer et al. (2023) for further details. The table below presents the
R2 scores for recovering the ground-truth shared latent factors from both the image (zx) and text (zt)
factors.

The image branch (zx) achieves near-perfect recovery (R2 ≈ 0.97), robustly validating our theoretical
framework’s ability to identify and unmix latent factors from complex, high-dimensional inputs.
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Modality Representation R2 Score (Recovery of z)

Image zx 0.97 ± 0.05
Text zt 0.75 ± 0.04

Figure 9: A sample from Multimodal3DIdent (Left). The corresponding text is: ‘The top-right of the
image shows a "tab:orange" colored head’. Identifiability Scores (R2) (Right).

Recovery performance for the text representation (zt) is slightly lower (R2 ≈ 0.75) (Similar observa-
tions were also reported by Daunhawer et al. (2023).), which we attribute primarily to the violation of
the idealized continuous assumptions inherent to the text modality—text factors (e.g., color) are often
represented as discrete, named values, which conflicts with the continuous assumptions. Overall,
these results suggest that our linear identifiability results extend effectively to high-dimensional image
data.

Q ICA-DISENTANGLED TEXT-ALIGNMENT MODULE

To further validate our theoretical claims on disentangling text representations only, we introduce the
following experiment.

We augment the Tip-Adapter framework with a dedicated Text-Alignment Module for few-shot
learning, following the design in Figure 4. Specifically, for each query image, we first generate
a textual caption using an external vision-language model (LLaVA), and then encode the caption
using CLIP to obtain the text feature ft. Similarly, we encode the zero-shot classifier prototypes to
obtain ft,class. To explicitly disentangle the latent factors in the text modality, we apply Independent
Component Analysis (ICA) to both ft and ft,class. The resulting disentangled representations are then
used to compute logits in the text branch, which are finally integrated with the original image-text
matching logits to produce the final classification output. This setup allows us to isolate and evaluate
the effect of text-only disentanglement on few-shot performance, without modifying the image
representation.

Table 8: Few-shot classification results (%) comparing text features with ICA / without ICA.

Dataset 1-shot 2-shot 4-shot 8-shot 16-shot

Average 64.62 / 62.40 66.51 / 64.66 68.28 / 66.56 70.10 / 68.47 71.81 / 70.36
Caltech101 92.45 / 87.10 92.90 / 88.40 93.43 / 89.17 93.55 / 89.66 93.75 / 90.14
DTD 48.11 / 46.16 51.54 / 49.65 54.91 / 54.02 59.46 / 58.39 61.52 / 61.05
EuroSAT 60.32 / 55.27 64.33 / 61.64 69.86 / 65.60 72.43 / 68.04 75.74 / 70.69
FGVC 18.96 / 18.99 21.45 / 21.30 22.38 / 22.32 25.35 / 25.44 29.97 / 29.94
Food101 78.91 / 77.38 78.98 / 77.55 79.13 / 77.55 79.19 / 77.78 79.25 / 77.89
ImageNet 60.68 / 60.46 60.82 / 60.67 60.92 / 60.80 61.42 / 61.26 61.93 / 61.80
Oxford-Flowers 73.61 / 73.24 79.09 / 78.93 84.13 / 83.76 88.27 / 88.27 89.97 / 89.97
Oxford-Pets 85.91 / 86.07 87.11 / 86.92 86.32 / 86.37 87.33 / 87.11 88.17 / 88.25
Stanford-Cars 61.41 / 57.64 62.41 / 58.64 64.77 / 61.75 66.57 / 63.09 68.86 / 66.82
SUN397 63.41 / 61.32 64.57 / 62.71 66.05 / 64.22 67.35 / 65.57 68.41 / 66.80
UCF101 66.98 / 62.78 68.41 / 64.87 69.18 / 66.61 70.24 / 68.54 72.30 / 70.63
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