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Abstract

Superposition allows neural networks to represent far more features than they have1

dimensions. Previous work has explored how superposition is affected by attributes2

of the data. Mixture of Experts (MoE) models are used in state-of-the-art large lan-3

guage models and provide a network parameter that affects superposition: network4

sparsity. We investigate how network sparsity (the ratio of active to total experts)5

in MoEs affects superposition and feature representation. We extend Elhage et al.6

[2022]’s toy model framework to MoEs and develop new metrics to understand7

superposition across experts. Our findings demonstrate that MoEs consistently ex-8

hibit greater monosemanticity than their dense counterparts. Unlike dense models9

that show discrete phase transitions, MoEs exhibit continuous phase transitions as10

network sparsity increases. We define expert specialization through monosemantic11

feature representation rather than load balancing, showing that experts naturally12

organize around coherent feature combinations and maintain specialization when13

initialized appropriately. Our results suggest that network sparsity in MoEs may14

enable more interpretable models without sacrificing performance, challenging the15

view that interpretability and capability are fundamentally at odds.16

1 Introduction17

Mixture of Experts (MoEs) have become prevalent in state-of-the-art language models, such as18

Qwen3, Mixtral, and Gemini [Yang et al., 2025, Jiang et al., 2024, Google DeepMind, 2025],19

primarily for their computational efficiency and performance gains [Shazeer et al., 2017, Fedus20

et al., 2022]. However, despite their widespread adoption, MoEs remain poorly understood from a21

mechanistic interpretability perspective.22

A fundamental challenge in interpreting neural networks is the phenomenon of superposition: when23

models represent more features than they have dimensions. This allows networks to pack many sparse24

features into fewer neurons at the cost of making individual neurons polysemantic and difficult to25

interpret.26

MoE architectures introduce a new dimension to this problem: network sparsity. Unlike dense27

models that activate all neurons regardless of input, MoEs activate only a small fraction of their total28

parameters [Shazeer et al., 2017]. While dense models exploit feature sparsity by packing many29

sparse features into shared neurons, MoEs can afford to be more selective, potentially dedicating30

entire experts to specific feature combinations.31

We investigate whether (1) MoEs exhibit less superposition than their dense counterparts, (2) there is32

a discrete phase change in MoE experts as seen in dense models, and (3) we can understand expert33

specialization through the lens of feature representation rather than just load balancing.34

We explore these questions using toy models that extend Elhage et al. [2022]’s framework to35

MoEs. Our key contributions are as follows: (1) MoEs consistently exhibit greater monosemanticity36

(less superposition) than dense models with equivalent active parameters, with individual experts37
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representing features more cleanly; (2) unlike dense models, MoEs do not exhibit sharp phase38

changes, instead showing more continuous transitions as network sparsity increases; and (3) we39

propose an interpretability-focused definition of expert specialization based on monosemantic feature40

representation, showing that experts naturally organize around coherent feature combinations rather41

than arbitrary load balancing.42

These findings suggest that MoEs may offer a path toward more interpretable architectures—achieving43

better performance while maintaining more monosemantic feature representations. This work44

provides both theoretical insights into how network architecture affects superposition and practical45

tools for analyzing these increasingly prevalent models.46

2 Background47

We expand upon the toy model setup formalized by Elhage et al. [2022]. Consider an autoencoder48

with n input features and m hidden dimensions trained to minimize the reconstruction loss (x− x̂)2:49

x̂ = ReLU(WTWx+ b) where x, x̂ ∈ Rn,W ∈ Rn×m, b ∈ Rn

We construct toy MoEs that replicate this architecture for each of e experts, where each matrix W e
i is50

indexed by its expert for the ith feature vector. The input x is routed to the top-k experts calculated51

by taking softmax of (Wrx), where Wr ∈ Rn×E is the gate matrix. We take top-k = 1 to simplify52

these toy models and match the active parameters between MoE and dense models.53

We sample x such that each feature xi has feature sparsity (S ∈ (0, 1], or feature density given by54

1 − S) and the last feature rx−1 has relative importance (r ∈ R+). Feature sparsity governs the55

likelihood a particular input feature dimension is zero. The relative importance is a scalar on the56

magnitude of the last feature, so x ∈ {x1, x2, ...rxn} : xi ∈ U(0, 1) with S likelihood that xi = 0.57

We define network sparsity as the ratio of total active experts (top-k) to the total number of experts,58

E. Because top-k = 1, the network sparsity is given by 1/E and is completely governed by E; a59

network with one expert is equivalent to a ‘dense’, non-MoE model. The input dimensions n scales60

the input vector size, while the hidden dimensions m allows us to control the representational capacity61

of the networks. We do not use a load balancing loss unless otherwise noted in order to do a fair62

comparison with the dense models.63

To demonstrate superposition in various models, we use two key visualizations as defined by Elhage64

et al. [2022]. First, they examined feature representation strength by plotting ∥Wi∥ for each feature i,65

which indicates whether a feature is fully represented (∥Wi∥ ≈ 1) or not learned (∥Wi∥ ≈ 0). Second,66

to understand whether features share dimensions with other features, they calculated interference67 ∑
j ̸=i(Ŵi ·Wj)

2, which projects all other features onto the direction vector of feature i. The simplest68

way to visualize this is using the WTW matrix, which is an identity matrix for the most important69

features and zero for features with no interference. Positive values in the matrix express that when70

one feature activates, it activates the other feature partially and negative values express that when one71

feature activates, it inhibits the other feature partially.72

In order to define monosemanticity and polysemanticity across various models as a statistical property73

of features the model represents, following Elhage et al. [2022] we take "dimensionality" for a feature74

i as:75

Di =
∥Wi∥2∑

j(Ŵi ·Wj)2

where Wi is the weight vector of the ith feature and Ŵi is the unit vector in the direction of Wi.76

In order to compare the effects of feature sparsity, S across the dense and MoE models we take77

"dimensions per feature" following Elhage et al. [2022] as78

D∗ =
m

||W ||2F
where m is the number of hidden dimensions and ||W ||2F is the Frobenius norm of the weight matrix.79
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3 Demonstrating Superposition80

In order to understand the phenomenon of superposition in toy MoEs, we measured the norm of a81

feature weight vector in an expert e given by ∥W (e)
i ∥. It represents the extent to which a feature is82

represented within the expert e. ∥W (e)
i ∥ ≈ 1 if the feature i is fully represented in expert e and zero83

if it is not learned. Furthermore, we extended the WTW matrix per expert to an MoE.84

We varied the total number of experts, E, keeping all other parameters constant, including: number85

of features n, hidden dimensions m, feature density 1− S, and feature importance I of each feature.86

The goal was to isolate the effect of network sparsity (k/E) on superposition. We compared ∥W (e)
i ∥87

and WTW for each expert e with the dense model for E = 2 and E = 5.88

We observed that each expert e in a MoE represents more features monosemantically (less super-89

position) than the dense model, signified by the greater number of purple bars in Figure 1b and 1c.90

Increasing the total number of experts E from 2 to 5 further increases the number of monosemantic91

features per expert. The features in each expert in these MoEs also have relatively less interference92

with every other feature compared to the dense model.93

(a) Dense

(b) MoE with 2 total experts

(c) MoE with 5 total experts

Figure 1: Demonstration of superposition in (a) Dense, (b) MoE with 2 total experts, and (c) MoE
with 5 total experts for n = 20, m = 5, I = 0.7i and 1 − S = 0.1. The left figure in each pair
represents the norm of each feature’s direction vector ∥Wi∥. Each feature’s color represents whether
the feature is orthogonal to other features (i.e. in superposition). The right figure in each pair
represents the WTW matrix and each cell is colored by the dot product between feature weight
vectors. For MoEs (b) and (c), the visualizations are shown per expert.
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We extend the feature dimensionality to be per expert by defining expert-specific feature dimensional-94

ity as D(e)
i =

∥∥∥W (e)
i

∥∥∥2

∑
j

(
Ŵ

(e)
i ·W (e)

j

)2 where
∥∥∥W (e)

i

∥∥∥2 is the squared L2 norm of the weight vector of the95

ith feature in expert e and Ŵ
(e)
i is the unit vector in the direction of W (e)

i . It represents the "fraction96

of a dimension" that a specific feature gets. Features that are monosemantic in an expert will have a97

dimensionality of one while features that are not learned by an expert will have dimensionality zero.98

To directly compare dimensionality of the features in a dense model, Di, to the features in an MoE,
we define the global dimensionality of a feature i in a MoE in terms of expert-specific feature
dimensionality weighted by the activation rate of the expert given that feature i is present:

Dglobal
i =

∑
e

α
(e)
i ·D(e)

i

where De
i is the expert-specific feature dimensionality and α

(e)
i = P (expert e active |99

feature i present). α(e)
i represents the number of times expert e is active when feature i is present100

divided by the total number of times feature i is present across a batch of input samples.101

We also compute per-expert dimensions per feature, D∗(e) = m
||W (e)||2F

and a global dimensions per
feature for a MoE, D∗

global defined as:

D∗
global =

E ·m
||Wcombined||2F

where Wcombined is the stacked weight matrix across E experts, [W (1);W (2); . . . ;W (E)]. To102

understand how differently features in a MoE occupy space compared to the dense models, we103

compute D∗
global at varying sparsity levels.104

Concretely, we observed the global dimensionality of each feature i in an MoE is almost always105

greater than the dimensionality of that feature in the dense model as shown in Figure 2. Higher106

global dimensionality means that an MoE allocates larger fraction of the dimension to the same107

feature across various models. Furthermore, across all sparsity values, MoEs with 5 and 8 experts108

have a higher number of hidden dimensions per feature than the dense models as shown in Figure 3.109

Higher Dglobal
i and D∗

global for the MoEs compared to the dense model signifies that the features in110

the MoEs are less polysemantic, as they have less interference from other features (Figure 1).111

Figure 2: Global feature dimensionality, Dglobal
i , for

the dense, MoE with 5 experts, and MoE with 8
experts for n = 20,m = 5, I = 1.0.

Figure 3: Number of hidden dimensions
per embedded feature across the dense,
MoE with 5 experts, and MoE with 8 ex-
perts for n = 20,m = 5, I = 1.0 and
varying log sparsity 1/(1− S).

4 Phase Change112

Dense toy models exhibit discontinuous ‘phase changes’ between internal feature representations113

[Elhage et al., 2022]. By varying the properties of the input distribution, we can elicit different114

behavior. In general, more feature sparsity encourages greater superposition. Analyzing how115
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Figure 4: Joint feature norm (||Wi||2) and superposition score (
∑

j ̸=i(Ŵi ·Wj)
2) across varying

feature sparsity S ∈ [0.1, 1] and relative last feature importance r ∈ [0.1, 3]. For each cell, we train
ten models and select the one with the lowest loss. We used load balancing loss in this section. We
plot joint feature norm and superposition for the last feature: low L2 norm (||Wi||) is white, denoting
the model is ignoring the last feature; otherwise a low superposition score is blue-purple to indicate
monosemantic representation of the last feature and red for a high superposition score. Subfigure
X.e/E denotes the weight matrix of expert e of E total experts trained on architecture X; X.1/1 is a
dense model.

MoE phase diagrams change as a function of network sparsity enables a direct characterization of116

superposition within models and offers insight into how experts specialize.117

We report the expert-specific phase diagram across all-feature sparsity and last-feature relative118

importance for varying network sparsity by increasing the experts (E) up to the number of input119

feature dimensions (n).120

In all single-expert (dense) cases, we observed a clear phase change (Figure 4.X.1/1), affirming the121

work of Elhage et al. [2022]. When we increased the total number of experts, discrete phase changes122

disappeared. Some experts in MoEs with E = 2 are reminiscent of their respective dense cases123

(Figure 4.X.2/2), but exhibit more continuous transitions. In each case, the first expert became more124

monosemantic, specializing in the most important feature by relative importance. Experts dissimilar125

from the dense cases universally have much lower superposition scores (they are bluer), indicating126

more monosemantic representations. This aligns with the conclusions of the previous section—MoEs127

favor lower superposition scores compared to their dense counterparts.128

For the n = 2,m = 1 setup (Figure 4.A), the dense model does not represent the last feature when129

feature sparsity is low. However, the comparable MoE model preserves the last feature much more130

because it has the capacity. With three input dimensions (Figure 4.B), the MoE does not exhibit131

this behavior because the experts are superimposing the other two features; there is no space for the132

third feature within one hidden dimension. For m = 2 the white region in the dense model (Figure133

4.C.1/1) (in the mid- to low-feature sparsity domain when the feature is relatively less importance134

than the others) ignores the last feature. However, as network sparsity increases—across all other135

Figure 4.C—the models allocate the last feature greater L2 magnitude (||W 1
3 || < ||W 2

3 || < ||W 3
3 ||),136

choosing to represent it monosemantically instead. In other words, the dimensionality in the low137

relative-importance region increased with increasing network sparsity, as demonstrated in Figure 3.138
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We observed a window of feature sparsity from roughly 0.48 to 0.7 for Figures 4.B.2/2, 4.C.1/2, and139

4.C.2/2 where there is heavy mix of polysemanticity, monosemanticity, or ignorance. This indicates140

there is a middleground in MoEs with comparable loss between polysemantic and monosemantic141

representations which make it difficult to consistently commit to the strategies we observe in low and142

high feature sparsity domains.143

In general, MoEs have much lower superposition scores than their dense counterparts. Furthermore,144

an expert specializing over a subset of the feature space, as determined by the router, rarely resembles145

an expert specializing over the whole feature space—even when one only expert is active at a time.146

5 Expert Specialization147

The definition of expert specialization in MoEs traditionally centers around load balancing between148

experts across all inputs [Chaudhari et al., 2025]. However, this definition fails to capture the natural149

intuition of specialization, wherein an expert is only used when appropriate concepts—those the150

expert is specialized in—are present in the input.151

We define an expert to be specialized if it occupies certain feature directions in the input space, and if152

it represents said features relatively monosemantically. We demonstrate that these two conditions are153

directly correlated, and show how the presence of these two conditions encourages load balancing154

across experts. Furthermore, we demonstrate that this understanding of specialization suggests gate155

initialization schemes which improve performance and encourage load balancing. We elaborate on a156

related, motivating idea—there exists a formulation of a MoE which monosemantically encodes a157

polysemantic dense model in a high sparsity domain—in Appendix A.2.158

Figure 5: Expert routing of three identical models with differing initialization schemes. We use
n = 2, E = 3, m = 1. The first model (left) has the worst performance (loss: 0.08) and routes all
inputs to one expert. The second model (middle) has better performance (loss: 0.04) and routes a
small portion of inputs, specifically those when feature 1 is active, to a second expert. The third
model (right) has the lowest loss (loss: 0.025), and distributes the input space among all experts. One
expert is chosen when only feature 1 is active, one when only feature 2 is active, and one when both
are active.

There is a correlation between the distribution of experts across the feature space and how well a159

model performs, as shown in Figure 5. Because the router function is linear, experts occupy certain160

directions in the feature space, where scalar multiples of those directions are consistently routed to a161

single expert. Not only do models with better distribution of experts across the feature space perform162

better, but they tend to align experts with particular features. This implies that experts can specialize163

to specific features, and that doing so improves performance.164

Next, we explore whether initializing experts over specific features in the input space cause them to165

be more monosemantic w.r.t. those features. Then, we see if, for the features an expert has chosen to166

represent monosemantically, the expert is chosen more often when that feature is active in the input.167

When the gate matrix is initialized to the diagonal, such that inputs with feature i active are routed to168

expert i, each expert monosemantically represents the single feature it was initially aligned with, and169

only that feature, as shown in Figure 6a. When the router is ordered k-hot initialized, the first expert170

monosemantically represents four of the five features it was initialized with, as shown in Figure171

6b. The other experts, initialized over other features, did not monosemantically represent these less172

important features, nor did they monosemantically represent the five most important features they173

were not initialized over. When we break the ordering of feature importance and randomize the174

6



(a) Diagonal Initialization (b) Ordered K-hot initialization (c) Random K-hot initialization

Figure 6: ||W (e)
i ||2 and WTW results for three different initialization schemes, with n = 20,m =

5, E = 4, S = 0.1. In (a), the gate matrix is initialized along the diagonal, and relative feature
importance decreases exponentially in order from feature one to 20. In (b), the gate matrix is
initialized to an "ordered k-hot", such that the first expert aligns with the first five features, and each
subsequent expert aligns with the next five features. Relative feature importance is the same as (a).
In (c), the gate matrix is initialized to a "random k-hot", where each expert is assigned five random
features such that experts share no common feature but cover all 20 features collectively. Relative
feature importance decreases exponentially but is randomly distributed across features.

features each expert aligns with, each expert monosemantically represented only the most important175

feature it was initialized over, as shown in Figure 6c.176

There is a strong correlation between the features that initially are routed to an expert and which177

features that expert represents monosemantically. Furthermore, we observe that experts only spe-178

cialize on important features—or they don’t specialize at all. This is true if we give each expert one179

important feature explicitly, or if we give it a set of features, upon which it selects the most important180

feature itself and gives that one a dedicated dimension in the activation space (Dglobal
i = 1).181

We investigated whether there is a correlation between experts representing certain features monose-182

mantically, and said experts being chosen when those features are active in the input. We measure183

which features an expert monosemantically represents, then create synthetic batches where said184

features are active. The correlation holds both in xavier and k-hot initialization schemes, as seen185

in Table 1. Given E = 10, a mean expert usage of ∼10% indicates an even load balancing across186

experts. In all cases, when the corresponding monosemantic feature(s) for an expert is active, the187

usage of the expert increases significantly. When this feature(s) is the only active feature, the expert188

dominates the usage.189

We take this increased usage to be equivalent to saying "the expert aligns with the direction of this190

combination of features in the input space" – when these features are active, the input vector points in191

the direction of the specialized features, and the expert is chosen more often.192

As experts represent more features monosemantically, they can be seen as more specialized. Their193

usage on arbitrary input decreases, but conditional on their specialized features being active, their194

usage increases far greater than other experts. This holds true for all cases except the xavier initialized195

model with a four monosemantic feature expert, where there is a significant drop in utilization.196

However, when these four features are the only features active, said expert is chosen 100% of the197

time.198
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Table 1: Monosemantic feature and usage statistics per expert for n = 100,m = 10, E = 10.
One hundred models are trained for each initialization scheme (xavier and k-hot), providing 1000
experts in total for each. Each statistic is aggregated across models, classifying experts based on
the number of features they represent monosemantically. For the feature(s) an expert represents
monosemantically, we track the expert usage when said feature(s) is one of several active features in
the input, as well as the expert usage when said feature(s) is the only active feature in the input.

Xavier Initialization
Number if

monosemantic
features per

expert

Number of
experts (out of

1000)

Mean expert
usage (%)

Mean expert
usage; feature(s)

active (%)

Mean expert
usage; only

feature(s) active
(%)

0 461 – – –
1 387 9.595 17.94 67.18
2 138 9.599 30.29 95.65
3 13 8.363 40.19 100.0
4 1 1.428 14.69 100.0
5 0 – – –

K-Hot Initialization
Num

monosemantic
features per

expert

Num experts
(out of 1000)

Mean expert
usage (%)

Mean expert
usage feature(s)

active (%)

Mean expert
usage only

feature(s) active
(%)

0 335 – – –
1 382 10.00 23.94 100.0
2 227 10.02 46.61 100.0
3 47 10.09 62.00 100.0
4 8 9.95 70.30 100.0
5 1 9.62 74.79 100.0

The k-hot initialization makes experts more specialized, as shown in Table 1. There are more experts199

which represent features monosemantically, and there is a much stronger correlation of the router200

choosing an expert when its combination of features is active in the input.201

Furthermore, load balancing between experts is greater for k-hot initialization compared to xavier,202

with a lower standard deviation of usage and higher median usage, as shown in Table 2. The k-hot203

initialization is able to represent more features and has higher Dglobal
i .204

Table 2: Specialization and Representation Statistics Across Initialization Schemes

Initialization
Scheme

Average median
usage of experts

Average std of
usage of experts

Average num
features

represented

Average global
dimensionality

Xavier 0.08621 0.01171 28.730 0.1110
K-Hot 0.09956 0.00079 32.820 0.1140

6 Limitations205

Our findings are based on simple autoencoder toy models with synthetic data. The extent to which206

these results generalize to large-scale transformer architectures with complex, high-dimensional207

representations remains an open question. We studied only top-k = 1 routing with simple linear208

gates. Large MoE systems employ more sophisticated routing mechanisms, multiple active experts,209

and architectural complexities not captured in our framework. Our analysis assumes features are210

independent with known sparsity patterns. Real data likely exhibit complex feature correlations and211

unknown sparsity structures that may fundamentally alter superposition dynamics.212
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7 Conclusion213

We explored how network sparsity impacts superposition in MoEs. Superposition is a foundational214

concept of mechanistic interpretability. MoEs are used in state-of-the-art language models. For215

mechanistic interpretability to be useful, we must develop an understanding of superposition in these216

architectures.217

We expanded metrics for quantifying superposition to MoEs and demonstrated they exhibit greater218

monosemanticity relative to their dense counterparts. We demonstrated experts in MoEs do not219

exhibit discrete phase changes like dense models. Finally, we offered a notion of MoE specialization220

not motivated by load balancing but by in terms of features. We show we can force this specialization221

with weight initialization schemes in place of a load balancing loss and that such models represent222

more features.223

MoEs are commonly regarded as a method for scaling model size, less for their performance increases.224

However as Shazeer et al. [2017], Dikkala et al. [2023], Li et al. [2025] have demonstrated, MoEs225

achieve lower loss for similar active parameters or FLOPs. We observed similar patterns across all226

our toy models and visualized the loss for select phase change models in Appendix A.1.227

Toy MoEs achieve lower loss compared to dense models—effectively trading increased network228

sparsity for more interpretable, less-superimposed, better-performing features. This is at odds with229

the general zeitgeist—that mechanistic interpretability and performance are orthogonal objectives.230

Of course, these are toy models. We leave future work to determine how well these ideas scale.231
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Appendix263

A.1 Phase Change Loss264

Figure 7: Model X/E uses X to denote the same model architectures and models used in Figure 4 and
E denotes the total number of experts (e.g. network sparsity). Increasing network sparsity decreases
mean loss while increasing localized variance—especially as the number of experts reaches the input
feature dimensions. This can attributed to the relatively unstable training of MoEs compared to dense
models (despite training ten models for each cell and selecting the lowest loss).

A.2 Analytic Model Equivariance265

For the toy setup of single-layer, single-nonlinearity, top-k = 1 MoEs, there exists a theoretical map266

between any dense model and a monosemantic MoE with an equivalent number of active features267

under a sparsity constraint.268

Assume there exists an upper bound for the number of active features a for any input such that269

∀x ∈ D : |{i : xi ̸= 0}| ≤ a. Furthermore, assume that a is no greater than the hidden dimensionality,270

m, of an expert, providing an upper bound on the number of features a model has to represent.271

Assume also that the hidden dimensions is smaller than the total number of input features n (a ≤272

m ≤ n). To construct the monosemantic MoE, for each possible subset S ⊆ {1, 2, . . . , n} with |S| ≤273

a—meaning the size of the subset of active features is smaller than or equal to a—create an expert274

which monosemantically preserves those features. (In fact, you can take only the subsets such that275

|S| = a.) The router then selects the expert which corresponds to those active features (of which276

there will never be more than a, by assumption):277

Router(x) = argmax
S

I[support(x) = S]

where support(x) = {i : xi ̸= 0}. Since |S| ≤ a ≤ m, each expert has sufficient capacity to278

represent its assigned features without superposition. To reiterate, only a features are active and every279

unique combination of active features receives its own dedicated expert with sufficient capacity to280

represent those features monosemantically. So, the number of possible experts needed is
(
n
m

)
.281

The reconstruction for this theoretical MoE has zero loss only as the sparsity constraint holds (or282

goes to one in these toy models) because there is the chance more than m features could be active at283

one time (a ̸≤ m), which would exceed the monosemantic representational capacity of the network284

(but the dense polysemantic could do no better unless features are correlated in the distribution).285

Therefore, even if a ̸≤ m sometimes, the polysemantic model encounters the same problem and the286

monosemantic MoE under this construction may still outperform it under looser sparsity constraints.287

Thus, for any dense model, fdense(x) = ReLU(Wx+ b) under the sparsity constraint |support(x)| ≤288

a, there exists an MoE model fMoE(x) such that fdense(x) = fMoE(x) for all valid inputs. In the toy289

settings described in this paper, the sparsity constraint holds in the limit where sparsity goes to one.290

However, in practice there may be an upper bound on the amount of features a particular amount291
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of information can semantically encode, indicated by the size of meaningful embeddings of that292

data. Therefore, a MoE model with sufficient experts and a tractable amount of superposition (e.g.293

interpretable) may be sufficient to encode all features present.294
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