
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

KV-CORE: BENCHMARKING DATA-DEPENDENT LOW-
RANK COMPRESSIBILITY OF KV-CACHES IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models rely on kv-caches to avoid redundant computation during
autoregressive decoding, but as context length grows, reading and writing the
cache can quickly saturate GPU memory bandwidth. Recent work has explored
KV-cache compression, yet most approaches neglect the data-dependent nature of
kv-caches and their variation across layers. We introduce KV-CoRE (KV-cache
Compressibility by Rank Evaluation), an SVD-based method for quantifying the
data-dependent low-rank compressibility of kv-caches. KV-CoRE computes the
optimal low-rank approximation under the Frobenius norm and, being gradient-free
and incremental, enables efficient dataset-level, layer-wise evaluation. Using this
method, we analyze multiple models and datasets spanning five English domains
and sixteen languages, uncovering systematic patterns that link compressibility to
model architecture, training data, and language coverage. As part of this analysis,
we employ the Normalized Effective Rank as a metric of compressibility and
show that it correlates strongly with performance degradation under compression.
Our study establishes a principled evaluation framework and the first large-scale
benchmark of kv-cache compressibility in LLMs, offering insights for dynamic,
data-aware compression and data-centric model development.

1 INTRODUCTION

Large language models (LLMs) adopt the Transformer architecture (Vaswani et al., 2017) and generate
text autoregressively under a causal mask, which ensures that past key and value vectors can be
cached (KV-cache) (Ott et al., 2019). These caches are stored in high-bandwidth memory (HBM) on
GPUs and repeatedly fetched into compute-unit registers during decoding, reducing computation but
introducing a memory-bandwidth bottleneck as context length grows. This challenge has motivated
both hardware innovation (Rhee et al., 2025) and algorithmic approaches to KV-cache compression
(Shi et al., 2024), with our work focusing on the latter.

A natural way to reduce KV-cache cost is to compress key and value representations into lower-
dimensional spaces. Many methods use low-rank approximation of projection matrices (Ji et al.,
2025; Chang et al., 2024), but they ignore the data-dependent nature of key/value activations, whose
intrinsic rank can be smaller in domain-specific tasks that exercise only part of the model’s capacity
(Yu & Wu, 2023). Moreover, most approaches apply the same compression ratio across layers (Wang
et al., 2024), overlooking distinct compressibility profiles. Methods for analyzing and comparing
key/value rank across layers remain underexplored.

To address these limitations, we propose KV-CoRE (KV-cache Compressibility by Rank Evaluation),
an incremental singular value decomposition (SVD) method that directly operates on key and value
features computed over large datasets. Unlike approaches that approximate projection weights,
KV-CoRE is data-dependent and captures the intrinsic rank of the KV-cache induced by real inputs.
It supports independent per-layer decomposition without cross-layer coupling, is gradient-free, and
enables batch-wise computation with low memory overhead. KV-CoRE guarantees a globally optimal
low-rank projection under the Frobenius norm, and unlike existing methods (Chen et al., 2021b;
Wang et al., 2024) that only compute the optimal compression matrix, it explicitly decomposes long
sequences of key and value features to recover the singular value distributions of each layer on a given
dataset. This allows systematic evaluation of compressibility and provides an effective diagnostic
tool for understanding representational capacity usage in LLMs.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

We conduct extensive experiments across open-source LLMs of different sizes and architectures,
spanning datasets in instruction following, code generation, medical QA, and multilingual tasks. We
introduce normalized effective rank (NER) as a lightweight metric for per-layer compressibility and
systematically compare key and value ranks across models and domains. Beyond static evaluation,
end-to-end SVD-based truncation shows that NER correlates strongly with perplexity, validating it
as a reliable proxy for compression sensitivity. These results reveal consistent layer-wise and data-
dependent patterns in KV-cache compressibility, laying the groundwork for dynamic and adaptive
strategies.

Our contributions are as follows:

• We propose KV-CoRE, an SVD-based, data-dependent framework for analyzing KV-cache
compressibility, which enables efficient dataset-level, layer-wise evaluation with provably
optimal low-rank approximations.

• We introduce NER as a metric of compressibility and demonstrate its strong correlation
with perplexity and GPT-score, validating it as a reliable tool for evaluating and comparing
models.

• We conduct extensive experiments across models, domains, and languages, uncovering sys-
tematic patterns that link compressibility to model architecture, training data, and language
coverage.

2 KV-CORE METHOD

To evaluate and compress KV caches, we develop an efficient method that incrementally computes
the SVD of keys and values over large datasets, enabling layer-wise and data-dependent evaluation
of their compressibility in LLMs. At the same time, our method computes the optimal compression
matrices, addressing challenges identified in prior work Chen et al. (2021b); Wang et al. (2024); Yuan
et al. (2024).

To illustrate our method and its advantages, we first introduce notations, building upon the prelimi-
naries provided in Appendix A.1. As our method applies uniformly across layers and to both key and
value spaces, we omit layer-specific notation in the rest of the section and focus on K as an example
in the following discussion for simplicity. Consider a dataset containing l tokens, for a particular
LLM, let X = [x1; ...;xl] ∈ Rl×de be the sequence of activations for an attention layer, computed
based on the dataset. Let WK be the key projection weights of a layer. The corresponding key
K = [k1; ...;kl] features are computed as K = [k1; ...;kl] = XWK . The data-dependent optimal
low-rank approximation problem, introduced in Chen et al. (2021b); Wang et al. (2024); Yuan et al.
(2024), is formulated as follows. For each key projection matrix WK , we seek a low-rank matrix
W̃K with rank k that minimizes the compression error,

argmin
W̃K

||XWK −XW̃K ||2F s.t. rank(W̃K) = k (1)

The solution W̃K can be expressed as a pair of down- and up-projection matrices, which compress
key vectors into dimension k and then reconstruct them for efficient autoregressive inference.

2.1 SVD-BASED KV-CACHE ANALYSIS

Our key idea is to perform SVD on key and value spaces for each layer, allowing an analytical study
of the layer-wise compressibility of KV caches given a LLM and a particular dataset. For example,
the SVD on K ∈ Rl×mhdh can be written as K = UΣVT , where U ∈ Rl×l and V ∈ Rmhdh×mhdh

are left and right singular values, respectively, and Σ ∈ Rl×mhdh denotes singular values. By the
Eckart-Young-Mirsky theorem Eckart & Young (1936), the truncation of the largest singular values
along with corresponding singular vectors Kk = UkΣkVT

k forms the best k-rank approximation to
K in the Frobenius norm sense, with the minimal approximation error calculated as follows,

||K −Kk||2F =

{
σk+1, for the 2-norm
(
∑r

j=k+1 σj)
1
2 , for the Frobenious norm

(2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Dataset

LLM

La
ye

r 1

La
ye

r 2

La
ye

r N

Incremental SVD for keys Incremental SVD for values Cached KV

MHA

1 2 3 4

1 2 3 4

1 2 3 4

Transpose

Initialize
update covariance per token

eigen-decomp
as final step

Input

weight matrix
of i-th headi

Figure 1: Overview of KV-CoRE. At each Transformer layer, keys and values from all attention
heads are concatenated to form the KV-cache. To measure compressibility, we apply incremental
SVD to the cached key/value activations with low memory overhead, recovering their singular value
spectra. The resulting singular vectors and values are used to compute the optimal data-dependent
compression matrix, enabling KV-cache compressibility analysis via NER.

where r denotes the rank of K, σj denotes the j-th largest singular value in Σ. In other words, for
any k ∈ [1, r], the minimal k−rank approximation loss to K is a deterministic function of singular
values. Thus, we use singular value–based metrics to evaluate the compressibility of key and value
spaces in each attention layer, as detailed in the experimental section 2.4.

2.2 OPTIMAL DATA-DEPENDENT COMPRESSION MATRIX

Given singular values Σ and right singular vectors V of K, we can directly recover the dataset-
dependent optimal k-rank approximation of WK as: W̃K = WKVkVT

k .

To see why W̃K is optimal to minimize the error: ||X(i)WK(i) − X(i)W̃K(i) ||F , consider the
following:

XW̃K = XWKVkVT
k

T1= KVkVT
k

T2= UΣ(VTVk)VT
k

T3= U
(
Σ

[
Ik
0

])
VT
k =

(
U
[
Σk

0

])
VT
k = UkΣkVT

k

(3)

Where Ik is a k by k identity matrix. T1 holds because by definition K = XWK ; T2 holds
because UΣVT is the SVD of K; T3 holds because singular vectors form an orthogonal basis, thus
VT
k Vk yields a k by k identify matrix. Recall that by the Eckart-Young-Mirsky theorem Eckart &

Young (1936), UkΣkVT
k forms the best k-rank approximation of K = XWK , we can conclude that

WKVkVT
k is optimal to the optimization problem.

During LLM inference, a direct implementation is to replace WK with a pair of down-projection
WKVk and up-projection VT

k matrices. This allows caching the low-dimensional key vector
xtW

KVk instead of the full-dimensional xtW
K given t-th token, reducing both the memory and

bandwidth consumption.

2.3 INCREMENTAL SVD ALGORITHM FOR DATASET-LEVEL KV-CACHE

A key challenge is that the size of K ∈ Rl×mhdh scales up with the number of tokens l in a Dataset,
rendering direct SVD on K impractical due to excessive memory and computational demands.

We propose a novel algorithm that mitigates memory and computation bottlenecks through batch
computation without sacrificing accuracy. This method only requires holding and updating a mhdh-
by-mhdh covariance matrix, avoiding the direct SVD of K and still generating the mathematically

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

equivalent singular values Σ and right singular vectors V . Algorithm 1 shows the pseudo-code of our
method.

Algorithm 1 SVD Computation of Dataset-level KV-Cache
Input: Dataset containing l tokens in total; LLM model weights WK

Output: singular values Σ and right singular vectors V of K
C ← mhdh ×mhdh zero matrix ▷ Initialize covariance matrix to zero
for t = 1, . . . , l do

kt ← xtW
K

C ← C + kT
t kt ▷ Update covariance matrix in each step

end for
V,Σ2,VT ← eigen-decomposition(C) ▷ perform eigen-decomposition on the final covariance
matrix
return Σ,V

For each token in a Dataset containing l tokens, kT
t kt is computed and the covariance matrix C is

updated. After l iterations, we will have the complete covariance matrix of K as C = KTK =∑l
t=1 k

T
t kt. Finally we perform eigen-decomposition on C to obtain the singular values Σ and right

singular vectors V of K.

To see why the final step of Algorithm 1 generates mathematically equivalent Σ and V , consider the
following proof,

KTK
T1= (UΣVT)TUΣVT = VΣTUTUΣVT T2= VΣ2VT (4)

where T1 holds by applying SVD on K; T2 holds because singular vectors form an orthogonal basis,
thus UTU yields a identity matrix, and consequently ΣTUTUΣ = Σ2.

2.4 NORMALIZE EFFECTIVE RANK AS COMPRESSIBILITY METRIC

Intuitively, the approximation loss derived in Eq.(2) provides a direct measure of the compress-
ibility of key and value spaces. For instance, one could fix an approximation rank k across all
key spaces, evaluate the corresponding losses, and interpret smaller losses as indicative of higher
compressibility. While being simple and straightforward, such strategy has two main drawbacks:
First, the metric depends on a fixed approximation rank k, and there is no clear guidance on how
to select k appropriately. Second, it fails to account for the full spectrum of singular values. We
thus introduce the Normalized Effective Rank (NER) as a metric to measure the compressibility of
key and value spaces. For a matrix K with singular values {σi} and rank r, the effective rank—first
introduced in (Roy & Vetterli, 2007)—is defined as erank(K) = exp(−

∑r
i=1 pi log pi), where

pi = σi/
∑r

j=1 σj , and the logarithm is to the base e (natural logarithm). Building on this, NER
is defined as NER(K) = erank(K)/r. In other words, NER normalizes the effective rank by the
matrix’s actual rank. As proven in (Roy & Vetterli, 2007), the effective rank erank(K) satisfies
1 ≤ erank(K) ≤ r, consequently, NER yields a score in [1/r, 1].

3 RELATED WORK

Rank Analysis in Language Models: Early work has investigated the relationship between the
rank of transformer weights or representations and model performance, seeking either to leverage
low-rank structure for efficiency (Chen et al., 2021a; Hsu et al., 2022; Hajimolahoseini et al., 2022;
Li et al., 2023), to prevent rank collapse that limits expressivity (Dong et al., 2021; Noci et al., 2022;
Yaras et al., 2024), or to maximize rank utilization for enhanced modeling capacity (Bhojanapalli
et al., 2020; Boix-Adsera et al., 2023). With the growing use of large language models (LLMs),
research has turned to their inherent low-rank properties. LoRA (Hu et al., 2022) leverages this
structure during fine-tuning, showing that many weight updates lie in low-dimensional subspaces.
Loki (Singhania et al., 2024) examined the key representations in attention layers and found that
they often reside in lower-dimensional subspaces across models and datasets, which can be used
for efficient sparse attention. These directions have also motivated growing efforts on KV-cache

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

compression (Shi et al., 2024) to address the deployment bottleneck in reading and storing the KV
cache (Yu et al., 2022). Our work introduces a fine-grained method for evaluating the compressibility
of KV caches in LLMs through effective rank analysis, uncovering layer-wise and data-dependent
patterns that can inform the design of dynamic and adaptive compression strategies.

Low-Rank KV-cache Compression: DeepSeek (Liu et al., 2024) introduced Multi-head Latent
Attention (MLA), which applies low-rank joint KV cache compression to enable scalable inference,
unlike Multi-Query Attention (MQA) (Shazeer, 2019) and Grouped-Query Attention (GQA) (Ainslie
et al., 2023) which reduce KV caches by merging key and value heads in multi-head attention (MHA)
(Vaswani et al., 2017). MHA2MLA (Ji et al., 2025) and PALU (Chang et al., 2024) applies SVD
to compress key and value projection weights, converting models based on MHA into the MLA
structure for reduced KV cache size. However, this approach targets only the projection weights,
while prior work (Yu & Wu, 2023) has shown that transformer weights typically have higher rank
than the output features (keys/values), suggesting that data-dependent KV-cache compression is more
effective. In this direction, DRONE (Chen et al., 2021b) proposed a closed-form solution for data-
aware low-rank compression of projected keys/values, and SVD-LLM (Wang et al., 2024) introduced
an incremental optimization based on Cholesky decomposition (Meyer, 2023) that achieves the same
optimal compression loss with lower memory overhead. In comparison, our method achieves the
same optimality with a much simpler formulation; moreover, it explicitly computes the SVD of
key/value representations, whereas SVD-LLM only recovers the optimal compression matrix.

4 EXPERIMENT

We evaluate our method on 5 open-source LLM series of varying sizes on 5 datasets.

Models To evaluate the generality of our method across different architectures and model sizes, we
apply our analysis to a set of open-source LLMs including Qwen3 (4B, 8B) (Team, 2025), Mistral-
7B (Jiang et al., 2023), Gemma-1.1 (2B, 7B) (Team et al., 2024), and Phi-3-mini-128k-instruct
(Abdin et al., 2024), where Gemma-1.11 is a recent update of the original instruction-tuned Gemma,
incorporating a new RLHF method that improves overall performance.

Datasets To study the data-dependence of KV-cache compression, we evaluate our method on n
datasets, spanning diverse English instruction-following tasks across multiple domains and multilin-
gual QA. For English evaluation, the datasets cover general instruction following, code generation,
medical QA, and function calling, including Alpaca (Taori et al., 2023), MedAlpaca (Han et al.,
2023), CodeAlpaca (Chaudhary, 2023), WizardCoder (Luo et al., 2025), and FunctionCall2. For mul-
tilingual evaluation, we use the queries from the multilingual split of VisR-Bench (Chen et al., 2025),
a question-driven, retrieval benchmark spanning 15 languages (Spanish, Italian, German, French,
Dutch, Arabic, Croatian, Japanese, Swedish, Vietnamese, Portuguese, Finnish, Czech, Slovenian, and
Danish)—allowing us to assess performance across a linguistically diverse setting.

Hardware and Software Setup All experiments are conducted on machines equipped with 8×
NVIDIA A800 GPUs (80GB each), though all evaluations are executed on a single GPU without
distributed computation. We use PyTorch 2.7.1 and Hugging Face Transformers 4.53.2 for model
loading, compression, and inference. All evaluations are conducted in inference mode without
gradient computation.

4.1 EVALUATION METRIC

We introduce several metrics to evaluate both the cross-dataset compressibility of various LLMs and
the end-to-end performance of their compressed versions.

Normalized Effective Rank We quantify the data-dependent, per-layer compressibility of the
KV-cache using the NER (Roy & Vetterli, 2007), as introduced in Section 2.4. NER captures how
evenly the singular values are distributed and yields a score in [0, 1], with lower values indicating
spectra dominated by a few large singular values and thus higher compressibility.

1Gemma-1.1: https://huggingface.co/google/gemma-1.1-7b-it
2glaiveai/glaive-function-calling-v2: https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2

5

https://huggingface.co/google/gemma-1.1-7b-it
https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Perplexity We evaluate the performance of compressed models using perplexity (PPL) (Bengio
et al., 2003), the standard metric for language modeling. In practice, PPL is computed as the
exponential of the empirical cross-entropy between the data distribution and the model distribution,
which reduces to the Shannon entropy when the model perfectly matches the true distribution. Lower
PPL indicates that the model assigns a higher probability to the observed data, while higher PPL
reflects greater uncertainty or degraded predictive performance. Given retain ratio k and v, the
perplexity will be denoted as PPL(k, v).

Normalized Delta-Perplexity To directly measure the impact of KV-cache compression on model
performance, we propose a quantitative metric, Normalized Delta-Perplexity (ND-PPL) for keys
and values, denoted ND-PPLK and ND-PPLV . Raw perplexity or absolute changes are not directly
comparable across datasets, since their scale depends on the baseline. ND-PPL addresses this by
normalizing pairwise perplexity differences across retained rank ratios by the corresponding baseline
perplexity, and averaging over all candidate settings. This provides a dataset-agnostic measure of
robustness under compression and establishes a direct link to the NER. The formal definition is as
follows:

Let K = k1, . . . , km denote the set of retained rank ratios for the key matrices, where ki ∈ (0, 1]; the
definition for values V = v1, . . . , vn is analogous. For a fixed value ratio v ∈ V , we consider all pairs
(ki, kj) ∈ PK , where PK = (k, k′) ∈ K ×K | k > k′, and define the key-side metric ND-PPLK :

ND-PPLK =
1

|V|
∑
v∈V

 1

|PK |
·

∑
(ki,kj)∈PK

(
PPL(kj , v)− PPL(ki, v)

PPL(ki, v)

) (5)

The definition of ND-PPLV is symmetric, obtained by fixing k ∈ K and averaging over pairs of
vi, vj ∈ V .

GPT Score We assess whether compression preserves response quality using GPT-4o. For each test
case, GPT-4o is provided with the input instruction together with the two responses from the original
and compressed models. Under a fixed prompt, GPT-5 outputs a binary score: 1 if the two responses
are judged roughly equal in quality, and 0 otherwise. Rough equivalence requires both answers to
be reasonable and aligned with the instruction, tolerating stylistic differences but penalizing empty,
irrelevant, or nonsensical outputs from the compressed model. The full system prompt used for
evaluation is provided in Appendix B.

4.2 BENCHMARKING EXPERIMENT ON KV-CACHE COMPRESSIBILITY

4.2.1 AVERAGE NER ACROSS MODELS AND DATASETS

Table 1 reports the mean NER of keys (NER-K) and values (NER-V), averaged over all attention
layers across seven models on five English datasets and fifteen languages from VisR-Bench. Several
trends emerge:

Keys are consistently more compressible than values. Across all models and datasets, NER-K is
substantially lower than NER-V, indicating that the key cache admits a more pronounced low-rank
structure. This asymmetry highlights that compression techniques targeting keys may achieve higher
savings with less impact on performance, whereas values tend to retain higher-rank structure and thus
are less compressible.

Cross-lingual variation outweighs cross-domain variation. For English datasets spanning differ-
ent domains (e.g., Alpaca vs. FunctionCall), NER values remain relatively stable, suggesting that
domain shifts do not strongly affect rank structure. In contrast, multilingual results reveal far greater
variation, with languages such as Czech and German showing higher NER compared to Arabic and
Finnish. This suggests that linguistic diversity, tokenization differences, and training data availability
play a larger role than domain differences in determining compressibility.

KV Capacity governs compressibility. We observe that the original KV dimension strongly
affects model compressibility. Earlier models such as LLaMA-2-7B exhibit substantially lower
NER compared to other models, likely due to larger key/value dimensions and weaker utilization

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Datasets
Qwen3-4B Qwen3-8B Gemma-2B Gemma-7B Mistral-7B Phi-3 LLaMA-2-7B
K V K V K V K V K V K V K V

Multi-domain Datasets

Alpaca 0.428 0.724 0.452 0.753 0.612 0.900 0.359 0.469 0.449 0.773 0.409 0.616 0.023 0.464
MedAlpaca 0.429 0.723 0.452 0.752 0.594 0.889 0.344 0.455 0.441 0.771 0.403 0.604 0.176 0.310
CodeAlpaca 0.421 0.708 0.443 0.737 0.589 0.869 0.321 0.429 0.420 0.733 0.380 0.571 0.028 0.337
WizardCoder 0.425 0.726 0.447 0.753 0.597 0.889 0.329 0.445 0.420 0.750 0.385 0.587 0.265 0.304
FunctionCall 0.432 0.731 0.451 0.756 0.608 0.900 0.342 0.458 0.432 0.762 0.397 0.604 0.135 0.449
Average 0.424 0.717 0.446 0.745 0.597 0.884 0.337 0.448 0.430 0.753 0.393 0.593 0.088 0.141

Multilingual Question in VisR-Bench Datasets

Czech 0.383 0.627 0.401 0.652 0.536 0.803 0.292 0.383 0.385 0.660 0.313 0.470 0.099 0.148
German 0.383 0.640 0.400 0.666 0.536 0.802 0.305 0.400 0.392 0.676 0.345 0.523 0.092 0.138
Italian 0.377 0.632 0.392 0.655 0.529 0.793 0.299 0.393 0.387 0.669 0.339 0.515 0.084 0.135
Dutch 0.376 0.628 0.395 0.657 0.534 0.802 0.299 0.394 0.385 0.664 0.331 0.499 0.116 0.108
Croatian 0.375 0.620 0.393 0.645 0.525 0.791 0.292 0.382 0.383 0.659 0.320 0.479 0.081 0.132
French 0.373 0.633 0.390 0.657 0.532 0.797 0.301 0.397 0.387 0.671 0.340 0.519 0.087 0.137
Vietnamese 0.373 0.625 0.392 0.653 0.542 0.814 0.291 0.384 0.367 0.630 0.305 0.442 0.071 0.119
Swedish 0.371 0.620 0.387 0.645 0.526 0.794 0.296 0.389 0.381 0.656 0.322 0.486 0.078 0.128
Spanish 0.367 0.629 0.384 0.654 0.523 0.790 0.299 0.396 0.381 0.665 0.334 0.513 0.064 0.095
Slovenian 0.366 0.603 0.383 0.628 0.518 0.785 0.281 0.369 0.372 0.642 0.306 0.458 0.075 0.121
Portuguese 0.362 0.614 0.378 0.639 0.521 0.785 0.284 0.375 0.379 0.656 0.326 0.498 0.083 0.133
Japanese 0.361 0.619 0.380 0.648 0.506 0.775 0.276 0.369 0.364 0.636 0.321 0.467 0.079 0.125
Finnish 0.360 0.597 0.378 0.625 0.502 0.769 0.280 0.369 0.353 0.616 0.305 0.455 0.073 0.118
Arabic 0.337 0.582 0.354 0.609 0.503 0.769 0.270 0.361 0.338 0.594 0.288 0.413 0.052 0.173
Average 0.387 0.653 0.407 0.679 0.548 0.822 0.306 0.405 0.395 0.684 0.345 0.520 0.083 0.134

Table 1: Average NER of keys and values across all layers of 7 models on multilingual split of
VisR-bench covering 15 languages

of rank capacity during training. Within the Gemma family, Gemma-7B shows much lower NER
than Gemma-2B, which can be explained by its 16× larger KV dimension (16 heads × 256 per head)
compared to the 2B model (1 head × 256). The higher compressibility of Gemma-7B suggests that
this expanded KV capacity is under-utilized, whereas the smaller 2B models may make more efficient
use of their available dimensions. In contrast, Qwen3-4B and Qwen3-8B show only minor differences
in NER because both adopt the same compact KV configuration (8 heads × 128 per head).

Rank collapse in low-resource languages. Certain languages with limited pretraining coverage
(e.g., Arabic, Slovenian, Finnish) exhibit unusually low NER, especially in the value cache. This
phenomenon may reflect under-trained token embeddings collapsing into low-dimensional subspaces.
Beyond compressibility, such rank collapse may serve as a diagnostic signal for identifying under-
represented languages in multilingual pretraining corpora.

4.2.2 LAYER-WISE COMPRESSIBILITY PATTERNS

Figure 2 presents the layer-wise NER of Qwen3-4B on the five datasets and on three selected language
subsets of VisR-Bench, with additional plots for other models included in Appendix C.1. The results
show that NER is not uniform across layers. Middle layers often exhibit higher NER, suggesting
they make fuller use of their representational capacity, while early and late layers are typically more
compressible.

This heterogeneity indicates that future KV-cache compression should be layer-aware: applying a
uniform compression ratio risks overly degrading high-rank layers while missing opportunities for
more aggressive reduction in lower-rank ones. Moreover, the relative positions of high- and low-rank
layers are consistent across datasets, suggesting that compressibility is partly a structural property
of the model rather than purely data-driven. At the same time, subtle differences between tasks and
languages (e.g., Arabic vs. English subsets) highlight that dataset characteristics can modulate layer
usage, pointing to potential for data-aware compression strategies.

4.3 PERFORMANCE IMPACT OF KV-CACHE COMPRESSION

We evaluate the performance degradation of compressed models using both perplexity (PPL) and
GPT-score. Figure 3 presents PPL heatmaps of Qwen3-4B and LLaMA-2-7B on the Alpaca dataset

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
layer

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NE
R

Value
Key

Alpaca
CodeAlpaca

WizardCoder
FunctionCall

MedAlpaca
VisR-Bench (Arabic)

VisR-Bench (German)
VisR-Bench (Swedish)

Figure 2: Layer-wise NER of key and value representations in Qwen3-4B, evaluated on 5 datasets
and 3 languages from the VisR-Bench benchmark.

across a grid of KV-cache compression ratios, with additional results provided in Appendix C.2. We
can see that LLaMA-2-7B remains relatively stable, showing only modest PPL increases even under
aggressive compression, whereas Qwen3-4B is more sensitive, exhibiting substantial degradation.
These results suggest that models with lower NER values are generally more compressible, as
reflected by smaller changes in PPL.

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.00
v_ratio

0.
05

0.
15

0.
25

0.
35

0.
45

0.
55

0.
65

0.
75

0.
85

0.
95

1.
00

k_
ra

tio

2662.63 99.02 34.41 28.54 24.88 24.93 25.39 26.04 22.93 22.24 21.77

906.42 44.78 18.58 14.16 13.63 15.00 13.17 12.12 11.25 11.24 12.66

772.89 37.54 15.76 12.75 11.73 11.38 10.72 10.35 9.79 9.55 9.48

939.17 30.16 14.60 12.13 11.15 11.16 10.69 10.51 9.73 9.50 8.96

812.60 30.38 13.71 11.65 10.81 10.74 10.43 10.68 10.27 9.82 8.81

778.74 26.37 13.50 11.52 10.63 10.69 10.51 10.54 9.78 9.57 9.30

845.20 26.99 13.17 11.20 10.64 10.73 10.58 10.16 9.48 9.34 8.99

693.44 26.28 13.08 11.19 10.47 10.70 10.28 10.12 9.56 9.56 9.07

673.59 25.28 13.26 11.10 10.28 10.41 10.09 10.10 9.29 9.30 9.58

421.70 23.75 12.48 10.65 10.09 10.47 10.10 9.47 8.85 8.71 9.02

360.00 20.36 12.01 11.09 10.11 10.36 9.87 9.40 9.09 8.86 8.72

Qwen3-4B

10

15

20

25

30

35

40

45

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.00
v_ratio

0.
05

0.
15

0.
25

0.
35

0.
45

0.
55

0.
65

0.
75

0.
85

0.
95

1.
00

k_
ra

tio

22.25 10.78 9.01 8.11 7.66 7.45 7.26 7.18 7.13 7.12 7.12

18.28 9.10 7.56 6.93 6.64 6.50 6.33 6.26 6.22 6.21 6.22

17.50 9.13 7.39 6.71 6.49 6.34 6.17 6.09 6.06 6.05 6.05

17.53 9.17 7.41 6.66 6.44 6.27 6.09 6.01 5.98 5.98 5.98

17.87 9.12 7.51 6.70 6.46 6.28 6.09 6.01 5.97 5.96 5.96

18.30 9.15 7.55 6.68 6.48 6.30 6.11 6.01 5.97 5.96 5.96

18.63 9.32 7.62 6.74 6.53 6.34 6.14 6.03 5.98 5.98 5.98

18.76 9.51 7.71 6.82 6.59 6.38 6.16 6.05 6.00 6.00 6.00

18.84 9.91 7.88 6.97 6.71 6.47 6.23 6.11 6.06 6.05 6.06

18.92 10.08 7.97 7.01 6.71 6.47 6.23 6.11 6.06 6.05 6.05

18.71 10.33 7.91 7.01 6.70 6.45 6.21 6.09 6.04 6.04 6.04

LLaMA-2-7B

6

8

10

12

14

16

18

20

Figure 3: PPL heatmap of Qwen3-4B and LLaMA-2-7b on the Alpaca dataset.

In addition to PPL, we also report average GPT-score in Figure 4, which directly measures the quality
difference between compressed and original model responses and provides a metric more closely
aligned with user experience. Due to computational cost, GPT-scores are computed as averages over
100 instructions from the Alpaca dataset. Consistent with PPL trends, LLaMA-2-7B again proves
more compressible than Qwen3-4B. Importantly, GPT-score further reveals a smoother and more
continuous trajectory of performance degradation, even in regions where PPL remains relatively
unchanged.

4.4 DATASET COMPRESSIBILITY COMPARISON

To quantitatively assess how well the NER reflects end-to-end robustness under compression, we
employ the ND-PPL metrics. As reported in Figure 5, NER and ND-PPL are positively correlated,
with Pearson r = 0.88 for values and r = 0.64 for keys. These results establish NER as a reliable
predictor of performance sensitivity under compression. Moreover, the scatter plots reveal systematic
dataset-level patterns. Multilingual datasets (e.g., Arabic, Portuguese, Finnish) cluster toward the
bottom-left, with both low NER and low ND-PPL, indicating higher resilience to compression. In

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.00
v_ratio

0.
05

0.
15

0.
25

0.
35

0.
45

0.
55

0.
65

0.
75

0.
85

0.
95

1.
00

k_
ra

tio

0.01 0.12 0.00 0.05 0.20 0.06 0.06 0.10 0.00 0.14 0.08

0.01 0.05 0.05 0.11 0.09 0.19 0.21 0.18 0.16 0.27 0.25

0.00 0.03 0.15 0.19 0.27 0.29 0.31 0.51 0.40 0.34 0.40

0.00 0.09 0.18 0.28 0.41 0.48 0.53 0.49 0.51 0.49 0.45

0.01 0.11 0.26 0.46 0.27 0.50 0.63 0.55 0.52 0.45 0.42

0.01 0.09 0.31 0.54 0.54 0.57 0.56 0.66 0.64 0.73 0.59

0.01 0.09 0.42 0.51 0.58 0.65 0.65 0.62 0.56 0.56 0.54

0.00 0.03 0.46 0.52 0.61 0.64 0.67 0.64 0.66 0.62 0.63

0.00 0.11 0.46 0.64 0.63 0.66 0.63 0.68 0.67 0.70 0.67

0.01 0.08 0.40 0.55 0.58 0.59 0.65 0.65 0.74 0.62 0.76

0.02 0.22 0.49 0.58 0.61 0.64 0.67 0.67 0.68 0.74 1.00

Qwen3-4B

0.0

0.2

0.4

0.6

0.8

1.0

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.00
v_ratio

0.
05

0.
15

0.
25

0.
35

0.
45

0.
55

0.
65

0.
75

0.
85

0.
95

1.
00

k_
ra

tio

0.07 0.18 0.24 0.22 0.28 0.30 0.31 0.22 0.32 0.27 0.32

0.09 0.36 0.40 0.36 0.38 0.46 0.44 0.49 0.50 0.48 0.48

0.09 0.36 0.49 0.48 0.54 0.48 0.55 0.55 0.58 0.59 0.50

0.11 0.38 0.54 0.54 0.47 0.54 0.62 0.57 0.60 0.64 0.57

0.08 0.30 0.40 0.60 0.60 0.70 0.66 0.70 0.59 0.59 0.61

0.06 0.26 0.39 0.56 0.62 0.61 0.66 0.72 0.72 0.67 0.67

0.09 0.24 0.39 0.57 0.56 0.69 0.65 0.76 0.76 0.69 0.73

0.04 0.19 0.40 0.50 0.57 0.65 0.67 0.76 0.74 0.70 0.69

0.08 0.20 0.37 0.50 0.59 0.61 0.67 0.79 0.76 0.79 0.77

0.11 0.24 0.32 0.50 0.64 0.67 0.73 0.82 0.83 0.83 0.81

0.08 0.23 0.34 0.46 0.59 0.67 0.75 0.84 0.87 0.89 1.00

LLaMA-2-7B

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: GPT score heatmap of Qwen3-4B and LLaMA-2-7b on the Alpaca dataset.

contrast, English-domain datasets such as Alpaca, MedAlpaca, and FunctionCall appear toward the
upper-right, showing higher NER and greater sensitivity to compression. This separation suggests
that KV-cache compressibility can serve as a diagnostic of data–model alignment: under-trained or
poorly covered datasets tend to yield low NER, while well-represented domains exhibit higher NER
and are more sensitive to aggressive truncation.

Figure 5: Correlation between dataset-level NER and ND-PPL computed by Qwen3-4B.

5 CONCLUSION

In this work, we introduced KV-CoRE, an SVD-based framework for dataset-level analysis of KV-
cache compressibility in large language models. KV-CoRE directly decomposes cached key/value
activations with low memory overhead, yielding globally optimal low-rank approximations and
enabling systematic evaluation of rank utilization across layers and datasets.

Through extensive experiments across multiple model families, domains, and languages, we showed
that NER serves as a lightweight and reliable indicator of compressibility, correlating closely with
perplexity- and GPT-based performance under compression. We further introduced ND-PPL as an
end-to-end robustness measure, establishing a clear empirical link between NER and model sensitivity
to truncation.

Our analysis uncovers consistent patterns that tie compressibility to architectural design, training data,
and language coverage. These findings position KV-CoRE as both a diagnostic tool for understanding
representational efficiency and a benchmark for guiding the development of dynamic, data-aware
KV-cache compression strategies and data-centric model improvements.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 LANGUAGE MODEL USAGE STATEMENT

In preparing this manuscript, we used GPT-5 only for grammar checking and minor language
polishing. The authors reviewed and edited all suggestions. All scientific content, analysis, and
conclusions are entirely the work of the authors.

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical report:
A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

Srinadh Bhojanapalli, Chulhee Yun, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Low-rank
bottleneck in multi-head attention models. In International conference on machine learning, pp.
864–873. PMLR, 2020.

Enric Boix-Adsera, Etai Littwin, Emmanuel Abbe, Samy Bengio, and Joshua Susskind. Transformers
learn through gradual rank increase. Advances in Neural Information Processing Systems, 36:
24519–24551, 2023.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, Mohamed S Abdelfattah, and Kai-Chiang Wu. Palu: Compressing
kv-cache with low-rank projection. arXiv preprint arXiv:2407.21118, 2024.

Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation. https:
//github.com/sahil280114/codealpaca, 2023.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain:
Unifying sparse and low-rank attention. Advances in Neural Information Processing Systems, 34:
17413–17426, 2021a.

Jian Chen, Ming Li, Jihyung Kil, Chenguang Wang, Tong Yu, Ryan Rossi, Tianyi Zhou, Changyou
Chen, and Ruiyi Zhang. Visr-bench: An empirical study on visual retrieval-augmented generation
for multilingual long document understanding. arXiv preprint arXiv:2508.07493, 2025.

Patrick Chen, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh. Drone: Data-aware low-rank
compression for large nlp models. Advances in neural information processing systems, 34:29321–
29334, 2021b.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure
attention loses rank doubly exponentially with depth. In International conference on machine
learning, pp. 2793–2803. PMLR, 2021.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218, 1936.

Habib Hajimolahoseini, Walid Ahmed, Mehdi Rezagholizadeh, Vahid Partovinia, and Yang Liu.
Strategies for applying low rank decomposition to transformer-based models. In 36th Conference
on Neural Information Processing Systems (NeurIPS2022), volume 6, 2022.

Tianyu Han, Lisa C Adams, Jens-Michalis Papaioannou, Paul Grundmann, Tom Oberhauser, Alexan-
der Löser, Daniel Truhn, and Keno K Bressem. Medalpaca–an open-source collection of medical
conversational ai models and training data. arXiv preprint arXiv:2304.08247, 2023.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. arXiv preprint arXiv:2207.00112, 2022.

10

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Tao Ji, Bin Guo, Yuanbin Wu, Qipeng Guo, Lixing Shen, Zhan Chen, Xipeng Qiu, Qi Zhang, and
Tao Gui. Towards economical inference: Enabling deepseek’s multi-head latent attention in any
transformer-based llms. arXiv preprint arXiv:2502.14837, 2025.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/
abs/2310.06825.

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
Losparse: Structured compression of large language models based on low-rank and sparse approxi-
mation. In International Conference on Machine Learning, pp. 20336–20350. PMLR, 2023.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct, 2025. URL https://arxiv.org/abs/2306.08568.

Carl D Meyer. Matrix analysis and applied linear algebra. SIAM, 2023.

Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, and Aurelien
Lucchi. Signal propagation in transformers: Theoretical perspectives and the role of rank collapse.
Advances in Neural Information Processing Systems, 35:27198–27211, 2022.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. arXiv preprint
arXiv:1904.01038, 2019.

Myunghyun Rhee, Joonseop Sim, Taeyoung Ahn, Seungyong Lee, Daegun Yoon, Euiseok Kim,
Kyoung Park, Youngpyo Joo, and Hosik Kim. Hpu: High-bandwidth processing unit for scalable,
cost-effective llm inference via gpu co-processing. arXiv preprint arXiv:2504.16112, 2025.

Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In 2007
15th European signal processing conference, pp. 606–610. IEEE, 2007.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and Hai Zhao. Keep the cost down: A review on
methods to optimize llm’s kv-cache consumption. arXiv preprint arXiv:2407.18003, 2024.

Prajwal Singhania, Siddharth Singh, Shwai He, Soheil Feizi, and Abhinav Bhatele. Loki: Low-
rank keys for efficient sparse attention. Advances in Neural Information Processing Systems, 37:
16692–16723, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

11

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2306.08568
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2505.09388

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. arXiv preprint arXiv:2403.07378, 2024.

Can Yaras, Peng Wang, Laura Balzano, and Qing Qu. Compressible dynamics in deep overparame-
terized low-rank learning & adaptation. arXiv preprint arXiv:2406.04112, 2024.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca:
A distributed serving system for {Transformer-Based} generative models. In 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 22), pp. 521–538, 2022.

Hao Yu and Jianxin Wu. Compressing transformers: features are low-rank, but weights are not! In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 11007–11015, 2023.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd: Activation-
aware singular value decomposition for compressing large language models, 2024. URL https:
//arxiv.org/abs/2312.05821.

12

https://arxiv.org/abs/2312.05821
https://arxiv.org/abs/2312.05821

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

A PRELIMINARY

A.1 MHA, MQA AND GQA

We first introduce the standard MHA and two of its variants—MQA and GQA. Given an input
embedding vector, MHA project it into key and value vectors for each attention head, causing the KV
cache size to scale linearly with the number of heads. In contrast, MQA and GQA reduce the KV
cache size by grouping heads and sharing the same key and value vectors within each group.

Focusing on GQA, the most general technique among the three, we define de, mh, dh and mg as the
embedding dimension, number of heads, dimension per head and number of groups, respectively.
Given an input embedding vector xt ∈ R1×de corresponding to the t-th token, GQA divides the mh

attention heads into mg groups. Formally, this grouping can be described by a helper function g,
which maps from head indices {1, ...,mh} to group indices {1, ...,mg} as,

g(i) =

⌈
i

/
mh

mg

⌉
, ∀i ∈ {1, ...,mh} (A.1)

Then it projects xt into query qt ∈ R1×mhdh , key kt ∈ R1×mgdh , and value vector vt ∈ R1×mgdh

as follows:

[qt,1, ...,qt,mh
] = qt = xtW

Q (A.2)

[kt,1, ...,kt,mg
] = kt = xtW

K (A.3)

[vt,1, ...,vt,mg
] = vt = xtW

V (A.4)

where qt,i,∀i ∈ {1, ...,mh} denote the query vector for each attention head, and kt,i,vt,i,∀i ∈
{1, ...,mg} represent the key and value vector for each group. The matrices WQ ∈ Rde×mhdh and
WK ,WV ∈ Rde×mgdhdenote learnable model parameters. The attention of each head and the final
projected output are computed as,

ot,i =

t∑
j=1

Softmaxj

(
qt,ik

T
j,g(i)√
dh

)
vj,g(i), ∀i ∈ {1, ...,mh} (A.5)

yt = [ot,1, ...,ot,mh
]WO (A.6)

where ot,i ∈ R1×dh , WO ∈ Rmhdh×de and yt ∈ R1×de denote the attention output for i-th head,
the output projection matrix and the projected output respectively.

Note that when mg = mh, GQA reduces to standard MHA, and when mg = 1, it specializes MQA.

A.2 MLA

Unlike MHA and its variants, MLA projects the input embedding xt ∈ Rde of t-th token into two
distinct spaces: a joint latent KV space and a decoupled key space designed to incorporate RoPE.
Formally, this can be expressed as:

cKV
t & = xtW

DKV (A.7)

kR
t & = RoPE(xtW

KR) (A.8)

where cKV
t ∈ R1×dc and kR

t ∈ R1×dR denote the joint latent KV vector and the RoPE-encoded
decoupled key vector, receptively. The projection matrices WDKV ∈ Rde×dc and WKR ∈ Rde×dR

handle the corresponding down-projections. During attention calculation, cKV
t is up-projected to get

the key and value vectors, while the query vector is computed directly from the input embedding xt.
These operations are described by following equations equation A.9 and equation A.10:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

[kC
t,1, ...,k

C
t,n] = kC

t = cKV
t WUK

kt,i = [kC
t,i,k

R
t]

[vC
t,1, ...,v

C
t,mh

] = vC
t = cKV

t WUV

(A.9)

cQt = xtW
DQ

[qC
t,1, ...,q

C
t,mh

] = qC
t = cQt W

UQ

[qR
t,1, ...,q

R
t,mh

] = qR
t = RoPE(cQt W

QR)

qt,i = [qC
t,i,q

R
t,i]

(A.10)

where WUK ,WUV ∈ Rdc×mhdh are up-projection matrices for key and value vectors, respectively.
The matrices WDQ ∈ Rde×d′

c and WUQ ∈ Rd′
c×mhdh serve as the down- and up-projection for

queries, while WQR ∈ Rd′
c×mhdh is the up-projection matrix used to incorporate RoPE for the

decoupled query vector. Note that both kt,i and qt,i are concatenations of their NoPE and RoPE
components.

Using qt,i, kt,i and vC
t,i, the attention of each head and the final projected output are computed as,

ot,i =

t∑
j=1

Softmaxj

(
qt,ik

T
j,i√

dh + dR

)
vC
j,i, ∀i ∈ {1, ...,mh} (A.11)

yt = [ot,1, ...,ot,mh
]WO (A.12)

A key merit of MLA lies in its caching efficiency during token generation: only cKV
t and kR

t need to
be cached, resulting in a cache size of dc + dR. Since both dc << mhdh and dR << mhdh, MLA
reduces KV cache size significantly compared to MHA, which requires caching kt ∈ R1×mhdh and
vt ∈ R1×mhdh for t-th token.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B GPT EVALUATION SYSTEM PROMPT

Below is the system prompt used to prompt GPT-4o as a text generation quality score in our
experiment:

System Prompt 1. You are an automatic evaluator for LLM responses. Your job: compare two candidate
answers (A = original model, B = compressed model) to the same user prompt and output a binary score.
—-
Scoring Rules

• Output 1 if A and B are roughly equal in quality (not necessarily the same wording or level of
detail, but comparable usefulness for the task).

• Output 0 otherwise.

—-
“Roughly equal” means:

• Both A and B provide a reasonable, relevant answer to the user’s prompt.

• They satisfy the intent to a similar degree, with no material difference in correctness, completeness,
usefulness, or safety.

• Differences in style, verbosity, order, or minor details do not matter if they don’t affect usefulness.

• If both are equally poor or equally failed (e.g., both empty, both nonsense, both refuse without
reason, or both severely hallucinated to a similar extent), score 1.

• If one contains nonsense, large repetition, emptiness, or serious hallucinations while the other
does not, score 0.

• Special rule: The COMPRESSED MODEL’s answer must itself be a reasonable response to the
user prompt.

• If the compressed model gives an empty output, nonsense, off-topic text, or fails to address the
question, score 0, even if the original answer is also poor.

—-
Evaluation checklist (internal only):

1. Task fulfillment & correctness: Does each answer address the user’s ask accurately?

2. Coherence & specificity: Is each answer clear, non-contradictory, minimally redundant?

3. Grounding & hallucinations: Any invented facts or unsupported claims?

4. Completeness at the needed granularity: Are the essentials present?

5. Harm & policy: Safety/compliance roughly comparable?

6. Degenerate behaviors: empty output, nonsense, repetition, prompt copy, or off-topic.

—-
Decision rules:

• Score 1 if both are reasonable answers and land in the same quality band (Excellent/Adequate/Poor/-
Fail), close enough that a reasonable user would find them similarly useful (or similarly useless).

• Score 0 if any material gap exists, or if the compressed model fails to provide a reasonable answer.

—-
Formatting:

• Return only a single JSON object with no extra text: "score": 0 or "score": 1

Example:
[INPUT PROMPT]
Explain why the sky is blue.
[ANSWER A: ORIGINAL MODEL]
"The sky looks blue due to Rayleigh scattering of sunlight in Earth’s atmosphere, which scatters shorter
wavelengths like blue more strongly."
[ANSWER B: COMPRESSED MODEL] ""
Expected output: "score": 0

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C ADDITIONAL EXPERIMENT RESULTS

C.1 LAYER-WISE NER RESULTS

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
layer

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NE
R

Layer-wise NER of Qwen3-4B

Value
Key

Alpaca
CodeAlpaca

WizardCoder
FunctionCall

MedAlpaca
VisR-Bench (Arabic)

VisR-Bench (German)
VisR-Bench (Swedish)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
layer

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NE
R

Layer-wise NER of Qwen3-8B

Value
Key

Alpaca
CodeAlpaca

WizardCoder
FunctionCall

MedAlpaca
VisR-Bench (Arabic)

VisR-Bench (German)
VisR-Bench (Swedish)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

NE
R

Layer-wise NER of Phi-3-mini-128k-instruct

Value
Key

Alpaca
CodeAlpaca

WizardCoder
FunctionCall

MedAlpaca
VisR-Bench (Arabic)

VisR-Bench (German)
VisR-Bench (Swedish)

Figure C.1: Layer-wise NER of key and value representations in Qwen3-4B, Qwen3-8B, and Phi-3-
mini evaluated on 5 datasets and 3 languages from the VisR-Bench benchmark.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
layer

0.0

0.2

0.4

0.6

0.8

NE
R

Layer-wise NER of mistral

Value
Key

Alpaca
CodeAlpaca

WizardCoder
FunctionCall

MedAlpaca
VisR-Bench (Arabic)

VisR-Bench (German)
VisR-Bench (Swedish)

1 3 5 7 9 11 13 15 17
layer

0.4

0.5

0.6

0.7

0.8

0.9

NE
R

Layer-wise NER of gemma1.1

Value
Key

Alpaca
CodeAlpaca

WizardCoder
FunctionCall

MedAlpaca
VisR-Bench (Arabic)

VisR-Bench (German)
VisR-Bench (Swedish)

1 3 5 7 9 11 13 15 17 19 21 23 25 27
layer

0.1

0.2

0.3

0.4

0.5

NE
R

Layer-wise NER of gemma-1.1-7b-it

Value
Key

Alpaca
CodeAlpaca

WizardCoder
FunctionCall

MedAlpaca
VisR-Bench (Arabic)

VisR-Bench (German)
VisR-Bench (Swedish)

Figure C.2: Layer-wise NER of key and value representations in mistral, gemma1.1, and gemma-1.1-
7b-it evaluated on 5 datasets and 3 languages from the VisR-Bench benchmark.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.2 PPL HEATMAP

Figure C.3: PPL heatmap of LLaMA-2-7B on 6 datasets.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure C.4: PPL heatmap of Qwen3-4B on 6 datasets.

19

	Introduction
	KV-CoRE Method
	SVD-based KV-cache Analysis
	Optimal Data-dependent Compression Matrix
	Incremental SVD Algorithm for Dataset-level KV-cache
	Normalize Effective Rank as Compressibility Metric

	Related Work
	Experiment
	Evaluation Metric
	Benchmarking Experiment on KV-Cache Compressibility
	Average NER across Models and Datasets
	Layer-wise Compressibility Patterns

	Performance Impact of KV-Cache Compression
	Dataset Compressibility Comparison

	Conclusion
	Language Model Usage Statement
	Preliminary
	MHA, MQA and GQA
	MLA

	GPT evaluation system prompt
	Additional Experiment Results
	Layer-wise NER Results
	PPL Heatmap

