Under review as a conference paper at ICLR 2026

KV-CORE: BENCHMARKING DATA-DEPENDENT LOW-
RANK COMPRESSIBILITY OF KV-CACHES IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models rely on kv-caches to avoid redundant computation during
autoregressive decoding, but as context length grows, reading and writing the
cache can quickly saturate GPU memory bandwidth. Recent work has explored
KV-cache compression, yet most approaches neglect the data-dependent nature of
kv-caches and their variation across layers. We introduce KV-CoRE (KV-cache
Compressibility by Rank Evaluation), an SVD-based method for quantifying the
data-dependent low-rank compressibility of kv-caches. KV-CoRE computes the
optimal low-rank approximation under the Frobenius norm and, being gradient-free
and incremental, enables efficient dataset-level, layer-wise evaluation. Using this
method, we analyze multiple models and datasets spanning five English domains
and sixteen languages, uncovering systematic patterns that link compressibility to
model architecture, training data, and language coverage. As part of this analysis,
we employ the Normalized Effective Rank as a metric of compressibility and
show that it correlates strongly with performance degradation under compression.
Our study establishes a principled evaluation framework and the first large-scale
benchmark of kv-cache compressibility in LLMs, offering insights for dynamic,
data-aware compression and data-centric model development.

1 INTRODUCTION

Large language models (LLMs) adopt the Transformer architecture (Vaswani et al.}|2017)) and generate
text autoregressively under a causal mask, which ensures that past key and value vectors can be
cached (K'V-cache) (Ott et al.l 2019). These caches are stored in high-bandwidth memory (HBM) on
GPUs and repeatedly fetched into compute-unit registers during decoding, reducing computation but
introducing a memory-bandwidth bottleneck as context length grows. This challenge has motivated
both hardware innovation (Rhee et al.,2025) and algorithmic approaches to KV-cache compression
(Shi et al.}2024)), with our work focusing on the latter.

A natural way to reduce KV-cache cost is to compress key and value representations into lower-
dimensional spaces. Many methods use low-rank approximation of projection matrices (Ji et al.|
2025; |Chang et al., [2024)), but they ignore the data-dependent nature of key/value activations, whose
intrinsic rank can be smaller in domain-specific tasks that exercise only part of the model’s capacity
(Yu & Wu,2023). Moreover, most approaches apply the same compression ratio across layers (Wang
et al.,[2024)), overlooking distinct compressibility profiles. Methods for analyzing and comparing
key/value rank across layers remain underexplored.

To address these limitations, we propose KV-CoRE (KV-cache Compressibility by Rank Evaluation),
an incremental singular value decomposition (SVD) method that directly operates on key and value
features computed over large datasets. Unlike approaches that approximate projection weights,
KV-CoRE is data-dependent and captures the intrinsic rank of the KV-cache induced by real inputs.
It supports independent per-layer decomposition without cross-layer coupling, is gradient-free, and
enables batch-wise computation with low memory overhead. KV-CoRE guarantees a globally optimal
low-rank projection under the Frobenius norm, and unlike existing methods (Chen et al., 2021bj
Wang et al.,[2024)) that only compute the optimal compression matrix, it explicitly decomposes long
sequences of key and value features to recover the singular value distributions of each layer on a given
dataset. This allows systematic evaluation of compressibility and provides an effective diagnostic
tool for understanding representational capacity usage in LLMs.

Under review as a conference paper at ICLR 2026

We conduct extensive experiments across open-source LLMs of different sizes and architectures,
spanning datasets in instruction following, code generation, medical QA, and multilingual tasks. We
introduce normalized effective rank (NER) as a lightweight metric for per-layer compressibility and
systematically compare key and value ranks across models and domains. Beyond static evaluation,
end-to-end SVD-based truncation shows that NER correlates strongly with perplexity, validating it
as a reliable proxy for compression sensitivity. These results reveal consistent layer-wise and data-
dependent patterns in KV-cache compressibility, laying the groundwork for dynamic and adaptive
strategies.

Our contributions are as follows:

* We propose KV-CoRE, an SVD-based, data-dependent framework for analyzing KV-cache
compressibility, which enables efficient dataset-level, layer-wise evaluation with provably
optimal low-rank approximations.

* We introduce NER as a metric of compressibility and demonstrate its strong correlation
with perplexity and GPT-score, validating it as a reliable tool for evaluating and comparing
models.

* We conduct extensive experiments across models, domains, and languages, uncovering sys-
tematic patterns that link compressibility to model architecture, training data, and language
coverage.

2 KV-CoORE METHOD

To evaluate and compress KV caches, we develop an efficient method that incrementally computes
the SVD of keys and values over large datasets, enabling layer-wise and data-dependent evaluation
of their compressibility in LLMs. At the same time, our method computes the optimal compression
matrices, addressing challenges identified in prior work |Chen et al.|(2021b); Wang et al.| (2024); Yuan
et al.[(2024).

To illustrate our method and its advantages, we first introduce notations, building upon the prelimi-
naries provided in Appendix[A.1] As our method applies uniformly across layers and to both key and
value spaces, we omit layer-specific notation in the rest of the section and focus on K as an example
in the following discussion for simplicity. Consider a dataset containing [/ tokens, for a particular
LLM, let X = [x3;...;x;] € RY¥9e be the sequence of activations for an attention layer, computed
based on the dataset. Let W be the key projection weights of a layer. The corresponding key
K = [ky;...; k] features are computed as K = [k;;...; k;] = XW¥. The data-dependent optimal
low-rank approximation problem, introduced in Chen et al.| (2021b); Wang et al.| (2024)); Yuan et al.
(2024), is formulated as follows. For each key projection matrix W we seek a low-rank matrix

WX with rank k that minimizes the compression error,

argmin || XWX — XWX|2 st rank(W¥) =k (1)
WK

The solution W can be expressed as a pair of down- and up-projection matrices, which compress
key vectors into dimension k and then reconstruct them for efficient autoregressive inference.

2.1 SVD-BASED KV-CACHE ANALYSIS

Our key idea is to perform SVD on key and value spaces for each layer, allowing an analytical study
of the layer-wise compressibility of KV caches given a LLM and a particular dataset. For example,
the SVD on K € R*™rdn can be written as K = UL VT, where i € R and V € R™ndnxmndn
are left and right singular values, respectively, and > € R!*™rdn denotes singular values. By the
Eckart-Young-Mirsky theorem |[Eckart & Young|(1936), the truncation of the largest singular values
along with corresponding singular vectors K = U VkT forms the best k-rank approximation to
K in the Frobenius norm sense, with the minimal approximation error calculated as follows,

Oktl, for the 2-norm
K- Ki||%2 = . 2
] ellF {(X:j_k+1 crj)%, for the Frobenious norm @

Under review as a conference paper at ICLR 2026

- — — - - = - — - — e e e e e e e e e e e = = -

weight matrix eigen-decomp |
:Dlncrememal SVD for keys Dlncrememal SVD for values @Cached KV of ig-th head update covariance per token s inallsien)

FrTmmmmmmmmsmeoteoees P e R] |
S TTITTITTITTITIITIIIIIIIIIIIIIIIIT > Initialize C' = zero matrix! ! g

1|5
wiEs
) ;

(2]

Figure 1: Overview of KV-CoRE. At each Transformer layer, keys and values from all attention
heads are concatenated to form the KV-cache. To measure compressibility, we apply incremental
SVD to the cached key/value activations with low memory overhead, recovering their singular value
spectra. The resulting singular vectors and values are used to compute the optimal data-dependent
compression matrix, enabling KV-cache compressibility analysis via NER.

where r denotes the rank of K, o; denotes the j-th largest singular value in 3. In other words, for
any k € [1,r], the minimal k—rank approximation loss to K is a deterministic function of singular
values. Thus, we use singular value—based metrics to evaluate the compressibility of key and value
spaces in each attention layer, as detailed in the experimental section [2.4]

2.2 OPTIMAL DATA-DEPENDENT COMPRESSION MATRIX

Given singular values X and right singular vectors V of K, we can directly recover the dataset-
dependent optimal k-rank approximation of WX as: WK = WKW, VT,

To see why W is optimal to minimize the error: [|[XOWE" — XOWE™ || consider the
following:

XWE = xwEy VI & gy, T
Ty
2US(VI V)V 3)

B (s[5 = (3]t <o

Where Iy, is a k by k identity matrix. 77 holds because by definition K = X WX T, holds
because UE VT is the SVD of K; T5 holds because singular vectors form an orthogonal basis, thus
VkTV;C yields a k by k identify matrix. Recall that by the Eckart-Young-Mirsky theorem Eckart &
'Young| (1936)), U, > kaT forms the best k-rank approximation of K = XWX we can conclude that
wWEy, Vg is optimal to the optimization problem.

During LLM inference, a direct implementation is to replace W with a pair of down-projection
WXV, and up-projection VI matrices. This allows caching the low-dimensional key vector
x; WV, instead of the full-dimensional x,1¥ X given t-th token, reducing both the memory and
bandwidth consumption.

2.3 INCREMENTAL SVD ALGORITHM FOR DATASET-LEVEL KV-CACHE

A key challenge is that the size of K € R!*™ndn scales up with the number of tokens [in a Dataset,
rendering direct SVD on K impractical due to excessive memory and computational demands.

We propose a novel algorithm that mitigates memory and computation bottlenecks through batch
computation without sacrificing accuracy. This method only requires holding and updating a m,d},-
by-mpdy, covariance matrix, avoiding the direct SVD of K and still generating the mathematically

Under review as a conference paper at ICLR 2026

equivalent singular values X and right singular vectors V. Algorithm [I|shows the pseudo-code of our
method.

Algorithm 1 SVD Computation of Dataset-level KV-Cache

Input: Dataset containing [tokens in total; LLM model weights W
Output: singular values X and right singular vectors)V of K

C < mpdp, X myd), zero matrix > Initialize covariance matrix to zero
fort=1,...,1do

k; « XtWK

C + C+klk, > Update covariance matrix in each step
end for

V, 32, VT + eigen-decomposition(C') > perform eigen-decomposition on the final covariance
matrix
return X,)

For each token in a Dataset containing [tokens, k! k; is computed and the covariance matrix C'is
updated. After [iterations, we will have the complete covariance matrix of K as C = KTK =

Zizl k7'k,. Finally we perform eigen-decomposition on C' to obtain the singular values ¥ and right
singular vectors V of K.

To see why the final step of Algorithm [I] generates mathematically equivalent ¥ and V), consider the
following proof,

KTK 2 usyh)Tusy® = vsTuTusy™ & ys2yT)

where 77 holds by applying SVD on K; T holds because singular vectors form an orthogonal basis,
thus U/ 7Y yields a identity matrix, and consequently TUTUY. = ¥2.

2.4 NORMALIZE EFFECTIVE RANK AS COMPRESSIBILITY METRIC

Intuitively, the approximation loss derived in Eq.(2) provides a direct measure of the compress-
ibility of key and value spaces. For instance, one could fix an approximation rank k across all
key spaces, evaluate the corresponding losses, and interpret smaller losses as indicative of higher
compressibility. While being simple and straightforward, such strategy has two main drawbacks:
First, the metric depends on a fixed approximation rank %, and there is no clear guidance on how
to select k appropriately. Second, it fails to account for the full spectrum of singular values. We
thus introduce the Normalized Effective Rank (NER) as a metric to measure the compressibility of
key and value spaces. For a matrix K with singular values {o;} and rank r, the effective rank—first
introduced in (Roy & Vetterli, [2007)—is defined as erank(K) = exp(—>_._, p; logp;), where
pi = 0if 23:1 0, and the logarithm is to the base e (natural logarithm). Building on this, NER

is defined as NER(K') = erank(K)/r. In other words, NER normalizes the effective rank by the
matrix’s actual rank. As proven in (Roy & Vetterli, [2007), the effective rank erank(K) satisfies
1 < erank(K') < r, consequently, NER yields a score in [1/r, 1].

3 RELATED WORK

Rank Analysis in Language Models: Early work has investigated the relationship between the
rank of transformer weights or representations and model performance, seeking either to leverage
low-rank structure for efficiency (Chen et al., 2021a} [Hsu et al., |2022; [Hajimolahoseini et al., 2022}
Li et al.| 2023), to prevent rank collapse that limits expressivity (Dong et al.,[2021}; Noci et al., [2022;
Yaras et al., 2024), or to maximize rank utilization for enhanced modeling capacity (Bhojanapalli
et al.| [2020; Boix-Adsera et al.,[2023)). With the growing use of large language models (LLMs),
research has turned to their inherent low-rank properties. LoRA (Hu et al., 2022) leverages this
structure during fine-tuning, showing that many weight updates lie in low-dimensional subspaces.
Loki (Singhania et al.| 2024) examined the key representations in attention layers and found that
they often reside in lower-dimensional subspaces across models and datasets, which can be used
for efficient sparse attention. These directions have also motivated growing efforts on KV-cache

Under review as a conference paper at ICLR 2026

compression (Shi et al., [2024) to address the deployment bottleneck in reading and storing the KV
cache (Yu et al.|[2022)). Our work introduces a fine-grained method for evaluating the compressibility
of KV caches in LLMs through effective rank analysis, uncovering layer-wise and data-dependent
patterns that can inform the design of dynamic and adaptive compression strategies.

Low-Rank KV-cache Compression: DeepSeek (Liu et al., [2024) introduced Multi-head Latent
Attention (MLA), which applies low-rank joint KV cache compression to enable scalable inference,
unlike Multi-Query Attention (MQA) (Shazeer, [2019) and Grouped-Query Attention (GQA) (Ainslie
et al.,|2023) which reduce KV caches by merging key and value heads in multi-head attention (MHA)
(Vaswani et al., 2017). MHA2MLA (Ji et al.,|2025) and PALU (Chang et al.,|2024) applies SVD
to compress key and value projection weights, converting models based on MHA into the MLA
structure for reduced KV cache size. However, this approach targets only the projection weights,
while prior work (Yu & Wul 2023) has shown that transformer weights typically have higher rank
than the output features (keys/values), suggesting that data-dependent KV-cache compression is more
effective. In this direction, DRONE (Chen et al.| 2021b) proposed a closed-form solution for data-
aware low-rank compression of projected keys/values, and SVD-LLM (Wang et al., 2024) introduced
an incremental optimization based on Cholesky decomposition (Meyer, 2023) that achieves the same
optimal compression loss with lower memory overhead. In comparison, our method achieves the
same optimality with a much simpler formulation; moreover, it explicitly computes the SVD of
key/value representations, whereas SVD-LLM only recovers the optimal compression matrix.

4 EXPERIMENT

We evaluate our method on 5 open-source LLM series of varying sizes on 5 datasets.

Models To evaluate the generality of our method across different architectures and model sizes, we
apply our analysis to a set of open-source LLMs including Qwen3 (4B, 8B) (Team), 2025), Mistral-
7B (Jiang et al., 2023), Gemma-1.1 (2B, 7B) (Team et al., 2024), and Phi-3-mini-128k-instruct
(Abdin et al., 2024), where Gemma-1. I[H is a recent update of the original instruction-tuned Gemma,
incorporating a new RLHF method that improves overall performance.

Datasets To study the data-dependence of KV-cache compression, we evaluate our method on n
datasets, spanning diverse English instruction-following tasks across multiple domains and multilin-
gual QA. For English evaluation, the datasets cover general instruction following, code generation,
medical QA, and function calling, including Alpaca (Taori et al.l |2023)), MedAlpaca (Han et al.|
2023)), CodeAlpaca (Chaudhary, |2023)), WizardCoder (Luo et al., 2025), and FunctionCall*| For mul-
tilingual evaluation, we use the queries from the multilingual split of VisR-Bench (Chen et al.| [2025)),
a question-driven, retrieval benchmark spanning 15 languages (Spanish, Italian, German, French,
Dutch, Arabic, Croatian, Japanese, Swedish, Vietnamese, Portuguese, Finnish, Czech, Slovenian, and
Danish)—allowing us to assess performance across a linguistically diverse setting.

Hardware and Software Setup All experiments are conducted on machines equipped with 8x
NVIDIA A800 GPUs (80GB each), though all evaluations are executed on a single GPU without
distributed computation. We use PyTorch 2.7.1 and Hugging Face Transformers 4.53.2 for model
loading, compression, and inference. All evaluations are conducted in inference mode without
gradient computation.

4.1 EVALUATION METRIC

We introduce several metrics to evaluate both the cross-dataset compressibility of various LLMs and
the end-to-end performance of their compressed versions.

Normalized Effective Rank We quantify the data-dependent, per-layer compressibility of the
KV-cache using the NER (Roy & Vetterlil 2007), as introduced in Section[2.4] NER captures how
evenly the singular values are distributed and yields a score in [0, 1], with lower values indicating
spectra dominated by a few large singular values and thus higher compressibility.

!Gemma-1.1: |https:/huggingface.co/google/gemma-1.1-7b-it
2glaiveai/glaive-function-calling-v2: https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2

https://huggingface.co/google/gemma-1.1-7b-it
https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2

Under review as a conference paper at ICLR 2026

Perplexity We evaluate the performance of compressed models using perplexity (PPL) (Bengio
et al.l [2003)), the standard metric for language modeling. In practice, PPL is computed as the
exponential of the empirical cross-entropy between the data distribution and the model distribution,
which reduces to the Shannon entropy when the model perfectly matches the true distribution. Lower
PPL indicates that the model assigns a higher probability to the observed data, while higher PPL.
reflects greater uncertainty or degraded predictive performance. Given retain ratio k£ and v, the
perplexity will be denoted as PPL(k, v).

Normalized Delta-Perplexity To directly measure the impact of KV-cache compression on model
performance, we propose a quantitative metric, Normalized Delta-Perplexity (ND-PPL) for keys
and values, denoted ND-PPL ;- and ND-PPLy,. Raw perplexity or absolute changes are not directly
comparable across datasets, since their scale depends on the baseline. ND-PPL addresses this by
normalizing pairwise perplexity differences across retained rank ratios by the corresponding baseline
perplexity, and averaging over all candidate settings. This provides a dataset-agnostic measure of
robustness under compression and establishes a direct link to the NER. The formal definition is as
follows:

Let K = kq, ..., k,, denote the set of retained rank ratios for the key matrices, where k; € (0, 1]; the
definition for values V = vy, ..., v, is analogous. For a fixed value ratio v € V), we consider all pairs
(ki kj) € Pr, where Px = (k, k') € K x K | k > k', and define the key-side metric ND-PPL:

1 1 PPL(k;,v) — PPL(k;, v)
ND-PPLK—M;E; B (k%:ep (BPL e, 0) ®)

The definition of ND-PPLy, is symmetric, obtained by fixing k£ € K and averaging over pairs of
Vi, V5 € V.

GPT Score We assess whether compression preserves response quality using GPT-40. For each test
case, GPT-4o is provided with the input instruction together with the two responses from the original
and compressed models. Under a fixed prompt, GPT-5 outputs a binary score: 1 if the two responses
are judged roughly equal in quality, and O otherwise. Rough equivalence requires both answers to
be reasonable and aligned with the instruction, tolerating stylistic differences but penalizing empty,
irrelevant, or nonsensical outputs from the compressed model. The full system prompt used for
evaluation is provided in Appendix

4.2 BENCHMARKING EXPERIMENT ON KV-CACHE COMPRESSIBILITY

4.2.1 AVERAGE NER ACROSS MODELS AND DATASETS

Table [reports the mean NER of keys (NER-K) and values (NER-V), averaged over all attention
layers across seven models on five English datasets and fifteen languages from VisR-Bench. Several
trends emerge:

Keys are consistently more compressible than values. Across all models and datasets, NER-K is
substantially lower than NER-V, indicating that the key cache admits a more pronounced low-rank
structure. This asymmetry highlights that compression techniques targeting keys may achieve higher
savings with less impact on performance, whereas values tend to retain higher-rank structure and thus
are less compressible.

Cross-lingual variation outweighs cross-domain variation. For English datasets spanning differ-
ent domains (e.g., Alpaca vs. FunctionCall), NER values remain relatively stable, suggesting that
domain shifts do not strongly affect rank structure. In contrast, multilingual results reveal far greater
variation, with languages such as Czech and German showing higher NER compared to Arabic and
Finnish. This suggests that linguistic diversity, tokenization differences, and training data availability
play a larger role than domain differences in determining compressibility.

KYV Capacity governs compressibility. We observe that the original KV dimension strongly
affects model compressibility. Earlier models such as LLaMA-2-7B exhibit substantially lower
NER compared to other models, likely due to larger key/value dimensions and weaker utilization

Under review as a conference paper at ICLR 2026

Datasets Qwen3-4B Qwen3-8B Gemma-2B Gemma-7B Mistral-7B Phi-3 LLaMA-2-7B
K v K A% K v K \Y% K v K \Y% K v
Multi-domain Datasets
Alpaca 0428 0.724 | 0452 0.753 | 0.612 0.900 | 0.359 0.469 | 0449 0.773 | 0.409 0.616 | 0.023 0.464
MedAlpaca 0429 0.723 | 0452 0.752 | 0.594 0.889 | 0.344 0.455 | 0441 0.771 | 0403 0.604 | 0.176 0.310
CodeAlpaca | 0.421 0.708 | 0.443 0.737 | 0.589 0.869 | 0.321 0.429 | 0.420 0.733 | 0.380 0.571 | 0.028 0.337
WizardCoder | 0.425 0.726 | 0.447 0.753 | 0.597 0.889 | 0.329 0.445 | 0420 0.750 | 0.385 0.587 | 0.265 0.304
FunctionCall | 0.432 0.731 | 0.451 0.756 | 0.608 0.900 | 0.342 0.458 | 0432 0.762 | 0.397 0.604 | 0.135 0.449
TAverage | 0424 0717 | 0446 0745 | 0.597 0.884 | 0.337 0448 | 0430 0.753 | 0393 0.593 | 0.088 0.141
Multilingual Question in VisR-Bench Datasets
Czech 0.383 0.627 | 0401 0.652 | 0.536 0.803 | 0.292 0.383 | 0.385 0.660 | 0.313 0.470 | 0.099 0.148
German 0.383 0.640 | 0.400 0.666 | 0.536 0.802 | 0.305 0.400 | 0.392 0.676 | 0.345 0.523 | 0.092 0.138
Italian 0.377 0.632 | 0.392 0.655 | 0.529 0.793 | 0.299 0.393 | 0.387 0.669 | 0.339 0.515 | 0.084 0.135
Dutch 0.376 0.628 | 0.395 0.657 | 0.534 0.802 | 0.299 0.394 | 0.385 0.664 | 0.331 0.499 | 0.116 0.108
Croatian 0.375 0.620 | 0.393 0.645 | 0.525 0.791 | 0.292 0.382 | 0.383 0.659 | 0.320 0.479 | 0.081 0.132
French 0.373 0.633 | 0.390 0.657 | 0.532 0.797 | 0.301 0.397 | 0.387 0.671 | 0.340 0.519 | 0.087 0.137
Vietnamese 0.373 0.625 | 0392 0.653 | 0.542 0.814 | 0.291 0.384 | 0.367 0.630 | 0.305 0.442 | 0.071 0.119
Swedish 0.371 0.620 | 0.387 0.645 | 0.526 0.794 | 0.296 0.389 | 0.381 0.656 | 0.322 0.486 | 0.078 0.128
Spanish 0.367 0.629 | 0.384 0.654 | 0.523 0.790 | 0.299 0.396 | 0.381 0.665 | 0.334 0.513 | 0.064 0.095
Slovenian 0.366 0.603 | 0.383 0.628 | 0.518 0.785 | 0.281 0.369 | 0.372 0.642 | 0.306 0.458 | 0.075 0.121
Portuguese 0.362 0.614 | 0.378 0.639 | 0.521 0.785 | 0.284 0.375 | 0.379 0.656 | 0.326 0.498 | 0.083 0.133
Japanese 0.361 0.619 | 0.380 0.648 | 0.506 0.775 | 0.276 0.369 | 0.364 0.636 | 0.321 0.467 | 0.079 0.125
Finnish 0.360 0.597 | 0.378 0.625 | 0.502 0.769 | 0.280 0.369 | 0.353 0.616 | 0.305 0.455 | 0.073 0.118
Arabic 0.337 0.582 | 0.354 0.609 | 0.503 0.769 | 0.270 0.361 | 0.338 0.594 | 0.288 0.413 | 0.052 0.173
T Average | 0387 0.653 | 0.407 0.679 | 0.548 0.822 | 0306 0405 | 0395 ~0.684 | 0.345 0.520 | 0.083 ~ 0.134

Table 1: Average NER of keys and values across all layers of 7 models on multilingual split of
VisR-bench covering 15 languages

of rank capacity during training. Within the Gemma family, Gemma-7B shows much lower NER
than Gemma-2B, which can be explained by its 16x larger KV dimension (16 heads x 256 per head)
compared to the 2B model (1 head x 256). The higher compressibility of Gemma-7B suggests that
this expanded KV capacity is under-utilized, whereas the smaller 2B models may make more efficient
use of their available dimensions. In contrast, Qwen3-4B and Qwen3-8B show only minor differences
in NER because both adopt the same compact KV configuration (8 heads x 128 per head).

Rank collapse in low-resource languages. Certain languages with limited pretraining coverage
(e.g., Arabic, Slovenian, Finnish) exhibit unusually low NER, especially in the value cache. This
phenomenon may reflect under-trained token embeddings collapsing into low-dimensional subspaces.
Beyond compressibility, such rank collapse may serve as a diagnostic signal for identifying under-
represented languages in multilingual pretraining corpora.

4.2.2 LAYER-WISE COMPRESSIBILITY PATTERNS

Figure[2]presents the layer-wise NER of Qwen3-4B on the five datasets and on three selected language
subsets of VisR-Bench, with additional plots for other models included in Appendix[C.1I] The results
show that NER is not uniform across layers. Middle layers often exhibit higher NER, suggesting
they make fuller use of their representational capacity, while early and late layers are typically more
compressible.

This heterogeneity indicates that future KV-cache compression should be layer-aware: applying a
uniform compression ratio risks overly degrading high-rank layers while missing opportunities for
more aggressive reduction in lower-rank ones. Moreover, the relative positions of high- and low-rank
layers are consistent across datasets, suggesting that compressibility is partly a structural property
of the model rather than purely data-driven. At the same time, subtle differences between tasks and
languages (e.g., Arabic vs. English subsets) highlight that dataset characteristics can modulate layer
usage, pointing to potential for data-aware compression strategies.

4.3 PERFORMANCE IMPACT OF KV-CACHE COMPRESSION

We evaluate the performance degradation of compressed models using both perplexity (PPL) and
GPT-score. Figure 3| presents PPL heatmaps of Qwen3-4B and LLaMA-2-7B on the Alpaca dataset

Under review as a conference paper at ICLR 2026

0.8

0.7

0.6

0.5

NER

0.4
0.3

0.2

- Value Alpaca WizardCoder MedAlpaca VisR-Bench (German)
0.1 —@— Key CodeAlpaca FunctionCall VisR-Bench (Arabic) VisR-Bench (Swedish)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
layer
Figure 2: Layer-wise NER of key and value representations in Qwen3-4B, evaluated on 5 datasets
and 3 languages from the VisR-Bench benchmark.

across a grid of K'V-cache compression ratios, with additional results provided in Appendix[C.2} We
can see that LLaMA-2-7B remains relatively stable, showing only modest PPL increases even under
aggressive compression, whereas Qwen3-4B is more sensitive, exhibiting substantial degradation.
These results suggest that models with lower NER values are generally more compressible, as
reflected by smaller changes in PPL.

Qwen3-4B LLaMA-2-7B

s 20

2088 2493 2539 2604 2293 2224 2177
1416 1363 1500 1317 1212 1125 1126 1266 a0
1275 1173 1138 1072 1035 979 955 948
1213 1115 1116 1069 1051 973 950 896
1165 1081 1074 1043 1068 1027 982 881 0 “

1152 1063 1069 1051 1054 978 957 930

1.00 0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05

k_ratio
k_ratio
1.00 0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05

1120 1064 1073 1058 1016 948 934 899

1119 1047 1070 1028 1012 956 956 9.07 20

1110 1028 1041 1009 1010 929 930 958

1065 1009 1047 1010 947 885 871 902

1109 1011 1036 987 9.40 909 886 872

0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.00 0.45 055 0.65 0.75 0.85 0.95 1.00
v_ratio v_ratio

Figure 3: PPL heatmap of Qwen3-4B and LLaMA-2-7b on the Alpaca dataset.

In addition to PPL, we also report average GPT-score in Figure[d which directly measures the quality
difference between compressed and original model responses and provides a metric more closely
aligned with user experience. Due to computational cost, GPT-scores are computed as averages over
100 instructions from the Alpaca dataset. Consistent with PPL trends, LLaMA-2-7B again proves
more compressible than Qwen3-4B. Importantly, GPT-score further reveals a smoother and more
continuous trajectory of performance degradation, even in regions where PPL remains relatively
unchanged.

4.4 DATASET COMPRESSIBILITY COMPARISON

To quantitatively assess how well the NER reflects end-to-end robustness under compression, we
employ the ND-PPL metrics. As reported in Figure 5] NER and ND-PPL are positively correlated,
with Pearson r» = 0.88 for values and » = 0.64 for keys. These results establish NER as a reliable
predictor of performance sensitivity under compression. Moreover, the scatter plots reveal systematic
dataset-level patterns. Multilingual datasets (e.g., Arabic, Portuguese, Finnish) cluster toward the
bottom-left, with both low NER and low ND-PPL, indicating higher resilience to compression. In

Under review as a conference paper at ICLR 2026

Qwen3-4B LLaMA-2-7B

10 10

1.00 0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05

k_ratio
1.00 0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05
o
k_ratio

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85

0.45 0.55 0.65 0.75 0.85 0.95
v_ratio v_ratio

Figure 4: GPT score heatmap of Qwen3-4B and LLaMA-2-7b on the Alpaca dataset.

contrast, English-domain datasets such as Alpaca, MedAlpaca, and FunctionCall appear toward the
upper-right, showing higher NER and greater sensitivity to compression. This separation suggests
that KV-cache compressibility can serve as a diagnostic of data—model alignment: under-trained or
poorly covered datasets tend to yield low NER, while well-represented domains exhibit higher NER
and are more sensitive to aggressive truncation.

Correlation between NER and APPL_V, . . Correlation between NER and APPL_K
Pefrys%" r0:5 088 ' Pearson r = 0.64 e
16 o i 35 p = 7.6e-03
14 Alcapa 30

MedAlpaca_flashcards

12

Medalpaca_wikidoc
L

> 13
“i10 '20
g g
d 5 g
15
6
1.0
CodeAlpaca MedAlpaca_flashcards
4 Japanes, ¢ Alcapa
swedish / Sutch German 0.5 °
2 finnish italizh- TN gobic @CodeAlpaca
Arabic e e pamot 0.0
058 060 062 064 066 068 070 0.72 0.34 038N o 38 0.40 0.42 0.44
Normalized Effective Rank (V) Normalized Effective Rank (K)

Figure 5: Correlation between dataset-level NER and ND-PPL computed by Qwen3-4B.

5 CONCLUSION

In this work, we introduced KV-CoRE, an SVD-based framework for dataset-level analysis of KV-
cache compressibility in large language models. KV-CoRE directly decomposes cached key/value
activations with low memory overhead, yielding globally optimal low-rank approximations and
enabling systematic evaluation of rank utilization across layers and datasets.

Through extensive experiments across multiple model families, domains, and languages, we showed
that NER serves as a lightweight and reliable indicator of compressibility, correlating closely with
perplexity- and GPT-based performance under compression. We further introduced ND-PPL as an
end-to-end robustness measure, establishing a clear empirical link between NER and model sensitivity
to truncation.

Our analysis uncovers consistent patterns that tie compressibility to architectural design, training data,
and language coverage. These findings position KV-CoRE as both a diagnostic tool for understanding
representational efficiency and a benchmark for guiding the development of dynamic, data-aware
KV-cache compression strategies and data-centric model improvements.

Under review as a conference paper at ICLR 2026

6 LANGUAGE MODEL USAGE STATEMENT

In preparing this manuscript, we used GPT-5 only for grammar checking and minor language
polishing. The authors reviewed and edited all suggestions. All scientific content, analysis, and
conclusions are entirely the work of the authors.

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical report:
A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrén, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137-1155, 2003.

Srinadh Bhojanapalli, Chulhee Yun, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Low-rank
bottleneck in multi-head attention models. In International conference on machine learning, pp.
864-873. PMLR, 2020.

Enric Boix-Adsera, Etai Littwin, Emmanuel Abbe, Samy Bengio, and Joshua Susskind. Transformers
learn through gradual rank increase. Advances in Neural Information Processing Systems, 36:
24519-24551, 2023.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, Mohamed S Abdelfattah, and Kai-Chiang Wu. Palu: Compressing
kv-cache with low-rank projection. arXiv preprint arXiv:2407.21118, 2024.

Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation. https:
//github.com/sahil280114/codealpaca, 2023.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain:
Unifying sparse and low-rank attention. Advances in Neural Information Processing Systems, 34:
17413-17426, 2021a.

Jian Chen, Ming Li, Jihyung Kil, Chenguang Wang, Tong Yu, Ryan Rossi, Tianyi Zhou, Changyou
Chen, and Ruiyi Zhang. Visr-bench: An empirical study on visual retrieval-augmented generation
for multilingual long document understanding. arXiv preprint arXiv:2508.07493, 2025.

Patrick Chen, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh. Drone: Data-aware low-rank
compression for large nlp models. Advances in neural information processing systems, 34:29321—
29334, 2021b.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure
attention loses rank doubly exponentially with depth. In International conference on machine
learning, pp. 2793-2803. PMLR, 2021.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211-218, 1936.

Habib Hajimolahoseini, Walid Ahmed, Mehdi Rezagholizadeh, Vahid Partovinia, and Yang Liu.
Strategies for applying low rank decomposition to transformer-based models. In 36th Conference
on Neural Information Processing Systems (NeurIPS2022), volume 6, 2022.

Tianyu Han, Lisa C Adams, Jens-Michalis Papaioannou, Paul Grundmann, Tom Oberhauser, Alexan-
der Loser, Daniel Truhn, and Keno K Bressem. Medalpaca—an open-source collection of medical
conversational ai models and training data. arXiv preprint arXiv:2304.08247, 2023.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. arXiv preprint arXiv:2207.00112, 2022.

10

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca

Under review as a conference paper at ICLR 2026

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Tao Ji, Bin Guo, Yuanbin Wu, Qipeng Guo, Lixing Shen, Zhan Chen, Xipeng Qiu, Qi Zhang, and
Tao Gui. Towards economical inference: Enabling deepseek’s multi-head latent attention in any
transformer-based llms. arXiv preprint arXiv:2502.14837, 2025.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/
abs/2310.06825.

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
Losparse: Structured compression of large language models based on low-rank and sparse approxi-
mation. In International Conference on Machine Learning, pp. 20336-20350. PMLR, 2023.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct, 2025. URL |https://arxiv.org/abs/2306.08568.

Carl D Meyer. Matrix analysis and applied linear algebra. SIAM, 2023.

Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, and Aurelien
Lucchi. Signal propagation in transformers: Theoretical perspectives and the role of rank collapse.
Advances in Neural Information Processing Systems, 35:27198-27211, 2022.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. arXiv preprint
arXiv:1904.01038, 2019.

Myunghyun Rhee, Joonseop Sim, Taeyoung Ahn, Seungyong Lee, Daegun Yoon, Euiseok Kim,
Kyoung Park, Youngpyo Joo, and Hosik Kim. Hpu: High-bandwidth processing unit for scalable,
cost-effective 1lm inference via gpu co-processing. arXiv preprint arXiv:2504.16112, 2025.

Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In 2007
15th European signal processing conference, pp. 606-610. IEEE, 2007.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and Hai Zhao. Keep the cost down: A review on
methods to optimize 1lm’s kv-cache consumption. arXiv preprint arXiv:2407.18003, 2024.

Prajwal Singhania, Siddharth Singh, Shwai He, Soheil Feizi, and Abhinav Bhatele. Loki: Low-
rank keys for efficient sparse attention. Advances in Neural Information Processing Systems, 37:
16692-16723, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpacal 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

11

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2306.08568
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2505.09388

Under review as a conference paper at ICLR 2026

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. arXiv preprint arXiv:2403.07378, 2024.

Can Yaras, Peng Wang, Laura Balzano, and Qing Qu. Compressible dynamics in deep overparame-
terized low-rank learning & adaptation. arXiv preprint arXiv:2406.04112, 2024.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca:
A distributed serving system for {Transformer-Based} generative models. In 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 22), pp. 521-538, 2022.

Hao Yu and Jianxin Wu. Compressing transformers: features are low-rank, but weights are not! In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 11007-11015, 2023.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd: Activation-
aware singular value decomposition for compressing large language models, 2024. URL https:
//arxiv.org/abs/2312.05821.

12

https://arxiv.org/abs/2312.05821
https://arxiv.org/abs/2312.05821

Under review as a conference paper at ICLR 2026

Appendix

A PRELIMINARY

A.1 MHA, MQA AND GQA

We first introduce the standard MHA and two of its variants—MQA and GQA. Given an input
embedding vector, MHA project it into key and value vectors for each attention head, causing the KV
cache size to scale linearly with the number of heads. In contrast, MQA and GQA reduce the KV
cache size by grouping heads and sharing the same key and value vectors within each group.

Focusing on GQA, the most general technique among the three, we define d., my,, dj, and my as the
embedding dimension, number of heads, dimension per head and number of groups, respectively.
Given an input embedding vector x; € R'*4e corresponding to the t-th token, GQA divides the m,
attention heads into m, groups. Formally, this grouping can be described by a helper function g,
which maps from head indices {1, ..., m, } to group indices {1, ...,m,} as,

(i) = L/mﬂ Vie {1,..,mp} (A1)

My

Then it projects x; into query q; € R1*™rdr key k; € R1*™s9n and value vector v; € R1*™Msdn
as follows:

[t 15 oo Dty] = At = X WE (A2)
kets oo kem,] = ke = x, WK (A3)
[Vt,h -~-7Vt,mg} =V = XtWV (A4)

where q,;,Vi € {1,...,my} denote the query vector for each attention head, and k; ;, v, ;,Vi €
{1,...,m,} represent the key and value vector for each group. The matrices W@ € Rex™ndn and
WE WV € Rd*msdndenote learnable model parameters. The attention of each head and the final
projected output are computed as,

t T
q ,ik' i
Oy = ZSoftmaxj (f/\/zThg()> Vig(), Vi€ {l,..,mp} (A.5)
=1
Y = [Ot,h ...,Ot’mh]Wo (A6)

where 0, ; € R WO ¢ Rmndnxde and y, € R1*4e denote the attention output for i-th head,
the output projection matrix and the projected output respectively.

Note that when mg, = my,, GQA reduces to standard MHA, and when m, = 1, it specializes MQA.

A.2 MLA

Unlike MHA and its variants, MLA projects the input embedding x; € R% of t-th token into two
distinct spaces: a joint latent KV space and a decoupled key space designed to incorporate RoPE.
Formally, this can be expressed as:

iV = x,WPEY (A7)
k& = RoPE(x, W) (A.8)

where ¢V € R4 and kf € R'*“% denote the joint latent KV vector and the RoPE-encoded
decoupled key vector, receptively. The projection matrices WPKV ¢ R xde and WEE ¢ Rdexdr
handle the corresponding down-projections. During attention calculation, cXV is up-projected to get
the key and value vectors, while the query vector is computed directly from the input embedding x;.

These operations are described by following equations equation and equation

13

Under review as a conference paper at ICLR 2026

CtQ = XtWDQ
C C1_1C _ KVyyUK
[kt,lv ""kt,n] =k =c¢, W [qfl, "'7qtc:mh] = QtC = CtQWUQ
c
ki = ki, k'] (A.9) [qfl, ey quh] = qf = RoPE(c?WQR)
e} e} e} KV Uv)
[vt,l’ EE) Vt,mh} =Vy =¢ w qt,i = [qtcm qf;]

(A.10)

where WUK WUV ¢ Rdexmndn are up-projection matrices for key and value vectors, respectively.
The matrices WP@ € Rdexde agnd WUQ ¢ Rdexmndn gerve as the down- and up-projection for
queries, while WQR ¢ R*mndn jg the up-projection matrix used to incorporate RoPE for the
decoupled query vector. Note that both k; ; and q; ; are concatenations of their NoPE and RoPE
components.

Using q; ;, k¢ ; and vgi, the attention of each head and the final projected output are computed as,

t T
ik'i
o1 = » _ Softmax; (x/(clli;+—];i3> v§i, Yie{l,..,mp} (A.11)
j=1
Vi = [0t.1; 0 Ot my JWC (A.12)

A key merit of MLA lies in its caching efficiency during token generation: only ¢V and k{* need to
be cached, resulting in a cache size of d. + dg. Since both d. << mpdy and dgp << mpdy, MLA
reduces KV cache size significantly compared to MHA, which requires caching k; € R'*™»dn and
v, € R1Xmndn for t-th token.

14

Under review as a conference paper at ICLR 2026

B GPT EVALUATION SYSTEM PROMPT

Below is the system prompt used to prompt GPT-40 as a text generation quality score in our
experiment:

System Prompt 1. You are an automatic evaluator for LLM responses. Your job: compare two candidate
answers (A = original model, B = compressed model) to the same user prompt and output a binary score.

Scoring Rules
* Output 1 if A and B are roughly equal in quality (not necessarily the same wording or level of
detail, but comparable usefulness for the task).

Output 0 otherwise.

“Roughly equal” means:

Both A and B provide a reasonable, relevant answer to the user’s prompt.

They satisfy the intent to a similar degree, with no material difference in correctness, completeness,
usefulness, or safety.

Differences in style, verbosity, order, or minor details do not matter if they don’t affect usefulness.

If both are equally poor or equally failed (e.g., both empty, both nonsense, both refuse without
reason, or both severely hallucinated to a similar extent), score 1.

If one contains nonsense, large repetition, emptiness, or serious hallucinations while the other
does not, score 0.

Special rule: The COMPRESSED MODEL’s answer must itself be a reasonable response to the
user prompt.

If the compressed model gives an empty output, nonsense, off-topic text, or fails to address the
question, score 0, even if the original answer is also poor.

Evaluation checklist (internal only):

1. Task fulfillment & correctness: Does each answer address the user’s ask accurately?

2. Coherence & specificity: Is each answer clear, non-contradictory, minimally redundant?
3. Grounding & hallucinations: Any invented facts or unsupported claims?

4. Completeness at the needed granularity: Are the essentials present?

5. Harm & policy: Safety/compliance roughly comparable?

6. Degenerate behaviors: empty output, nonsense, repetition, prompt copy, or off-topic.

Decision rules:

* Score 1 if both are reasonable answers and land in the same quality band (Excellent/Adequate/Poor/-
Fail), close enough that a reasonable user would find them similarly useful (or similarly useless).

e Score 0 if any material gap exists, or if the compressed model fails to provide a reasonable answer.

Formatting:
* Return only a single JSON object with no extra text: "score": 0 or "score": 1
Example:
[INPUT PROMPT]
Explain why the sky is blue.
[ANSWER A: ORIGINAL MODEL]
"The sky looks blue due to Rayleigh scattering of sunlight in Earth’s atmosphere, which scatters shorter
wavelengths like blue more strongly."
[ANSWER B: COMPRESSED MODEL] ""
Expected output: "score": 0

15

Under review as a conference paper at ICLR 2026

:1‘1’ C ADDITIONAL EXPERIMENT RESULTS
a1z C.1 LAYER-WISE NER RESULTS
813
814
815 Layer-wise NER of Qwen3-4B
816 0.8
817 0.7
818
819 0.6
820 o 0.5
w
821 Z04
822 03
823
0.2
824
825 0.1
826 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
827 layer
828 =& Value [Alpaca I WizardCoder " MedAlpaca VisR-Bench (German)
—@— Key [CodeAlpaca 0 FunctionCall VisR-Bench (Arabic) [0 VisR-Bench (Swedish)
829
830 .
Layer-wise NER of Qwen3-8B
831
833 0.7
834
835 0-6
836 505
=
837 0.4
838 0.3
839 0.2
840
841 o1
842 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
843 layer
=% Value [Alpaca I WizardCoder [MedAlpaca VisR-Bench (German)
844 -@— Key [CodeAlpaca B FunctionCall VisR-Bench (Arabic) 5 VisR-Bench (Swedish)
845
846 Layer-wise NER of Phi-3-mini-128k-instruct
847 0.7
848
849 06
850 0.5
851 o 0.4
852 = 03
853 ‘
854 0.2
855 0.1
856
0.0
857
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
858 layer
859 =& Value m Alpaca I WizardCoder i MedAlpaca VisR-Bench (German)
860 —@— Key [CodeAlpaca [0 FunctionCall VisR-Bench (Arabic) [0 VisR-Bench (Swedish)
861

862 Figure C.1: Layer-wise NER of key and value representations in Qwen3-4B, Qwen3-8B, and Phi-3-
863 mini evaluated on 5 datasets and 3 languages from the VisR-Bench benchmark.

16

Under review as a conference paper at ICLR 2026

864
865
866
867 Layer-wise NER of mistral
868
869
870
871 0.6
872
873
874
875 0.2
876

877

878 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
879 layer

880 =% Value [Alpaca I WizardCoder [MedAlpaca I VisR-Bench (German)
881 —&— Key [CodeAlpaca 0 FunctionCall VisR-Bench (Arabic) [VisR-Bench (Swedish)

2:§ Layer-wise NER of gemmal.1l
884

885 09
886
887
888
889
890 0.6
891

892

893 0.4
894 1 3 5 7 9 11 13 15 17

895 Iayer
- Value m Alpaca B WizardCoder i MedAlpaca " VisR-Bench (German)

896 -8 Key mwm CodeAlpaca W= FunctionCall VisR-Bench (Arabic) = VisR-Bench (Swedish)
897

898
899
900
901
902
903
904
905
906
907
908 01

909

910 1 3 5 7 9 11 13 15 17 19 21 23 25 27
layer

911 =& Value [Alpaca I WizardCoder " MedAlpaca I VisR-Bench (German)

912 —&— Key [CodeAlpaca 0 FunctionCall VisR-Bench (Arabic) [VisR-Bench (Swedish)

913

0.8

NER

0.4

0.0

0.8

0.7

NER

0.5

Layer-wise NER of gemma-1.1-7b-it

NER

0.3

0.2

914 Figure C.2: Layer-wise NER of key and value representations in mistral, gemmal.l, and gemma-1.1-
915 7b-it evaluated on 5 datasets and 3 languages from the VisR-Bench benchmark.
916

917

17

Under review as a conference paper at ICLR 2026

C.2 PPL HEATMAP

k_ratio

k_ratio

k_ratio

095 085 075 065 055 045 035 025 015 0.05

1.0

10.08

1033

0.15

- 489

n
N
e

- 465

0.35

< - 456

- 463

8- 4.66

- 466

0.75

- 468

0.85

-an

0.95

S- 465

0.05

- 16.72

0.05

0.15

-14.73

0.25

0.35

-1473
:. - 1434
3
m. - 1437
3
81439
3

- 1453

0.75

- 1454

0.85

- 14.50

0.95

S-1437

2.78
2.73
271
2.75
2.78
2.78
2.80
2.80

2.78

0.15

17.02
9.58
8.50
8.46
8.41
8.42
8.43
8.49
8.56

8.60

atmap (Alpaca)

745 726 718 713
650 633 626 622
634 617 609 6.06
627 6.09 601 598
6.28 6.09 6.01 597
630 611 6.01 597
634 614 603 598
638 6.16 6.05 6.00
6.47 623 611 6.06
6.47 623 611 6.06

6.45 621 6.09 6.04

055 065 075 0.85
v_ratio

PPL Heatmap (WizardCoder)

PPL He:
901 811 7.66
756 693 6.64
739 671 649
741 666 644
751 670 6.46
755 668 6.48
762 674 653
771 682 659
788 697 671
797 701 671
791 701 670
D.IZS 0“35 0,:05
595 511 493
264 249 243
245 233 227
240 228 222
241 228 221
243 229 221
244 231 222
244 231 223
245 232 223
245 231 223
243 231 222
0.'25 0. ‘35 0.215

PPL Heat:

1438 1294 1218
841 7.86 7.50
753 711 684
762 715 684
756 7.09 678
758 715 6.80
752 715 682
756 717 686
762 719 687
763 716 6386
764 721 690
025 035 045

486 470 4.68 4.67
237 233 232 232
221 218 216 216
216 213 211 211
215 211 208 208
215 210 208 207
215 210 208 207
216 211 207 207
216 211 207 207
216 210 207 206

215 210 207 206

055 065 075 085
v_ratio

'map (MedAlpaca_wikidoc)

1167 1149 1151 1171
725 713 7.06 7.07
6.67 655 649 648
6.65 651 643 640
659 646 638 635
659 644 636 632
658 643 635 631
6.60 644 635 631
661 643 634 630
658 640 631 627

659 640 630 627

0.55 0.65 0.75 0.85
v_ratio

7.12
6.21
6.05
5.98
5.96
5.96
5.98
6.00
6.05
6.05

6.04

0.95

471
2.33
2.16
2.11
2.08
2.07
2.07
2.07
2.06
2.06

2.06

0.95

11.84
7.07
6.48
6.39
6.35
6.32
6.30
6.30
6.29

6.26

7.12

6.22

6.05

5.98

5.96

5.96

5.98

6.00

6.06

6.05

6.04

4.71

2.33

2.16

211

2.08

2.07

2.07

2.06

2.06

2.06

2.06

11.85

7.07

6.48

6.40

6.35

6.32

6.30

6.30

6.29

6.26

6.26

®
k_ratio

k_ratio

025 015

0.35

0.85 0.75

0.95

- 1095

-10.72

-10.75

-10.81

5.64

5.40

5.33

5.41

5.44

5.38

4.29
4.30
433

4.32

0.25

4.55

457

PPL

8.11

6.02

0.25

PPL Heatmap (CodeAlpaca)

456 444 438 434 432 431
392 383 377 372 369 369
383 373 367 361 359 358
382 372 365 358 356 355
382 371 363 357 354 353
384 371 363 357 354 353
391 377 367 358 355 354
394 379 369 360 357 3.56
394 379 369 360 356 3.55
394 379 369 359 356 3.55

393 378 368 358 355 354

035 045 055 065 075 085
v_ratio

PPL Heatmap (FunctionCall)

663 619 601 592 587 588
445 419 408 403 401 402
421 398 386 380 376 3.76
412 389 378 372 367 366
409 386 374 368 362 361
411 387 375 368 363 361
410 387 374 368 362 3.60
410 386 374 367 361 359
411 388 376 368 362 359
412 388 374 367 360 358

412 388 373 366 359 357

035 045 055 065 075 085
v_ratio

Heatmap (MedAlpaca_flashcards)

746 724 710 697 694 694
6.06 585 566 559 557 558
536 528 522 523 519 512
514 505 492 487 484 483
524 513 495 491 486 484
530 517 497 492 486 484
534 522 501 494 488 486
541 528 505 497 490 488
542 528 504 496 488 487
546 530 505 497 489 488

550 532 504 495 486 486

0.35 0.45 0.55 0.65 0.75 0.85
v_ratio

Figure C.3: PPL heatmap of LLaMA-2-7B on 6 datasets.

18

3.58

3.55

3.53

3.53

3.56

3.55

3.55

6.93

3.69

3.55

3.53

3.53

3.54

3.56

L

3.55

3.54

5.88

3.66

3.60

3.60

6.93

5.58

484

4.86

4.88

4.88

4.86

Under review as a conference paper at ICLR 2026

2
S

-906.42

-772.89

0.25

R -939.17
3

2 - 812,60
3

K ratio

R -778.74
3
$ - 845.20
3

- 693.44

0.75

- 673.59

0.85

- 421.70

0.95

0.05

9
s

- 367.80

- 185.65

0.25

R - 160.88
3

2 - 149.01
S

K_ratio

B - 14471
s

8-12274
3

- 96.00

0.75

- 80.81

0.85

- 67.72

0.95

0.05

0
[t
s

& -1824.78
S

9 -1527.06
3

2 -1099.47
)

K_ratio

0

15 -1027.31
s

8-78513
s
264279
S
8-53431
s

8 - 405.10
3

0.05

-2942.45

99.02
44.78
37.54
30.16
3038
26.37
26.99
26.28
25.28

23.75

0.15

120.90

10.08

6.01

4.09

0.15

621.82
14131
80.12
64.60
50.53
48.89
45.59
41.98
4112

35.06

0.15

PPL Heatmap (Alpaca)

3441 2854 2488 2493 2539 26.04
1858 14.16 1363 1500 1317 1212
1576 1275 1173 1138 1072 1035
1460 1213 1115 1116 1069 1051
1371 1165 1081 1074 10.43 10.68
1350 1152 1063 10.69 1051 10.54
1317 1120 1064 1073 1058 10.16
13.08 1119 1047 1070 1028 10.12
1326 1110 1028 1041 10.09 10.10

1248 1065 1009 1047 1010 9.47

025 035 045 055 065 075
v_ratio

PPL Heatmap (WizardCoder)

129.19 7792 52.04 3463 31.67 3155

392 317 287 263 255 246

328 276 259 241 235 229

2583 253 244 229 224 220

025 035 045 055 065 075
V_ratio

PPL Heatmap (MedAlpaca_wikidoc)

381.88 177.06 147.18 141.79 153.86 156.73
65.76 4543 3825 30.28 28.65 27.55
4113 3204 2557 2235 2082 19.71
37.58 27.46 2210 19.69 1826 17.48
3017 2265 1869 1760 1592 1519
2925 2209 1677 1579 1533 14.24
2691 2050 1620 14.80 1428 1358
2480 1927 1630 1540 1474 1350
2497 1829 1610 1475 1422 1324

2302 17.85 1533 13.98 13.06 12.97

025 035 045 055 065 075
V_ratio

Figure C.4:

22,93

11.25

10.27

32.79

2.38

2.30

2.24

156.41
25.99
19.38
17.06
14.37
1336
13.04
12.85
12.62

12.28

0.85

22.24

11.24

9.82

2813

2.23

0.95

156.71
24.58
18.54
15.88
1379
12.97
12.64
12.25
12.19

11.49

0.95

201.80 PR
2500
11.81
2000 10.06
R 18873 965
s
1500 Q8733 914
oo
€
]
R 10521 XS
S
[1000 il 104,06 JEEF)
s
R 18764 921
s
- 500 "
89060 932
s
& 9008 810
E
005 015
1600 1 159.79
0-71339 3535
1400 °
& -78871 2438
S
1200
B -787.11 2219
3
1000
w
965777 1878
g
€
]
800~ 4668 17.17
3
- 600 8 -504.01 16.65
s
0
£ -485.94 1521
- 400 g4
837213 1424
- 200 °
& -27486 1234
3
005 015
PYl 137.45
7000
- 68856 32.67
S
6000 -
&-s1814 2227
S
5000 m - 684.65 21.71
s
Q44232 2137
4000 2°
vl
~13-49282 25.60
3
- 3000
0
8-39014 2056
3
- 2000 - 40589 22.66
s
8-37077 2238
- 1000 S

& -25416 2147
3

0.05 015

PPL Heatmap (CodeAlpaca)

1220 967 881 803 776 7.59
743 628 574 516 480 4.63

611 556 514 480 463 443

563 517 463 449 437 425

5.75 5.00 4.58 4.48 4.23 411

025 035 045 055 065 075
v_ratio

PPL Heatmap (FunctionCall)

80.25 54.08 46.46 40.05 40.50 39.83
1549 1058 838 747 690 665

11.09 7.77 6.73 6.09 5.83 5.50

8.38 6.39 5.77 5.41 5.17 5.02
828 629 566 538 521 506
786 619 563 531 514 499
7.89 6.26 5.54 5.24 5.09 5.01

740 592 536 515 501 488

025 035 045 055 065 075
V_ratio

PPL Heatmap (MedAlpaca_flashcards)

53.52 37.24 2843 2553 2546 2261
1626 1319 1220 1137 10.63 9.69
1531 1192 1130 1022 985 9.26
1311 1119 962 959 976 882
1349 1075 958 933 869 851
1404 888 916 926 841 806
1326 979 880 902 808 7.83
1207 911 869 874 7.99 7.40
1123 989 916 883 825 7.68

1185 1064 864 887 817 7.90

025 035 045 055 065 075
V_ratio

PPL heatmap of Qwen3-4B on 6 datasets.

19

37.29

5.36

4.88

4.85

0.85

15.36

7.57

0.85

4.10

35.02

4.96

4.80

4.69

0.95

14.70

9.63

0.95

200

175

150

125

100

3000

2500

2000

1500

- 1000

- 500

4000

3500

3000

2500

2000

-1500

- 1000

- 500

	Introduction
	KV-CoRE Method
	SVD-based KV-cache Analysis
	Optimal Data-dependent Compression Matrix
	Incremental SVD Algorithm for Dataset-level KV-cache
	Normalize Effective Rank as Compressibility Metric

	Related Work
	Experiment
	Evaluation Metric
	Benchmarking Experiment on KV-Cache Compressibility
	Average NER across Models and Datasets
	Layer-wise Compressibility Patterns

	Performance Impact of KV-Cache Compression
	Dataset Compressibility Comparison

	Conclusion
	Language Model Usage Statement
	Preliminary
	MHA, MQA and GQA
	MLA

	GPT evaluation system prompt
	Additional Experiment Results
	Layer-wise NER Results
	PPL Heatmap

