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ABSTRACT

Large language models rely on kv-caches to avoid redundant computation during
autoregressive decoding, but as context length grows, reading and writing the
cache can quickly saturate GPU memory bandwidth. Recent work has explored
KV-cache compression, yet most approaches neglect the data-dependent nature of
kv-caches and their variation across layers. We introduce KV-CoRE (KV-cache
Compressibility by Rank Evaluation), an SVD-based method for quantifying the
data-dependent low-rank compressibility of kv-caches. KV-CoRE computes the
optimal low-rank approximation under the Frobenius norm and, being gradient-free
and incremental, enables efficient dataset-level, layer-wise evaluation. Using this
method, we analyze multiple models and datasets spanning five English domains
and sixteen languages, uncovering systematic patterns that link compressibility to
model architecture, training data, and language coverage. As part of this analysis,
we employ the Normalized Effective Rank as a metric of compressibility and
show that it correlates strongly with performance degradation under compression.
Our study establishes a principled evaluation framework and the first large-scale
benchmark of kv-cache compressibility in LLMs, offering insights for dynamic,
data-aware compression and data-centric model development.

1 INTRODUCTION

Large language models (LLMs) adopt the Transformer architecture (Vaswani et al., 2017) and generate
text autoregressively under a causal mask, which ensures that past key and value vectors can be
cached (KV-cache) (Ott et al., 2019). These caches are stored in high-bandwidth memory (HBM) on
GPUs and repeatedly fetched into compute-unit registers during decoding, reducing computation but
introducing a memory-bandwidth bottleneck as context length grows. This challenge has motivated
both hardware innovation (Rhee et al., 2025) and algorithmic approaches to KV-cache compression
(Shi et al., 2024), with our work focusing on the latter.

A natural way to reduce KV-cache cost is to compress key and value representations into lower-
dimensional spaces. Many methods use low-rank approximation of projection matrices (Ji et al.,
2025; Chang et al., 2024), but they ignore the data-dependent nature of key/value activations, whose
intrinsic rank can be smaller in domain-specific tasks that exercise only part of the model’s capacity
(Yu & Wu, 2023). Moreover, most approaches apply the same compression ratio across layers (Wang
et al., 2024), overlooking distinct compressibility profiles. Methods for analyzing and comparing
key/value rank across layers remain underexplored.

To address these limitations, we propose KV-CoRE (KV-cache Compressibility by Rank Evaluation),
an incremental singular value decomposition (SVD) method that directly operates on key and value
features computed over large datasets. Unlike approaches that approximate projection weights,
KV-CoRE is data-dependent and captures the intrinsic rank of the KV-cache induced by real inputs.
It supports independent per-layer decomposition without cross-layer coupling, is gradient-free, and
enables batch-wise computation with low memory overhead. KV-CoRE guarantees a globally optimal
low-rank projection under the Frobenius norm, and unlike existing methods (Chen et al., 2021b;
Wang et al., 2024) that only compute the optimal compression matrix, it explicitly decomposes long
sequences of key and value features to recover the singular value distributions of each layer on a given
dataset. This allows systematic evaluation of compressibility and provides an effective diagnostic
tool for understanding representational capacity usage in LLMs.
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We conduct extensive experiments across open-source LLMs of different sizes and architectures,
spanning datasets in instruction following, code generation, medical QA, and multilingual tasks. We
introduce normalized effective rank (NER) as a lightweight metric for per-layer compressibility and
systematically compare key and value ranks across models and domains. Beyond static evaluation,
end-to-end SVD-based truncation shows that NER correlates strongly with perplexity, validating it
as a reliable proxy for compression sensitivity. These results reveal consistent layer-wise and data-
dependent patterns in KV-cache compressibility, laying the groundwork for dynamic and adaptive
strategies.

Our contributions are as follows:

• We propose KV-CoRE, an SVD-based, data-dependent framework for analyzing KV-cache
compressibility, which enables efficient dataset-level, layer-wise evaluation with provably
optimal low-rank approximations.

• We introduce NER as a metric of compressibility and demonstrate its strong correlation
with perplexity and GPT-score, validating it as a reliable tool for evaluating and comparing
models.

• We conduct extensive experiments across models, domains, and languages, uncovering sys-
tematic patterns that link compressibility to model architecture, training data, and language
coverage.

2 KV-CORE METHOD

To evaluate and compress KV caches, we develop an efficient method that incrementally computes
the SVD of keys and values over large datasets, enabling layer-wise and data-dependent evaluation
of their compressibility in LLMs. At the same time, our method computes the optimal compression
matrices, addressing challenges identified in prior work Chen et al. (2021b); Wang et al. (2024); Yuan
et al. (2024).

To illustrate our method and its advantages, we first introduce notations, building upon the prelimi-
naries provided in Appendix A.1. As our method applies uniformly across layers and to both key and
value spaces, we omit layer-specific notation in the rest of the section and focus on K as an example
in the following discussion for simplicity. Consider a dataset containing l tokens, for a particular
LLM, let X = [x1; ...;xl] ∈ Rl×de be the sequence of activations for an attention layer, computed
based on the dataset. Let WK be the key projection weights of a layer. The corresponding key
K = [k1; ...;kl] features are computed as K = [k1; ...;kl] = XWK . The data-dependent optimal
low-rank approximation problem, introduced in Chen et al. (2021b); Wang et al. (2024); Yuan et al.
(2024), is formulated as follows. For each key projection matrix WK , we seek a low-rank matrix
W̃K with rank k that minimizes the compression error,

argmin
W̃K

||XWK −XW̃K ||2F s.t. rank(W̃K) = k (1)

The solution W̃K can be expressed as a pair of down- and up-projection matrices, which compress
key vectors into dimension k and then reconstruct them for efficient autoregressive inference.

2.1 SVD-BASED KV-CACHE ANALYSIS

Our key idea is to perform SVD on key and value spaces for each layer, allowing an analytical study
of the layer-wise compressibility of KV caches given a LLM and a particular dataset. For example,
the SVD on K ∈ Rl×mhdh can be written as K = UΣVT , where U ∈ Rl×l and V ∈ Rmhdh×mhdh

are left and right singular values, respectively, and Σ ∈ Rl×mhdh denotes singular values. By the
Eckart-Young-Mirsky theorem Eckart & Young (1936), the truncation of the largest singular values
along with corresponding singular vectors Kk = UkΣkVT

k forms the best k-rank approximation to
K in the Frobenius norm sense, with the minimal approximation error calculated as follows,

||K −Kk||2F =

{
σk+1, for the 2-norm
(
∑r

j=k+1 σj)
1
2 , for the Frobenious norm

(2)
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Figure 1: Overview of KV-CoRE. At each Transformer layer, keys and values from all attention
heads are concatenated to form the KV-cache. To measure compressibility, we apply incremental
SVD to the cached key/value activations with low memory overhead, recovering their singular value
spectra. The resulting singular vectors and values are used to compute the optimal data-dependent
compression matrix, enabling KV-cache compressibility analysis via NER.

where r denotes the rank of K, σj denotes the j-th largest singular value in Σ. In other words, for
any k ∈ [1, r], the minimal k−rank approximation loss to K is a deterministic function of singular
values. Thus, we use singular value–based metrics to evaluate the compressibility of key and value
spaces in each attention layer, as detailed in the experimental section 2.4.

2.2 OPTIMAL DATA-DEPENDENT COMPRESSION MATRIX

Given singular values Σ and right singular vectors V of K, we can directly recover the dataset-
dependent optimal k-rank approximation of WK as: W̃K = WKVkVT

k .

To see why W̃K is optimal to minimize the error: ||X(i)WK(i) − X(i)W̃K(i) ||F , consider the
following:

XW̃K = XWKVkVT
k

T1= KVkVT
k

T2= UΣ(VTVk)VT
k

T3= U
(
Σ

[
Ik
0

])
VT
k =

(
U
[
Σk

0

])
VT
k = UkΣkVT

k

(3)

Where Ik is a k by k identity matrix. T1 holds because by definition K = XWK ; T2 holds
because UΣVT is the SVD of K; T3 holds because singular vectors form an orthogonal basis, thus
VT
k Vk yields a k by k identify matrix. Recall that by the Eckart-Young-Mirsky theorem Eckart &

Young (1936), UkΣkVT
k forms the best k-rank approximation of K = XWK , we can conclude that

WKVkVT
k is optimal to the optimization problem.

During LLM inference, a direct implementation is to replace WK with a pair of down-projection
WKVk and up-projection VT

k matrices. This allows caching the low-dimensional key vector
xtW

KVk instead of the full-dimensional xtW
K given t-th token, reducing both the memory and

bandwidth consumption.

2.3 INCREMENTAL SVD ALGORITHM FOR DATASET-LEVEL KV-CACHE

A key challenge is that the size of K ∈ Rl×mhdh scales up with the number of tokens l in a Dataset,
rendering direct SVD on K impractical due to excessive memory and computational demands.

We propose a novel algorithm that mitigates memory and computation bottlenecks through batch
computation without sacrificing accuracy. This method only requires holding and updating a mhdh-
by-mhdh covariance matrix, avoiding the direct SVD of K and still generating the mathematically

3
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equivalent singular values Σ and right singular vectors V . Algorithm 1 shows the pseudo-code of our
method.

Algorithm 1 SVD Computation of Dataset-level KV-Cache
Input: Dataset containing l tokens in total; LLM model weights WK

Output: singular values Σ and right singular vectors V of K
C ← mhdh ×mhdh zero matrix ▷ Initialize covariance matrix to zero
for t = 1, . . . , l do

kt ← xtW
K

C ← C + kT
t kt ▷ Update covariance matrix in each step

end for
V,Σ2,VT ← eigen-decomposition(C) ▷ perform eigen-decomposition on the final covariance
matrix
return Σ,V

For each token in a Dataset containing l tokens, kT
t kt is computed and the covariance matrix C is

updated. After l iterations, we will have the complete covariance matrix of K as C = KTK =∑l
t=1 k

T
t kt. Finally we perform eigen-decomposition on C to obtain the singular values Σ and right

singular vectors V of K.

To see why the final step of Algorithm 1 generates mathematically equivalent Σ and V , consider the
following proof,

KTK
T1= (UΣVT )TUΣVT = VΣTUTUΣVT T2= VΣ2VT (4)

where T1 holds by applying SVD on K; T2 holds because singular vectors form an orthogonal basis,
thus UTU yields a identity matrix, and consequently ΣTUTUΣ = Σ2.

2.4 NORMALIZE EFFECTIVE RANK AS COMPRESSIBILITY METRIC

Intuitively, the approximation loss derived in Eq.(2) provides a direct measure of the compress-
ibility of key and value spaces. For instance, one could fix an approximation rank k across all
key spaces, evaluate the corresponding losses, and interpret smaller losses as indicative of higher
compressibility. While being simple and straightforward, such strategy has two main drawbacks:
First, the metric depends on a fixed approximation rank k, and there is no clear guidance on how
to select k appropriately. Second, it fails to account for the full spectrum of singular values. We
thus introduce the Normalized Effective Rank (NER) as a metric to measure the compressibility of
key and value spaces. For a matrix K with singular values {σi} and rank r, the effective rank—first
introduced in (Roy & Vetterli, 2007)—is defined as erank(K) = exp(−

∑r
i=1 pi log pi), where

pi = σi/
∑r

j=1 σj , and the logarithm is to the base e (natural logarithm). Building on this, NER
is defined as NER(K) = erank(K)/r. In other words, NER normalizes the effective rank by the
matrix’s actual rank. As proven in (Roy & Vetterli, 2007), the effective rank erank(K) satisfies
1 ≤ erank(K) ≤ r, consequently, NER yields a score in [1/r, 1].

3 RELATED WORK

Rank Analysis in Language Models: Early work has investigated the relationship between the
rank of transformer weights or representations and model performance, seeking either to leverage
low-rank structure for efficiency (Chen et al., 2021a; Hsu et al., 2022; Hajimolahoseini et al., 2022;
Li et al., 2023), to prevent rank collapse that limits expressivity (Dong et al., 2021; Noci et al., 2022;
Yaras et al., 2024), or to maximize rank utilization for enhanced modeling capacity (Bhojanapalli
et al., 2020; Boix-Adsera et al., 2023). With the growing use of large language models (LLMs),
research has turned to their inherent low-rank properties. LoRA (Hu et al., 2022) leverages this
structure during fine-tuning, showing that many weight updates lie in low-dimensional subspaces.
Loki (Singhania et al., 2024) examined the key representations in attention layers and found that
they often reside in lower-dimensional subspaces across models and datasets, which can be used
for efficient sparse attention. These directions have also motivated growing efforts on KV-cache
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compression (Shi et al., 2024) to address the deployment bottleneck in reading and storing the KV
cache (Yu et al., 2022). Our work introduces a fine-grained method for evaluating the compressibility
of KV caches in LLMs through effective rank analysis, uncovering layer-wise and data-dependent
patterns that can inform the design of dynamic and adaptive compression strategies.

Low-Rank KV-cache Compression: DeepSeek (Liu et al., 2024) introduced Multi-head Latent
Attention (MLA), which applies low-rank joint KV cache compression to enable scalable inference,
unlike Multi-Query Attention (MQA) (Shazeer, 2019) and Grouped-Query Attention (GQA) (Ainslie
et al., 2023) which reduce KV caches by merging key and value heads in multi-head attention (MHA)
(Vaswani et al., 2017). MHA2MLA (Ji et al., 2025) and PALU (Chang et al., 2024) applies SVD
to compress key and value projection weights, converting models based on MHA into the MLA
structure for reduced KV cache size. However, this approach targets only the projection weights,
while prior work (Yu & Wu, 2023) has shown that transformer weights typically have higher rank
than the output features (keys/values), suggesting that data-dependent KV-cache compression is more
effective. In this direction, DRONE (Chen et al., 2021b) proposed a closed-form solution for data-
aware low-rank compression of projected keys/values, and SVD-LLM (Wang et al., 2024) introduced
an incremental optimization based on Cholesky decomposition (Meyer, 2023) that achieves the same
optimal compression loss with lower memory overhead. In comparison, our method achieves the
same optimality with a much simpler formulation; moreover, it explicitly computes the SVD of
key/value representations, whereas SVD-LLM only recovers the optimal compression matrix.

4 EXPERIMENT

We evaluate our method on 5 open-source LLM series of varying sizes on 5 datasets.

Models To evaluate the generality of our method across different architectures and model sizes, we
apply our analysis to a set of open-source LLMs including Qwen3 (4B, 8B) (Team, 2025), Mistral-
7B (Jiang et al., 2023), Gemma-1.1 (2B, 7B) (Team et al., 2024), and Phi-3-mini-128k-instruct
(Abdin et al., 2024), where Gemma-1.11 is a recent update of the original instruction-tuned Gemma,
incorporating a new RLHF method that improves overall performance.

Datasets To study the data-dependence of KV-cache compression, we evaluate our method on n
datasets, spanning diverse English instruction-following tasks across multiple domains and multilin-
gual QA. For English evaluation, the datasets cover general instruction following, code generation,
medical QA, and function calling, including Alpaca (Taori et al., 2023), MedAlpaca (Han et al.,
2023), CodeAlpaca (Chaudhary, 2023), WizardCoder (Luo et al., 2025), and FunctionCall2. For mul-
tilingual evaluation, we use the queries from the multilingual split of VisR-Bench (Chen et al., 2025),
a question-driven, retrieval benchmark spanning 15 languages (Spanish, Italian, German, French,
Dutch, Arabic, Croatian, Japanese, Swedish, Vietnamese, Portuguese, Finnish, Czech, Slovenian, and
Danish)—allowing us to assess performance across a linguistically diverse setting.

Hardware and Software Setup All experiments are conducted on machines equipped with 8×
NVIDIA A800 GPUs (80GB each), though all evaluations are executed on a single GPU without
distributed computation. We use PyTorch 2.7.1 and Hugging Face Transformers 4.53.2 for model
loading, compression, and inference. All evaluations are conducted in inference mode without
gradient computation.

4.1 EVALUATION METRIC

We introduce several metrics to evaluate both the cross-dataset compressibility of various LLMs and
the end-to-end performance of their compressed versions.

Normalized Effective Rank We quantify the data-dependent, per-layer compressibility of the
KV-cache using the NER (Roy & Vetterli, 2007), as introduced in Section 2.4. NER captures how
evenly the singular values are distributed and yields a score in [0, 1], with lower values indicating
spectra dominated by a few large singular values and thus higher compressibility.

1Gemma-1.1: https://huggingface.co/google/gemma-1.1-7b-it
2glaiveai/glaive-function-calling-v2: https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2
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Perplexity We evaluate the performance of compressed models using perplexity (PPL) (Bengio
et al., 2003), the standard metric for language modeling. In practice, PPL is computed as the
exponential of the empirical cross-entropy between the data distribution and the model distribution,
which reduces to the Shannon entropy when the model perfectly matches the true distribution. Lower
PPL indicates that the model assigns a higher probability to the observed data, while higher PPL
reflects greater uncertainty or degraded predictive performance. Given retain ratio k and v, the
perplexity will be denoted as PPL(k, v).

Normalized Delta-Perplexity To directly measure the impact of KV-cache compression on model
performance, we propose a quantitative metric, Normalized Delta-Perplexity (ND-PPL) for keys
and values, denoted ND-PPLK and ND-PPLV . Raw perplexity or absolute changes are not directly
comparable across datasets, since their scale depends on the baseline. ND-PPL addresses this by
normalizing pairwise perplexity differences across retained rank ratios by the corresponding baseline
perplexity, and averaging over all candidate settings. This provides a dataset-agnostic measure of
robustness under compression and establishes a direct link to the NER. The formal definition is as
follows:

Let K = k1, . . . , km denote the set of retained rank ratios for the key matrices, where ki ∈ (0, 1]; the
definition for values V = v1, . . . , vn is analogous. For a fixed value ratio v ∈ V , we consider all pairs
(ki, kj) ∈ PK , where PK = (k, k′) ∈ K ×K | k > k′, and define the key-side metric ND-PPLK :

ND-PPLK =
1

|V|
∑
v∈V

 1

|PK |
·

∑
(ki,kj)∈PK

(
PPL(kj , v)− PPL(ki, v)

PPL(ki, v)

) (5)

The definition of ND-PPLV is symmetric, obtained by fixing k ∈ K and averaging over pairs of
vi, vj ∈ V .

GPT Score We assess whether compression preserves response quality using GPT-4o. For each test
case, GPT-4o is provided with the input instruction together with the two responses from the original
and compressed models. Under a fixed prompt, GPT-5 outputs a binary score: 1 if the two responses
are judged roughly equal in quality, and 0 otherwise. Rough equivalence requires both answers to
be reasonable and aligned with the instruction, tolerating stylistic differences but penalizing empty,
irrelevant, or nonsensical outputs from the compressed model. The full system prompt used for
evaluation is provided in Appendix B.

4.2 BENCHMARKING EXPERIMENT ON KV-CACHE COMPRESSIBILITY

4.2.1 AVERAGE NER ACROSS MODELS AND DATASETS

Table 1 reports the mean NER of keys (NER-K) and values (NER-V), averaged over all attention
layers across seven models on five English datasets and fifteen languages from VisR-Bench. Several
trends emerge:

Keys are consistently more compressible than values. Across all models and datasets, NER-K is
substantially lower than NER-V, indicating that the key cache admits a more pronounced low-rank
structure. This asymmetry highlights that compression techniques targeting keys may achieve higher
savings with less impact on performance, whereas values tend to retain higher-rank structure and thus
are less compressible.

Cross-lingual variation outweighs cross-domain variation. For English datasets spanning differ-
ent domains (e.g., Alpaca vs. FunctionCall), NER values remain relatively stable, suggesting that
domain shifts do not strongly affect rank structure. In contrast, multilingual results reveal far greater
variation, with languages such as Czech and German showing higher NER compared to Arabic and
Finnish. This suggests that linguistic diversity, tokenization differences, and training data availability
play a larger role than domain differences in determining compressibility.

KV Capacity governs compressibility. We observe that the original KV dimension strongly
affects model compressibility. Earlier models such as LLaMA-2-7B exhibit substantially lower
NER compared to other models, likely due to larger key/value dimensions and weaker utilization
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Datasets
Qwen3-4B Qwen3-8B Gemma-2B Gemma-7B Mistral-7B Phi-3 LLaMA-2-7B
K V K V K V K V K V K V K V

Multi-domain Datasets

Alpaca 0.428 0.724 0.452 0.753 0.612 0.900 0.359 0.469 0.449 0.773 0.409 0.616 0.023 0.464
MedAlpaca 0.429 0.723 0.452 0.752 0.594 0.889 0.344 0.455 0.441 0.771 0.403 0.604 0.176 0.310
CodeAlpaca 0.421 0.708 0.443 0.737 0.589 0.869 0.321 0.429 0.420 0.733 0.380 0.571 0.028 0.337
WizardCoder 0.425 0.726 0.447 0.753 0.597 0.889 0.329 0.445 0.420 0.750 0.385 0.587 0.265 0.304
FunctionCall 0.432 0.731 0.451 0.756 0.608 0.900 0.342 0.458 0.432 0.762 0.397 0.604 0.135 0.449
Average 0.424 0.717 0.446 0.745 0.597 0.884 0.337 0.448 0.430 0.753 0.393 0.593 0.088 0.141

Multilingual Question in VisR-Bench Datasets

Czech 0.383 0.627 0.401 0.652 0.536 0.803 0.292 0.383 0.385 0.660 0.313 0.470 0.099 0.148
German 0.383 0.640 0.400 0.666 0.536 0.802 0.305 0.400 0.392 0.676 0.345 0.523 0.092 0.138
Italian 0.377 0.632 0.392 0.655 0.529 0.793 0.299 0.393 0.387 0.669 0.339 0.515 0.084 0.135
Dutch 0.376 0.628 0.395 0.657 0.534 0.802 0.299 0.394 0.385 0.664 0.331 0.499 0.116 0.108
Croatian 0.375 0.620 0.393 0.645 0.525 0.791 0.292 0.382 0.383 0.659 0.320 0.479 0.081 0.132
French 0.373 0.633 0.390 0.657 0.532 0.797 0.301 0.397 0.387 0.671 0.340 0.519 0.087 0.137
Vietnamese 0.373 0.625 0.392 0.653 0.542 0.814 0.291 0.384 0.367 0.630 0.305 0.442 0.071 0.119
Swedish 0.371 0.620 0.387 0.645 0.526 0.794 0.296 0.389 0.381 0.656 0.322 0.486 0.078 0.128
Spanish 0.367 0.629 0.384 0.654 0.523 0.790 0.299 0.396 0.381 0.665 0.334 0.513 0.064 0.095
Slovenian 0.366 0.603 0.383 0.628 0.518 0.785 0.281 0.369 0.372 0.642 0.306 0.458 0.075 0.121
Portuguese 0.362 0.614 0.378 0.639 0.521 0.785 0.284 0.375 0.379 0.656 0.326 0.498 0.083 0.133
Japanese 0.361 0.619 0.380 0.648 0.506 0.775 0.276 0.369 0.364 0.636 0.321 0.467 0.079 0.125
Finnish 0.360 0.597 0.378 0.625 0.502 0.769 0.280 0.369 0.353 0.616 0.305 0.455 0.073 0.118
Arabic 0.337 0.582 0.354 0.609 0.503 0.769 0.270 0.361 0.338 0.594 0.288 0.413 0.052 0.173
Average 0.387 0.653 0.407 0.679 0.548 0.822 0.306 0.405 0.395 0.684 0.345 0.520 0.083 0.134

Table 1: Average NER of keys and values across all layers of 7 models on multilingual split of
VisR-bench covering 15 languages

of rank capacity during training. Within the Gemma family, Gemma-7B shows much lower NER
than Gemma-2B, which can be explained by its 16× larger KV dimension (16 heads × 256 per head)
compared to the 2B model (1 head × 256). The higher compressibility of Gemma-7B suggests that
this expanded KV capacity is under-utilized, whereas the smaller 2B models may make more efficient
use of their available dimensions. In contrast, Qwen3-4B and Qwen3-8B show only minor differences
in NER because both adopt the same compact KV configuration (8 heads × 128 per head).

Rank collapse in low-resource languages. Certain languages with limited pretraining coverage
(e.g., Arabic, Slovenian, Finnish) exhibit unusually low NER, especially in the value cache. This
phenomenon may reflect under-trained token embeddings collapsing into low-dimensional subspaces.
Beyond compressibility, such rank collapse may serve as a diagnostic signal for identifying under-
represented languages in multilingual pretraining corpora.

4.2.2 LAYER-WISE COMPRESSIBILITY PATTERNS

Figure 2 presents the layer-wise NER of Qwen3-4B on the five datasets and on three selected language
subsets of VisR-Bench, with additional plots for other models included in Appendix C.1. The results
show that NER is not uniform across layers. Middle layers often exhibit higher NER, suggesting
they make fuller use of their representational capacity, while early and late layers are typically more
compressible.

This heterogeneity indicates that future KV-cache compression should be layer-aware: applying a
uniform compression ratio risks overly degrading high-rank layers while missing opportunities for
more aggressive reduction in lower-rank ones. Moreover, the relative positions of high- and low-rank
layers are consistent across datasets, suggesting that compressibility is partly a structural property
of the model rather than purely data-driven. At the same time, subtle differences between tasks and
languages (e.g., Arabic vs. English subsets) highlight that dataset characteristics can modulate layer
usage, pointing to potential for data-aware compression strategies.

4.3 PERFORMANCE IMPACT OF KV-CACHE COMPRESSION

We evaluate the performance degradation of compressed models using both perplexity (PPL) and
GPT-score. Figure 3 presents PPL heatmaps of Qwen3-4B and LLaMA-2-7B on the Alpaca dataset
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Figure 2: Layer-wise NER of key and value representations in Qwen3-4B, evaluated on 5 datasets
and 3 languages from the VisR-Bench benchmark.

across a grid of KV-cache compression ratios, with additional results provided in Appendix C.2. We
can see that LLaMA-2-7B remains relatively stable, showing only modest PPL increases even under
aggressive compression, whereas Qwen3-4B is more sensitive, exhibiting substantial degradation.
These results suggest that models with lower NER values are generally more compressible, as
reflected by smaller changes in PPL.
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Figure 3: PPL heatmap of Qwen3-4B and LLaMA-2-7b on the Alpaca dataset.

In addition to PPL, we also report average GPT-score in Figure 4, which directly measures the quality
difference between compressed and original model responses and provides a metric more closely
aligned with user experience. Due to computational cost, GPT-scores are computed as averages over
100 instructions from the Alpaca dataset. Consistent with PPL trends, LLaMA-2-7B again proves
more compressible than Qwen3-4B. Importantly, GPT-score further reveals a smoother and more
continuous trajectory of performance degradation, even in regions where PPL remains relatively
unchanged.

4.4 DATASET COMPRESSIBILITY COMPARISON

To quantitatively assess how well the NER reflects end-to-end robustness under compression, we
employ the ND-PPL metrics. As reported in Figure 5, NER and ND-PPL are positively correlated,
with Pearson r = 0.88 for values and r = 0.64 for keys. These results establish NER as a reliable
predictor of performance sensitivity under compression. Moreover, the scatter plots reveal systematic
dataset-level patterns. Multilingual datasets (e.g., Arabic, Portuguese, Finnish) cluster toward the
bottom-left, with both low NER and low ND-PPL, indicating higher resilience to compression. In
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Figure 4: GPT score heatmap of Qwen3-4B and LLaMA-2-7b on the Alpaca dataset.

contrast, English-domain datasets such as Alpaca, MedAlpaca, and FunctionCall appear toward the
upper-right, showing higher NER and greater sensitivity to compression. This separation suggests
that KV-cache compressibility can serve as a diagnostic of data–model alignment: under-trained or
poorly covered datasets tend to yield low NER, while well-represented domains exhibit higher NER
and are more sensitive to aggressive truncation.

Figure 5: Correlation between dataset-level NER and ND-PPL computed by Qwen3-4B.

5 CONCLUSION

In this work, we introduced KV-CoRE, an SVD-based framework for dataset-level analysis of KV-
cache compressibility in large language models. KV-CoRE directly decomposes cached key/value
activations with low memory overhead, yielding globally optimal low-rank approximations and
enabling systematic evaluation of rank utilization across layers and datasets.

Through extensive experiments across multiple model families, domains, and languages, we showed
that NER serves as a lightweight and reliable indicator of compressibility, correlating closely with
perplexity- and GPT-based performance under compression. We further introduced ND-PPL as an
end-to-end robustness measure, establishing a clear empirical link between NER and model sensitivity
to truncation.

Our analysis uncovers consistent patterns that tie compressibility to architectural design, training data,
and language coverage. These findings position KV-CoRE as both a diagnostic tool for understanding
representational efficiency and a benchmark for guiding the development of dynamic, data-aware
KV-cache compression strategies and data-centric model improvements.
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6 LANGUAGE MODEL USAGE STATEMENT

In preparing this manuscript, we used GPT-5 only for grammar checking and minor language
polishing. The authors reviewed and edited all suggestions. All scientific content, analysis, and
conclusions are entirely the work of the authors.
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Appendix

A PRELIMINARY

A.1 MHA, MQA AND GQA

We first introduce the standard MHA and two of its variants—MQA and GQA. Given an input
embedding vector, MHA project it into key and value vectors for each attention head, causing the KV
cache size to scale linearly with the number of heads. In contrast, MQA and GQA reduce the KV
cache size by grouping heads and sharing the same key and value vectors within each group.

Focusing on GQA, the most general technique among the three, we define de, mh, dh and mg as the
embedding dimension, number of heads, dimension per head and number of groups, respectively.
Given an input embedding vector xt ∈ R1×de corresponding to the t-th token, GQA divides the mh

attention heads into mg groups. Formally, this grouping can be described by a helper function g,
which maps from head indices {1, ...,mh} to group indices {1, ...,mg} as,

g(i) =

⌈
i

/
mh

mg

⌉
, ∀i ∈ {1, ...,mh} (A.1)

Then it projects xt into query qt ∈ R1×mhdh , key kt ∈ R1×mgdh , and value vector vt ∈ R1×mgdh

as follows:

[qt,1, ...,qt,mh
] = qt = xtW

Q (A.2)

[kt,1, ...,kt,mg
] = kt = xtW

K (A.3)

[vt,1, ...,vt,mg
] = vt = xtW

V (A.4)

where qt,i,∀i ∈ {1, ...,mh} denote the query vector for each attention head, and kt,i,vt,i,∀i ∈
{1, ...,mg} represent the key and value vector for each group. The matrices WQ ∈ Rde×mhdh and
WK ,WV ∈ Rde×mgdhdenote learnable model parameters. The attention of each head and the final
projected output are computed as,

ot,i =

t∑
j=1

Softmaxj

(
qt,ik

T
j,g(i)√
dh

)
vj,g(i), ∀i ∈ {1, ...,mh} (A.5)

yt = [ot,1, ...,ot,mh
]WO (A.6)

where ot,i ∈ R1×dh , WO ∈ Rmhdh×de and yt ∈ R1×de denote the attention output for i-th head,
the output projection matrix and the projected output respectively.

Note that when mg = mh, GQA reduces to standard MHA, and when mg = 1, it specializes MQA.

A.2 MLA

Unlike MHA and its variants, MLA projects the input embedding xt ∈ Rde of t-th token into two
distinct spaces: a joint latent KV space and a decoupled key space designed to incorporate RoPE.
Formally, this can be expressed as:

cKV
t & = xtW

DKV (A.7)

kR
t & = RoPE(xtW

KR) (A.8)

where cKV
t ∈ R1×dc and kR

t ∈ R1×dR denote the joint latent KV vector and the RoPE-encoded
decoupled key vector, receptively. The projection matrices WDKV ∈ Rde×dc and WKR ∈ Rde×dR

handle the corresponding down-projections. During attention calculation, cKV
t is up-projected to get

the key and value vectors, while the query vector is computed directly from the input embedding xt.
These operations are described by following equations equation A.9 and equation A.10:
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[kC
t,1, ...,k

C
t,n] = kC

t = cKV
t WUK

kt,i = [kC
t,i,k

R
t ]

[vC
t,1, ...,v

C
t,mh

] = vC
t = cKV

t WUV

(A.9)

cQt = xtW
DQ

[qC
t,1, ...,q

C
t,mh

] = qC
t = cQt W

UQ

[qR
t,1, ...,q

R
t,mh

] = qR
t = RoPE(cQt W

QR)

qt,i = [qC
t,i,q

R
t,i]

(A.10)

where WUK ,WUV ∈ Rdc×mhdh are up-projection matrices for key and value vectors, respectively.
The matrices WDQ ∈ Rde×d′

c and WUQ ∈ Rd′
c×mhdh serve as the down- and up-projection for

queries, while WQR ∈ Rd′
c×mhdh is the up-projection matrix used to incorporate RoPE for the

decoupled query vector. Note that both kt,i and qt,i are concatenations of their NoPE and RoPE
components.

Using qt,i, kt,i and vC
t,i, the attention of each head and the final projected output are computed as,

ot,i =

t∑
j=1

Softmaxj

(
qt,ik

T
j,i√

dh + dR

)
vC
j,i, ∀i ∈ {1, ...,mh} (A.11)

yt = [ot,1, ...,ot,mh
]WO (A.12)

A key merit of MLA lies in its caching efficiency during token generation: only cKV
t and kR

t need to
be cached, resulting in a cache size of dc + dR. Since both dc << mhdh and dR << mhdh, MLA
reduces KV cache size significantly compared to MHA, which requires caching kt ∈ R1×mhdh and
vt ∈ R1×mhdh for t-th token.
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B GPT EVALUATION SYSTEM PROMPT

Below is the system prompt used to prompt GPT-4o as a text generation quality score in our
experiment:

System Prompt 1. You are an automatic evaluator for LLM responses. Your job: compare two candidate
answers (A = original model, B = compressed model) to the same user prompt and output a binary score.
—-
Scoring Rules

• Output 1 if A and B are roughly equal in quality (not necessarily the same wording or level of
detail, but comparable usefulness for the task).

• Output 0 otherwise.

—-
“Roughly equal” means:

• Both A and B provide a reasonable, relevant answer to the user’s prompt.

• They satisfy the intent to a similar degree, with no material difference in correctness, completeness,
usefulness, or safety.

• Differences in style, verbosity, order, or minor details do not matter if they don’t affect usefulness.

• If both are equally poor or equally failed (e.g., both empty, both nonsense, both refuse without
reason, or both severely hallucinated to a similar extent), score 1.

• If one contains nonsense, large repetition, emptiness, or serious hallucinations while the other
does not, score 0.

• Special rule: The COMPRESSED MODEL’s answer must itself be a reasonable response to the
user prompt.

• If the compressed model gives an empty output, nonsense, off-topic text, or fails to address the
question, score 0, even if the original answer is also poor.

—-
Evaluation checklist (internal only):

1. Task fulfillment & correctness: Does each answer address the user’s ask accurately?

2. Coherence & specificity: Is each answer clear, non-contradictory, minimally redundant?

3. Grounding & hallucinations: Any invented facts or unsupported claims?

4. Completeness at the needed granularity: Are the essentials present?

5. Harm & policy: Safety/compliance roughly comparable?

6. Degenerate behaviors: empty output, nonsense, repetition, prompt copy, or off-topic.

—-
Decision rules:

• Score 1 if both are reasonable answers and land in the same quality band (Excellent/Adequate/Poor/-
Fail), close enough that a reasonable user would find them similarly useful (or similarly useless).

• Score 0 if any material gap exists, or if the compressed model fails to provide a reasonable answer.

—-
Formatting:

• Return only a single JSON object with no extra text: "score": 0 or "score": 1

Example:
[INPUT PROMPT]
Explain why the sky is blue.
[ANSWER A: ORIGINAL MODEL]
"The sky looks blue due to Rayleigh scattering of sunlight in Earth’s atmosphere, which scatters shorter
wavelengths like blue more strongly."
[ANSWER B: COMPRESSED MODEL] ""
Expected output: "score": 0
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C ADDITIONAL EXPERIMENT RESULTS

C.1 LAYER-WISE NER RESULTS
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Figure C.1: Layer-wise NER of key and value representations in Qwen3-4B, Qwen3-8B, and Phi-3-
mini evaluated on 5 datasets and 3 languages from the VisR-Bench benchmark.
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Figure C.2: Layer-wise NER of key and value representations in mistral, gemma1.1, and gemma-1.1-
7b-it evaluated on 5 datasets and 3 languages from the VisR-Bench benchmark.
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C.2 PPL HEATMAP

Figure C.3: PPL heatmap of LLaMA-2-7B on 6 datasets.
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Figure C.4: PPL heatmap of Qwen3-4B on 6 datasets.
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