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Abstract

Neighbor embeddings are a family of methods for visualizing complex high-
dimensional datasets using kNN graphs. To find the low-dimensional embedding,
these algorithms combine an attractive force between neighboring pairs of points
with a repulsive force between all points. One of the most popular examples of
such algorithms is t-SNE. Here we empirically show that changing the balance
between the attractive and the repulsive forces in t-SNE yields a spectrum of
embeddings, which is characterized by a simple trade-off: stronger attraction can
better represent continuous manifold structures, while stronger repulsion can better
represent discrete cluster structures. We find that UMAP embeddings correspond
to t-SNE with increased attraction; mathematical analysis shows that this is because
the negative sampling optimisation strategy employed by UMAP strongly lowers
the effective repulsion. Likewise, ForceAtlas2, commonly used for visualizing
developmental single-cell transcriptomic data, yields embeddings corresponding to
t-SNE with the attraction increased even more. At the extreme of this spectrum lies
Laplacian Eigenmaps, corresponding to zero repulsion. Our results demonstrate
that many prominent neighbor embedding algorithms can be placed onto this
attraction-repulsion spectrum, and highlight the inherent trade-offs between them.

1 Introduction

T-distributed stochastic neighbor embedding (t-SNE) (van der Maaten & Hinton, 2008) is arguably
among the most popular methods for low-dimensional visualizations of complex high-dimensional
datasets. It defines pairwise similarities called affinities between points in the high-dimensional space
and aims to arrange the points in a low-dimensional space to match these affinities (Hinton & Roweis,
2003). Affinities decay exponentially with high-dimensional distance, making them infinitesimal for
most pairs of points and making the n×n affinity matrix effectively sparse. Efficient implementations
of t-SNE suitable for large sample sizes n (van der Maaten, 2014; Linderman et al., 2019) explicitly
truncate the affinities and use the k-nearest-neighbor (kNN) graph of the data with k � n as the input.

We use the term neighbor embedding (NE) to refer to all dimensionality reduction methods that
operate on the kNN graph of the data and aim to preserve neighborhood relationships (Yang et al.,
2013; 2014). A prominent recent example of this class of algorithms is UMAP (McInnes et al., 2018),
which has become popular in applied fields such as single-cell transcriptomics (Becht et al., 2019). It
is based on stochastic optimization and typically produces more compact clusters than t-SNE.

Another example of neighbor embeddings are force-directed graph layouts (Noack, 2007; 2009),
originally developed for graph drawing. One specific algorithm called ForceAtlas2 (Jacomy et al.,
2014) has recently gained popularity in the single-cell transcriptomic community to visualize datasets
capturing cells at different stages of development (Weinreb et al., 2018; 2020; Wagner et al., 2018a;
Tusi et al., 2018; Kanton et al., 2019; Sharma et al., 2020).

Here we provide a unifying account of these algorithms. We studied the spectrum of t-SNE embeddings
that are obtained when increasing/decreasing the attractive forces between kNN graph neighbors,
thereby changing the balance between attraction and repulsion. This led to a trade-off between
faithful representations of continuous and discrete structures (Figure 1). Remarkably, we found that
ForceAtlas2 and UMAP could both be accurately positioned on this spectrum (Figure 1). For UMAP,
we used mathematical analysis and Barnes-Hut re-implementation to show that increased attraction is
due to the negative sampling optimisation strategy.
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Figure 1: Attraction-repulsion spectrum for the MNIST data. Different embeddings of the full
MNIST dataset of hand-written digits (n = 70 000); colors correspond to the digit value as shown in
the t-SNE panel. Multiplying all attractive forces by an exaggeration factor ρ yields a spectrum of
embeddings. Values below 1 yield inflated clusters. Small values above 1 yield more compact clusters.
Higher values make multiple clusters merge, with ρ→∞ corresponding to Laplacian Eigenmaps.
Insets show two subsets of digits separated in higher Laplacian eigenvectors. UMAP is very similar
to ρ ≈ 4. ForceAtlas2 is very similar to ρ ≈ 30.

2 Related work

Various trade-offs in t-SNE generalizations have been studied previously (Yang et al., 2009; Kobak
et al., 2020; Venna et al., 2010; Amid et al., 2015; Amid & Warmuth, 2019; Narayan et al., 2015; Im
et al., 2018), but our work is the first to study the exaggeration-induced trade-off. Prior work used
‘early exaggeration’ only as an optimisation trick (van der Maaten & Hinton, 2008) that allows to
separate well-defined clusters (Linderman & Steinerberger, 2019; Arora et al., 2018).

Carreira-Perpinán (2010) introduced elastic embedding algorithm that has an explicit parameter λ
controlling the attraction-repulsion balance. However, that paper suggests slowly increasing λ during
optimization, as an optimisation trick similar to the early exaggeration, and does not discuss tradeoffs
between high and low values of λ.

Our results on UMAP go against the common wisdom on what makes UMAP perform as it does
(McInnes et al., 2018; Becht et al., 2019). No previous work suggested that negative sampling may
have a drastic effect on the resulting embedding.

3 Neighbor embeddings

We first cast t-SNE, UMAP, and ForceAtlas2 in a common mathematical framework, using consistent
notation and highlighting the similarities between the algorithms, beforewe investigate the relationships
between them empirically and analytically in more detail. We denote the original high-dimensional
points as xi and their low-dimensional positions as yi.

3.1 t-SNE

T-SNE measures similarities between points by affinities vij and normalized affinities pij :

pij =
vij
n
, vij =

pi|j + pj|i

2
, pj|i =

vj|i∑
k 6=i vk|i

, vj|i = exp
(
− ‖xi − xj‖2

2σ2
i

)
. (1)

For fixed i, pj|i is a probability distribution over all points j 6= i (all pi|i are set to zero), and
the variance of the Gaussian kernel σ2

i is chosen to yield a pre-specified value of the perplexity
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of this probability distribution, P = 2H, where H = −
∑
j 6=i pj|i log2 pj|i. The affinities vij are

normalized by n for pij to form a probability distribution on the set of all pairs of points (i, j).
Modern implementations (van der Maaten, 2014; Linderman et al., 2019) construct a kNN graph with
k = 3P neighbors and only consider affinities between connected nodes as non-zero. The default
perplexity value in most implementations is P = 30.

Similarities in the low-dimensional space are defined as

qij =
wij
Z
, wij =

1

1 + d2
ij

, dij = ‖yi − yj‖, Z =
∑
k 6=l

wkl, (2)

with all qii set to 0. The points yi are then rearranged in order to minimise the Kullback-Leibler (KL)
divergence DKL

(
{pij} ‖ {qij}

)
=
∑
i,j pij log

(
pij/qij

)
between pij and qij :

Lt-SNE = −
∑
i,j

pij log
wij
Z

= −
∑
i,j

pij logwij + log
∑
i,j

wij , (3)

where we dropped constant terms and took into account that
∑
pij = 1. The first term can be

interpreted as contributing attractive forces to the gradient while the second term yields repulsive
forces. Using ∂wij/∂yi = −2w2

ij(yi − yj), the gradient, up to a constant factor, can be written as:

∂Lt-SNE

∂yi
∼
∑
j

vijwij(yi − yj)−
n

Z

∑
j

w2
ij(yi − yj). (4)

3.2 Exaggeration in t-SNE

A standard optimisation trick for t-SNE called early exaggeration (van der Maaten & Hinton, 2008;
van der Maaten, 2014) is to multiply the first sum in the gradient by a factor ρ = 12 during the
initial iterations of gradient descent. This increases the attractive forces and allows similar points
to gather into clusters more effectively. Carreira-Perpinán (2010) and Linderman & Steinerberger
(2019) noticed that the attractive term in the t-SNE loss function is related to the loss function of
Laplacian eigenmaps (LE) (Belkin & Niyogi, 2002; Coifman & Lafon, 2006). Indeed, if ρ→∞, the
relative repulsion strength goes to zero and the embedding shrinks to a point with all wij → 1. This
implies that, asymptotically, gradient descent becomes equivalent to Markov chain iterations with the
transition matrix closely related to the graph Laplacian L = D−V of the affinity matrix V = [vij ]
(here D is diagonal matrix with row sums ofV; see Appendix). The entire embedding shrinks to a
single point, but the leading eigenvectors of the Laplacian shrink the slowest. This makes t-SNE with
ρ → ∞ produce embeddings very similar to LE, which computes the leading eigenvectors of the
normalized Laplacian (see Appendix and Figure 1).

This theoretical finding immediately suggests that it might be interesting to study t-SNE with
exaggeration ρ > 1 not only as an optimisation trick, but in itself, as an intermediate method between
LE and standard t-SNE. The gradient of t-SNE with exaggeration can be written as

∂Lt-SNE(ρ)

∂yi
∼
∑
j

vijwij(yi − yj)−
n

ρZ

∑
j

w2
ij(yi − yj) (5)

and the corresponding loss function is

Lt-SNE(ρ) = DKL

(
{pij} ‖ {wij/Z

1
ρ }
)
=
∑
i,j

pij log
pij

wij/Z
1
ρ

. (6)

3.3 UMAP

Using the same notation as above, UMAP optimizes the cross-entropy loss between vij and wij ,
without normalizing them into probabilities:

LUMAP =
∑
i,j

[
vij log

vij
wij

+ (1− vij) log
1− vij
1− wij

]
, (7)
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where the 1− vij term is approximated by 1 as most vij are 0. Note that UMAP differs from t-SNE
in how exactly it defines vij but this difference is negligible, at least for the data considered here.1

Dropping constant terms, we obtain

LUMAP ∼ −
∑
i,j

vij logwij −
∑
i,j

log(1− wij), (8)

which is the same loss function as the one introduced earlier by LargeVis (Tang et al., 2016). The first
term, corresponding to attractive forces, is the same as in t-SNE, but the second, repulsive, term is
different. Taking wij = 1/(1 + d2

ij) as in t-SNE,2 the UMAP gradient is given by

∂LUMAP

∂yi
∼
∑
j

vijwij(yi − yj)−
∑
j

1

d2
ij + ε

wij(yi − yj), (9)

where ε = 0.001 is added to the denominator to prevent numerical problems for dij ≈ 0. If ε = 1
(which does not strongly affect the result; Figure S1), the gradient becomes identical to the t-SNE
gradient, up to the n/Z factor in front of the repulsive forces. Moreover, UMAP allows to use an
arbitrary γ factor in front of the repulsive forces, which makes it easier to compare the loss functions3:

∂LUMAP(γ)

∂yi
∼
∑
j

vijwij(yi − yj)− γ
∑
j

1

d2
ij + ε

wij(yi − yj). (10)

Whereas it is possible to approximate the full repulsive term with the same techniques as used in
t-SNE (van der Maaten, 2014; Linderman et al., 2019), UMAP took a different approach and followed
LargeVis in using negative sampling (Mikolov et al., 2013) of repulsive forces: on each gradient
descent iteration, only a small number ν of randomly picked repulsive forces are applied to each point
for each of the ∼k attractive forces that it feels. Other repulsive terms are ignored. The default value
is ν = 5. The effect of this negative sampling on the resulting embedding has not been studied before.

3.4 ForceAtlas2

Force-directed graph layouts are usually introduced directly via attractive and repulsive forces, even
though it is easy to write down a suitable loss function (Noack, 2007). ForceAtlas2 (FA2) has
attractive forces proportional to dij and repulsive forces proportional to 1/dij (Jacomy et al., 2014):

∂LFA2

∂yi
=
∑
j

vij(yi − yj)−
∑
j

(hi + 1)(hj + 1)

d2
ij

(yi − yj), (11)

where hi denotes the degree of node i in the input graph. This is known as edge repulsion in the
graph layout literature (Noack, 2007; 2009) and is important for embedding graphs that have nodes of
very different degrees. For symmetrized kNN graphs, hi ≈ k, so (hi + 1)(hj + 1) term contributes a
roughly constant factor of ∼k2 to the repulsive forces.

3.5 Implementation

All experiments were performed in Python. We ran all packages with default parameters, unless
specified. We used openTSNE 0.4.4 (Policar et al., 2019), a Python reimplementation of FIt-SNE
(Linderman et al., 2019). When using ρ < 12, we used the default early exaggeration with ρearly = 12,
and exaggeration ρ for all subsequent iterations. For ρ ≥ 12 no early exaggeration was used and
exaggeration ρ was applied throughout. The learning rate was set to η = n/max(ρ, ρearly) (Belkina
et al., 2019). We used UMAP 0.4.0 with a Cauchy similarity kernel (i.e. setting a=b=1). For

1T-SNE uses an adaptive Gaussian kernel with default P = 30 and k = 90. UMAP uses an adaptive
Laplacian kernel with default k = 15. We found that for both algorithms one can use binary affinities with
k = 15 without noticeably changing the outcome. Specifically, we used the kNN (k = 15) adjacency matrix
A = [aij ] to construct symmetric binary affinities vij = (aij ∨ aji)/k. When using these values, the t-SNE
and UMAP embeddings stayed almost the same (Figure S1).

2UMAP uses wij = 1/(1 + ad2bij ) as an output kernel with a ≈ 1.6 and b ≈ 0.9 by default. Setting
a = b = 1 does not qualitatively affect the result (Figure S1).

3LargeVis used γ = 7 but UMAP sets γ = 1 by default, as follows from its cross-entropy loss.
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Figure 2: Simulated data emulating a developmental trajectory. The points were sampled from
20 isotropic 50-dimensional Gaussians, equally spaced along one axis such that only few inter-cluster
edges exist in the kNN graph. Panels (b–f) used a shared random initialization.

FA2, we used fa2 package (Chippada, 2017) that employs a Barnes-Hut approximation to speed up
computation of the repulsive forces. The input to FA2 was the unweighted symmetrized approximate
kNN graph A ∨A>, where A is the kNN adjacency matrix constructed with Annoy (Bernhardsson,
2013) with k = 15. All algorithms were optimized for 750 iterations, unless stated otherwise.

Unless stated otherwise, we used principal component analysis (PCA) initialisation to remove any
differences due to initialization strategies (Kobak & Linderman, 2019) and to make all embeddings of
the same dataset aligned to each other (Kobak & Berens, 2019). PCs 1/2 were scaled to standard
deviation 0.0001 for t-SNE and to span 10 for UMAP to match the initialization scalings used in the
respective implementations, and to a standard deviation of 10 000 for ForceAtlas2 to approximately
match its final scale. Figure 2 uses random initialization. LE was computed using the scikit-learn
(Pedregosa et al., 2011) implementation (SpectralEmbedding). The input was the same as the input
to FA2. No initialisation was needed for LE. We flipped the signs of LE eigenvectors to orient them
similarly to other embeddings, whenever necessary.

4 The attraction-repulsion spectrum

We first investigated the relationships between the NE algorithms using the MNIST dataset of
hand-written digits (sample size n = 70 000; dimensionality 28 × 28 = 784, reduced to 50 with
PCA; Figure 1). T-SNE produced an embedding where all ten digits were clearly separated into
clusters with little white space between them, making it difficult to assess relationships between digits.
Increasing attraction to ρ = 4 shrank the clusters and strongly increased the amount of white space;
it also identified two groups of graphically similar digits: “4/7/9” and “3/5/8”. Further increasing
the attraction to ρ = 30 made all clusters connect together via some poorly written digits: e.g.
cluster “6” connects to “5” and to “0”. Even higher exaggeration made the embedding similar to
Laplacian eigenmaps, in agreement with the theoretical prediction discussed above (Linderman et al.,
2019). Here similar digit groups like “4/7/9” were entirely overlapping, and could only be separated
using higher eigenvectors (Figure 1, insets). On the other side of the spectrum, exaggeration values
0 < ρ < 1 resulted in inflated coalescing clusters.

Interestingly, we observed that FA2 produced an embedding nearly identical to the one at ρ = 30,
while UMAP produced an embedding nearly identical to the one at ρ = 4. Decreasing the γ value in
UMAP had the same effect as increasing the ρ in t-SNE, and moved the UMAP result towards the LE
part of the spectrum (Figure S2).
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Figure 3: Neighbor embeddings of the single-cell RNA-seq developmental data. Cells were
sampled from human brain organoids (cell line 409b2) at seven time points between 0 days and 4
months into the development (Kanton et al., 2019). Sample size n = 20 272. Data were reduced with
PCA to 50 dimensions. See Appendix for transcriptomic data preprocessing steps.

The MNIST example suggests that high attraction emphasizes connections between clusters at the cost
of within-cluster structure, whereas high repulsion emphasizes the cluster structure at the expense
of between-cluster connections. We interpreted this finding as a continuity-discreteness trade-off.
We developed a simple toy example to illustrate this trade-off in more detail (Figure 2). For this,
we generated data as draws from 20 standard isotropic Gaussians in 50 dimensions, each shifted
by 6 standard deviation units from the previous one along one axis (1000 points per Gaussian, so
n = 20 000 overall). For this analysis we used random initialization and turned the early exaggeration
off, to isolate the effect of each loss function on the ‘unwrapping’ of the random initial configuration.

We found that t-SNE with strong exaggeration (ρ = 30) recovered the underlying one-dimensional
manifold structure of the data almost as well as LE (Figure 2a,b), and produced an embedding very
similar to that of FA2 (Figure 2e). In both cases, the individual clusters were almost invisible. In
contrast, embeddings with weaker attraction and stronger repulsion (t-SNE with exaggeration ρ = 2
and UMAP) showed individual clusters but were unable to fully recover the 1-dimensional structure
and only found some chunks of it (Figure 2c,f). Finally, standard t-SNE clearly showed 20 individual
clusters but with the continuous structure entirely lost (Figure 2d).

Further, we analyzed a developmental single-cell transcriptomic dataset, where cells were collected
from human brain organoids at seven time points between 0 days and 4 months into the development
(Kanton et al., 2019). In this kind of data, one expects to find rich cluster structure as well as a strong
time-dependent trajectory. As in the other datasets, we found that stronger attraction (LE, FA2, t-SNE
with ρ = 30) better represented the developmental trajectory, whereas stronger repulsion (standard
t-SNE) better represented the cluster structure (Figure 3). Using much higher k for the kNN graph
construction made the developmental trajectory in high-attraction methods even clearer (Figure S3),
in agreement with the FA2-based analysis performed in the original publication. We observed the
same pattern in a separate dataset obtained from chimpanzee brain organoids (Figures S4, S5).

To quantify our observations, we computed distance correlations (Szekely et al., 2007) between
UMAP & FA2 embeddings and t-SNE embeddings with various values of ρ ∈ [1, 100], using the
three datasets analyzed above (Figure 4a). For UMAP, the best matches were at 3 < ρ < 8; for FA2,
the best matches were at 25 < ρ < 65. The corresponding correlations were all above 0.97, indicating
very similar layouts.

We confirmed all these findings using six other datasets (Table 1): Fashion MNIST (Figure S6),
Kannada MNIST (Figure S7), Kuzushiji MNIST (Figure S8), single-cell data from a hydra (Figure S9),
from a zebrafish embryo (Figure S10), and from a mouse cortex (Figure S11). In most cases, UMAP
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Figure 4: (a) Distance correlation (Szekely et al., 2007) between UMAP/FA2 and t-SNE with various
exaggeration values ρ ∈ [1, 100] (50 evenly distributed values on a log scale). Distance correlation
was computed using dcor package (Carreño, 2017) on a random subset (n = 5000) of data. Dots
mark the maximum of each curve. (b) The n/(ρZ) factor in the end of optimisation when using
t-SNE with ρ ∈ [1, 100] on full MNIST. (c) Distance correlations between t-SNE with ρ ∈ [1, 10]
and UMAP depending on the sample size, for MNIST subsets of size n ∈ [5 000, 70 000]. Black line
indicates best matching ρ values. (d) The n/(ρZ) factor in the end of optimisation when using t-SNE
with ρ ∈ {1, 2, 3, 4} on MNIST subsets of size n ∈ [5 000, 70 000].

was similar to t-SNE with exaggeration ρ ≈ 4 and FA2 was similar to t-SNE with exaggeration
ρ ≈ 30. Increasing attraction strength made the continuous structures increasingly prominent in the
embeddings. See Figure S11 for the case when kNN graph had disconnected components.

5 Increased attraction in UMAP due to negative sampling

As shown above, the gradient of UMAP (Eq. 9) is very similar to the gradient of t-SNE (Eq. 4) but
does not contain the ‘normalizing’ n/Z term in front of the repulsive forces. What are the typical
values of this coefficient? The Z term in t-SNE evolves during optimisation: it starts at Z ≈ n2

due to all dij ≈ 0 at initialization and decreases towards n as the embedding expands (for a perfect
embedding with all pij = qij and vij = wij , the Z would equal n; in reality Z usually still exceeds
n). For MNIST, the final Z value was ∼100n, corresponding to the final n/Z ≈ 0.01 (Figure 4b).
Increasing the exaggeration shrinks the embedding and increases the final Z; it also changes the
repulsive factor to n/(ρZ) (Eq. 5). For ρ = 4, the final Z was ∼2100n, corresponding to final
n/(ρZ) ≈ 0.0001 (Figure 4b). This means that UMAP matched t-SNE results with the repulsive
factor 0.0001 better than it matched t-SNE results with the repulsive factor 0.01, even though UMAP
itself uses repulsive factor γ = 1 (Eq. 9). How is this possible?

We hypothesized that this mismatch arises because the UMAP implementation is based on negative
sampling and does not in fact optimize its stated loss (Eq. 7). Instead, the negative sampling decreases
the repulsion strength, creating an effective γeff(ν)� 1. We verified that increasing the value of ν

Table 1: Distance correlation values (R) between UMAP/FA2 and t-SNE.

Dataset
UMAP FA2

ρ = 4 maxR argmaxρR ρ = 30 maxR argmaxρR
MNIST 0.985 0.985 3.7 0.982 0.983 26.8
Fashion MNIST 0.991 0.996 7.2 0.992 0.995 75.4
Kuzushiji MNIST 0.944 0.95 12.6 0.974 0.982 68.7
Kannada MNIST 0.936 0.952 11.5 0.976 0.978 12.6
Chimpanzee organoid 0.979 0.983 7.2 0.988 0.993 62.5
Human organoid 0.972 0.979 7.9 0.995 0.997 51.8
Hydra 0.98 0.986 16.8 0.981 0.993 22.2
Mouse cortex 0.95 0.957 12.6 0.985 0.986 29.5
Zebrafish embryo 0.974 0.982 8.7 0.995 0.996 42.9
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Figure 5: Barnes-Hut UMAP without negative sampling. (a–c) Embeddings with gamma values
γ ∈ {0.0001, 0.01, 1}. (d–e) Embeddings with gamma values γ ∈ {0.01, 1} initialized with the
embedding with γ = 0.0001 [panel (a)], in an analogy to early exaggeration in t-SNE.

increased the repulsion strength in UMAP (Figure S12): embeddings grew in size and the amount of
between-cluster white space decreased. We observed the same effect when setting ε = 1 (Figure S13),
which makes the UMAP gradient (Eq. 9) equivalent to the t-SNE gradient, up to the repulsion factor.

It is difficult to compute γeff(ν) analytically, but qualitatively the number of repulsive forces per
one attractive force is ∼n/k in the full gradient but ν with negative sampling. This suggests that
the γeff induced by the negative sampling should decrease with the sample size. To check this
prediction, we looked at the behaviour of the n/(ρZ) term as a function of sample size, for the best
matching ρ value. Using MNIST subsets of different sizes n ∈ [5 000, 70 000], we found that ρ ≈ 4
gave the t-SNE embedding best matching to the UMAP embedding for all considered sample sizes
(Figure 4d). Looking now at the final n/(ρZ) values with ρ = 4, we found that they decreased with
n approximately as ∼O(1/

√
n) (Figure 4d), qualitatively confirming our prediction about γeff .

To confirm our interpretation, we developed a Barnes-Hut UMAP implementation (based on
openTSNE) that optimizes the full UMAP loss without any negative sampling (Figure 5). On full
MNIST, γ = 0.0001 yielded an embedding that resembled the standard (negative-sampling-based)
UMAP (Figure 5a), while larger values of γ yielded over-repulsed embeddings (Figure 5b–c) and
required early exaggeration to produce meaningful results (Figure 5d–e), with γ = 0.01 resembling
t-SNE and γ = 1 being over-repulsed compared to t-SNE. This suggests that directly optimizing
the cross-entropy loss (Eq. 7) is not a viable NE strategy. Therefore, the more condensed clusters
typically observed in UMAP compared to t-SNE are an accidental by-product of UMAP’s negative
sampling strategy, and not a consequence of the cross-entropy loss function itself or the mathematical
apparatus of the original paper (McInnes et al., 2018).

6 Increased attraction in FA2 due to non-decaying attractive forces

The attractive forces in t-SNE scale as dij/(1 + d2
ij). When all dij are small, this becomes an

approximately linear dependency on dij , which is the reason why t-SNE with high exaggeration
ρ � 1 replicates Laplacian eigenmaps (see Section 3.2 and Appendix). For large distances dij ,
attractive forces in t-SNE decay to zero, making default t-SNE very different from LE. In contrast, in
FA2, attractive forces always scale as dij . Thus, the larger the embedding distance between points,
the stronger the attractive force between them. This strong non-decaying attractive force makes FA2
behave similar to Laplacian eigenmaps on the attraction-repulsion spectrum.

Note that it is not possible to move FA2 embeddings along the attraction-repulsion spectrum by
multiplying the attractive or repulsive forces by a constant factor (such as γ in UMAP or ρ in t-SNE).
Multiplying attractive forces by any factor a or repulsive forces by any factor 1/a only leads to
rescaling of the embedding by 1/

√
a. Indeed, if all forces are in equilibrium before such multiplication

and rescaling, they will stay in equilibrium afterwards. This is a general property of force-directed
layouts where both attractive and repulsive forces scale as powers of the embedding distance. This
argument also implies that removing the (hi+1)(hj +1) ≈ k2 factor from the FA2 gradient (Eq. 11)
rescales the entire embedding by ∼1/k, but does not change it otherwise (Figure S1).
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7 Discussion

We showed that changing the balance between attractive and repulsive forces in t-SNE directly affects
the trade-off between preserving continuous or discrete structures. Increasingly strong repulsion
‘brings out’ information from higher Laplacian eigenvectors into the two embedding dimensions
(Figure 1). It is remarkable that the repulsive forces, which are data-agnostic and do not depend on
the input data (Carreira-Perpinán, 2010), have so much qualitative influence.

Our results suggest that it should be beneficial for high-repulsion embeddings to begin optimization
with lower repulsion strength, in order to better preserve global structure. This explains how UMAP
benefits from its default initialization with Laplacian eigenmaps (Kobak & Linderman, 2019) and
how t-SNE benefits from early exaggeration (Linderman & Steinerberger, 2019) (see Figure S14 for
a demonstration of the importance of early exaggeration). Similarly, elastic embedding gradually
increases repulsion strength during optimisation (Carreira-Perpinán, 2010).

Our treatment provided a unified perspective on several well-known NE algorithms that have scalable
implementations and that have been shown to successfully embed datasets such as MNIST without
coarse-graining the kNN graph. Methods based on coarse-graining, such as e.g. PHATE (Moon
et al., 2019) or latent variable NE method in Saul (2020) may behave differently. We believe that our
treatment may allow to position other NE algorithms on the same spectrum. For example, a recently
suggested TriMap algorithm (Amid & Warmuth, 2019), which uses negative sampling similar to
UMAP, appears to have stronger attractive forces than UMAP (cf. Figure 5 in the original paper), with
some TriMap embeddings, e.g. of the Fashion MNIST dataset, looking similar to the ForceAtlas2
embeddings shown in our work.

We argued that negative sampling (Mikolov et al., 2013) used by LargeVis/UMAP strongly lowers
the effective repulsion. Negative sampling is closely related to the noise-contrastive estimation
(NCE) framework (Gutmann & Hyvärinen, 2012). NCE was recently applied to t-SNE under the
name of NCVis (Artemenkov & Panov, 2020), and the general NCE theory asserts that it should be
asymptotically equivalent to optimizing the full gradient (Gutmann & Hyvärinen, 2012). We consider
it a very interesting research direction to study the relationship between negative sampling and NCE
and their effect on 2D embeddings as well as on higher-dimensional embeddings used in methods like
word2vec (Mikolov et al., 2013).
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Appendix

Appendix A. Relationship to Laplacian eigenmaps

Laplacian eigenmaps Let a n×n symmetric matrixV contain pairwise affinities between n points
(or edge weights between nodes in an undirected graph). Let diagonal matrix D contain row (or,
equivalently, column) sums of V, i.e. Dii =

∑
j Vij . Then L = D−V is known as (unnormalized)

graph Laplacian, and Laplacian eigenmaps (Belkin & Niyogi, 2002) can be formulated as solving the
generalized eigenvector problem

La = λDa (12)

and taking the eigenvectors corresponding to the smallest eigenvalues (after discarding the trivial
eigenvector [1, 1, . . . , 1]> with eigenvalue zero). By multiplying both sides of this equation by D−1,
the problem can be reformulated as finding the eigenvectors ofD−1V corresponding to the largest
eigenvectors:

D−1Va = (1− λ)a. (13)

The matrix D−1V is not symmetric and has rows normalized to 1. It can be interpreted as
the diffusion operator on the graph, making Laplacian eigenmaps equivalent to Diffusion maps
(Coifman & Lafon, 2006). Another equivalent way to rewrite it, is to define normalized Laplacian
Lnorm = D−1/2LD−1/2 and solve an eigenvector problem Lnormb = λb, where b = D1/2a.

t-SNE without repulsion In the limit of ρ → ∞, the repulsive term in the t-SNE gradient can
be dropped, all wij → 1, and hence the gradient descent update rule becomes (Linderman &
Steinerberger, 2019)

yt+1
i = yti − η

∑
j

vij(y
t
i − ytj), (14)

where t indexes the iteration number and η is the learning rate (including all constant factors in the
gradient). Denoting by Y the n× 2 matrix of the embedding coordinates, this can be rewritten as

Yt+1 = (I− ηD+ ηV)Yt (15)
= MYt. (16)

M is the transition matrix of this Markov chain (note that it is symmetric and its rows and columns
sum to 1; its values are all non-negative for small enough η). According to the general theory of
Markov chains, the largest eigenvalue of M is 1, and the corresponding eigenvector is [1, 1, . . . , 1]>,
meaning that the embedding shrinks to a single point (as expected without repulsion). The slowest
shrinking eigenvectors correspond to the next eigenvalues. This means that when ρ → ∞, the
embedding (if rescaled, to avoid shrinking to zero) will converge to the leading nontrivial eigenvectors
ofM. This becomes equivalent to a power iteration algorithm. The eigenvectors ofM are the same
as of L = D−V, which is the unnormalized graph Laplacian of the symmetric affinity matrix.

Note that this is not precisely what LE computes: as explained above, it finds eigenvectors of
the normalized graph Laplacian (c.f. Von Luxburg et al., 2008). However, in practice D is often
approximately proportional to the identity matrix, because V is obtained via symmetrization of
directed affinities, and those have rows summing to 1 by construction. We can therefore expect that
the leading eigenvectors of L and of Lsym are not too different. We verified that for MNIST data they
were almost exactly the same.

Note also that nothing prevents different columns of Y to converge to the same leading eigenvector:
each column independently follows its Markov chain. Indeed, we observed that for large enough
values of ρ and large enough number of gradient descent iterations, the rescaled two-dimensional
embedding collapsed to one dimension. This is the expected limiting behaviour when ρ → ∞.
However, for moderate values of ρ (as shown in this manuscript), this typically does not happen, and
columns ofY resemble the two leading non-trivial eigenvectors of the Laplacian. The repulsive force
prevents the embedding from collapsing to the leading Laplacian eigenvector. At the same time, a
weak repulsive force will only be able to ‘bring out’ the second LE eigenvector. The stronger the
contribution of repulsive forces, the more LE eigenvectors it would be able to ‘bring out’ (remember
that the attractive force acts stronger on the higher eigenvectors).

13



Under review as a conference paper at ICLR 2021

Loss function of LE The original Laplacian eigenmaps paper (Belkin & Niyogi, 2002) motivated
the eigenvector problem by considering

LLE =
∑
i,j

vij‖yi − yj‖2 = 2Tr(Y>LY). (17)

This expression can be trivially minimized by setting all yi = 0, so the authors introduced a quadratic
constraint Y>DY = I, yielding the generalized eigenvector problem. We note that a different
quadratic constraint Y>Y = I would yield a simple eigenvector problem for L. In any case, the
constraint plays the role of the repulsion in t-SNE framework.

Appendix B. Data sources and transcriptomic data preprocessing

Transcriptomic datasets The brain organoid datasets (Kanton et al., 2019) were downloaded
from https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7552/ in form of UMI
counts and metadata tables. The metadata table for the chimpanzee dataset was taken from the supple-
mentary materials of the original publication. We used gene counts mapped to the consensus genome,
and selected all cells that passed quality control by the original authors (in_FullLineage=TRUE in
metadata tables). For human organoid data, we only used cells from the 409b2 cell line, to simplify
the analysis (the original publication combined cells from two cell lines and needed to perform batch
correction).

The hydra dataset (Siebert et al., 2019) (Figure S9) was downloaded in form of UMI counts from
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121617.

The zebrafish dataset (Wagner et al., 2018b) (Figure S10) was downloaded in form
of UMI counts from https://kleintools.hms.harvard.edu/paper_websites/wagner_
zebrafish_timecourse2018/WagnerScience2018.h5ad.

The adult mouse cortex dataset (Tasic et al., 2018) (Figure S11) was downloaded in form of
read counts from http://celltypes.brain-map.org/api/v2/well_known_file_download/
694413985 and http://celltypes.brain-map.org/api/v2/well_known_file_download/
694413179 for the VISp and ALM cortical areas, respectively. Only exon counts were used here.
The cluster labels and cluster colors were retrieved from http://celltypes.brain-map.org/
rnaseq/mouse/v1-alm.

To preprocess each dataset, we selected 1000 most variable genes using procedure from Kobak
& Berens (2019) with default parameters (for the mouse cortex dataset we used 3000 genes and
threshold=32 (Kobak & Berens, 2019)) and followed the preprocessing pipeline from the same
paper: normalized all counts by cell sequencing depth (sum of gene counts in each cell), multiplied by
the median cell depth (or 1 million in case of mouse cortex data), applied log2(x+ 1) transformation,
did PCA, and retained 50 leading PCs.

MNIST-like datasets The datasets used in Figures S6, S7, and S8 have been published explicitly
to function as drop in replacements for the handwritten MNIST dataset. The dataset variants
that we used here all consist of a total n = 70 000 images of 28 × 28 pixels, in 10 balanced
classes. The input has been preprocessed like the original MNIST dataset, i.e. reduced to
50 dimensions via PCA. Fashion and Kuzushiji MNIST were downloaded via OpenML with the
keys Fashion-MNIST (https://www.openml.org/d/40996) and Kuzushiji-MNIST (https:
//www.openml.org/d/41982), respectively. Kannada MNIST was downloaded from https:
//github.com/vinayprabhu/Kannada_MNIST.
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Figure S1: Different algorithmic choices, demonstrated using MNIST. (a) Default t-SNE embed-
ding, perplexity 30. (b) T-SNE embedding with binary kNN affinities, k = 15. All non-zero affinities
have equal size. The pij values were normalized as always in t-SNE, and sum to one. (c) Default
ForceAtlas2, using binary symmetrized kNN adjacency matrix (k = 15) as input. ForceAtlas2 uses
so-called repulsion by degree by default. (d) ForceAtlas2 without repulsion by degree. (e) Defaut
UMAP embedding. This uses default values for a and b parameters, and LE initialization. (f) UMAP
embedding with PCA initialization and Cauchy kernel (a = b = 1). (g) UMAP embedding with PCA
initialization, Cauchy kernel, and binary kNN affinities (k = 15). (h) UMAP embedding with PCA
initialization, Cauchy kernel, binary kNN affinities, and ε = 1.
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Figure S2: Decreasing the repulsion in UMAP. (a) UMAP embedding of MNIST with γ = 1
(default). (b–d) Decreasing γ produces the same effect as increasing the exaggeration ρ in t-SNE.
Values γ > 1 are not shown because we found that it was difficult to achieve a well-converged
embedding for γ � 1.
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Figure S3: Neighbor embeddings of the single-cell RNA-seq developmental data (human, high
k). Cells were sampled from human brain organoids (cell line 409b2) at seven time points between 0
days and 4 months into the development (Kanton et al., 2019). Sample size n = 20 272. Data were
reduced with PCA to 50 dimensions. See Appendix for transcriptomic data preprocessing steps. LE,
FA2, and UMAP used k = 150 (instead of our default k = 15), while t-SNE used perplexity 300
(instead of our default 30).
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Figure S4: Neighbor embeddings of the single-cell RNA-seq developmental data (chimpanzee).
Cells were sampled from chimpanzee brain organoids at eight time points between 0 days and 4
months into the development (Kanton et al., 2019). Sample size n = 36 884. Data were reduced with
PCA to 50 dimensions. See Appendix for transcriptomic data preprocessing steps.
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Figure S5: Neighbor embeddings of the single-cell RNA-seq developmental data (chimpanzee,
high k). Cells were sampled from chimpanzee brain organoids at eight time points between 0 days
and 4 months into the development (Kanton et al., 2019). Sample size n = 36 884. Data were reduced
with PCA to 50 dimensions. See Appendix for transcriptomic data preprocessing steps. LE, FA2, and
UMAP used k = 150 (instead of our default k = 15), while t-SNE used perplexity 300 (instead of
our default 30).
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Figure S6: Fashion MNIST dataset (Xiao et al., 2017). Sample size n = 70 000. Dimensionality
was reduced to 50 with PCA. Colors correspond to 10 classes, see legend.
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Figure S7: Kannada MNIST dataset Prabhu (2019). Sample size n = 70 000. Dimensionality
was reduced to 50 with PCA. Colors correspond to 10 Kannada digits shown in panel (d).
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Figure S8: Kuzushiji MNIST dataset (Clanuwat et al., 2018). Sample size n = 70 000. Dimen-
sionality was reduced to 50 with PCA. Colors correspond to 10 Kanji characters shown in panel
(d).
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Figure S9: Single-cell RNA-seq data of a hydra (Siebert et al., 2019). Sample size n = 24 985.
Dimensionality was reduced to 50 with PCA. See Appendix for transcriptomic data preprocessing
steps. Color corresponds to cell classes.
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Figure S10: Single-cell RNA-seq data of a zebrafish embryo (Wagner et al., 2018b). Sample
size n = 63 530. Dimensionality was reduced to 50 with PCA. See Appendix for transcriptomic
data preprocessing steps. Color corresponds to the developmental stage, indicating the hours post
fertilization (hpf).
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Figure S11: Single-cell RNA-seq data of adult mouse cortex (Tasic et al., 2018). Sample size
n = 23 822. Dimensionality was reduced to 50 with PCA. See Appendix for transcriptomic data
preprocessing steps. Colors are taken from the original publication (warm colors: inhibitory neurons;
cold colors: excitatory neurons; grey/brown: non-neural cells). We added Gaussian noise to the
LE embedding in panel (a) to make the clusters more visible. In this dataset, the kNN graph is
disconnected and has 6 components, resulting in 6 distinct points in the LE embedding.
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Figure S12: The effect of negative sampling rate on UMAP embeddings. (a) T-SNE embedding
withρ = 2 of aMNIST subsamplewithn = 6000. (b–d)UMAPembeddingswith ν ∈ {5, 500, 2000}.
We used a n = 6000 subset of MNIST as it would take prohibitively long to run optimisation with
high ν on the full MNIST dataset. We increased the number of iterations to ensure convergence
(n_epochs=3000) and initialized UMAP runs with the default UMAP embedding (in an analogy to
early exaggeration in t-SNE). (e) Standard t-SNE of the same data.
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Figure S13: The effect of negative sampling rate on UMAP embeddings with ε = 1. (a) t-SNE
embedding with ρ = 4 of a MNIST subsample with n = 6000. (b–d) UMAP embeddings with
ν ∈ {5, 500, 2000} and ε = 1. Here UMAP was run for 3000 epochs to ensure convergence, and was
initialized with the default UMAP embedding (ν = 5 with 500 epochs). (e) Standard t-SNE of the
same data.
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Figure S14: The effect of early exaggeration on t-SNE. (a) Default t-SNE embedding of MNIST.
This uses early exaggeration and sets the standard deviation of PCA initialization to 0.0001. (b) T-SNE
embedding without early exaggeration. This embedding is stuck in a suboptimal local minimum with
some clusters split into multiple parts. (c) T-SNE embedding with early exaggeration, but with initial
standard deviation set to 25. The attractive forces are too weak to pull the clusters together during the
early exaggeration phase.
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