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Abstract

Advances in entity-graph based analysis of histopathology images have brought in a new
paradigm to describe tissue composition, and learn the tissue structure-to-function relation-
ship. Entity-graphs offer flexible and scalable representations to characterize tissue organi-
zation, while allowing the incorporation of prior pathological knowledge to further support
model interpretability and explainability. However, entity-graph analysis requires prerequi-
sites for image-to-graph translation and knowledge of state-of-the-art machine learning al-
gorithms applied to graph-structured data, which can potentially hinder their adoption. In
this work, we aim to alleviate these issues by developing HistoCartography, a standard-
ized python API with necessary preprocessing, machine learning and explainability tools to
facilitate graph-analytics in computational pathology. Further, we have benchmarked the
computational time and performance on multiple datasets across different imaging types
and histopathology tasks to highlight the applicability of the API for building computa-
tional pathology workflows.
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1. Introduction

Recent advancements in tissue-slide digitization have paved way for enhancing storage,
sharing capabilities, and computer-aided inspection by leveraging Deep Learning (DL).
Most DL approaches analyze tissue images in three steps, namely patch generation, patch-
level feature extraction, and feature aggregation to produce image-level embeddings for
downstream pathology tasks. However, they suffer from several limitations, (i) the trade-
off between operational resolution and adequate context per-patch, (ii) the aggregation
is often sub-optimal, (iii) comprehensive modeling of tissue composition is missing, and
(iv) the lack of model transparency raises barriers to deployment in real life.

To circumvent these limitations, entity-graphs are proposed (Demir et al., 2004) where
the nodes and edges of the graphs denote tissue entities and their interactions, respec-
tively. Entity-graphs, followed by Graph Neural Networks (GNNs)-based processing, have
recently gained popularity in addressing various pathology tasks (Zhou et al., 2019; Chen
et al., 2020; Pati et al., 2021; Anklin et al., 2021; Jaume et al., 2021). The entities can
be biologically-defined, e.g., nuclei, tissue regions, glands (Zhou et al., 2019; Pati et al.,
2021; Anklin et al., 2021), or can be patches (Adnan et al., 2020; Aygunes et al., 2020).
The entity-graphs enable to simultaneously capture local entity environment and global
tissue composition. They can seamlessly scale to arbitrary tissue dimensions by incorpo-
rating arbitrary number of entities and interactions, thus offering an alternate to Multiple
Instance Learning (MIL) (Campanella et al., 2019; Ming et al., 2021). The entity-graphs
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also enable to selectively operate on diagnostically relevant entities, instead of analyzing
the entire tissue (Tellez et al., 2019b; Shaban et al., 2020). Furthermore, when the enti-
ties depict biological units, such as nuclei, glands etc., the analysis allows pathologists to
directly comprehend and reason with the outcomes (Jaume et al., 2020, 2021). However,
constructing an entity-graph based pathological workflow demands several prerequisites,
such as entity detection, entity encoding, constructing the graph topology etc., alongside
standard preprocessing, such as stain normalization, tissue detection etc. Additionally, the
workflow requires to utilize the recent advancements in DL for processing graph-structured
data. All these may inhibit the adoption of entity-graphs in computational pathology.
In addition, the lack of a standardized framework with the aforementioned functionalities
urge the researchers to reinvent the wheel, which is cumbersome, time-consuming, hampers
reproducibility, and requires a wide range of technical acumen.

To overcome these constraints, we present HistoCartography, a novel open-source
python library that facilitates graph-analytics in computational pathology. Specifically
our contributions are: (i) a standardized python library that unifies a set of histology
image manipulation tools, entity-graph builders, GNN models, and model explainability
tools, (ii) a benchmark assessment of performance and scalability on classification and
segmentation tasks in pathology, (iii) a comprehensive overview of graph representation and
modeling in histology, and (iv) a review of extant libraries for histological image analysis.

2. Related Work

2.1 Graphs in Computational Pathology

Entity-graphs are proposed to realize the tissue composition-to-functionality relationship
in terms of the phenotypical and structural characteristics of tissue. The entities can be
nuclei (Demir et al., 2004; Zhou et al., 2019; Wang et al., 2020; Chen et al., 2020; Pati et al.,
2021), tissue regions (Pati et al., 2021), patches (Anand et al., 2020; Adnan et al., 2020; Ay-
gunes et al., 2020; Zhao et al., 2020; Li et al., 2018; Levy et al., 2021), etc. Typically nodes
include handcrafted or DL features to characterize the entities, and the topology can depict
the spatial or semantic relationship among the entities, e.g., k-Nearest Neighbors (k-NN), re-
gion adjacency, or probabilistic models. The graphs can be processed using classic Machine
Learning (ML) (Sharma et al., 2016, 2017) or GNNs to outperform state-of-the-art Convolu-
tional Neural Network (CNN)-based approaches for several pathology tasks across multiple
organs (Garciá-Arteaga et al., 2017; Zhou et al., 2019; Zhao et al., 2020; Adnan et al., 2020;
Pati et al., 2021; Studer et al., 2021; Anklin et al., 2021). Interestingly, when the graph-
nodes depict biological entities, e.g., nuclei, tissue regions, the entity-graphs combined with
feature attribution techniques can provide pathologist-friendly interpretations (Zhou et al.,
2019; Jaume et al., 2020; Sureka et al., 2020) and explanations (Jaume et al., 2021), unlike
pixelated blurry saliency maps. A detailed review of graphs in computational pathology is
presented by Ahmedt-Aristizabal et al. (2021).

2.2 Extant Libraries in Computational Pathology

Several open-source libraries facilitate the development of computational pathology work-
flows. Most of them include helper functions to perform standard preprocessing and vi-
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sualization. Histolab (Arbitrio et al.) includes Whole Slide Image (WSI)-level tissue
detection and tile extraction modules. Syntax (Byfield et al., b) provides the same fea-
tures with abstraction where modules can be stacked and run in a pre-defined pipeline.
StainTools (Byfield et al., a) provides tools for stain normalization and augmentation.
HistomicsTK (Beezley et al.) enables to perform tissue detection, object detection and
segmentation, image filtering, stain normalization and deconvolution, and handcrafted fea-
ture extraction. Further, HistomicsTK allows nuclei segmentation and classification using
classical ML approaches. It also provides a User Interface (UI) to run containerized modules
and pipelines. Though HistomicsTK includes valuable functionalities, it caters limited DL
tools. Similarly, OpenSlide (Gilbert et al.) provides a UI to read and visualize histology
images that supports most of the WSI formats. Finally, QuPath (Bankhead et al.) offers
a UI that allows to read, visualize and annotate WSIs. It also includes tools to perform
stain normalization, nuclei and tissue detection, and implement basic ML models. However,
QuPath is not a python Application Programming Interface (API), which makes it difficult
to integrate into existing workflow and DL frameworks, e.g., PyTorch, Tensorflow. Most
importantly, none of the frameworks provide graph-related helpers. With the advent of
graph-techniques as a new paradigm for analyzing histology images, a standardized library
is desired for reinforcing the development.

3. Histocartography: Graph Analytics Tool for Pathology

In this section, we highlight the core functionalities of HistoCartography, (1) Prepro-
cessing module: a set of histology image processing tools and entity-graph builders, (2) ML
module: helpers to learn from entity-graphs, (3) Explainability module: a set of GNN model
interpretability tools. The specific functionalities in each module are summarized in Table 1.

3.1 Preprocessing Module

Stain normalization: Variation in Hematoxylin and Eosin (H&E) staining protocols for
tissue specimens induces appearance variability that adversely impacts computational meth-
ods (Tellez et al., 2019a). To alleviate these variations, HistoCartography implements
two popular normalization algorithms proposed by Macenko et al. (2009) and Vahadane
et al. (2016), similar to StainTools and HistomicsTK, which supports both reference-
based and reference-free normalization, i.e., with manual stain vectors. Figure 1 highlights
a sample normalization output using our API.

Tissue Detection: A WSI usually includes significant non-tissue region. Identifying the
tissue regions can confine the analysis and reduce computational effort. The tissue detec-
tor in HistoCartography iteratively applies Gaussian smoothing and Otsu thresholding
until the mean of non-tissue pixels is below a threshold. This module is common across
Histolab, Syntax, HistomicsTK and QuPath.

Nuclei detection: This module enables to segment and locate nuclei in H&E images.
Though it is well-studied in computational pathology, only a few public implementations
are available. For instance, QuPath allows to detect nuclei but requires model train-
ing and fine-tuning. While providing flexibility, the module includes only elementary
ML methods. HistoCartography integrates two checkpoints for the state-of-the-art
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Table 1: Overview of HistoCartography functionalities, with the i/o, CPU and GPU
compatibility, and availability in extant libraries for individual module. I, M, X, G, P
and S denote an image (np.array (Harris et al., 2020)), a mask (np.array), features
(torch.Tensor (Paszke et al., 2019)), a graph (DGLGraph (Wang et al., 2019)),
predictions (torch.Tensor) and importance scores (torch.Tensor), respectively.

Function Module Input Output Existing CPU GPU

P
re

p
ro

ce
ss

in
g

Vahadane Stain Norm I I 3 3 7

Macenko Stain Norm I I 3 3 7

Tissue Mask Detection I M 3 3 7

Nuclei Detection I M 3 3 3

Nuclei Concepts I, M M 3 3 7

Tissue Component Detection I M 7 3 7

Deep Feature Extraction I, M X 7 3 3

Feature Cube Extraction I X 7 3 3

k-NN Graph Building X, M G 7 3 7

RAG Graph Building X, M G 7 3 7

M
L

Cell-Graph Model G P 7 3 3

Tissue-Graph Model G P 7 3 3

HACT Model G, G, X P 7 3 3

E
x
p

la
in

er
s GnnExplainer G S 7 3 3

GraphGrad-CAM G S 7 3 3

GraphGrad-CAM++ G S 7 3 3

GraphLRP G S 7 3 3

HoVerNet model (Graham et al., 2019) trained on PanNuke (Gamper et al., 2020) and
MoNuSac (Ruchika et al., 2020) datasets for nuclei segmentation and classification.

Tissue Component Detection: HistoCartography includes an unsupervised super-
pixel based approach to segment tissue regions. First, the tissue is oversegmented into
homogeneous superpixels using Simple Linear Iterative Clustering (SLIC) (Achanta et al.,
2012) algorithm. Then, neighboring superpixels are hierarchically merged using color simi-
larity to denote meaningful tissue regions, e.g., epithelium and stroma regions. Superpixels
depicting tissue regions are used by Bejnordi et al. (2015); Pati et al. (2020, 2021).

Feature Extraction: HistoCartography includes two types of feature extractors, i.e.,
handcrafted- and CNN-based, to encode the entity characteristics. The handcrafted feature
extractor computes entity-level morphological and topological properties. Morphological
features capture the shape and size, e.g., entity area, eccentricity, perimeter etc., and the
texture captures chromaticity using the gray-level co-occurrence matrix. Topological fea-
tures capture the local entity distribution using k-NN entity density estimation. A compre-
hensive list is provided in the Appendix. Handcrafted features can be used for training DL
algorithms (Demir et al., 2004; Zhou et al., 2019; Pati et al., 2020; Studer et al., 2021), or
concept-based post-hoc explainability (Jaume et al., 2021).
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Figure 1: Overview of HistoCartography functionalities and modules.

The deep feature extractor allows to extract CNN features by using any pre-trained
deep architecture, e.g., ResNet, MobileNet, embedded in torchvision (Marcel et al., 2010).
The module intakes patches centered around the entity and extracts features from the
penultimate layer of the architectures. If the entity is larger than the specified patch size,
then multiple patches within the entity, w/ or w/o overlapping, are processed, and the final
feature is computed as the mean of the patch-level deep features, as used in Chen et al.
(2020); Pati et al. (2020, 2021). Deep features can alternatively be extracted from the WSI
to build a feature-cube as suggested by Shaban et al. (2020); Tellez et al. (2019b).

Graph builders: HistoCartography presents two graph builders, i.e., the thresholded
k-NN and the Region Adjacency Graph (RAG). The k-NN graph builder defines the graph
topology by connecting each entity to its k-closest neighbors. Connections between dis-
tant entities beyond a threshold can be pruned to have spatial sparsity in the graph. We
recommend this builder to connect single entities, e.g., nuclei, glands. The RAG builder
connects entities using spatial adjacency, i.e., entities sharing a common boundary. It builds
a sound topology when dealing with dense segmentation maps, e.g., tissue regions. Figure 1
presents samples of cell- and tissue-graphs. Further, the module fuses the node features and
the topological distribution to render a Deep Graph Library (DGL) graph for an image.

3.2 Graph Machine Learning Module

HistoCartography includes a set of DL models, based on a GNN backbone to learn from
graph-structured tissue representations. It includes two state-of-the-art GNN layers, i.e.,
Graph Isomorphism Network (GIN) (Xu et al., 2019) and Principal Neighboorhood Aggre-
gation (PNA) (Corso et al., 2020). PNA proves to outperform GIN provided more computa-
tional resources (Dwivedi et al., 2020). HistoCartography defines cell- and tissue-graph
models, which are GNN-based abstractions to learn from biological entity-graphs. They

5



offer efficient (Pati et al., 2021), scalable (Anklin et al., 2021) and explainable (Jaume
et al., 2020, 2021) approaches to analyze histology images. Further, the library includes
models to jointly represent and learn from cell- and tissue-graphs (Pati et al., 2021). The
models in HistoCartography are organized such that they can be adapted to various
GNN backbones, tasks (e.g., regression, clustering, classification, segmentation), organs,
and entity-types. These models provide the blueprints to accelerate the development of
graph-based models in computational pathology. All the graph modules are implemented
using DGL (Wang et al., 2019), a state-of-the-art library for GNNs built around PyTorch.

3.3 Explainability Module

HistoCartography includes four post-hoc feature attribution graph explainers, that can
generate node-level saliency maps to highlight the node-wise contribution towards an output
task. Namely, the library includes two gradient-based explainers (GraphGrad-CAM (Sel-
varaju et al., 2017; Pope et al., 2019) and GraphGrad-CAM++ (Chattopadhay et al.,
2018; Jaume et al., 2021)), a node pruning-based explainer (GnnExplainer (Ying et al.,
2019)), and a layer-wise relevance propagation explainer (GraphLRP (Schwarzenberg
et al., 2019)). The saliency map can be visualized by overlaying the node importances
on the input image (see Figure 2). Alternatively, entities with high importances can be
extracted and studied independently to assess their relevance (Jaume et al., 2021).

3.4 Pipeline Runner

To facilitate an easy-to-use and human-readable development, HistoCartography in-
cludes a pipeline runner. It allows to define a series of pipeline steps along with loading
and saving utilities to reduce boilerplate code.

4. Benchmarking HistoCartography

We benchmark HistoCartography in terms of run-time and performance for various
histopathology tasks, i.e., stain normalization, tissue detection, tumor classification and seg-
mentation etc., on images of varying dimensions. The CPU and GPU compatible modules
are assessed on a single-core POWER8 processor and a NVIDIA P100 GPU, respectively.

4.1 Computational Time

Analyzing the computational time for processing a histology image is imperative. We thor-
oughly analyze the run-time of HistoCartography modules on a set of Regions of Interest
(RoIs) and WSIs. The analyses are presented in Table 2, and a comprehensive extension
is provided in Supplementary: Table 1. The preprocessing modules are observed to be the
most time-consuming. For instance, Vahadane stain normalization can take up to 3 minutes
to process a 11′000 × 11′000 image, whereas Macenko method is 2× faster for competitive
result. The implementations are computationally similar to Histolab and StainTools,
and scale linearly w.r.to image size. The cell- and tissue-graph construction take 2.5 and
4.1 seconds respectively for a 1000 × 1000 image with the following parameters. Nuclei
detection is performed on patches of size 256 × 256 with an overlap of 164 pixels. Nuclei
features are extracted from 72 × 72 patches centered around the nuclei, that are resized to
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Table 2: Run time analysis of HistoCartography core functionalities (in seconds).

Functionalities Modules Tumor RoI WSI

Size 10002 25002 50002 50002 75002 110002

P
re

p
ro

ce
ss

in
g

Vahadane Stain Norm 1.77 6.46 29.03 30.67 68.27 186.10

Macenko Stain Norm 0.80 2.86 11.19 15.98 32.37 81.72

Tissue Mask Detection - - - 1.04 2.11 8.09

Feature Cube Extraction 0.24 1.61 5.92 5.83 11.77 30.21

Cell-Graph Generation 2.51 13.33 50.26 - - -

Tissue-Graph Generation 4.14 21.30 83.66 39.18 93.26 276.71

M
L

Cell-Graph Model 0.028 0.033 0.040 - - -

Tissue-Graph Model 0.011 0.015 0.026 0.039 0.056 0.069

Hierarchical Model 0.034 0.041 0.057 - - -

E
x
p

la
in

er
s GnnExplainer 12.00 13.09 35.33 - - -

GraphGrad-CAM 0.011 0.022 0.035 0.025 0.030 0.033

GraphGrad-CAM++ 0.011 0.023 0.035 0.026 0.030 0.033

GraphLRP 0.020 0.024 0.90 0.079 0.085 0.089

224× 224 and processed by ResNet34 pretrained on ImageNet (Deng et al., 2009). Finally,
thresholded k-NN topology is built with k = 5 and a threshold distance of 50 pixels. For
the tissue-graph, SLIC is used to extract 400 superpixels per image, that are subsequently
merged to provide the tissue components. Tissue features are also extracted using ResNet34
with 144×144 size patches that are resized to 224×224. The graph buildings can be further
optimized as per the task by downsampling the input image, reducing the patch overlap,
or by using a lighter feature extractor. For extracting the feature cube representation, we
process patches of size 144× 144 resized to 224× 224 w/o overlap by pretrained ResNet34.

Tumor RoIs (TRoIs) are processed using a cell- and tissue-graph model, and the hierar-
chical cell-to-tissue graph model (Pati et al., 2021). They consist of three PNA layers with
64 hidden units followed by an additional 2-layer MLP with 128 hidden units for classifica-
tion. WSIs are processed using SegGini Anklin et al. (2021), a weakly supervised approach
basdn on tissue-graphs, which contains six GIN layers with 64 hidden units followed by a
2-layer MLP with 128 hidden units. The models process in near real-time irrespective of the
increment in the graph size. The graph explainers are based on GNNs with 3 GIN layers,
each having a 2-layer MLP with 32 hidden units, and a 2-layer MLP head. GnnExplainer
is the slowest among all as it requires to optimize a mask to explain each image.

4.2 Performance Benchmark

Table 3 benchmarks the performance of HistoCartography for classification and segmen-
tation tasks. Classification is performed on BRACS (Pati et al., 2021) and BACH (Aresta
et al., 2019) datasets to characterize breast tumors using cell-graph model, tissue-graph
model, and HACT-Net (Pati et al., 2021), and the performance is measures by weighted-F1
score. Segmentation is performed using SegGini (Anklin et al., 2021) to delineate Gleason
patterns in prostate cancer images from UZH (Zhong et al., 2017) and SICAPv2 (Silva-
Rodŕıguez et al., 2020), and the performance is measured by average Dice score. We evaluate
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Table 3: Benchmarking HistoCartography for classification and segmentation (in %).

Task Dataset Model Image Type Avg. #pixels #classes Avg. Dice Weighted F1
C

la
ss

ifi
ca

ti
o
n

BRACS CG-GNN TRoI 3.9× 106 (40×) 7 - 55.9± 1.0

BRACS TG-GNN TRoI 3.9× 106 (40×) 7 - 56.6± 1.3

BRACS HACT-Net TRoI 3.9× 106 (40×) 7 - 61.5± 0.9

BACH HACT-Net TRoI 3.1× 106 (20×) 4 - 90.7± 0.5

SICAPv2 SegGini WSI 121× 106 (10×) 6 - 62.0± 3.6

UZH SegGini TMA 9.6× 106 (40×) 6 - 56.8± 1.7

S
eg

. SICAPv2 SegGini WSI 121× 106 (10×) 4 44.3± 2.0 -

UZH SegGini TMA 9.6× 106 (40×) 4 66.0± 3.1 -

Figure 2: Qualitative explanations of sample breast RoIs: (a) Benign, (b) ADH, (c) DCIS.
(d, e, f) highlight the ten most important nuclei for the respective samples.

on various image types, i.e., tumor RoIs, tissue microarrays, and whole-slides, to highlight
the scalability of entity-graphs in HistoCartography to arbitrary image dimensions.

4.3 Qualitative Explanations

Figure 2 presents the outcome of GraphGradCAM module in HistoCartography to
interpret a cell-graph model. This module renders per-image explanations in terms of node-
level saliency maps by applying post-hoc feature attribution methods on trained cell-graph
model. Further, the cell-graph model can be interpreted by characterizing the highlighted
important nuclei per-image, as shown in Figure 2.

5. Conclusion

We introduced HistoCartography, the first open source library, to the best of our knowl-
edge, to facilitate graph analytics, i.e., graph representation, learning, and explainability,
in computational pathology. It can potentially enable researchers to develop entity-graph
based pathology workflows by leveraging the inbuilt helpers. As the library is built on
python, the deep learning researchers can seamlessly customize and integrate the func-
tionalities into their task-specific workflows. HistoCartography is constantly growing
with new functionalities and improved implementations, aiming to promote the adoption of
graph-based analysis in computational pathology.
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HistoCartography

Supplementary

HistoCartography Syntax

In this section, we introduce the syntax to implement the functionalities of HistoCartog-
raphy. Figure 1 presents code snippets to implement Vahadane stain normalization and
tissue mask detection. Figure 2 shows the syntax for building cell- and tissue-graphs. No-
ticeably, these functionalities require only ten lines of code by using HistoCartography,
which could have otherwise required a few hundred lines. In Figure 3, we present the syntax
to declare and run a cell- and tissue-graph model. All the model parameters, e.g., GNN
type, number of GNN layers, can be adapted and fine-tuned using a configuration file. Fi-
nally, Figure 4 shows code snippets to use the graph explainability modules. All explainers
follow a similar syntax with the same input and output types, making implementation and
integration straightforward.

Figure 1: Implementation of Vahadane stain normalization (left) and tissue mask detection
(right) with the Preprocessing functionalities in the HistoCartography API.

13



Figure 2: Implementation of cell-graph (left) and tissue-graph (right) generation using the
graph builders in HistoCartography.

Handcrafted Feature Extraction

In this section, we provide a comprehensive list of morphological and topological features
which can be extracted per-entity by HistoCartography. Morphological features include
shape, size and texture properties, namely, entity area, convex area, eccentricity, equivalent
diameter, euler number, length of the major and minor axis, orientation, perimeter, solidity,
convex hull perimeter, roughness, shape factor, ellipticity, roudness. Texture properties are
based on gray-level co-occurrence matrices (GLCM). Specifically, we extract the GLCM
contrast, dissimilarity, homogeneity, energy, angular speed moment and dispersion. The
topological features are based on the entity density computed as the mean and variance
of entity crowdedness. These features can be computed for the most important set of
entities highlighted by the graph explainability techniques, and utilized along with prior
pathological knowledge to interpret the trained entity-graph models.
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HistoCartography

Figure 3: Implementation of the cell- (left) and tissue- graph (right) model by using the
ML modules in the HistoCartography API

.

Figure 4: Implementation of graph explainers in HistoCartography. The most impor-
tant nodes are marked in red and the least important ones in blue.
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Table 1: Extended version of Table 2. Reported time to run HistoCartography core
functionalities. CPU-only experiments were run on a single-core POWER8 pro-
cessor, and GPU-compatible experiments were run on an NVIDIA P100 GPU.
Time is reported in seconds.

Modality Tumor RoI WSI

Size 10002 25002 50002 50002 75002 110002

P
re

p
ro

ce
ss

in
g S
ta

n
d
ar

d

Vahadane Normalization 1.77 6.46 29.03 30.67 68.27 186.10

Macenko Normalization 0.80 2.86 11.19 15.98 32.37 81.72

Tissue Mast Detection - - - 1.04 2.11 8.09

Feature Cube Extraction 0.24 1.61 5.92 6.27 11.97 29.79

C
G

Nuclei Detection 3.03 12.93 47.66 - - -

Nuclei Concept Extraction 2.95 6.52 27.94 - - -

Deep Nuclei Feature Extraction 0.10 0.30 1.28 - - -

k-NN Graph Building 0.06 0.20 1.35 - - -

T
G

Super-pixel Detection 3.32 17.84 68.99 31.50 68.99 183.54

Deep Tissue Feature Extraction 0.56 2.99 8.40 4.17 9.96 20.54

RAG Graph Building 0.12 2.04 25.6 6.33 19.98 85.73

M
L

Cell-Graph Model 0.028 0.033 0.040 - - -

Tissue-Graph Model 0.011 0.015 0.026 0.039 0.056 0.069

HACT Model 0.034 0.041 0.057 - - -

E
x
p
la

in
er

s C
G

GnnExplainer 12.00 13.09 35.33 - - -

GraphGrad-CAM 0.011 0.022 0.035 - - -

GraphGrad-CAM++ 0.011 0.023 0.035 - - -

GraphLRP 0.020 0.024 0.90 - - -

T
G

GnnExplainer 11.23 11.28 11.38 - - -

GraphGrad-CAM 0.011 0.012 0.018 0.025 0.030 0.033

GraphGrad-CAM++ 0.011 0.013 0.018 0.026 0.030 0.033

GraphLRP 0.011 0.014 0.016 0.079 0.085 0.089
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