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Abstract

We train convolutional neural networks to correct the output of fast and approximate N-body simulations at the
field level. Our model, Neural Enhanced COLA (NECOLA), takes as input a snapshot generated by the
computationally efficient COLA code and corrects the positions of the cold dark matter particles to match the
results of full N-body Quijote simulations. We quantify the accuracy of the network using several summary
statistics, and find that NECOLA can reproduce the results of the full N-body simulations with subpercent accuracy
down to k; 1 hMpc−1. Furthermore, the model that was trained on simulations with a fixed value of the
cosmological parameters is also able to correct the output of COLA simulations with different values of Ωm, Ωb, h,
ns, σ8, w, and Mν with very high accuracy: the power spectrum and the cross-correlation coefficients are within
;1% down to k= 1 hMpc−1. Our results indicate that the correction to the power spectrum from fast/approximate
simulations or field-level perturbation theory is rather universal. Our model represents a first step toward the
development of a fast field-level emulator to sample not only primordial mode amplitudes and phases, but also the
parameter space defined by the values of the cosmological parameters.

Unified Astronomy Thesaurus concepts: Cosmological parameters (339); N-body simulations (1083); Neural
networks (1933); Large-scale structure of the universe (902)

1. Introduction

In order to extract valuable information about fundamental
physics from cosmic surveys, we need theoretical predictions to
confront the collected data. On semilinear scales, analytic tools
like perturbation theory (Bernardeau et al. 2002) can be used to
provide such theoretical predictions. However, on nonlinear
scales, where a large amount of cosmological information
resides (e.g., Allys et al. 2020; Banerjee et al. 2020; Dai et al.
2020; de la Bella et al. 2020; Friedrich et al. 2020; Giri &
Smith 2020; Hahn et al. 2020; Villaescusa-Navarro et al. 2020;
Uhlemann et al. 2020; Banerjee & Abel 2021a, 2021b; Gualdi
et al. 2021a, 2021b; Bayer et al. 2021; Hahn & Villaescusa-
Navarro 2021; Kuruvilla 2021; Kuruvilla & Aghanim 2021;
Massara et al. 2021; Samushia et al. 2021; Valogiannis &
Dvorkin 2021), numerical simulations become necessary.

Cosmological simulations can be classified into two broad
categories: (1) N-body simulations that model the matter field
accounting only for the force of gravity, and (2) hydrodynamic
simulations that model not only gravity but also fluid
hydrodynamics and astrophysical effects such as the formation
of stars and feedback from black holes. While computationally
more efficient than hydrodynamic simulations, N-body simula-
tions are still expensive, and running large sets or high-
resolution simulations requires a significant computational cost
(e.g., Garrison et al. 2018; DeRose et al. 2019; McClintock
et al. 2019a, 2019b; Nishimichi et al. 2019; Zhai et al. 2019;
Villaescusa-Navarro et al. 2020; Angulo et al. 2021; Ishiyama
et al. 2021; Maksimova et al. 2021). To overcome this, several
methods have been developed that are much less

computationally demanding but come at the expense of being
as accurate (e.g., ALPT, Kitaura & Heß 2013; PThalos,
Scoccimarro & Sheth 2002; PINOCCHIO, Monaco et al. 2002;
FastPM, Feng et al. 2016; COLA, Tassev et al. 2013, 2015;
Howlett et al. 2015; EZMOCKS, Chuang et al. 2015; FlowPM,
Modi et al. 2020; PATCHY, Kitaura et al. 2014; log-normal
models, Coles & Jones 1991; Agrawal et al. 2017; HALOGEN,
Avila et al. 2015; MUSCLE-UPS, Tosone et al. 2021; QPM,
White et al. 2013; HaloNet, Berger & Stein 2018; mass-Peak
Patch, Bond & Myers 1996; Stein et al. 2019).
Being able to run fast and accurate simulations is of main

importance in cosmology in order to provide the theoretical
predictions needed to retrieve the maximum information from
cosmological surveys. In this work, we try to build a bridge
between the fast and approximate COLA simulations, and the
expensive and accurate full N-body simulations using deep
learning. Deep-learning techniques have been used more
recently to generate superresolution realizations of the full
phase-space matter distribution of the universe from the low-
resolution N-body simulations (Li et al. 2021; Ni et al. 2021).
We build on the work of He et al. (2019) and Alves de Oliveira
et al. (2020) who used neural networks to find the mapping
between the displacement field generated by the Zel’dovich
approximation to the one from fast and full N-body simula-
tions, respectively. In this work, we train convolutional neural
networks to correct the particle positions from COLA
simulation snapshots to match those of full N-body Quijote
simulations. The most important conclusion of our work is that
our model seems to be universal, i.e., once trained on
simulations with a fixed value of cosmological parameters,
our network is able to correct the particle positions of COLA
simulations with any other cosmology with surprising accur-
acy: the power spectrum is accurate at the 1% level down to
k= 1 hMpc−1.
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This paper is organized as follows. In Section 2, we describe
the simulations we use and the architecture of our neural
network model. We present the results of the trained network in
Section 3. Finally, we draw our conclusions in Section 4.

2. Methods

In this section, we describe the two types of simulations we
used, together with the model architecture and the training
procedure.

2.1. Simulations

2.1.1. Full N-body Simulations

We made use of the Quijote full N-body simulations
(Villaescusa-Navarro et al. 2020) to both train and test the
model. The simulations used in this work follow the evolution
of 5123 cold dark matter (CDM) particles (plus 5123 neutrino
particles in the case of massive neutrino cosmologies) from
z= 127 down to z= 0 in a periodic volume of ( )-h1000 Mpc1 3.
We train the network using a set of 100 simulations from the
fiducial cosmology, where the values of the cosmological
parameters are fixed to Ωm= 0.3175, Ωb= 0.049, h= 0.6711,
ns= 0.9624, σ8= 0.834, w=−1, and Mν= 0.0 eV. These
simulations are only different in the value of the initial
random seed.

We test the accuracy of our network on simulations with
very different cosmologies to the one used in the training. For
this, we made use of 100 out of 2000 simulations of the latin
hypercube contained in the Quijote simulations, where the
values of the cosmological parameters span the range
Ωmä [0.1, 0.5], Ωbä [0.03, 0.07], h ä [0.5, 0.9], ns ä [0.8,
1.2], and σ8ä [0.6, 1.0]. In these simulations, not only are the
set of values of the cosmological parameters different, but the
initial random seed varies as well. Furthermore, we test the
accuracy of our network on models with massive neutrinos and
on models where the dark energy equation of state is w≠− 1,
making use of Quijote simulations labeled n

+M , n
++M , n

+++M ,
w+, and w−1. On average, each of the Quijote simulations used
in this work required ∼500 Central Processing Unit (CPU)
hours to run. We refer the reader to Villaescusa-Navarro et al.
(2020) for further details on the Quijote simulations.

2.1.2. Approximate N-body Simulations

The fast and approximate simulations we use in this work are
run with the COmoving Lagrangian Acceleration (COLA;
Tassev et al. 2013) method, which combines second-order
Lagrangian perturbation theory (2LPT; Bernardeau et al. 2002)
on large scales with N-body methods on small scales. In
particular, we use the MG-PICOLA (Wright et al. 2017)
package. For each Quijote full N-body simulation, we run a
COLA simulation by matching (1) the number of particles, (2)
the set of values of the cosmological parameters, and (3) the
value of the initial random seed, which gives rise to an identical
initial Gaussian field for both Quijote and COLA. These
simulations require fewer time steps than the full N-body
simulations and are therefore much more computationally
efficient. Each COLA simulation is run with 30 time steps
equally spaced in log from z= 9 down to z= 0. On average,
these simulations only take 3 CPU hours to run.

2.2. Model

2.2.1. Input and Target

Let us write the displacement vector of a particle as
d= xf− xi, where xf and xi are the final (z= 0) and initial
(Lagrangian) position of the particle. Our goal is to train a
neural network to correct the positions of the particles
generated by COLA, to match them with those from a full N-
body simulation, i.e.,

( ) ( )=x xg , 1f f,Nbody ,COLA

where g is an unknown function. Note that the right-hand side of
Equation (1) should not be taken as the position of the particular
particle considered, but also of all its neighboring particles. To
preserve translational equivariance, we use displacement vectors
instead of absolute particle positions. Thus, the input to the
network is dCOLA, rather than xf,COLA. The network is trained to
learn dNbody− dCOLA= xf,Nbody− xf,COLA.

2.2.2. Model Architecture

We follow Alves de Oliveira et al. (2020) and use a V-Net-
based model (Milletari et al. 2016) that consists of two
downsampling and three upsampling layers connected in a “V”
shape. Blocks of two 33 convolutions connect the input, the
resampling, and the output layers; 13 convolutions are added
over each of these convolution blocks to realize a residual
connection. We add batch normalization after every convolu-
tion except after the first one and the last two, and leaky ReLU
activation with a negative slope of 0.01 after every batch
normalization, as well as after the first and the second-to-last
convolutions. The last activation in each residual block acts
after the summation, following Milletari et al. (2016). As in
U-Net/V-Net, at all resolution levels (with the exception of the
bottleneck levels), the inputs to the downsampling layers are
concatenated to the outputs of the upsampling layers. All layers
have a channel size of 64, except for the input and the output
that have three channels (the displacement vector along each
Cartesian coordinate), as well as those after the concatenations
(128-channeled). Finally, the input (dCOLA) is directly added to
the output, so that the network can learn the corrections to
match the target (dNbody− dCOLA). Stride-2 23 convolutions
and stride-1/2 23 transposed convolutions are used in down-
sampling and upsampling layers, respectively. A diagram of the
network architecture is shown in Figure 1.
Following Alves de Oliveira et al. (2020), we minimize a

loss function given by ( )= d
l
DL log L Le , where Lδ is the mean

squared error (MSE) loss on n(x) (the particle number in voxel x)
and LΔ is the MSE on the displacement vector d. With this loss
function, we are able to train the model to make accurate
predictions in both Lagrangian and Eulerian spaces. By
combining the two losses with logarithm rather than summa-
tion, we can account for their absolute magnitudes and trade
between their relative values; λ here serves as a weight on this
trade-off of relative losses and λ= 1 works pretty well in
our case.
The input cannot be fed into the network all at once due to

the big size of the data (3× 5123), and we thus divide it
into smaller chunks first. We crop the data into subcubes of
size 3× 1283, corresponding to a simulation box of length
250 h−1Mpc. In order to preserve the physical translational
equivariance, no padding has been used in the 33 convolutions,
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which results in an output that is smaller than the input in
spatial size. This limitation is compensated by padding the
input cubes periodically with 20 voxels on each side so that
the effective spatial size of the input becomes 3× 1683.
Furthermore, data augmentation is implemented to enforce the
equivariance of displacement fields under rotational and parity
transformations. We use the Adam optimizer (Kingma &
Ba 2017) with a learning rate of 0.0001, β1= 0.9, and
β2= 0.999, and reduce the learning rate by half when the loss
does not improve for 3 epochs. The model is trained on 70
realizations for 100 epochs and the remaining realizations are
used for validation (20) and final testing (10). From now on,
we will refer to this model as NECOLA, from Neural
Enhanced COLA, in order to avoid any confusion with the
model by Alves de Oliveira et al. (2020), which uses
Zel’dovich simulations as input and a different value of λ.
Note that the model architecture of NECOLA is the same as
that of Alves de Oliveira et al. (2020).

2.3. Benchmark Models

In order to compare the predictions of our model, we have
used four different benchmarks:

1. COLA: This benchmark represents the results of running
the COLA simulation itself.

2. Zel’dovich Approximations (ZA): In this case, the
positions of the particles at z= 0 are computed using
the Zel’dovich approximation.

3. mod(ZA): This benchmark represents our model but
trained on ZA simulations as input and correcting the
output to match the target N-body simulations.

4. Neural Network(Zel’dovich Approximations) ([NN(ZA]):
This benchmark is the model developed by Alves de
Oliveira et al. (2020), which takes ZA simulations as
input and corrects the output to match full N-body
simulations. We refer the reader to Alves de Oliveira
et al. (2020) for further details on this model.

3. Results

In this section, we investigate the performance of our model.
We first make use of several summary statistics to quantify the
accuracy of our model for simulations with the same
cosmology as the one used to train the network. Then, we
investigate how well does our network extrapolate to other
cosmological models.

3.1. Fiducial Cosmology

We first present the results of testing the network on
simulations that have the same cosmology as the one used for
its training.

3.1.1. Visual Comparison

Before quantifying the accuracy of the network using
summary statistics, we perform a visual inspection of its
output. In Figure 2, we show the distribution of matter at z= 0
from the full N-body simulation (top row), the COLA
simulation (middle row), and NECOLA (bottom row).
While looking at large scales, the agreement between the

three methods is really good, but when we look at small scales,
some differences are visible. In the case of COLA, the output is
more diffuse and halos do not exhibit a high concentration in
their centers, in contrast to the corresponding N-body
simulation. On the other hand, NECOLA produces much
sharper results, clearly defining the positions and boundaries of
dark matter halos.

3.1.2. Power Spectrum

The power spectrum is defined as the Fourier transform of
the two-point correlation function, which measures the excess
probability of finding a pair of random galaxies (or points) at a
given separation compared to the one from a random
distribution. The power spectrum is one of the most important
summary statistics used in cosmology because for Gaussian
density fields (like the one our universe resembles on large,

Figure 1. The diagram shows the architecture of our model, NECOLA. The top-leftmost cube (orange) represents the input and the top-rightmost cubes (orange and
purple) represent the output. The cubes in yellow and green represent various multichannel feature maps. The number inside each cube represents the size of the
feature map while the number on the top of each cube represents the number of channels in the map. See Section 2.2.2 for more details on the convolution operations.
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linear scales), it fully characterizes the statistical properties of
the field.

In the top-left panel of Figure 3, we show with a solid black
line the average power spectra from 10 Quijote simulations of
the test set. The dotted blue line shows the average power
spectrum from the corresponding COLA simulations, while the
green dotted–dashed line outputs the average power spectrum
of Zel’dovich-evolved simulations. The solid yellow and
dashed red lines show the average power spectrum from mod
(ZA) and NECOLA, respectively. As can be seen, the worst
model is the one that only employs the Zel’dovich approx-
imation, followed by the COLA simulation.

In order to better visualize the differences between the output
of the N-body simulation and the networks, we plot in the
middle-left panel of Figure 3, the transfer function, defined as

( )
( )
( )

( )=T k
P k

P k
, 2

pred

target

where Ppred(k) and Ptarget(k) are the average matter power
spectra of the predictions and the target density fields,
respectively. Values close to one indicate a better agreement
between the prediction and the target. As can be seen, both
networks achieve a subpercent accuracy on the power spectrum
down to k= 1 hMpc−1, though the results obtained from
NECOLA are slightly more accurate. We note that in the case
of the Quijote simulations, it does not make sense to look into
much smaller scales than k ∼ 1 hMpc−1, as those are not
numerically converged in the simulations due to mass
resolution (Villaescusa-Navarro et al. 2020).
We note that there exists state-of-the-art power spectrum

emulators such as COSMIC EMU (Heitmann et al. 2009, 2010;
Lawrence et al. 2010), FRANKEN EMU (Heitmann et al.
2014), and MIRA TITAN (Heitmann et al. 2016; Lawrence
et al. 2017) that are computationally faster and more accurate in
estimating the power spectrum but are not used in our

Figure 2. The figure shows the cold dark matter density fields for the target N-body simulations (top), the input/benchmark COLA simulations (middle), and the
predictions of our model (bottom), at a scale of 1000 Mpch−1 (left column), 250 Mpch−1 (middle column), and 50 Mpc h−1 (right column). Each figure is a zoomed-in
image of the white box in the figure on its left.
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comparisons as the primary objective of our work is to provide
a field-level emulator itself and not a power spectrum emulator.

3.1.3. Cross-correlation Coefficient

In Fourier space, every mode can be written as δ(k)= Ae i θ,
where A and θ are the mode amplitude and phase, respectively.
When using the power spectrum, we are effectively comparing
how well the amplitude of the modes from the network and the
simulation agree. However, that statistic neglects the correla-
tions in mode phases, which are very important in the nonlinear
regime. To quantify the correlations between the mode phases,
we use the cross-correlation coefficient, r, defined as

( )
( )

( ) ( )
( )= ´

r k
P k

P k P k
, 3

pred target

pred target

where the numerator is the cross-power spectrum between the
predictions and the target, and the denominator contains the
autopower spectrum of the prediction and the target. Values of
r close to one indicate a very good correlation in mode phases.
In the bottom-left panel of Figure 3, we show the cross-
correlation coefficient averaged over the testing set for the
different cases considered. We find that NECOLA achieves the
highest accuracy, being within 1% down to k= 1 hMpc−1.

3.1.4. Bispectrum

The third statistic that we consider to quantify the agreement
between the full simulations and the network predictions is the
bispectrum, defined as

( ) ( ) ( )d d d dá ñ º k k k kB , , , 4k k k D 123 1 2 31 2 3

where δ(k) is the overdensity in the Fourier space and
k123≡ k1+ k2+ k3.
Differently to the power spectrum, the bispectrum quantifies

the correlation between triplets of modes in closed triangles.
For Gaussian density fields, this quantity is zero, and therefore,
its amplitude and shape capture information about the non-
Gaussianities in a given field. In the top-right panel of Figure 3,
we show the bispectrum for k1= 0.15 hMpc−1 and k2= 0.25
hMpc−1 as a function of the angle between k1 and k2, θ. On this
scale, we cannot see large differences, besides the fact that the
Zel’dovich approximation underestimates the amplitude of the
bispectrum, as expected. In the bottom-right panel of Figure 3,
we show the ratio between the different bispectra to the
bispectrum of the N-body simulation. We find that both neural
networks give very accurate results, although NECOLA is
slightly more accurate. The Appendix also shows a comparison
of the results from various models on a single realization in the
testing set.
The above values of k1 and k2 are chosen in order to probe

the nonlinear scales of the universe at which the non-Gaussian
signatures in the mass distribution (induced by nonlinear
gravitational instability) are imprinted. The model has been
evaluated at other values of k1 and k2 as well, and performs
equally well.

3.2. Model Extrapolation

We now explore how our model extrapolates to cosmologies
different from the one used to train the model.
We first test the extrapolation properties of the model on the

parameters Ωm, Ωb, h, ns, and σ8 by using 100 simulations of
the Quijote latin-hypercube set. We emphasize that for the

Figure 3. The left plot shows the 3D-matter power spectrum (top), the transfer function (middle), and the cross-correlation coefficient (bottom), while the right plot
shows the bispectrum for k1 = 0.15 hMpc−1 and k2 = 0.25 hMpc−1 (top) and the bispectrum ratio (bottom) for the target N-body simulations (solid black), the COLA
simulations (dotted blue), the ZA approximations (dashed–dotted green), mod(ZA) (solid yellow), and NECOLA (dashed red). As can be seen, NECOLA outperforms
all benchmarks in all cases.
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simulations in this set, the values of these five cosmological
parameters are varied at the same time, together with the value
of the initial random seed. For each of these simulations, we
run its COLA counterpart and input it to the network, which
corrects the positions of the particles.

For each cosmology, we compute the power spectrum of the
output of NECOLA and of the full N-body Quijote simulation.
In Figure 4, we show in the middle panel, the transfer function
together with the cross-correlation coefficient. As can be seen,
NECOLA is able to correct the output of the COLA
simulations in all cases with surprising accuracy: below ;1%
down to k= 1 hMpc−1.

Next, we repeat the same exercise but using NN(ZA) and
show the results in the left panel of Figure 4. As can be seen,
the network trained on COLA snapshots exhibits much
stronger extrapolation features than the one trained on
Zel’dovich displacements.

We now investigate if NECOLA is also able to correct
COLA outputs for simulations with massive neutrinos. We
emphasize that no simulations used for training the model
contain massive neutrinos. For this, we made use of
simulations from the n

+M , n
++M , and n

+++M Quijote sets,
corresponding to cosmologies with sums of the neutrino
masses equal to 0.1, 0.2, and 0.4 eV. In these simulations, we
have both dark matter and neutrino particles. From each set, we
take 10 simulations and run their COLA counterpart. Next, we
input to NECOLA the displacement vectors of the dark matter

particles of the COLA simulation, and NECOLA outputs the
corrected positions of the dark matter particles for these
massive neutrino models.
In the right panel of Figure 4, we show the results of this

calculation with yellow lines. As can be seen, NECOLA is able
to correct the positions of the dark matter particles such that
their power spectrum and cross-correlation coefficient agree
with the full N-body calculation below 1% down to k= 1
hMpc−1. We note that although our network only works with
the cold dark matter field, assuming a linear neutrino field
correlated with the initial Gaussian field, it will for most of the
cases, give very accurate predictions for the total matter field
(Massara et al. 2014). On the other hand, the cold dark matter
field is the one responsible for the abundance and clustering of
dark matter halos and galaxies (Castorina et al. 2014;
Villaescusa-Navarro et al. 2014). In Giusarma et al. (2019),
the authors proposed a deep-learning-based Convolutional
Neural Network (U-Net) model to generate simulations with
massive neutrinos from standard ΛCDM simulations without
neutrinos. Their model was able to reproduce the three-
dimensional spatial distribution of matter up to scales of
0.7 hMpc−1 (see Figure 4 of Giusarma et al. 2019), thus
emulating the effect of massive neutrinos on the large-scale
structure. It is interesting to note that NECOLA gives more
accurate results than the model by Giusarma et al. (2019) at all
scales, capturing the effects of nonlinear evolution.

Figure 4. We test the NN(ZA) and NECOLA models, which are trained on simulations with a fixed cosmology, on models with very different values of the
cosmological parameters. The left and middle panels show the results when using 100 simulations of the Quijote latin hypercube (that varies Ωm, Ωb, h, ns, and σ8),
while the right panel displays the results for cosmologies with massive neutrinos and a dark energy equation of state different to −1. The red lines represent the median
while the blue lines represent the 16th (and 84th) percentile of the predictions. As can be seen, NECOLA not only performs better than NN(ZA), but it is surprisingly
accurate all the way down to k ∼ 1 hMpc−1. Besides, it also works for models with massive neutrinos and w ≠ −1. The curve with the largest difference in the
neutrino cross-correlation coefficient corresponds to a model with Mν = 0.4 eV.

Table 1
Computational Cost Associated with Running a Full N-body Simulation, a COLA Simulation, NN(ZA), and NECOLA

Simulation N-body (QUIJOTE) Fast (COLA) NECOLA (PyTorch-GPU) NN(ZA)

CPU-/GPU-sec 106 104 125 59

Note. Note that in the cases of NECOLA and NN(ZA), we report the GPU wall time.
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Lastly, we study the performance of our model for
cosmologies with values of the dark energy equation of state,
w, different from −1. For this, we made use of the 10
simulations of the w+ and w− Quijote sets, which have a value
of w equal to −0.95 and −1.05, respectively. For each of these
simulations, we run their COLA counterpart and compute the
displacement vectors. We then input those into the network that
returns the corrected positions of the dark matter particles. In
the right panel of Figure 4, we show with green lines the results
of computing the transfer function and cross-correlation
coefficient between the output of the network and the full N-
body simulations. As can be seen, in this case as well,
NECOLA is able to correct the output of the cosmologies that it
has never seen before.

3.3. Computational Cost

A typical N-body simulation takes roughly 500 CPU hours
to run, or ∼106 CPU seconds, while a single COLA simulation
takes around 3 CPU hours or ∼104 CPU seconds. We run our
Convolutional Neural Net (CNN) model on 1 Graphics
Processing Unit (GPU) (320 NVIDIA P100-16GB) using
PyTorch (Paszke et al. 2019) and it takes ∼125 GPU seconds
to run. A runtime comparison of the target, benchmark, and our
model is shown in Table 1. Thus, in practice, the main
limitation of our model comes from the computational cost
associated with running COLA simulations itself. Despite this,
our model allows us to speed up the computational cost by a
factor of 100.

4. Summary

Providing accurate theoretical predictions is necessary in
order to extract the maximum amount of information from
upcoming cosmological surveys. The computational cost of
running full N-body simulations is currently too expensive to
carry out standard analysis such as Markov Chain Monte Carlo.
On the other hand, fast simulations can reduce the computa-
tional cost by orders of magnitude at the expense of sacrificing
accuracy.

In this work, we have shown that we can use neural networks
to correct the output of approximate simulations to match full
N-body simulations from the Quijote suite. Our model, coined
NECOLA, from Neural Enhanced COLA, has been trained on
simulations with a fixed value of the cosmological parameters.
We have shown that our model is not only able to correct the
output of COLA simulations run with the same cosmology as
the one used to train the network, but is also able to correct
COLA simulations that have very different values of the
parameters Ωm, Ωb, h, ns, σ8, Mν, and w. This surprising feature
of our network indicates that the correction from the output of
COLA to a full N-body might be universal, i.e., independent of
cosmology.

This may have important consequences for perturbation
theory studies that are able to accurately model the linear and

perturbative regime but fail on nonlinear scales. Our work
indicates that a generic, cosmology-independent correction
may be feasible, at least in the case of the power spectrum.
Our network can be used as a field-level emulator for

covariance estimation, likelihood-free analysis, detecting
features in the cosmic web, and to explore not only the initial
mode amplitudes and phases (Jasche & Wandelt 2013a), but
also the cosmological parameter space (Jasche &
Wandelt 2013b).
We note however that further work is needed to claim that

our model is precise for statistics other than the power spectrum
and cross-correlation function when using it in extrapolation. In
future work, we will quantify the accuracy of our network on
other summary statistics like bispectrum, halo mass function,
etc. Additional work is also needed to incorporate velocities
into this framework, which will allow performing studies in
redshift space. Besides, further work is needed to quantify the
accuracy of NECOLA at redshifts other than the one used for
training, together with the universality of the network under
changes of simulation resolution.
Overall, this work opens an interesting direction in the

development of fast and generalized field-level emulators
needed to maximize the scientific return of upcoming
cosmological missions.
The trained models, predictions, and statistics extracted from

the testing and extrapolation sets are hosted under the public
GitHub repository https://github.com/neeravkaushal/cola-to-
nbody.git and the model has been trained using the map2map
code https://github.com/eelregit/map2map.git.

The Quijote simulations used in this work are publicly
available at https://github.com/franciscovillaescusa/Quijote-
simulations.git. The COLA simulations have been run using
the MG-PICOLA code, publicly available at https://github.
com/HAWinther/MG-PICOLA-PUBLIC.git. We acknowl-
edge that our work has been performed using the Princeton
Research Computing resources at Princeton University which
is a consortium of groups led by the Princeton Institute for
Computational Science and Engineering (PICSciE). E.G.
thanks Michigan Space Grant Consortium for their support.
The work of F.V.-N has been supported by the WFIRST
program through NNG26PJ30C and NNN12AA01C. F.V.-N
and Y.L. are supported by the Simons Foundation. Research
reported in this publication was supported in part by funding
provided by the National Aeronautics and Space Administra-
tion (NASA), under award No. NNX15AJ20H, Michigan
Space Grant Consortium (MSGC).

Appendix
Predictions on a Single Realization

To see how well our model performs on a single realization,
the performance of various models on a single realization of the
testing set is compared in Figure 5. The results averaged over
the entire testing set are shown in Figure 3.
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