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This paper proposes a test for the null of sphericity in the panel data model. We proposed
a novel multivariate sign test for sphericity based on sample splitting and leave out
method in the panel data model. The limiting distribution of the proposed test statistic
is derived under the null and alternative hypothesis. Simulation studies also demonstrate
the advantage of our method.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Testing for sphericity is an important work in the fixed effects panel data model, see an overview in Baltagi et al.
2011). Using the Random Matrix Theory-based approach of Ledoit and Wolf (2002), Baltagi et al. (2011) propose a test
or the null of sphericity of the remainder disturbances with large dimension N and sample sizes T . To consider the trace of
higher-order of the covariance matrix, Mao (2014) extends a new sphericity test recently developed by Fisher et al. (2010)
to the fixed effects panel data model. Both the above two methods need the normality assumption of the disturbances.
So Baltagi et al. (2015) extend Chen et al. (2010)’s test and proposed a new test without assuming normality of the
disturbances. However, the above three tests can only be used in fixed effects panel data model and perform poorly if
the disturbances are from the heavy-tailed distributions, such as the multivariate t-distribution, the multivariate mixture
normal distributions.

In this article, we consider testing for sphericity in a more general model—panel data model. We allow the slope
parameters βi to vary across i. Under the panel data model, there are two main drawbacks of the above three test
procedures. First, if we directly use the above three test procedures in the panel data model, there would be a non-
negligible bias term in their test statistics, even under the normality assumption. It is not surprised because the coefficient
βi is only

√
T -consistent in the panel data model, while β is

√
NT -consistent in the fixed effect panel data model. Second,

the above three tests perform poorly if the disturbances are from the heavy-tailed distributions, such as the multivariate t-
distribution, the multivariate mixture normal distributions. Both the above two distributions do not satisfy the distribution
Assumption 1 in Baltagi et al. (2015), see Appendix 3 in Zou et al. (2014).
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To overcome the above two issues, we adopt the multivariate-sign method to construct a robust test for sphericity in
he panel data model. The multivariate sign- and rank-based methods are very popular in the classic statistics (Oja, 2010).
n an important work, Zou et al. (2014) proposed a multivariate-sign-based high-dimensional test for sphericity for the
aw data. They show that the multivariate sign based methods also are very robust and effective in handling non-normal
ata in high-dimensional settings. A natural method to extend Zou et al. (2014)’s method is replacing the disturbances
ith its estimators. However, there would be a non-negligible bias term in the corresponding testing statistics when the
imension N gets larger, which will limit the scope of application. So we adopt the sample-splitting and leave-out method
nd propose a novel test procedure for the sphericity in the panel data model. In the theoretical analysis, we show that
he proposed test statistic is not biased under the null hypothesis. The asymptotic distributions of this test statistic under
he null and alternative hypothesis are derived. Simulation results suggest that the proposed tests outperform the other
ests under the heavy-tailed distributions.

The rest of the article is organized as follows. We introduce the proposed test for the panel data model in Section 2.
he numerical performance of the proposed test is demonstrated in Section 3. Finally, we relegate the technical proofs to
he Appendix.

. Our method

Here we state the problem of testing for sphericity in the panel data model. We consider the following heterogeneous
anel data model:

yit = x⊤

it βi + uit , i = 1, . . . ,N, t = 1, . . . , T , (2.1)

here i indexes the cross-sectional units and t the time series. yit is the dependent variable, and xit is the exogenous
egressors of dimension p×1 with slope parameters βi that is allowed to vary across i. The error uit is allowed to be cross-
ectionally dependent but is uncorrelated with xit . Let xi = (xi1, . . . , xiT )⊤ and yi = (yi1, . . . , yiT )⊤. Let ut = (u1t , . . . , uNt )⊤

nd assume that ut ’s are i.i.d. over time t . And the covariance matrix of ut is Σ. The null hypothesis of interest is sphericity:

H0 : Σ = σ 2IN , vs H1 : Σ ̸= σ 2IN . (2.2)

he alternative hypothesis allows cross-sectional dependence or heteroskedasticity or both. To the best of our knowledge,
here are no methods of testing sphericity for the panel data model.

For testing the sphericity of the variance–covariance matrix of the disturbances, Zou et al. (2014) proposed a test
tatistic based on the multivariate-sign method, i.e.

TZ =
2N

T (T − 1)

∑
1≤t1<t2≤T

(U(ut1 )
⊤U(ut2 ))

2
− 1.

They showed that the above procedure has good size and power for a wide range of dimensions, sample sizes and
distributions. So, building upon the work of Zou et al. (2014), a natural idea is replacing the disturbances ut with its
estimators ût = (ûi1, . . . , ûiN ) where ûit = yit − xit β̂i and β̂i is the corresponding least-square estimator of βi, i.e.

T̃Z =
2N

T (T − 1)

∑
1≤t1<t2≤T

(U(ût1 )
⊤U(ût2 ))

2
− 1.

However, due to the only
√
T -consistency of the estimator β̂i and the non-independence between the two estimators ût1

nd ût2 , there would be a non-negligible bias term in T̃Z when the dimension N gets larger than T . So to avoid this bias
erm in T̃Z , we adopt the sample-splitting and leave-out method in our new test procedure.

Define the set At1t2 = {1, . . . , T } \ {t1, t2}. And the first half subset of At1t2 is A1t1t2 , the second half subset of At1t2 is
2t1t2 . So |A1t1t2 | = |A2t1t2 | =

T−2
2 and A1t1t2 ∩A2t1t2 = ∅. β̂1k(t1,t2) is the corresponding least square estimator of βk based on

he sample {(xkt , ykt )}t∈A1t1t2 , k = 1, . . . ,N , respectively. β̂2k(t1,t2) is the corresponding least square estimator of βk based
n the sample {(xkt , ykt )}t∈A2t1t2 , k = 1, . . . ,N , respectively. We propose the following test statistic

JS =
2N

T (T − 1)

∑
1≤t1<t2≤T

(Ũ⊤

t1,t2 Ũt2,t1 )
2
− 1

where Ũt1,t2 = U(ũt1,t2 ), Ũt2,t1 = U(ũt2,t1 ). ũt1,t2 = (ũ1t1 , . . . , ũNt1 ), ũkt1 = ykt1 − x⊤

kt1
β̃1k(t1,t2), ũt2,t1 = (ũ1t2 , . . . , ũNt2 ),

ũkt2 = ykt2 − x⊤

kt2
β̃2k(t1,t2). In the new test statistics JS , Ũt1,t2 are independent of Ũt2,t1 . So the expectation of JS would be

negligible to the standard deviation of JS , i.e. E(JS) = o(
√
var(JS)), under the null hypothesis. And then there would be no

bias term in our test statistics under the null hypothesis.
2
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To facilitate our analysis, we require the following assumptions:

A1) The error vectors {u1, . . . uT } are independently and identically distributed (i.i.d.) from the N-variate mean zero
elliptical distribution with probability density function:

det(Σ)−1/2gN (∥Σ−1/2u∥), (2.3)

where ∥u∥ = (uTu)1/2 is the Euclidean length of the vector u, Σ ∈ RN×N is the symmetric positive define scatter
matrix. The moments E(r−k

t ) for k = 1, . . . , 4 exist for large enough N where rt = ∥ut∥. And for k = 2, 3, 4,
E(r−k

t )/(E(r−1
t ))k → dk ∈ [1, +∞) as N → ∞ where dk are constants.

A2) The regressors xit , i = 1, . . . ,N , t = 1, . . . , T are independent of the idiosyncratic disturbances uit , i = 1, . . . ,N ,
t = 1, . . . , T . The regressors xit have finite fourth moments.

The above assumptions are very common. Assumption (A1) is the same as Assumption 1 in Zou et al. (2014). Assumption
(A2) is the same as Assumption 2 in Baltagi et al. (2015).

Theorem 2.1. Under Assumptions (A1)–(A2) and H0, as N → ∞ and T → ∞, we have JS/σT1 →
d N(0, 1), where σ 2

T1 =

4/T (T − 1).

According to Theorem 2.1, we will reject the null hypothesis at the significant level α if JS/σT1 > zα where zα is the
1 − α quantile of the standard normal distribution N(0, 1).

Next, we consider the asymptotic distribution of JS under the alternative H1 : ΛN = IN + DN,T where Λ =
1

tr(Σ)Σ.
efine σ 2

T2 = σ 2
T1 + T−2N−2

{8Ntr(D2
N,T ) + 4tr2(D2

N,T )} + T−1N−28tr(Λ4
N ).

heorem 2.2. Suppose that T tr(D2
N,T )/N = O(1). Under H1 and (A1)–(A2), as N → ∞ and T → ∞,we have {JS −

N−1tr(D2
N,T )}/σT2 →

d N(0, 1),

According to Corollary 1 in Zou et al. (2014), our proposed test is consistent. If T tr(D2
N,T )/N → ∞, P(JS/σT1 > zα) → 1.

In the fixed effect panel data model, Baltagi et al. (2015) showed that the power function of Ju is the same as Chen et al.
(2010). By Corollary 2 in Zou et al. (2014), our test JS is asymptotically as efficient as Ju under the normal distributions.

3. Simulation

We consider the data generating process used in Pesaran et al. (2008), which is specified as

yit = αi +

p∑
l=1

xlitβi + uit , i = 1, . . . ,N, t = 1, . . . , T , (3.4)

where αi ∼ N(0, 1), βi ∼ N(1, 0.04). The covariates are generated as

xlit = 0.6xlit−1 + vlit , i = 1, . . . ,N, t = −50, . . . , T , l = 2, . . . , p,

with xli,−51 = 0, where vlit ∼ N(0, ζ 2
li /(1 − 0.62)), ζ 2

li ∼ χ2(6)/6. Here we choose p = 3. We consider five models for the
errors uit :

(I) Multivariate normal distribution: ut ∼ N(0,Σ);
(II) ut = Σ1/2zt , zt = (z1t , . . . , zNt ), zit ∼ t(5)/

√
5/3;

(III) ut = Σ1/2zt , zt = (z1t , . . . , zNt ), zit ∼ (χ2
4 − 4)/

√
8;

(IV) Multivariate t-distribution: ut ∼ tN (0,Σ, 4);
(V) Multivariate mixture normal distribution: ut ’s are generated from γNN (0,Σ) + (1 − γ )NN (0, 9Σ), denoted by

MNN,γ ,9(0,Σ); γ is fixed to be 0.8.

First, to show the necessity of sample-splitting and leave-out, we summarize the simulation results using the mean–
standard deviation-ratio (MDR) E(T )/

√
var(T ) under the null hypothesis, Σ = IN . Because the explicit forms of E(T ) and

var(T ) are difficult to calculate, we estimate them by simulation. Table 1 shows the MDR of T̃Z and JS with different sample
sizes and dimensions. We observe that the MDR of JS is close to zero, while the MDR of T̃Z is significantly larger than zero.
So there is a non-negligible bias term of T̃Z .

Next, we choose Σ = (0.4|i−j|)1≤i,j≤N under the alternative hypothesis. We compare our test with the tests proposed
by Baltagi et al. (2011) (abbreviated as JBFK ), Mao (2014) (abbreviated as JM ), and Baltagi et al. (2015) (abbreviated as Ju).
Table 2 summarizes the results of each test. Our test JS also controls the empirical sizes very well in all cases. However,
the empirical sizes of JBFK and Ju are larger than the nominal level in all cases. It is not surprising because there is a
non-negligible bias term in their test statistics in the panel data model. And the JM test also cannot control the empirical
sizes, even under the normal distributions — Scenario (I). We also proposed a size-corrected power comparison for these
tests. In the size-corrected power comparison procedure, the critical values of each test are calculated by simulation
under the null hypothesis. In Scenarios (I)–(III), the power of our test JS is a little less than JBFK and Ju. However, our test
JS outperforms the other three tests in Scenarios (IV)–(V). It shows that our test procedure is very robust and efficient in
testing sphericity in the panel data model.
3
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able 1
he mean–standard deviation-ratio (MDR) of tests under scenarios (I)–(V).

T = 30 T = 50

JS T̃Z JS T̃Z
N 50 100 200 50 100 200 50 100 200 50 100 200

(I) 0.03 0.04 0.03 1.2 2.24 4.48 −0.08 −0.02 0.01 0.55 1.22 2.48
(II) −0.04 −0.06 0.06 1.4 2.52 4.83 0.02 −0.04 −0.02 0.8 1.36 2.64
(III) −0.06 0.05 −0.01 1.31 2.61 4.84 −0.04 0.02 −0.01 0.82 1.48 2.66
(IV) −0.04 −0.03 0.02 1.87 3.70 6.80 0.03 0.01 0.01 1.18 2.19 4.39
(V) 0.06 0.01 −0.01 2.03 3.91 7.75 −0.01 −0.04 −0.07 1.17 2.34 4.70

Table 2
Sizes and size adjusted power of tests for panel data model under scenarios (I)–(V).

Size Size Adjusted Power

T = 30 T = 50 T = 30 T = 50

N 50 100 200 50 100 200 50 100 200 50 100 200

(I)

JS 5.3 4.5 5.9 5.5 5.5 6.3 78.6 83.4 83.7 99.8 99.9 100
JBFK 11.1 15.6 29.3 7.7 8.7 12.5 97.4 98.6 98.4 100 100 100
Ju 10.5 15.5 30 7.2 8.6 12.4 96.1 98.3 98.2 100 100 100
JM 3.9 8.5 7.5 5.1 5.5 3.6 53.1 34.2 26.6 97.1 87.3 77.2

(II)

JS 5.7 3.9 4.9 5.0 5.7 4.6 77.2 80.2 83.4 99.7 100 100
JBFK 58.1 68.8 83.3 56.9 64.9 73.5 54.6 68.1 70 99.2 99.9 100
Ju 22.3 27.4 41 13.8 15.5 19 88.9 93.7 93.8 100 100 100
JM 30.1 32.5 26.3 42.1 40.5 42.6 20.1 14.5 5.6 4.4 8.8 15.9

(III)

JS 5.1 5.8 5.4 5.7 5.4 4.5 77.8 82.5 84.7 100 100 100
JBFK 48.4 57.1 73.7 48 49.9 58.5 88.6 93.6 95.4 100 100 100
Ju 18.1 22 39.6 11.5 13.3 18.3 92.1 95.5 96.9 100 100 100
JM 15.2 12.9 10.4 29.2 23.6 17.5 47.8 38.7 31.1 86.5 70.2 54.1

(IV)

JS 5.8 4.8 4.7 5.6 4.8 4.8 66 69.6 73.1 98.9 99.7 99.7
JBFK 100 100 100 100 100 100 4.8 3.5 5.1 6 5.1 5.4
Ju 25 39 56.4 18.9 25.6 36.3 53 32.6 10.2 86.1 83 55.2
JM 99.2 97.6 100 100 100 100 5.3 4.7 4.6 12.1 7.6 6.3

(V)

JS 5.5 5.5 4.5 4.5 4.2 5.0 60.9 59.7 64.2 98.7 99.6 99.9
JBFK 99.9 99.7 99.9 100 100 100 17.5 12.4 8.1 44.5 24.4 16.2
Ju 28.3 41.2 61.7 19 23.8 34.1 51.3 40.4 32.5 90.3 87.6 84.9
JM 100 98 95 100 100 100 3.3 12.1 13.3 17.1 6.6 7.6
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ppendix. Proof of theorems

Define Uti = U(uti ), rti = ∥uti∥, ẽt1,t2 = ũt1,t2 − ut1 . First we restate the Lemma 4 in Zou et al. (2014).

Lemma A.1. Suppose that U is uniformly distributed on the unit N sphere. For any N × N symmetric matrix A, we have

E(UTAU)2 = {tr2(A) + 2tr(A2)}/(N2
+ 2N),

E(UTAU)4 = {3tr2(A2) + 6tr(A4)}/N(N + 2)(N + 4)(N + 6).

Second, we restate Lemma 3 in Zou et al. (2014).

emma A.2. Under H0, as N → ∞ and T → ∞, { N
T (T−1)

∑
t1 ̸=t2

(UT
t1Ut2 )

2
− 1}/σs0 →

d N(0, 1), where σ 2
s0 = 4(N − 1)/T (T −

1)(N + 2).

Below we will propose the following lemma, based on which we can directly obtain the proof of Theorem 3.1.
4
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L
emma A.3. Under the conditions given in Theorem 2.1, we have

JS =
N

T (T − 1)

∑
t1 ̸=t2

(UT
t1Ut2 )

2
− 1 + op(σs0).

Proof of Lemma A.3.

Ũt1,t2 = U(ut1 + r−1
t1 ẽt1,t2 )(1 + 2r−1

t1 UT
t1 ẽt1,t2 + r−2

ti ẽTt1,t2 ẽt1,t2 )
−1/2

.
= U(ut1 + r−1

t1 ẽt1,t2 )(1 + γt1,t2 )
−1/2,

where γt1,t2 = 2r−1
t1 UT

t1 ẽt1,t2 + r−2
t1 ẽTt1,t2 ẽt1,t2 . And

E(r−1
t1 UT

t1 ẽt1,t2 )
2

= O(N−1)tr{E(Ut1U
T
t1 )E(ẽt1,t2 ẽ

T
t1,t2 )} = O(N−1T−1),

E(r−2
t1 ẽTt1,t2 ẽt1,t2 )

2
= E(r−4

t1 )E(ẽTt1,t2 ẽt1,t2 )
2

= O(N−1T−2),

due to the fact that E(r−2
t1 ) = O(N−1), E(ẽt1,t2 ẽ

T
t1,t2 ) = O(NT−1) and E(r−4

t1 ) = O(N−2). Thus, we have γt1,t2 = Op(N−1/2T−1/2).

So

JS =
N

T (T − 1)

∑
t1 ̸=t2

(ŨT
t1,t2 Ũt2,t1 )

2
− 1

=
N

T (T − 1)

∑
t1 ̸=t2

(UT
t1Ut2 )

2
− 1 +

N
T (T − 1)

∑
t1 ̸=t2

(UT
t1Ut2 )

2
{(1 + γt1,t2 )

−1(1 + γt2,t1 )
−1

− 1}

+ 2
N

T (T − 1)

∑
t1 ̸=t2

r−1
t2 UT

t2Ut1U
T
t1 ẽt2,t1 (1 + γt1,t2 )

−1(1 + γt2,t1 )
−1

+ 2
N

T (T − 1)

∑
t1 ̸=t2

r−1
t1 UT

t1Ut2U
T
t2 ẽt1,t2 (1 + γt1,t2 )

−1(1 + γt2,t1 )
−1

+
N

T (T − 1)

∑
t1 ̸=t2

r−2
t2 UT

t1 ẽt2,t1 ẽ
T
t2,t1Ut2 (1 + γt1.t2 )

−1(1 + γt2,t1 )
−1

+
N

T (T − 1)

∑
t1 ̸=t2

r−2
t1 UT

t2 ẽt1,t2 ẽ
T
t1,t2Ut1 (1 + γt1,t2 )

−1(1 + γt2,t1 )
−1

+ 2
N

T (T − 1)

∑
t1 ̸=t2

r−1
t1 r−1

t2 UT
t2 ẽt1,t2 ẽ

T
t1,t2Ut2 (1 + γt1,t2 )

−1(1 + γt2,t1 )
−1

+ 2
N

T (T − 1)

∑
t1 ̸=t2

r−1
t1 r−1

t2 UT
t1 ẽt2,t1 ẽ

T
t2,t1Ut1 (1 + γt1,t2 )

−1(1 + γt2,t1 )
−1

+ 2
N

T (T − 1)

∑
t1 ̸=t2

r−1
t1 r−2

t2 UT
t1 ẽt2,t1 ẽ

T
t2,t1 ẽt1,t2 (1 + γt1,t2 )

−1(1 + γt2,t1 )
−1

+ 2
N

T (T − 1)

∑
t1 ̸=t2

r−2
t1 r−1

t2 UT
t2 ẽt1,t2 ẽ

T
t1,t2 ẽt2,t1 (1 + γt1,t2 )

−1(1 + γt2,t1 )
−1

N
T (T − 1)

∑
t1 ̸=t2

r−2
t1 r−2

t2 ẽTt2,t1 ẽt1,t2 ẽ
T
t1,t2 ẽt2,t1 (1 + γt1,t2 )

−1(1 + γt2,t1 )
−1

.
=

N
T (T − 1)

∑
t1 ̸=t2

(UT
t1Ut2 )

2
− 1 + A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10.
5
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H

S

P

P

w

S
T

ere, we only prove A1 = op(σs0), A2 = op(σs0) these two items. The rest of Ai = op(σs0), for i = 3, 4, 5 . . . 10 are similar.
In fact

E(A2
1) = O(N2T−4)2

∑∑
t1 ̸=t2

E[(UT
t1Ut2 )

4
{(1 + γt1,t2 )

−1(1 + γt2,t1 )
−1

− 1}2]

+ 4
∑∑∑

t1 ̸=t2 ̸=t3

E[(UT
t1Ut2 )

2(UT
t1Ut3 )

2
{(1 + γt1,t2 )

−1(1 + γt2,t1 )
−1

− 1}

× {(1 + γt1,t2 )
−1(1 + γt3,t1 )

−1
− 1}]

+

∑∑∑∑
t1 ̸=t2 ̸=t3 ̸=t4

E[(UT
t1Ut2 )

2(UT
t4Ut3 )

2
{(1 + γt1,t2 )

−1(1 + γt2,t1 )
−1

− 1}

× {(1 + γt3,t4 )
−1(1 + γt4,t3 )

−1
− 1}]

.
= A11 + A12 + A13.

After some tedious calculation, we have

A11 ≤ O(NT−3)E(UT
t1Ut2 )

4
= O(N−1T−3) = o(σ 2

s0),

A12 ≤ O(NT−2)E((UT
t1Ut2 )

2(UT
t1Ut3 )

2) = O(N−1T−2) = o(σ 2
s0),

A13 ≤ O(NT−2)E((UT
t1Ut2 )

2(UT
t3Ut4 )

2) = O(N−1T−2) = o(σ 2
s0).

So A1 = op(σs0). And

E(A2
2) = O(N2T−4)

∑
t1 ̸=t2

E{r−1
t2 UT

t2Ut1U
T
t1 ẽt2,t1 (1 + γt1,t2 )

−1(1 + γt2,t1 )
−1

}
2

= O(N2T−2)E(r−2
t2 )E{UT

t2Ut1U
T
t1 ẽt2,t1 ẽ

T
t2,t1Ut1U

T
t1Ut2} = O(T−3) = o(σ 2

s0).

o A2 = op(σs0). Here we complete the proof. □

roof of Theorem 2.1. Based on Lemmas A.2 and A.3, we can easily obtain the result by Slutsky’s Theorem. □

Next, we proof Theorem 2.2. Define u∗
t1 = Σ−1/2ut1 , U

∗
t = u∗

t1/∥u
∗
t1∥, and r∗

t = ∥u∗
t1∥. ẽ

∗
t1,t2 = Σ−1/2ẽt1,t2 .

roof of Theorem 2.2.

Ũt1,t2 = (Λ1/2
N U∗

t1 + r∗−1
t1 Λ

1/2
N ẽ∗

t1,t2 )
T
{1 + U∗T

t1 DT ,NU∗

t1 + 2r∗−1
t1 U∗T

t1 ẽ
∗

t1,t2 + r∗−2
t1 ẽ∗T

t1,t2 ẽ
∗

t1,t2

+ 2r∗−1
t1 U∗T

t1 DT ,N ẽ∗

t1,t2 + r∗−2
t1 ẽ∗T

t1,t2DT ,N ẽ∗

t1,t2}
−1/2

.
= (Λ1/2

N U∗

t1 + r∗−1
t1 Λ

1/2
N ẽ∗

t1,t2 )
T
{1 + ω∗

t1,t2}
−1/2

here ω∗
t1 = U∗T

t1 DT ,NU∗
t1 + 2r∗−1

t1 U∗T
t1 ẽ

∗
t1 + r∗−2

t1 ê∗T
t1 ẽ

∗
t1 + 2r∗−1

t1 U∗T
t1 DT ,N ẽ∗

t1 + r∗−2
t1 ẽ∗T

t1 DT ,N ẽ∗
t1 . And

E{U∗T
t1 DT ,NU∗

t1}
2

= O(N−2tr(D2
T ,N )) = O(N−1T−1) = o(1),

E{r∗−1
t1 U∗T

t1 DT ,N ẽ∗

t1,t2}
2

= O(N−1)E(U∗T
t1 DT ,N ẽ∗

t1,t2 )
2

= O(N−1T−2) = o(1),

E{r∗−2
t1 ẽ∗T

t1,t2DT ,N ẽ∗

t1,t2}
2

= O(N−1T−2) = o(1).

imilarly to Lemma A.3, r∗−1
t1 U∗T

t1 ẽ
∗
t1,t2 + r∗−2

t1 ẽ∗T
t1,t2 ẽ

∗
t1,t2 = Op(N−1/2T−1/2) = op(1) then we have ω∗

t1,t2 = Op(N−1/2T−1/2).
hen we have

JS =
N

T (T − 1)

∑
t1 ̸=t2

(ŨT
t1,t2 Ũt2,t1 )

2
− 1

=
N

T (T − 1)

∑
t1 ̸=t2

(U∗T
t1 ΛNU∗

t2 )
2
− 1

+
N

T (T − 1)

∑
t1 ̸=t2

(U∗T
t1 ΛNU∗

t2 )
2({1 + ω∗

t1,t2}
−1

{1 + ω∗

t2,t1}
−1

− 1)

+
N

T (T − 1)

∑
t1 ̸=t2

2r∗−1
t1 U∗T

t1 ΛNU∗

t2 ẽ
∗T
t1,t2U

∗

t2{1 + ω∗

t1,t2}
−1

{1 + ω∗

t2,t1}
−1

+
N

T (T − 1)

∑
2r∗−1

t2 U∗T
t2 ΛNU∗

t1 ẽ
∗T
t2,t2U

∗

t1{1 + ω∗

t1,t2}
−1

{1 + ω∗

t2,t1}
−1
t1 ̸=t2

6
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H
I

+
N

T (T − 1)

∑
t1 ̸=t2

r∗−2
t2 (U∗T

t1 ΛN ẽ∗

t2,t1 )
2
{1 + ω∗

t1,t2}
−1

{1 + ω∗

t2,t1}
−1

+
N

T (T − 1)

∑
t1 ̸=t2

r∗−2
t1 (U∗T

t2 ΛN ẽ∗

t1,t2 )
2
{1 + ω∗

t1,t2}
−1

{1 + ω∗

t2,t1}
−1

+
N

T (T − 1)

∑
t1 ̸=t2

2r∗−1
t1 r∗−1

t2 U∗T
t1 ΛNU∗

t2 ẽ
∗T
t1,t2ΛN ẽ∗

t2,t1{1 + ω∗

t1,t2}
−1

{1 + ω∗

t2,t1}
−1

+
N

T (T − 1)

∑
t1 ̸=t2

2r∗−1
t1 r∗−1

t2 U∗T
t1 ΛN ẽ∗

t2,t1 ẽ
∗T
t1,t2ΛNU∗

t2{1 + ω∗

t1,t2}
−1

{1 + ω∗

t2,t1}
−1

+
N

T (T − 1)

∑
t1 ̸=t2

2r∗−1
t1 r∗−2

t2 U∗T
t1 ΛN ẽ∗

t2,t1 ẽ
∗T
t1,t2ΛN ẽ∗

t2,t1{1 + ω∗

t1,t2}
−1

{1 + ω∗

t2,t1}
−1

+
N

T (T − 1)

∑
t1 ̸=t2

2r∗−2
t1 r∗−1

t2 U∗T
t2 ΛN ẽ∗

t1,t2 ẽ
∗T
t1,t2ΛN ẽ∗

t2,t1{1 + ω∗

t1,t2}
−1

{1 + ω∗

t2,t1}
−1

+
N

T (T − 1)

∑
t1 ̸=t2

r∗−2
t1 r∗−2

t2 (ẽ∗T
t1,t2ΛN ẽ∗

t2,t1 )
2
{1 + ω∗

t1,t2}
−1

{1 + ω∗

t2.t1}
−1

.
=

N
T (T − 1)

∑
t1 ̸=t2

(U∗T
t1 ΛNU∗

t2 )
2
− 1 + B1 + B2 + B3 + B4 + B5 + B6 + B7 + B8 + B9 + B10.

ere, we only prove B1 = op(σT2), B2 = op(σT2) these two items. The rest of Bi = op(σT2), for i = 3, 4, . . . 10 are similar.
n fact

E(B2
1) = O(N2T−4)E{2

∑
t1 ̸=t2

(U∗T
t1 ΛNU∗

t2 )
4({1 + ω∗

t1,t2}
−1

{1 + ω∗

t2,t1}
−1

− 1)2

+ 4
∑∑∑

t1 ̸=t2 ̸=t3

(U∗T
t1 ΛNU∗

t2 )
2(U∗T

t1 ΛNU∗

t3 )
2({1 + ω∗

t1,t2}
−1

{1 + ω∗

t2,t1}
−1

− 1)

× ({1 + ω∗

t1,t3}
−1

{1 + ω∗

t3,t1}
−1

− 1)

+

∑∑∑∑
t1 ̸=t2 ̸=t3 ̸=t4

(U∗T
t1 ΛNU∗

t2 )
2(U∗T

t3 ΛNU∗

t4 )
2({1 + ω∗

t1,t2}
−1

{1 + ω∗

t2,t1}
−1

− 1)

× ({1 + ω∗

t3,t4}
−1

{1 + ω∗

t4,t3}
−1

− 1)}
.
= B11 + B12 + B13.

And

B11 ≤ O(NT−3)E(U∗T
t1 ΛNU∗

t2 )
4

= O(N−1T−3
{3tr2(Λ2

N ) + 4tr(Λ4
N )}) = o(σ 2

T2),

B12 ≤ O(NT−2)E{(U∗T
t1 ΛNU∗

t2 )
2(U∗T

t1 ΛNU∗

t3 )
2
} ≤ O(N−3T−2

{tr2(Λ2
N ) + 2tr(Λ4

N )}) = o(σ 2
T2),

B13 ≤ O(NT−2)E{(U∗T
t1 ΛNU∗

t2 )
2E(U∗T

t3 ΛNU∗

t4 )
2
} = O(N−3T−2tr2(Λ2

N )) = o(σ 2
T2).

So B1 = op(σT2). Next,

E(B2
2) ≤ O(N2T−4)

∑
t1 ̸=t2

2E(r∗−2
t1 )E(U∗T

t1 ΛNU∗

t2U
∗T
t2 ẽt1,t2 )

2

= O(NT−2)E(U∗T
t1 ΛNU∗

t2U
∗T
t2 ẽ

∗

t1,t2 ẽ
∗T
t1,t2U

∗

t2U
∗T
t2 ΛNU∗

t1 )

= O(N−1T−3tr(Λ2
N )) = O(N−1T−3(N + tr(D2

N,T ))) = o(σ 2
T2).

So B2 = op(σT2). Thus, JS =
N

T (T−1)

∑
t1 ̸=t2

(U∗T
t1 ΛNU∗

t2 )
2
− 1 + op(σT2). By Lemma A.1,

E(U∗T
t1 ΛNU∗

t2 )
2

= tr[E(Λ1/2
N Ut1U

∗T
t1 Λ

1/2
N )]2 = N−2tr(Λ2

N ) = N−2(N + tr(D2
N,T )),

E(U∗T
t1 ΛNU∗

t2 )
4

= {3tr2(Λ2
N ) + 4tr(Λ4

N )}/{N
2(N + 2)2},

E(U∗T
t1 ΛNU∗

t2 )
2(U∗T

t1 ΛNU∗

t3 )
2

= {tr2(Λ2
N ) + 2tr(Λ4

N )}/{N
3(N + 2)}.

Combining all above, we can get

var

⎧⎨⎩ 1
T (T − 1)

∑
(U∗T

t1 ΛNU∗

t2 )
2

⎫⎬⎭ =

[
4tr2(Λ2

N )
T (T − 1)N2(N + 2)2

+
8tr(Λ4

N )
TN2(N + 2)2

]
(1 + o(1)).
t1 ̸=t2

7
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s

B

R

B
B
C
F

L

M
O
P
Z

o we have

E(JS) = N−1tr(D2
N,T ) + o(σT2),

var(JS) =

[
4tr2(Λ2

N )
T (T − 1)(N + 2)2

+
8tr(Λ4

N )
T (N + 2)2

]
(1 + o(1)).

y Theorem 2 of Zou et al. (2014), we can complete this theorem. □
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