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Abstract

Bayesian deep learning provides a framework for
quantifying uncertainty. However, the scale of mod-
ern neural networks applied in Natural Language
Processing (NLP) limits the usability of Bayesian
methods. Subnetwork inference aims to approxi-
mate the posterior by selecting a stochastic param-
eter subset for inference, thereby allowing scalable
posterior approximations. Determining the opti-
mal parameter space for subnetwork inference is
far from trivial. In this paper, we study partially
stochastic Bayesian neural networks in the con-
text of transformer models for NLP tasks for the
Laplace approximation (LA) and Stochastic weight
averaging - Gaussian (SWAG). We propose heuris-
tics for selecting which layers to include in the
stochastic subset. We show that norm-based selec-
tion is promising for small subsets, and random
selection is superior for larger subsets. Moreover,
we propose Sparse-KFAC (S-KFAC), an extension
of KFAC LA, which selects dense stochastic sub-
structures of linear layers based on parameter mag-
nitudes. S-KFAC retains performance while requir-
ing substantially fewer stochastic parameters and,
therefore, drastically limits memory footprint.

1 INTRODUCTION

The field of Natural Language Processing (NLP) has seen
extraordinary advances recently with the introduction of the
transformer architecture [Vaswani et al., 2017, Devlin et al.,
2019, ope, 2023]. Increased size and variety of data have
improved calibration. However, many models still suffer
from overconfident predictions Tian et al. [2023], Jiang et al.
[2021], He et al. [2023]. Bayesian deep learning tackles un-
certainty estimation by modeling neural network parameters
as distributions, thereby gaining an inherent interpretation

of model confidence. High-dimensional parameter spaces
nevertheless limit application on transformer models. The
advent of subnetwork inference can potentially improve
Bayesian inference in transformer models by estimating the
posterior distribution over a subset of the model weights
while treating the majority of the weights as determinis-
tic. Hence the dimensionality of the parameter space of the
stochastic subnetwork will be significantly reduced, thus
increasing the feasibility of applying Bayesian methodol-
ogy[Daxberger et al., 2022b, Sharma et al., 2023].

Bayesian methods for transformers have been explored with
varying results [Tran et al., 2019, Chen and Li, 2023, Cin-
quin et al., 2021]. Sharma et al. [2023] finds that partial
stochastic neural networks (NN) can outperform their fully
stochastic versions using feed-forward neural networks for
regression and convolutional neural networks for image clas-
sification. In this paper, we investigate whether the hypothe-
sis of partial stochasticity improving predictive performance
compared to both point estimates and fully stochastic so-
lutions can be extended to the NLP domain. The concept
of partial stochasticity raises the question of how to select
the stochastic subset. We propose heuristics for selecting
which affine transformations to include in the stochastic
subset for a transformer encoder model (DistilBERT [Sanh
et al., 2020]). The study is performed using two methods for
approximating the posterior distribution: Stochastic weight
averaging - Gaussian (SWAG) [Maddox et al., 2019] and
Laplace approximation (LA) [MacKay, 1992b, Daxberger
et al., 2022a]. Both methods rely on a maximum a poste-
riori (MAP) parameter estimate, where the stochasticity is
induced post hoc to the designated parameters. To study the
trade-off between performance and memory requirements,
we construct ramping experiments, where the fraction of
stochastic vs. total number of parameters varies, such that
the performance between different subsets can be evaluated.

We propose a selection strategy for the Kronecker-Factored
Approximate (KFAC) LA, dubbed Sparse-KFAC (S-KFAC).
Here, fully connected substructures of all linear layers are
included in the stochastic subset based on parameter magni-
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tudes. Thus, it aims to capture uncertainty from all compo-
nents of the model while limiting the number of stochastic
parameters. Below, we summarize our contributions:

1. We design and implement a set of numerical experi-
ments to investigate the hypothesis of partial stochastic-
ity improving predictive performance for transformer
models in the NLP domain.

2. We propose and evaluate novel heuristics for efficient
identification of optimal subsets of stochastic parame-
ters.

3. We demonstrate that the proposed S-KFAC Laplace ap-
proximation yields competitive predictive performance
for substantially fewer stochastic parameters, leading
to a reduced memory footprint.

2 RELATED WORKS

Bayesian Deep Learning Methods. Bayesian deep learn-
ing is a promising approach for uncertainty quantification
[Abdar et al., 2021a]. Regrettably, the dimensionality of the
parameter space in large neural networks makes exact pos-
terior inference intractable. Several algorithmic approaches
for approximating the posterior p(w|D) have been proposed
[Magris and Iosifidis, 2023]. Markov Chain Monte Carlo
(MCMC) methods are prominent due to their ability to sam-
ple from the true posterior and Hamiltonian Monte Carlo
(HMC) [Neal, 1996] is the gold-standard posterior infer-
ence method by leveraging Hamiltonian dynamics in its
sampling strategy, but HMC is prohibitively slow for even
moderately sized models [Izmailov et al., 2021]. Variational
inference (VI) has been tested extensively [Wang and Yeung,
2016, Swiatkowski et al., 2020, Tran et al., 2019]. It aims
to approximate p(w|D) using a fixed distributional family,
often chosen as a Mean-Field (MF) Gaussian. However, it is
known to exhibit pathological behavior [Foong et al., 2020].
Estimating p(w|D) using the Gaussian functional form is
also explored in the LA, where a Gaussian is fitted at the
mode of the posterior distribution, using the inverse curva-
ture as a covariance approximation [MacKay, 1992a,b]. The
post hoc and predictive performance-preserving nature of
the LA makes it readily applicable [Daxberger et al., 2022a].
Methods utilizing Stochastic Gradient Descent (SGD) it-
erates as samples from the approximate posterior such as
Stochastic weight averaging (SWA) [Izmailov et al., 2019]
and SWA-Gaussian (SWAG) [Maddox et al., 2019] have
also been examined. Much less computationally demand-
ing methods like Monte Carlo (MC) dropout exist, where
the dropout mechanism normally used at training time for
regularization is extended to inference time [Abdar et al.,
2021b]. This, too, has been shown to exhibit pathological
behavior [Foong et al., 2020].

Subnetwork Inference In Neural Networks. The concept
of treating only a subset of the model parameters as stochas-

tic has increased in popularity recently Daxberger et al.
[2022b], Sharma et al. [2023]. In Daxberger et al. [2022a],
the linearized LA [Immer et al., 2021] is adapted for subnet-
works and made readily applicable for neural networks using
the generalized Gauss-Newton (GGN) Hessian approxima-
tion. The efficacy of the approximate posterior inference
over a stochastic subset of neural network parameters has
been investigated in Sharma et al. [2023]. They argue that
partially stochastic models are no less theoretically founded
than fully Bayesian models. Additionally, they show that
inference over a stochastic subset can, at times, yield better
performance than full-model stochasticity. Finally, injecting
auxiliary stochastic variables through node-based methods
has been explored in Dusenberry et al. [2020], Trinh et al.
[2022]. This achieves partial stochasticity without altering
the existing model parameters.

Bayesian Methods in NLP. Transformer-based models for
NLP have improved rapidly in recent years [Vaswani et al.,
2017, Devlin et al., 2019, ope, 2023]. However, after the
fine-tuning process, problems such as overconfidence and
sub-optimal calibration persist [Tian et al., 2023, Jiang et al.,
2021, He et al., 2023]. In Xiao et al. [2022], calibration of
pre-trained language models is investigated for methods that
imitate uncertainty modeling, such as Temperature scaling
[Guo et al., 2017] and MC Dropout [Gal and Ghahramani,
2016]. Subnetwork inference on transformer models has
been tested using Gaussian Mean-Field VI in Xue et al.
[2021], Cinquin et al. [2021], and through Sparse Gaussian
Processes in Chen and Li [2023].in Yang et al. [2023], the
Laplace approximation is applied to Low-Rank Adaptions
(LoRA) for fine-tuning large language models. Addition-
ally, Last Layer Laplace showed similar performance to
temperature scaling when applied to common NLP tasks in
Daxberger et al. [2022a]. In Talman et al. [2023] Stochastic
Weight Averaging - Gaussian [Maddox et al., 2019] was
used to induce uncertainty awareness in Natural Language
Inference tasks.

3 BACKGROUND

In this paper, we study partially stochastic Bayesian neu-
ral networks with a primary focus on supervised classifi-
cation tasks. A neural network fw : RD → RC , where
D is the input dimension and C is the number of classes,
parameterized by w is introduced. The likelihood of the
data D = {(xi, ti)}Ni=1 given the parameters w is then
written as p(D|w) =

∏N
i=1 p(ti|fw(xi)). In Bayesian

deep learning, Bayes’ theorem relates a prior distribution
over the neural network parameters p(w) to a posterior
p(w|D) through a likelihood p(D|w) and a marginal dis-
tribution p(D) =

∫
p(D|w)p(w)dw over the data, by

p(w|D) = p(D|w)p(w)
p(D) . In this paper we generally assume

a Gaussian prior distribution p(w) = N (w|µ,V ). Predic-
tions are made using the posterior predictive distribution



Input 
X 

Figure 1: Depiction of a transformer block with stochastic parameters as induced by the Sparse-KFAC LA Section 4. Note
that each linear layer is written in neural style, where small dense substructures have been made stochastic, indicated by
green lines rather than gray for the deterministic weights. ’Soft’ denotes the softmax function.

such that for a new data point x∗ the predictive distribu-
tion becomes p(t∗|x∗,D) = Ep(w|D) [p(t

∗|fw(x∗)]. As
the integral of the marginal p(D) is often intractable for
neural networks, we have to rely on approximate posterior
inference techniques such as SWAG and the LA to perform
Bayesian inference. In both methods, we approximate the
posterior distribution p(w|D) with a Gaussian distribution
q(w) = N (w|µ,Σ) such that q(w) ≈ p(w|D).

We define a partially stochastic Bayesian neural network fw
parameterized by w = wD ∪ wS . Here wD and wS are
disjoint sets encompassing all the model parameters, where
wD are the deterministic parameters (point estimates) and
wS are the stochastic parameters (distributional). Hence, the
partially stochastic posterior is approximated as p(w|D) ≈
p(wS |D)

∏
d δ(ŵ−wd) ≈ q(wS)

∏
d δ(ŵ−wd), where

δ is the Dirac’s delta distribution. The following sections
deal with approximating the posterior distribution of the
stochastic weights p(wS) ≈ q(wS). For readability, we will
not use the subset notation, and hence, p(w) will refer to the
distribution of the parameters for the stochastic subnetwork
unless otherwise stated.

3.1 STOCHASTIC WEIGHT AVERAGING -
GAUSSIAN (SWAG)

Maddox et al. [2019] introduces SWAG as a method for
Bayesian inference using SGD to obtain a Gaussian approx-
imation of the posterior distribution. The first two moments
are estimated using running averages of the first and second
uncentered moments using Welford’s algorithm [Welford,
1962] seen in Eq. (1).

wn+1 =
nwn +wn

n+ 1
, w2

n+1 =
nw2

n +w2
n

n+ 1
(1)

where wn and w2
n are the first and second running mo-

ments, respectively, and the square is taken elementwise.
The updates are performed N times over the cause of M
SGD iterations for N < M . For every iteration, we also save
the next column in the deviation matrix given by wi −wi,
where the k most recent columns are kept. The moment es-
timates are denoted as wswa = wN , and a diagonal matrix
is defined by the second moments as Σdiag = w2

N −w2
N .

In Eq. (2) a low-rank approximation is done with the k
columns of the deviation matrix D

Cov(w) =
1

N − 1

N∑
i=1

(wi −wswa)(wi −wswa)
T (2)

≈ 1

k − 1

k∑
i=1

(wi −wi)(wi −wi)
T =

1

k − 1
DDT .

(3)

The covariance matrix is then estimated using a combina-
tion of the low-rank approximation and Σdiag, yielding the
following posterior approximation for the weights w

p(w | D) ≈ N
(
w|wswa,

1

2
Σdiag +

1

2(k − 1)
DDT

)
.

(4)
Finally, to sample from the approximate posterior, the fol-
lowing identity is used [Maddox et al., 2019] w̃ = wswa +
1√
2
Σ

1
2

diagz1 +
1√

2(k−1)
Dz2 where z1 ∼ N (0, Id) , z2 ∼

N (0, Ik), and here, the d denotes the number of stochastic
parameters in the model.

3.2 THE LAPLACE APPROXIMATION

The Laplace approximation (LA) MacKay [1992a,b] approx-
imates the posterior p(w|D) using a Gaussian distribution.

p(w|D) =
p(D|w)p(w)

p(D)
=

1

Z
f(w) ≈ N (w|µ,Σ), (5)



where f(w) is the unnormalized posterior, µ is the mean
and Σ is the covariance, and Z =

∫
p(D|w)p(w)dw de-

fines the normalizing constant. We assume a Gaussian prior
p(w) = N (0, σ2I) and apply a second-order Taylor expan-
sion around the MAP solution in log-space

lnf(w) ≈ lnf(wMAP)−
1

2
(w−wMAP)

THw(w−wMAP),

(6)
where Hw = −∇2

wlnf(w)|wMAP is the Hessian estimated
at the mode. It can be described in terms of the contributions
from the likelihood and prior by

Hw =
1

σ2
I −

N∑
i=1

∇2
w ln p(ti|fw(xi))|wMAP (7)

where σ2 is the prior variance. Finally, the Gaussian poste-
rior approximation can be written as

p(w|D) ≈ q(w) = N (w|wMAP,H−1
w ). (8)

The Linearized LA The Hessian Hw is computation-
ally demanding to calculate for large models and datasets.
The generalized Gauss-Newton (GGN) [Schraudolph, 2002,
Martens, 2020] approximates the Hessian using first-order
derivatives on the parameters and second-order derivatives
on the outputs of the model

G ≡
N∑

n=1

Jw(xn)
T∇2

fw ln p(tn|fwM
(xn))Jw(xn). (9)

Here fwM
= fwMAP . The covariance of the LA becomes

Σ = H−1
w ≈

(
−G + 1

σ2 I
)−1

. The GGN also ensures posi-
tive semi-definiteness . Estimating the posterior predictive
distribution using MC sampling can be sub-optimal [Foong
et al., 2019]. In Immer et al. [2021], a local linearization
of the LA predictive is recommended. A first-order Taylor
expansion is done around the model outputs

fw(x) ≈ fwMAP(x) + JwMAP(w −wMAP), (10)

here JwMAP(x
∗) = ∇wfw(x∗)|wMAP is the Jacobian of the

outputs at the MAP solution. The predictive covariance
is then defined by Σ∗ = J T

wMAP
(x∗)ΣJwMAP(x

∗) for an
input x∗. The posterior predictive for classification can be
expressed using the Softmax as the inverse link function

p(t∗|x∗,D) =

∫
RC

Softmax (f(x∗))

N (f(x∗)|fwMAP(x
∗),Σ∗) df(x∗),

(11)
where C is the number of classes and f(x∗) is the marginal
distribution over the neural network’s outputs. Following
Daxberger et al. [2022a], the extended probit approximation
is applied such that predictive distribution becomes

p(t∗ = c|x∗,D) =
exp (fwM

(x∗)cTc)∑C
i=1 exp (fwM

(x∗)iTi)
,

Ti =
(
1 +

π

8
Σ∗

i,i

)− 1
2

.

(12)

Note here that only the diagonal covariance structure is
considered in the distribution of the outputs.

Kronecker Factored Approximate Curvature (KFAC).
Although the GGN limits the computational requirements
through linearization, both it and the Hessian still scale
quadratically in the number of parameters, O(|w|2). To
combat this issue, the block-diagonal factorization KFAC
[Martens and Grosse, 2020] is used to approximate the
GGN. This factorizes the empirical Fisher information ma-
trix (EFIM) F of each layer independently as the product
of two smaller matrices. Note that the EFIM is equivalent to
the GGN under common likelihoods [Martens, 2020]. The
full EFIM over all parameters is given by

F = Ep(D)

[
∇w ln p(D|w)∇w ln p(D|w)T

]
. (13)

In the KFAC approximation, layers are assumed to be in-
dependent, giving rise to the block-diagonal structure. The
Fisher block for the i-th layer can be written as

Fi = Ep(D)

[
∇w(i) ln p(D|w)∇w(i) ln p(D|w)T

]
. (14)

Let li be the i’th layer and define x̂ as the input to that layer
then li(x̂) = Wx̂ = a, where vec(W ) = w(i) and bias
is omitted for clarity. The vec operator denotes the vector-
ization of a matrix, independent of whether it is column-
or row-major, as long as there is consistency throughout.
W ∈ Rn×m is the weight matrix, and a is the pre-activation.
The gradient is then defined as δ = ∂ ln p(D|w)

∂a , and the
chain rule gives for an input x with target t

∂ ln p(D|w)

∂W
= ∇w(i) ln p(t|x,w) = vec(x̂δT ) = x̂⊗ δ.

(15)
where ⊗ is the Kronecker product and x̂ denotes the input
to the specific layer for an input x to the model. The KFAC
approximation of the Fisher block can then be expressed as

Fi = Ep(D)

[
∇w(i) ln p(D|w)∇w(i) ln p(D|w)T

]
= E[x̂x̂T ⊗ δδT ] ≈ E[x̂x̂T ]⊗ E[δδT ]
= A⊗G.

(16)

Here, the expectation of the Kronecker product is approxi-
mated by the Kronecker product of the expectations of its
parts [Martens and Grosse, 2020]. The Kronecker product
has the property that its inverse is equal to the Kronecker
product of its inverse parts, (A⊗G)−1 = A−1⊗G−1. This
is crucial for the LA, as the inverse GGN can be computed
without storing the full matrix.

4 SPARSE-KFAC LAPLACE
APPROXIMATIONS

In this paper, we propose a selection strategy for efficiently
defining stochastic subsets in the KFAC LA, an illustration
of which can be seen in Fig. 1. For the LA, we observed



that in small-scale MLPs, selecting the parameters with the
highest ℓ1 norm performed better than random selection and
selection based on variances as proposed in [Daxberger et al.,
2022b] Appendix B. Only a small percentage of stochastic
parameters was required to perform on par with full stochas-
ticity if these were chosen based on their norm. Given the
better performance of the largest ℓ1-norm selection strategy
for MLPs we extend this concept into the space of Trans-
former models. The size of the transformer model applied to
NLP problems, restricts the LA to using KFAC. The KFAC
LA methodology Section 3 approximates the derivatives
of a layer i using the inputs x̂ and output derivatives δ
Eq. (16). Selecting a stochastic subset based on ℓ1-norm of
the weights in the neural network is therefore not trivial as
the GGN in a factorized form. Hence selecting the stochas-
tic parameters requires consideration of the factorization
procedure. The gradients of a selection of parameters from
a weight matrix W can be factorized via the KFAC if they
form a submatrix of W , where the submatrix is formed by
deleting rows or columns in W . Freely selecting the param-
eters in W with the highest ℓ1-norm will most likely not
form a submatrix.

In the S-KFAC method, we relax the requirement of only
selecting the weights with the largest ℓ1 norms to a require-
ment where the largest ℓ∞-norm for the rows r and columns
c is selected. From the duality of the ℓ∞ and ℓ1 norms Chris-
tensen [2010], we know that the largest ℓ1 norm parameters
are placed in the rows and columns of W with the largest
ℓ∞ norm. We then construct the stochastic subset using the
intersection between the rows and columns with the largest
ℓ∞-norm. As such a proxy for ℓ1-norm selection is done
through the ℓ∞-norm, where we can not guarantee all largest
ℓ1-norm weights to be selected, but a considerable portion
is included.

We write the linear layer formulation l(x̂) = Wx̂ = a
used in deriving the Fisher block approximation in Eqs. (15)
and (16). We consider the sets of ℓ∞ norms of the rows
r = {||Wi,:||∞}ni=1 and columns c = {||W:,j ||∞}mj=1 in
the weight matrix W ∈ Rn×m. Importantly, since n is the
number of outputs and m the number of inputs, r and c
correspond to entries in δ and x̂ respectively.

A predefined percentage p is defined as a hyperparameter
for controlling the subset size, e.g. p = 10 would result
in selecting 10% of the rows and columns with the largest
ℓ∞-norm values. We then select subsets of x̂ and δ by

x̃ = {x̂j |cj > Pp(c), j ≤ m},
δ̃ = {δi|ri > Pp(r), i ≤ n}.

(17)

Here Pp : x → R is the percentile operator for a percentile
p. The Fisher block representing the selected stochastic
subset is then constructed by

Fi ≈ E[x̃x̃T ]⊗ E[δ̃δ̃
T
] = Ã⊗ G̃. (18)

To relate this back to the specific weight matrix, the
stochastic parameters become {W i,j |ri > Pp(r) ∧ cj >
Pp(c), i ≤ n, c ≤ m}, i.e. the parameters lying in the inter-
section between the selected rows and columns. A visualiza-
tion of a selected stochastic subset for a single transformer
block is done in Fig. 1. The method is then extended to all
layers, such that the stochastic subset is distributed over the
entire network while controlling the subset size using the
hyperparameter p.

In most cases, the linear mapping will be affine, i.e. includ-
ing a bias term. For a bias b ∈ Rn its derivative is given by
∇b ln p(w|D) = δ. As we are already storing δ̃, we make
the corresponding elements in the bias stochastic too.

The selection made by the S-KFAC method ensures that the
min(n,m)× p

100 largest ℓ1 norm parameters are included
in the stochastic subset. This corresponds to selecting pm

100
input neurons and pn

100 output neurons and making the dense
linear mapping between those stochastic.

Each input and output are chosen based on a single weight
connecting them. Of course, with the possibility that mul-
tiple of the largest weights come from the same input or
are going to the same output. Yet all weights between the
chosen inputs and outputs are made stochastic. This causes
the previously mentioned relaxation on choosing only the
largest parameter weights, as we have no guarantee on the
magnitude of the remaining weights.

We denote this strategy as Sparse-KFAC (S-KFAC) from the
ensuing sparsity in the full covariance matrix Appendix A.
Since each ’small’ matrix in the KFAC approximation
are (n × n) and (m × m), S-KFAC restricts the mem-
ory usage as the combined size of the matrices becomes
( np
100 )

2 + (mp
100 )

2 ≪ n2 +m2 for small percentages p. Thus,
S-KFAC is lightweight in memory while capturing the im-
portant uncertainty from the parameter selection. Further,
a large portion of the computational load in the KFAC LA
method is contained in matrix-matrix multiplications for
calculating the posterior covariance. The computational de-
mand of matrix-matrix multiplications has cubic scaling
and S-KFAC drastically lowers the matrix dimensionality.
Thus given the same number of stochastic parameters in a
partially stochastic model for the KFAC and the S-KFAC
methods, S-KFAC will have a significantly lower computa-
tional demand at inference time.

5 EXPERIMENTS & METHODOLOGY

As the basis for this study is NLP tasks, we employ
a pre-trained DistilBERT transformer encoder architec-
ture[Sanh et al., 2020]. It is beyond the scope of the
paper to provide a complete description of the Trans-
former architectures, and we refer to Vaswani et al.
[2017] for the details. For this study, however, it is
important to recall that the multi-head attention mech-
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Figure 2: Ramping experiments using dense stochastic subparts of each weight matrix in the entire network over different
percentages of stochasticity. We display the results over the three GLUE datasets SST-2, RTE, and MRPC. Points are median
over 5 train/validation splits, and error bars are interquartile ranges. For each dataset, we compare with the median of the
LLLA evaluated using the full GGN, the temperature-scaled MAP solution, and the MLP module with the largest ∥W ∥.

anism [Vaswani et al., 2017] contains 4 affine map-
pings: (WQ, bQ), (WK , bK), (W V , bV ), (WO, bO) ∈
(Rn×n,Rn), where for the distilBERT model n = 768.
To complete the transformer block a one-layer feed-
forward model or MLP is used containing affine map-
pings (W in, bin) ∈ (Rn×m,Rm) and (W out, bout) ∈
(Rm×n,Rn), where m = 3072. We use the terminology
of ’modules’ to refer to an affine mapping in either the
attention or MLP block. This designation is motivated by
the block structure of the KFAC approximation. We will
therefore present results comparing performance between
modules selected from either the MLP or attention blocks
despite the varying number of parameters in them. A sig-
nificant proportion of the learnable model parameters lie
in the token embeddings (tokens are generated through the
word-piece algorithm for DistilBERT [wor]). Which of these
parameters are used is therefore dependent on the textual
input and they are therefore never included in the stochas-
tic subset. Additionally, when we calculate the percentage
of stochastic parameters in the model, we do not count the
token embeddings in the total number of parameters. We per-
form our experiments on three GLUE tasks: SST-2 [Socher
et al., 2013], RTE [Dagan et al., 2006], and MRPC [Dolan
and Brockett, 2005], all binary classification tasks. Informa-
tion relating to the datasets is shown in Table 4. For each,
we fine-tune 5 pre-trained DistilBERT models [dis] on 5
train/validation splits of the respective training sets, where
we use the validation set for early stopping and hyperpa-
rameter tuning in for the respective methods for posterior
inference. We use accuracy as the early stopping criterion.
We keep the pre-allocated development sets as the test sets
Wang et al. [2019]. Details can be found in Appendix C.1.
Hence, all experiments are performed 5 times on all three
datasets. We will refer to the resulting point estimates from
the fine-tuning as the MAP solution wMAP. We mainly con-
sider two hyperparameters of interest in the LA and SWAG

Table 1: The median accuracy, negative log-likelihood
(NLL), and expected calibration error (ECE) for models
using wMAP as point estimates evaluated on the test sets.

Metric SST-2 MRPC RTE

NLL 0.75 0.82 1.70
Accuracy 0.89 0.84 0.61
ECE 0.10 0.15 0.33

approximations. For the LA, it is the choice of prior vari-
ance, and for SWAG, it is the choice of learning rate. Both
are estimated through cross-validation, with NLL on the
validation set as the criterion. Additional details for SWAG
and KFAC LA are shown in Appendix D.

5.1 INVESTIGATING THE HYPOTHESIS OF
PARTIAL STOCHASTICITY IN NLP

Fig. 3 shows the results for the effects of partial stochasticity
vs full stochasticity for the SWAG and KFAC LA posterior
approximations on the MRPC and RTE datasets. For both
approximations, we iteratively increase the percentage of
stochastic parameters in the model, where the stochastic
parameters are chosen uniformly at random. We observe
that partial stochasticity performs better than the MAP so-
lution for even small percentages of stochastic parameters.
Furthermore, we see that partial stochasticity tends to either
outperform or perform equally to its fully stochastic variant.
The results for the SST-2 dataset can be seen in Appendix E.
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Figure 3: Experiment varying the percentages of stochastic
parameters in the KFAC LA and SWAG approximations for
posterior inference on the MRPC and RTE datasets.

5.2 STOCHASTIC MODULE SELECTION

To compare the stochastic subset selection frameworks, we
consider 5 ramping schemes. Of these, 3 are modular, i.e.
entire modules or linear mappings, including bias, on which
to induce stochasticity are selected. Experiments conducted
with small-scale feed-forward models indicated that a norm-
based selection strategy on individual parameters improved
results Appendix B. We extend this to a modular basis by
using the operator norm. More specifically, we set ||W || =
σ1(W ), where W is a linear operator, e.g. one of the weight
matrices in the model, and σ1 is its largest singular value
[Christensen, 2010].

In the DistilBERT models, we observed that the operator
norms of the weight matrices in the MLP modules were
significantly larger than the ones in the self-attention mech-
anism Appendix C and Fig. 11. Thus, we consider three
main module ramping experiments: 1) Iteratively adding the
next module with the largest operator norm from the MLP
mappings to the stochastic subset, 2) the same procedure
as in 1) but from the attention mechanism, 3) Random se-
lection over the entire model. Note here that we include the
classifier in the MLP grouping. In Fig. 4, we present the
results from these modular ramping schemes on the SST-2
dataset and using the KFAC LA.

The MAP results can be seen in Table 1. We observe that the
most immediate drop in NLL happens for the max ||W ||
MLP module strategy. However, note that those linear layers
contain four times as many parameters as a linear layer in
the attention mechanism Section 5. Additionally, random
selection significantly outperforms norm-based selection
from the inclusion of 8 layers. Similar tendencies were
observed for the other two tasks, see Appendix E.

To decorrelate the performance increase for the max oper-
ator norm selection strategy from the additional stochastic
parameters, we perform similar experiments by ramping
from the minimum rather than the maximum Appendix E.
As the focus is to ascertain optimal selection strategies, we
display the rankings of these 5 operator norm-related exper-
iments - including random - in Fig. 4. For each dataset, we
compute the ranking of the 5 selection schemes. For each
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Figure 4: Left: Max ∥W ∥ ramping experiments for the
attention and feed-forward modules, along with random
selection on the SST-2 dataset, using LA as the posterior
approximation. Right: Rankings of each modular stochastic
subset selection scheme across the 3 datasets/tasks for each
number of stochastic modules, where 0 is optimal.
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Figure 5: Comparison of negative log-likelihood (NLL) and
expected calibration error (ECE) as a function of memory
footprint for each ramping scheme for each dataset. For
each ramping scheme, we select the best-performing level
of stochasticity in terms of NLL. Error bars are interquartile
ranges across 5 train/validation splits. The best-performing
SWAG ramping scheme is included for comparison.

module, we present the median ranking of the respective
method. Note that to have a 0 ranking, the method must
have the highest performance on at least 2 of the datasets.
We observe that selecting MLP modules with the largest
operator norm is the highest-performing strategy across the
3 tasks for 1, 2, and 3 modules. Comparatively, selecting the
minimum is the worst-performing strategy in that range.

Finally, we observe that random selection, after the inclusion
of 5 layers, outperforms the other methods. The observa-
tion that random selection outperforms the other selection
heuristics for a sufficiently large number of stochastic mod-
ules is not necessarily intuitive. It could indicate that each
mechanism (MLP & attention) contributes differently to the
uncertainty of the model. And that it is beneficial to capture
both ’types’ rather than thinking only in terms of the number
of stochastic parameters.



Table 2: Results for ramping experiments conducted on the three GLUE tasks. For these experiments, we restrict the number
of stochastic parameters in the model to be approx. 10 pct. of all model parameters. The NLL and ECE are reported on all
tasks for the MAP solution, temperature scaling, fully stochastic KFAC LA, and SWAG. We show ± standard errors, where
±0.00 indicates the uncertainty is below 0.005. The LLLA is calculated using the full GGN approximation. The best overall
performance for each dataset is highlighted in bold, and the best partially stochastic method is highlighted with underline.

SST-2 MRPC RTE

Methods NLL↓ ECE↓ NLL↓ ECE↓ NLL↓ ECE↓
MAP 0.74± 0.10 0.11± 0.01 0.57± 0.34 0.14± 0.04 1.71± 0.23 0.33± 0.05

LA
Temp. Scaled 0.36± 0.02 0.06± 0.00 0.44± 0.01 0.05± 0.02 0.66± 0.01 0.13± 0.04
Min ||W || MLP 0.33± 0.02 0.06± 0.01 0.42± 0.01 0.07± 0.01 0.67± 0.01 0.08± 0.03
Max ||W || attn. 0.29± 0.00 0.04± 0.00 0.39± 0.02 0.04± 0.01 0.81± 0.11 0.13± 0.03
Min ||W || attn. 0.28± 0.00 0.04± 0.01 0.39± 0.02 0.05± 0.00 0.72± 0.05 0.11± 0.02
Random 0.28± 0.01 0.04± 0.01 0.38± 0.02 0.05± 0.01 0.71± 0.05 0.14± 0.03
S-KFAC 0.28± 0.00 0.04± 0.01 0.37± 0.02 0.04± 0.00 0.65± 0.01 0.05± 0.01
Last Layer 0.33± 0.02 0.06± 0.00 0.42± 0.01 0.07± 0.01 0.67± 0.01 0.08± 0.03

SWAG
Max ||W || MLP 0.52± 0.06 0.09± 0.01 0.51± 0.12 0.09± 0.03 1.09± 0.20 0.28± 0.03
Max ||W || attn. 0.39± 0.08 0.03± 0.04 0.42± 0.18 0.07± 0.05 0.74± 0.02 0.11± 0.03
Random 0.32± 0.10 0.04± 0.02 0.39± 0.06 0.05± 0.01 0.69± 0.01 0.02± 0.02
Sublayer ℓ1 0.39± 0.13 0.07± 0.03 0.44± 0.04 0.04± 0.02 0.69± 0.00 0.02± 0.01

Fully Stoch. (LA) 0.27± 0.01 0.03± 0.00 0.39± 0.01 0.06± 0.00 0.66± 0.01 0.06± 0.01
Fully Stoch. (SWAG) 0.27± 0.06 0.03± 0.03 0.62± 0.11 0.07± 0.02 0.69± 0.00 0.05± 0.02

5.3 SPARSE-KFAC LAPLACE

We now assess the performance of the S-KFAC selection
scheme. We conduct three ramping experiments, where we
vary the percentage of stochastic parameters in the model
according to the methodology described in Section 4. The
results can be seen in Fig. 2. We compare the results with the
commonly used Last Layer LA (LLLA) [Daxberger et al.,
2022a] with full GGN approximation, Temperature scaling
[Guo et al., 2017], max ||W || MLP with one module and
full stochasticity. Note that the number of floats corresponds
to percentages as seen in Appendix A and Table 3.

On the SST-2 and MRPC, there exist several percentages of
stochasticity for which S-KFAC requires less memory than
the LLLA yet yields a significantly lower NLL. Additionally,
it repeatedly outperforms the single module with max ||W ||,
again while requiring less memory. The exception is the
RTE dataset, in which temperature scaling and the LLLA
yield comparable performance to S-KFAC. The single MLP
module outperforms LLLA on 2 out of 3 datasets. However,
even a single module requires more memory than S-KFAC,
with approx. 10 pct of the model parameters.

Moreover, the percentage of stochastic parameters (Num.
Floats) at which the best NLL is achieved for the S-KFAC
method varies across the three datasets. Hence, applications
of the methodology will require a sweep through cross-

validation to estimate the percentage for optimal perfor-
mance. Recall that given percentages p1 < p2 the following
will hold for the stochastic subsets in the S-KFAC method
wS,p1

⊂ wS,p2
. Therefore, the amount of uncertainty cap-

tured by the S-KFAC using p2 is unlikely to be significantly
lower than by using p1. We hypothesize that this near-convex
behavior may assist the estimation of p.

5.4 SELECTION STRATEGIES FOR SWAG & LA

Fig. 5 compares the S-KFAC, the three LA modular selec-
tion schemes, and random module selection for the SWAG
approximation. For each selection strategy, we select the
level of stochasticity yielding the lowest validation NLL.
The random selection scheme was found to perform best for
SWAG Table 2. We observe that the best performance is of-
ten found using random selection on a modular level for the
Laplace approximation. However, it is rarely significantly
better than the S-KFAC selection strategy, demanding ap-
proximately 7 times more memory on average. Additionally,
we observe that SWAG displays similar performance to LA
but with a significantly higher computational cost.
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Figure 6: Calibration curves on SST-2. The median expected
calibration error (ECE) across 5 train/validation splits is
displayed for each method. 20 bins are placed based on
the prediction probability distribution rather than uniformly.
The LA and SWAG are shown for 8 randomly selected
stochastic linear layers. S-KFAC is shown for 1.588% of
parameters being stochastic.

In Table 2, we present results for all subset selection strate-
gies. However, we limit the percentage of stochastic pa-
rameters in the model to approximately 10 pct. of the full
parameter set. We additionally compare with full stochas-
ticity for both LA and SWAG. In Fig. 5, we observed that
SWAG was quite competitive with the LA when no restric-
tions were placed on the number of stochastic parameters.
However, when limited to approximately 10 pct. It yields
significantly higher NLL than all LA selection schemes. Fur-
thermore, we also observe that S-KFAC shows the largest
improvement over the MAP solution of all methods in terms
of NLL. While SWAG often attains the lowest ECE, it does
not manage to retain performance on NLL. Finally, on 2
out of three tasks, full model stochasticity yields worse
performance than the partial schemes for SWAG and LA.

Fig. 6 shows the calibration curves for a selection of the sub-
set selection methods. The curves for the other datasets can
be seen in Appendix G. The three high-performing methods,
random selection LA and SWAG, along with S-KFAC, are
all observed to alter the underlying structure of the predic-
tive distribution. The LLLA and temperature scaling appear
to shift inwards the extreme probabilities, approximately
down to the model accuracy Table 1. Squeezing the proba-
bilities inwards lowers the ECE. However, it does facilitate
improvement in post hoc applications such as thresholding.

6 CONCLUSION

In this paper, we perform a detailed study of the effects of
Bayesian inference for a partially stochastic subset of pa-

rameters in transformer models for NLP tasks. We validate
the efficacy of subnetwork inference presented in Daxberger
et al. [2022b], Sharma et al. [2023] for transformers across
three GLUE tasks. The Subnetwork inference methodol-
ogy is evaluated on the posterior approximation methods
Stochastic weight averaging - Gaussian (SWAG) and the
Laplace approximation (LA). We find that stochastic sub-
set inference unequivocally outperforms the MAP solutions
and generally displays similar or improved performance
compared to fully stochastic variants.

We propose and evaluate heuristics for selecting the size
of the stochastic subset on a modular level. We selected
linear mappings to include in the stochastic subset from the
MLP and attention blocks based on their operator norms.
We found that norm-based selection yielded the best perfor-
mance for small stochastic subsets. For larger numbers of
modules, a random selection scheme is dominant. Indicating
that the MLP and attention components contribute differ-
ently to the uncertainty of the model. Given this finding,
we conclude that a homogeneous distribution of stochastic
parameters is preferred.

We proposed a novel method, Sparse-KFAC, for selecting
stochastic subsets by creating dense stochastic substruc-
tures in all linear mappings in the model. We found that
Sparse-KFAC invariantly yielded competitive or higher per-
formance than all other selection strategies while requiring
orders of magnitude fewer parameters. Additionally, we
found that when the stochastic subset was limited to 10 pct.
of the parameters in the model, Sparse-KFAC outperformed
all other methods, including full stochasticity, on two out
of three tasks. However, the method introduces an addi-
tional hyperparameter defining the percentage of stochastic
parameters in each affine mapping. We observed different
’speeds of convergence’ towards the optimal across the three
datasets. Hence employment of the method requires estimat-
ing the parameter through cross-validation. However, the
fact that Sparse-KFAC is fully defined through the choice
of a percentage of stochastic weights also greatly simplifies
the selection process. For example, given memory limita-
tions that allow for a certain percentage P of stochastic
parameters. One can achieve this through approximately
n MLP modules, 4n attention modules, or a combination.
The performance of each of these module combinations can
vary greatly without clear prior indicators. Hence, the selec-
tion process requires an exhaustive search. In Sparse-KFAC
P pct. of the parameters can simply be selected option-
ally testing if lower percentages yield similar performance.
Sparse-KFAC partially decouples the size of the stochastic
subset from the width of the model. This is highly relevant
as modern transformer architectures are increasingly wide.
As such, the Sparse-KFAC method is readily extendable to
larger models, for which stochastic subset selection is an
interesting avenue for further research.

Source code: https://github.com/GustavAls/PartialNLP

https://github.com/GustavAls/PartialNLP
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A SPARSE-KFAC

KFAC approximation derivation from Eq. (16)

Fi = Ep(D)

[
∇w(i) ln p(D|w)∇w(i) ln p(D|w)T

]
= Ep(D)

[
(x̂⊗ δ)(x̂⊗ δ)T

]
= Ep(D)

[
(x̂⊗ δ)(x̂T ⊗ δT )

]
= Ep(D)

[
x̂x̂T ⊗ δδT

]
≈ E[x̂x̂T ]⊗ E[δδT ]
= A⊗G.

A.1 COVARIANCE STRUCTURE OF SPARSE-KFAC

The Sparse-KFAC methodology introduced in this paper aims to select substructures of the KFAC Hessian approximation
to sparsely distribute stochastic parameters across the neural network. The selection is done by choosing specific inputs
and doing a fully connected mapping to specific outputs. To visualize the covariance structure of this mechanism, a series
of stochastic percentiles are chosen and used to generate an S-KFAC Hessian approximation. The stochastic weights are
shown in white, and the deterministic parameters are shown in black Fig. 7. The fraction of stochastic parameters compared
with the total number of parameters in the selected linear layers (modules) can be described by gP = p2

/1002, 0 < p ≤ 100.
gP = 0.5 indicates that half of the total number of parameters are selected for the stochastic subset.

Figure 7: Sparse covariance structures visualized for varying percentiles, and selection according to the Sparse-KFAC
methodology described in Eqs. (17) and (18). A two-layer neural network with a 100-layer width is shown. The selected
percentiles from left to right are p = 40, p = 50, p = 80, and p = 90.
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A.2 PERCENTILE RAMPING

Table 3: The percentile ramping schemes wS,p used in this study for the Sublayer experiments. This includes S-KFAC on
the full model, S-KFAC on the partial modules, and the SWAG ℓ1 ramping scheme. Percentages for S-KFAC are then used
as explained in Section 3.2 and correspond to the percentage of rows and columns in the weight matrices, not the percentage
of parameters.

Ramping Scheme wS,p

SWAG p ∈ {0, 1, 12, 24, 36, 48, 60, 100}
S-KFAC p ∈ {0, 1.0, 1.8, 2.5, 3.2, 3.9, 4.6, 5.4, 6.1, 6.8, 12.6, 18.4, 24.2, 30, 33, 100}

A.3 SPECIFIC MODULE RAMPING

Here are the results where we specify the modules on which to apply the Sparse-KFAC selection. For each dataset/task, we
specify a selection of modules, e.g. the 2 MLP modules with the largest operator norm. We then apply the S-KFAc selection
strategy to only those modules, leaving the remaining modules deterministic. This is done to show that S-KFAC can be
applied post hoc even if one has first found a selection of modules that one wants to induce stochasticity on. The results
show that S-KFAC captures the uncertainty in a model around the inclusion of 25 pct of the stochastic parameters in all
three cases.

1.0 4.0 9.0 16.0 25.0 36.0 49.0 64.0 81.0 100

Percentages

0.8

1.0

1.2

1.4

1.6

1.8

N
L
L

Laplace RTE NLL

S-KFAC predifined modules

S-KFAC full model 9.0

Last layer

1.0 4.0 9.0 16.0 25.0 36.0 49.0 64.0 81.0 100

Percentages

0.35

0.40

0.45

0.50

0.55

0.60

N
L
L

Laplace MRPC NLL

S-KFAC predifined modules

S-KFAC full model 1.44

Last layer

1.0 4.0 9.0 16.0 25.0 36.0 49.0 64.0 81.0 100

Percentages

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

N
L
L

Laplace SST2 NLL

S-KFAC predifined modules

S-KFAC full model 0.01

Last layer

Figure 8: Results for iteratively increasing stochasticity through S-KFAC on specified modules across the three tasks. The
100 pct are full model stochasticity and conform to points seen for 2 or three modules in the Appendix E. The results show
that S-KFAC captures the uncertainty in a model around the inclusion of 25 pct of the stochastic parameters in all three
cases.



A.4 RAMPING A SUBSET OF LINEAR MAPPINGS

B UCI RESULTS

SWAG and LA results are presented on the three UCI regression datasets: Boston, Energy, and Yacht.

B.1 LAPLACE AND SWAG ON UCI

To verify the efficacy of partially stochastic Bayesian neural networks, experimentation is done for small-scale regression
problems. SWAG and the LA are tested across three UCI regression datasets. In Fig. 9, the median NLL is displayed for all
three datasets where the pct. of stochastic parameters is varied. The MAP and fully stochastic performance are included for
comparison. The Yacht dataset is shown with and without the MAP solution, so variation between subsets can be interpreted.
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Figure 9: The median Negative log-likelihood (NLL) and its interquartile range of the posterior approximation strategies
SWAG and Laplace across 15 train-test splits, compared on the UCI datasets Boston, Energy, and Yacht. Each method is
fitted with a percentage of stochastic parameters shown on the x-axis and evaluated on the test set. The MAP solution and
100% stochastic solution are both shown with a red and green line, respectively. The Yacht results are shown with and
without the MAP solution such that the inter-percentile NLL variation can be seen clearly.

B.2 NORM VS VARIANCE BASED SELECTION

In Daxberger et al. [2022b], it is argued that a parameter selection strategy based on choosing the parameters with the largest
marginal variances is proposed, arguing that this is favorable for closely approximating the posterior predictive distribution.
In Sharma et al. [2023], the ℓ1-norm is instead used as a proxy for selecting the optimal stochastic subset. We compare the
two methodologies for the three UCI regression datasets, Boston, Energy, and Yacht, to ascertain the best-performing subset
selection strategy Fig. 10.
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Figure 10: A comparison between two stochastic subset selection heuristics. Laplace µ chooses the highest parameter
magnitudes based on wMAP . Laplace σ2 follows Daxberger et al. Daxberger et al. [2022b] and selects a stochastic subset
selection based on largest marginal variances, diag G−1. The median NLL and its interquartile range are shown over 15
runs for the UCI datasets Boston, Energy, and Yacht. Yacht is shown with and without MAP. The percentage of parameters
modeled as stochastic is shown on the x-axis.

Fig. 10 indicates that norm-based subset selection strategy is superior for low percentiles. For Boston and Energy, the median
of the two methods is not significantly different. However, on the Yacht dataset, the percentiles p ∈ {1, 2, 5, 8} all show
significant improvement by using the ℓ1-norm as compared with the marginal variance approach.

C EXPERIMENTS BACKGROUND

We extend the parameter magnitude based stochastic subset selection of Sharma et al. [2023] to transformers models by
computing the operator norm over the networks modules, characterized by their singular values. To gain an understanding of
the magnitude of the singular values over the entire DistilBERT architecture [Sanh et al., 2020] a boxplot is done of the
singular values for the self-attention and MLP modules Fig. 11.
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Figure 11: Boxplots showing the distribution of the operator norms of the weight matrices in the two different types of
modules, namely self-attention, denoted attention, and MLP modules. We use the operator norm defined by the largest
singular value. Bias terms are not included.

Interestingly, from Fig. 11, the singular values of the MLP modules are distributed substantially higher than those of the
self-attention modules. Therefore, if the modules with the largest operator norm are selected indiscriminately the MLP
modules will be included in the stochastic subset first. Additionally, the variance of the MLP singular values is greater than
for self-attention. This

C.1 FINE-TUNING DISTILBERT

In Table 4, information on the GLUE datasets investigated in this paper is presented.

Table 4: Information on the Natural Language Processing datasets selected for this study. The datasets and tasks selected are
Sentiment Classification (SST-2 [Socher et al., 2013] Paraphrase Identification (MRPC [Dolan and Brockett, 2005]), and
Natural Language Inference (RTE [Dagan et al., 2006]).

Dataset SST-2 MRPC RTE

Train size 60, 600 3, 300 2240
Val size 6700 370 250
Test (dev) size 872 408 277
Train/val class dist. (true/false) 55.8%/44.2% 67.4%/32.6% 50.2%/49.8%
Test/dev class dist. (true/false) 55.8%/44.2% 68.4%/31.6% 52.7%/47.3%
Max Sequence length 268 226 1400

In Table 5, we present the hyperparameters chosen for fine-tuning the distilBERT model.



Table 5: The Hyperparameter configuration used for training DistilBERT (distil-bert-uncased) from the
transformers Huggingface library.

Hyperparameter Description

Number of epochs 10
Batch size 16
Optimizer AdamW
learning-rate 5 · 10−5

β1 0.9
β2 0.999
FF dropout 0.1
Attention dropout 0.1
Sequence classifier dropout 0.2

D IMPLEMENTATION DETAILS: LAPLACE APPROXIMATION AND SWAG

The configurations used when fitting the KFAC LA and SWAG are listed in Table 6.

Table 6: Training configurations for the Laplace and SWAG approximations. Common hyperparameters are noted in the top,
SWAG-specific ones in the middle, and finally, Laplace

Hyperparameter Description or Value

Likelihood Categorical (Cross-Entropy)
wS Num. Modules [0, 1, 2, 3, 4, 5, 8, 11, 17, 38]
Batch Size 16

SWAG
Learning rate sweep

[
10−3, 10−2, 5 · 10−2, 10−1

]
Optimizer SGD
Momentum 0.9
Num. optim. steps sweep 400
Num. optim. steps final 2000
Num. Columns in D 20
Iterations between snapshots 5
Num. MC Samples 50
Sublayer wS,p p ∈ [1, 12, 24, 36, 48, 60, 100]

Laplace
Prior precision sweep Equidistant in logspace in [10−1, 103]

A validation set is used for tuning hyperparameters in both methods. For the LA the prior precision is tuned, and for SWAG,
the learning rate.

E RAMPING EXPERIMENTS

In Fig. 12, we present the figure on partial stochasticity vs full and MAP for the SST-2 dataset, corresponding to the results
shown in Fig. 4 for the MRPC and RTE tasks.

In Section 5.2, ramping experiments are shown for random selection and using the maximum operator norm on MLP and
attention modules as heuristics for selecting modules for a stochastic subset. In Fig. 13, the same ramping experiments are
shown for the RTE and MRPC datasets. Left: the MAP performance is included, Right it is excluded such that variation
between subset size performance can be interpreted. The performance of a full GGN LLLA is highlighted by a green dotted
line.
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Figure 12: Results for the SST-2 dataset corresponding to the results presented in Fig. 4
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Figure 13: Median NLL of the Laplace approximation as a function of the number of modules selected under the three
ramping schemes; random module selection, max operator norm/max operator norm MLP selection, and max operator norm
of the attention modules. The median is taken over 5 train/val splits and evaluated on the RTE (top) and MRPC (bottom) test
sets. The lines/ranges are interquartile. The left figure includes the MAP evaluation and the right without it. A line showing
the performance of ’last layer Laplace’ with full GGN approximation is included.

In Fig. 14, ramping experiments are shown for the minimum and maximum operator norm ∥w∥ are shown for the three
GLUE datasets SST-2, RTE, and MRPC.
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Figure 14: Median NLL results for the Laplace approximation for maximum and minimum operator norm ramping for MLP
modules - left - and attention modules - right - across 5 train/val splits and evaluated on the test set for the SST-2 (top) RTE
(middle) and MRPC (bottom) datasets. The shown ranges are interquartile.

F SWAG RAMPING EXPERIMENTS

In this section, we briefly present the results seen for SWAG with the corresponding ramping experiments as conducted for
the Laplace approximation. Namely: Max operator norm MLP, Max operator norm attention, and random ramping.
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Figure 15: SWAG ramping experiments across the three GLUE tasks for the ramping schemes: Max operator norm MLP,
Max operator norm attention, and random ramping. All models are optimized to minimize the NLL, while disregarding the
accuracy. Hence the perhaps odd drops in performance at certain ranges of stochastic modules.

F.1 SUBLAYER RAMPING IN SWAG

In Fig. 15 we present the results for ramping stochastic subsets on a modular level for the SWAG method. Here, an
investigation into parameter-specific ramping is done. Using the ℓ1-norm as a heuristic, the ramping scheme is conducted



such p pct. of the parameters with the largest norm are added to the stochastic subset. For comparison, the subsets with the
lowest NLL are shown for the random and operator norm ramping schemes. Operator norm is shown for both MLP and
attention module ramping.

The last SWAG results for the ℓ1 norm ramping scheme can be seen in Fig. 16.
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Figure 16: Median NLL and accuracy as a function of the model’s number/percentage of stochastic parameters, displayed
for SST-2, RTE, and MRPC from left to right. Parameters are included in the subset according to the largest ℓ1 parameter
norm. The random and operator norm (MLP/Attention) subsets with lowest NLL are included for comparison.

G CALIBRATION

In Fig. 6 the calibration curves of the MAP, Temp scaled MAP, LLLA, S-KFAC, and LA and SWAG with random module
selection are shown on the SST-2 dataset. In Fig. 17 the same curves are displayed for RTE and MRPC.



0.0 0.2 0.4 0.6 0.8 1.0

Mean predicted probability

0.0

0.2

0.4

0.6

0.8

1.0

1.2

F
ra

ct
io

n
 o

f 
p
os

it
iv

es
RTE Calibration Curves

Perfectly calibrated

LA 8, ECE: 0.044

SWAG 8, ECE: 0.023

LLLaplace, ECE: 0.076

0.0 0.2 0.4 0.6 0.8 1.0

Mean predicted probability

0.0

0.2

0.4

0.6

0.8

1.0

1.2

F
ra

ct
io

n
 o

f 
p
os

it
iv

es

MRPC Calibration Curves

Perfectly calibrated

LA 5, ECE: 0.050

SWAG 5, ECE: 0.062

LLLaplace, ECE: 0.068

0.0 0.2 0.4 0.6 0.8 1.0

Mean predicted probability

0.0

0.2

0.4

0.6

0.8

1.0

1.2

F
ra

ct
io

n
 o

f 
p
os

it
iv

es

RTE Calibration Curves

Perfectly calibrated

S-KFAC, ECE: 0.085

TS. MAP, ECE: 0.099

MAP, ECE: 0.333

0.0 0.2 0.4 0.6 0.8 1.0

Mean predicted probability

0.0

0.2

0.4

0.6

0.8

1.0

1.2

F
ra

ct
io

n
 o

f 
p
os

it
iv

es

MRPC Calibration Curves

Perfectly calibrated

S-KFAC, ECE: 0.037

TS. MAP, ECE: 0.039

MAP, ECE: 0.14

Figure 17: Calibration curves for the RTE (left) and MRPC (right) datasets shown evaluated on the test set. The median
expected calibration error (ECE) across 5 runs is displayed for each method. 20 bins are placed based on the prediction
probability distribution rather than uniformly. The Laplace approximation (LA) and Stochastic weight averaging - Gaussian
(SWAG) are shown for 8 RTE, 4 MRPC of randomly selected stochastic neural network modules. S-KFAC is shown for
1.588% of parameters being stochastic.

Fig. 17 shows S-KFAC, LA and SWAG changing the structure of posterior predictive distribution towards a more uniform
distribution of mean predicted probabilities. Temperature scaling and LLLA rely on reducing the certainty of the model by
"shifting" the probabilities towards 0.5.
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