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ABSTRACT

We propose a nested evolutionary algorithm able to craft multi-network (decision-
based) black-box adversarial attacks based on Instagram inspired image filters.
Due to the multi-network training, the system reaches a high transferability rate of
attacks and, due to the composition of image filters, it is able to bypass standard
detection mechanisms. Moreover, this kind of attack is semantically robust: our
filter composition cannot be distinguished from any other filter composition used
extensively every day to enhance images; this raises new security issues and chal-
lenges for real-world systems. Experimental results demonstrate that the method
is also effective against ensemble-adversarially trained models and it has a low
cost in terms of queries to the victim model.

1 INTRODUCTION

It is well known that deep learning models are susceptible to adversarial attacks and many recent
researches in the field have been devoted to produce ever more reliable and effective attacks. Attack
reliability is strictly connected to its applicability in real-world scenarios and to its ability to bypass
potential defense mechanisms; this is why the hard-label black-box setting (also called decision-
based attack) and the transferability property of white box attacks gained increasing attention. Sev-
eral techniques have been proposed to increase the transferability of both black-box and white-box
attacks (Cheng et al. (2020); Wu et al. (2020); Brendel et al. (2018) , among the most popular). One
of the most commonly adopted technique is to craft the attacks by using an ensemble of multiple
models as proposed by Liu et al. (2017).

Besides the categorization in white-box and black-box methods, attacks can be classified as re-
stricted or unrestricted, considering the amount of modifications they apply to the images in order
to fool the systems.
Restricted attacks: they generally use a Lp-norm distance to bound the modifications. The attacks
are crafted with the aim of minimizing the differences between the original image and the adversar-
ial one, even if it means having visible (more or less) artifacts. In Figures 1b and 1d, the attacks
produced by Dong et al. (2019) and Wu et al. (2020), two of the most recent state-of-the-art adver-
sarial methods, are shown. In both the cases the generated artifacts are clearly visible.
Unrestricted attacks: they employ large and visible perturbations while keeping the images realis-
tic, natural looking and non-suspicious. The idea is to obtain images that can admit great differences
from the original one but, beyond a direct comparison with the original one they cannot be distin-
guished from any other real (maybe filtered) image. In Figures 1f and 1h, the attacks produced by
ACE-Ins (Zhao et al., 2020) and Colorfool (Shahin Shamsabadi et al., 2020) are shown. The differ-
ences between the original image and the adversarial one are evident but, if the modifications are
good enough, looking just at the adversarial one we might not be able to say that it is the attacking
image.

Another aspect that has to be taken into account for real-world attacks is the amount of queries to
the victim model that are necessary to craft effective attacks. All the systems proposed in literature
need a huge amount of queries and, also in the case of systems built to work with limited access to
the victim model, several thousands of queries are needed to produce reliable attacks.

In this paper we propose a system to craft reliable, effective and highly transferable attacks by com-
posing image filters. In previous papers (for ex. Destylization) has been shown that Instagram
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(a) Raw image (b) TI-FGSM (c) Raw image (d) SGM

(e) Raw image (f) ACE-Ins (g) Raw image (h) Colorfool

Figure 1: Examples of adversarial samples generated by TI-FGSM (Dong et al., 2019), SGM (Wu
et al., 2020), ACE-Ins (Zhao et al., 2020), and Colorfool (Shahin Shamsabadi et al., 2020).

inspired filters can have adversarial, but limited effects, when applied singularly. Hence, we de-
cided to study the effects of filter composition with the aim to increase the adversarial effectiveness.
Moreover, in the usual photo editing process people use more than one filter in order to obtain the
desired effect. We just wanted to simulate a more realistic scenario.

This kind of attack offers multiple benefits: (i) it is naturally robust to detecting methods able to find
noise, injected patterns and irregularities in the high frequencies image (Moosavi-Dezfooli et al.,
2018; Liao et al., 2018). (ii) it is naturally robust to masking-gradients (and their numerical estimate)
defending methods. (iii) it produces natural looking artifacts-free images. (iv) it produces adversarial
attacks that cannot be distinguished from any other filtered images produced extensively every day,
especially on social media platforms.

The system works in the pure hard-label black box setting and implements a multi-network approach
to increase the attack transferability. It can reach, with artifact-free images, a transferability rate
higher than 70% in the case of unsecured networks and, even more interestingly, higher than 60% in
the case of adversarially trained network.

Moreover, the system requires a very low number of queries to find an attack, around 640 in the
average case, and it can be limited by construction adjusting the algorithm parameters. In the exper-
iments presented here the maximum number of allowed queries is 1610.

Our contribution can be summarized as follows: (i) We propose the AGV-multinetwork attack, a
system able to craft powerful adversarial attacks capable of attacking even secured adversarially
trained models by composing Instagram inspired image filters; (ii) we empirically demonstrate the
high transferability of these attacks and we compare our results with other state-of-the-art systems;
(iii) we empirically demonstrate the efficiency of our system in terms of queries to the victim model
and we compare our results with other state-of-the-art systems.

2 BACKGROUND

2.1 ADVERSARIAL MACHINE LEARNING

Given an input image x ∈ X ⊂ Rd and its corresponding label y, let F be a neural network
classifier that (correctly) predicts the class label for the input image x : F (x) = y. An adversarial
attack attempts to modify the input image x by adding a perturbation δ into an adversarial image
x∗ = x+ δ such that the classifier is mislead into making a wrong prediction, i.e. F (x∗) ̸= F (x).

If we consider the type of the applied perturbation δ, the attacks can be classified as restricted or
unrestricted. In the restricted case, the modifications applied to the original image are usually small
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and bounded by a Lp-norm distance measure, forcing the adversarial image x∗ to be as close as
possible to the original one. On the contrary, unrestricted attacks use large perturbations without
Lp-bounded constraints that manipulate the image in order to create photo-realistic adversarial ex-
amples. In this case the objective is not to limit the modifications on pixels but limit the human
perception that a modification has been applied (Shahin Shamsabadi et al., 2020; Zhao et al.; Wang
et al., 2021).

2.2 IMAGE FILTERS

We implemented ten of the most popular Instagram filters using Python3 and the Pillow, OpenCV
and Numpy libraries: Clarendon, Juno, Reyes, Gingham, Lark, Hudson, Slumber, Stinson, Rise,
and Perpetua. Each filter has distinct characteristics and effects given by different level of contrast,
saturation, brightness, shadows, etc. For instance, Clarendon brightens and highlights a photo, Juno
adds saturation and warmth making the colors more intense, Rise gives a warm glow by mixing a
radial gradient with a light sepia tone, while Hudson bumps up the blues giving a more colder feel.
Examples of single filter applications are shown in Figure 6 in Appendix A. .

Each filter is parameterized by two parameters that have to be optimized by the algorithm: intensity
α and strength s. The role of the parameter α is to alter the intensity of each basic component
inside each filter implementation such as brightness, contrast, saturation, edge enhancement, gamma
correction and many more. The parameter s is used to control the strength of the filter application
and it is defined as the convex interpolation between the original image x and the transformed image
x∗:

strength(x, x∗, s) = (1.0− s) · x+ s · x∗ (1)

thus, if s = 0 the output image of the filter is the original image, while with s = 1 the filter returns
the modified image x∗.

3 APPROACH AND ALGORITHM

3.1 PROBLEM DEFINITION

Given a set S = {f1, f2, . . . , fm} of Instagram inspired image filters as described in Section 2.2, and
a clean image x, we want to find a sequence of n parametrized filters {fk1

(α1, s1), . . . , fkn
(αn, sn)}

able to produce an adversarial attack against a classifier model F starting from the image x, that is{
F (x) ̸= F (x∗)

x∗ = fkn
(αn, sn)(. . . fk2

(α2, s2)(fk1
(α1, s1)(x)))

(2)

3.2 APPROACH

The algorithm used to optimize the sequence of filters and their parameters is inspired by Baia et al.
(2021). In our proposal the universal approach proposed by Baia et al. has been transformed into
a multi-network per-image approach, where the attack is crafted and optimized for just one image
with respect to more target models.

Since the algorithm uses an evolutionary approach, the fitness function used to guide the search can
have any (also non differentiable) form, and we decide to use it to implement a sort of generalization
ability induced by attacking more models simultaneously. This is inspired by Liu et al. (2017) where
the authors suggested that attacking an ensemble of multiple networks simultaneously can generate
much stronger adversarial examples. Instead of attacking an ensemble network we decided to exploit
the optimization ability of the evolutionary approach and try to simultaneously attack all the (or at
least k) reference networks. Therefore, our goal is to find one adversarial perturbation per-image
that can fool many deep learning models. This objective is much harder to achieve than attacking a
single model but it guarantees complete (100%) transferability of the attack towards the reference
networks.

The proposed multi-network approach has the objective to obtain adversarial images with better
transferability avoiding the natural overfitting trap we can fall into when the attacks are crafted by
using a unique reference model.
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3.3 ALGORITHM

The optimization method consists of two evolutionary nested algorithms: the outer algorithm, using
a GA approach, in charge of finding the sequence of filters to use, and the inner algorithm, based
on ES, used to choose the filter parameter values. The general structure of the multi-network algo-
rithm is shown in Algorithm 1. Given a set S = {f1, f2, fm} of image filters, the outer algorithm
genotype (with length n) is encoded as a list of n integers k1, . . . , kn ∈ {1, . . . ,m} representing the
corresponding filters in S, while the inner algorithm genotype is represented by a list containing the
pairs of parameters used for each selected filter ((α1, s1), . . . , (αn, sn)). The associated phenotype
is sequence of parametrized filters able to generate the adversarial examples by applying the selected
sequence of filters, with their corresponding optimized parameters, as described in Eq.2.

3.3.1 OUTER ALGORITHM

The outer optimization step is performed by a genetic algorithm: a population of N candidate pertur-
bations is iteratively evolved towards better solutions. In order to breed a new generation, population
members are randomly selected and the crossover and mutation operations are performed. The qual-
ity of the candidates is evaluated based on their fitness values and, at the end of each iteration, the
N best individuals are chosen for the next generation.

Initial population: it is generated by randomly selecting l filters from the set S of available filters
and their parameters are initialized with default values equal to 1.

Crossover: a standard one-point crossover is used to generate new off-springs from randomly
selected members. Each child is guaranteed to inherit some genetic information from both
parents, including the optimized parameters. For example, given two parent elements P1 =
(f ′

1(α
′
1, s

′
1), . . . , f

′
n(α

′
n, s

′
n)) and P2 = (f ′′

1 (α
′′
1 , s

′′
1), . . . , f

′′
n (α

′′
n, s

′′
n)) and crossover index i = 2,

we obtain the child element (f ′
1(α

′
1, s

′
1), f

′
2(α

′
2, s

′
2), f

′′
3 (α

′′
3 , s

′′
3), . . . , f

′′
n (α

′′
n, s

′′
n)).

Mutation: it is applied by substituting a filter with another one based on a mutation probabil-
ity. The substituent filter is initialized with random parameter values. For example consider-
ing the element P = (f1(α1, s1), f2(α2, s2), f3(α3, s3) . . . , fn(αn, sn)) and supposing that fil-
ters f1 and f3 has been chosen to mutate with g1 and g2, the new generated element is P ∗ =
(g1(α

∗
1, s

∗
1), f2(α2, s2), g2(α

∗
2, s

∗
2) . . . , fn(αn, sn)), where α∗

i , s
∗
i are randomly extracted from the

parameter domains.

Selection: at the end of each iteration, we choose the N best individuals from the set of 2N can-
didates (parents and offsprings) according to their fitness values. This process is repeated until the
algorithm exhausts the allowed number of generations.

3.3.2 INNER ALGORITHM

This algorithm is devoted to the parameter optimization and is achieved by using (1, λ) evolution
strategy with λ = 5. ES iteratively updates a search distribution by following the natural gradient
towards higher expected fitness. In our case, for each list of parameters we compute a batch of λ
samples by perturbing the original individual. A gradient towards a better solution is estimated using
the fitness values of the λ samples. This gradient is then used to update the original individual. This
process is repeated until the algorithm reaches the allowed number of iterations.

3.4 EVALUATION

We define the fitness function based on the attack success rate (ASR) since the objective of the
algorithm is to fool image classification systems.

In the case of multi-networks attacks we average the attack success rate values computed on multiple
networks simultaneously. Specifically, given K Fi neural networks models, a I legitimate image,
and the corresponding perturbed image I∗ obtained by applying the sequence of parametrized filters
we want to evaluate, we defined the multi-network fitness function as:

FK(I, I
∗) =

1

K

K∑
k=1

ASRk(I, I
∗), (3)
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where ASRk represents the attack success rate calculated by querying the k-th target model: it
returns 1 if Fk(I) ̸= Fk(I

∗), 0 otherwise with respect to the Top-1 prediction.

3.4.1 ALLOWED QUERIES

The algorithm works with limited accesses to the victim model. In our algorithm the victim model is
called every time we have to compute the fitness function. Besides the explicit calls to the evaluation
function made in the initialization step and in the last step of each outer iteration, we have to consider
the Ein×Nin calls made by the inner optimization phase (filters’ parameters optimization) for each
element in the outer population. The maximum number of allowed queries can be easily computed
as:

QMAX = Nout + Eout × (Nout × Ein ×Nin +Nout) (4)
The drawback of using an evolutionary approach is highly mitigated by the needed reduced number
of generations and population size.

Algorithm 1: AGV-multi-network algorithm
Input: Image I , K classification models, outer population size Nout, inner population size
Nin,number of outer generations Eout, number of inner generations Ein, obj the number of
target models we want to attack.

Initialize population P of Nout individuals;
foreach p ∈ P do

Evaluate the fitness of p by FK ;
end
e=0 ;
while (e < Eout and FK ·K < obj) do

Offsprings = {∅} ;
for i = 1 to Nout do

Select randomly two parents p1,p2 from P ;
yi = crossover(p1, p2);
yi = mutation(yi) ;
ni = ES optimizer(yi, Ein, Nin) ;
Offsprings← ( ni) ;

end
foreach o ∈ Offsprings do

Evaluate the fitness of o by FK;
end
P = selection(P , Offsprings) ;
e = e+ 1 ;

end
return: best filter sequence for image I;

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Networks: To validate the proposed method we employed five state-of-the-art neural networks for
image classification as reference models to find the adversarial filter sequences, namely ResNet50,
VGG19, DenseNet201, MobileNet and NasNetMobile. To evaluate the effectiveness of the transfer-
ability we use as hold-out models two normally trained networks, i.e. InceptionV3 and InceptionV4,
and one adversarially trained network, i.e InceptionResNetV2-ens-adv (Tramèr et al., 2018).

Different architectures were chosen in order to explore the generalization capability of the algorithm
given that these models are fundamental components of other deep learning models used for object
detection and image segmentation. Besides, we decided to use MobileNet and NasNetMobile be-
cause they are architectures often used in ML-powered mobile apps thanks to their low-latency and
lightweight nature which makes them an interesting case study. These models were trained on the
large visual ImageNet training dataset (Deng et al., 2009) and they are publicly available.
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Multi-network setup: In the multi-network configuration we simultaneously attack multiple deep
learning models. More specifically, we study three multi-network setups:

• 5-NET: includes MobileNet, ResNet50, VGG19, DenseNet201, NasNetMobile

• 4-NET: includes MobileNet, ResNet50, VGG19, DenseNet201

• 3-NET: includes MobileNet, ResNet50, VGG19

Dataset: We performed the experiments on a subset of 1000 images from the ImageNet validation
dataset. The images were preprocessed according to the requirements of each pre-trained neural
network.

Implementations details. The hyperparameters of the outer algorithm were set as follows: Nout =
10, Eout = 10 and mutation probability ρ = 0.5; The hyperparameters of the inner algorithm
were set as follows: Nin = 5, Ein = 3, initial learning rate = 0.1 and decay rate = 0.75. These
values are the result of a preliminary experimental phase conducted to find a good trade-off between
performance and computational time.

4.2 QUERY EFFICIENCY

Query efficiency is considered a key characteristic for generating realistic attacks. As highlighted by
Ilyas et al. (2018) a limit on the number of queries can result from a time limit or a budget limit, when
querying the system costs. Considering the settings used, our system allows a maximum of 1610
queries to the victim model for each network used in the multi-network system. Direct comparisons
with other methods are in general difficult due to the differences of the approaches, especially in the
case of Lp-bounded modifications. We report the results obtained on the ImageNet dataset by very
recent systems that can be considered query-efficient methods working in the hard-label black-box
settings: Ilyas et al. (2018), that is based on an evolutionary strategy, reports that effective attacks
can be crafted with 270k queries to obtain the 90% of accuracy; in Li et al. (2020) the authors report
that their best system can produce attacks with a good quality in the 76% of cases with 10k queries
or in the 98% of cases with 20k queries. In Cheng et al. (2020) the authors report that they can
reach the 50% of accuracy with 30k queries, but they need 160k queries to reach the 90%. It is clear
that, comparing these results with our maximum (that varies from 1610 for single network training
to 8050 for 5-networks training), AGV-multinetwork is more efficient in all the cases.

4.3 ATTACKS AND TRANSFERABILITY

In this section, we analyze the multi-network scenario. According to (Liu et al., 2017), if an adver-
sarial instance remains adversarial for multiple networks then it is more likely to transfer to other
unseen networks as well. Therefore, we leverage the capabilities of the AGV single-model by (Baia
et al., 2021) algorithm to attack multiple neural networks simultaneously in order to improve the
adversarial robustness and generate adversarial examples with high transferability rates.

We examine the three different multi-network configurations 5-NET, 4-NET and 3-NET described
before with filter sequences of length 3, 4, and 5. In this case, we consider a combination of filters
to be adversarial if it is capable of misleading all models included in the multi-network setup with
respect to the Top-1 predicted class. This is the strongest requirement because we ask the system
to find an adversarial filter composition that is able to fool all the networks in the multi-network
configuration. This is different from attacking an ensemble network: we guarantee that these images
(when they are found) surely will fool all the networks used, while this is not guaranteed by the
ensemble training. For example Xie et al. (2019) showed in their experiments for DI2-FGSM and
M-DI2-FGSM that the attacks trained with the ensemble reach the 90% ASR just in few cases.
Results are reported in Table 1, where the Single-network columns can be considered the baseline
results obtained by running the algorithm proposed by Baia et al. (2021) on a single image. As
expected, attacking multiple networks is a more difficult task than attacking single models. However,
since the multi-network adversarial examples are guaranteed to work across all built-in models this
reduces the need to run the algorithm for each single network individually. Unsurprisingly, there is
a correlation between the number of filters and the ASR: longer sequences produce more visible and
large modifications that enables to guide an image towards an adversarial sample more easily.
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We also computed the transferability using three test models, namely InceptionV3, InceptionV4, and
the adversarially trained InceptionResnetV2-ens-adv, for both multiple and single model attacks.
The results are shown in Table 2. In this case, we can notice that the multi-network based attacks
achieve higher transferability rates compared to the single-model setup.

Moreover, our attacks can also mislead InceptionResNetV2-ens-adv on more than 60% of the adver-
sarial samples. This shows that even ensemble-adversarially trained models are susceptible to un-
restricted filter-based adversarial perturbations. This indicates the potential of the proposed method
whose goal is to transform image filters into malicious applications.

Table 1: Attack Success Rate (ASR)

Multi-network Single-network
Setup 5-NET 4-NET 3-NET MobileNet ResNet50 VGG19
3filters 44% 50 % 52% 64% 74% 70%
4filters 58% 50% 70% 74% 88% 82%
5filters 68% 66% 76% 78% 96% 86%

Comparisons with similar attack models.

We also compare our algorithm with other existing adversarial attack methods that have similar
colorization and filtering characteristics.

SemanticAdv (Hosseini & Poovendran, 2018) randomly changes the hue and saturation values of
an image while not affecting the shape of objects.
Colorfool (Shahin Shamsabadi et al., 2020) uses image semantics to modify the colors by employing
priors on color perception trying. It tackles the limitations of SemanticAdv which has been found to
produce unnatural looking images.
Edgefool (Shamsabadi et al.) and FilterFool (Shahin Shamsabadi et al., 2021) generate adversarial
examples by applying generic image-enhancement filters obtained by means of neural networks. For
example, FilterFool-GC tries to create a perturbation that imitates the gamma correction filter. It is
important to note that these methods do not work in a pure hard-label black-box setting because they
use the logits information that in general are not exposed and visible to the final user.
ACE (Zhao et al., 2020), ReColorAdv (Laidlaw & Feizi, 2019), and cAdv (Bhattad et al., 2019)
methods use gradient information in order to optimize a color transformation.
In particular, we focus on ACE-Ins1 and ACE-Ins2 which employ two Instagram filters to guide
the color optimization towards specific styles of enhancement, namely Nashville and Toaster. Ad-
versarial samples generated by the above mentioned methods are reported in Appendix A.

Table 2: Transferability rates

Trained on

5-NET 4-NET 3-NET
Tested on 3f 4f 5f 3f 4f 5f 3f 4f 5f

InceptionV3 0.636 0.655 0.617 0.600 0.517 0.575 0.500 0.457 0.578
InceptionV4 0.545 0.793 0.705 0.600 0.551 0.757 0.538 0.657 0.657

IncResV2-ens-adv 0.545 0.655 0.558 0.480 0.517 0.636 0.269 0.514 0.447
Trained on

MobileNet ResNet50 VGG19
Tested on 3f 4f 5f 3f 4f 5f 3f 4f 5f

InceptionV3 0.375 0.378 0.410 0.216 0.340 0.312 0.257 0.365 0.348
InceptionV4 0.437 0.540 0.564 0.405 0.477 0.541 0.342 0.439 0.441

IncResV2-ens-adv 0.250 0.297 0.359 0.216 0.250 0.270 0.285 0.243 0.279
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Table 3: Comparison with similar colorization and filtering techniques

AGV-5-NET 5f AGV-single 5f SemanticAdv Colorfool Edgefool
ASR-ref 68% 96% 88 % 91.7% 98.1%
avg-TR 62.75 % 37.5% 65.45% 47.00% 43.45%
min-TR 55.88 % 27.08% 54% 34.8% 35.7%

(IRV2-ens-adv) (IRV2-ens-adv) (Resnet18) (Resnet18) (Resnet18)

Filterfool GC ACE-Ins1 ACE-Ins2 ReColorAdv cAdv
ASR-ref 99.9% 99.3% 99.4 % 89.2% 99.83%
avg-TR 34.7% 24.24% 26.31% 17.79% 29.78%
min-TR 29.2% 11.47% 9.9 % 10.77% 28.56%

(Resnet18) (IncV3) (IncV3) (Dense121) (Dense121)

In Table 3 we report the Attack Success Rates obtained by crafting adversarial samples on the ref-
erence model (ASR-ref) and the average and minimum Transferability Rate (avg-TR, min-TR) with
respect to different testing models. The reference model is ResNet50 for all the methods, with the
exception of ReColorAdv that used InceptionV3. For the minimum values we also report the target
network which represents the hardest model to attack. The experiments show that in most cases our
algorithm achieves better results than the other techniques while using less information (top1-label
vs logits).

From the ASR point of view, the AGV-single method performs better than SemanticAdv and
Colorfool but it falls behind on the transfer rate, while AGV-multi-network outperform almost all
other systems on the hold-out models. Given the random nature of its approach, the SemanticAdv
generates suspicious perturbations that lead to excessively transformed images (people with blue
skin or green horses) which can induce misclassification in unseen models more easily. Even
though Colorfool tries to limit the adversarial perturbations by using image segmentation to modify
the colors within specific ranges, it often produces noticeable, artificial colorization effects. This is
mostly due to the inaccuracy of the image segmentation techniques that poorly identifies the objects
resulting in unnatural colorization patterns, such as skies with pink clouds or dogs half white,
half blue. Despite accessing only the final class-label decision of a model, AGV reaches a higher
transferability rate than many other methods relying on richer information for the attack process,
such as FilterFool, ACE, ReColorAdv and cAdv. Moreover, we have a great diversity in terms of
filter styles, ranging from more bright and colourful to more soft and subtle transformations which
are frequently found on many social media platforms, like Instagram. Examples that sucessfully
transfer to the InceptionResNetV2-ens-adv are illustrated in Figure 2 and 3 in Appendix A.

4.4 STEALTHINESS OF ADVERSARIAL EXAMPLES

We evaluate the stealthiness of the adversarial examples from two perspectives: stealthiness to hu-
man perception and stealthiness to defense mechanisms. We measured the human perception by
means of most common No-Reference image quality assessment metrics (NR-IQA), such as NIMA,
NIQE and BRISQUE (Talebi & Milanfar, 2018; Mittal et al., 2012; 2013). For this analysis, we
calculated the average of the normalized differences between the NR scores on the original images
and the corresponding modified images. The results show no significant difference between the
scores of clean images and adversarial samples obtained by applying the filter sequence found by
the algorithm. Considering the average computed over 12 different experiments that produced about
60k adversarial images, we obtained values in [−0.0479, 0.0006], with an average of −0.0144.

For the stealthiness to defense mechanisms we considered well-known detecting and sanitizing tech-
niques proposed to counter adversarial attacks. As detection methods we tested Feature Squeezing
(FS) (Xu et al., 2018) and detectors based on autoencoders and model distillation available in the
Alibi Detector library (Van Looveren et al., 2019). Experimental results on CIFAR-10 dataset show
that FS is able to detect less than 10% of adversarial examples as malignant. The autoencoder and
distillation based methods were able to reach only 25% and 11% detection rate, respectively. The
adversarial threshold was inferred by assuming 5% of the clean images as outliers. As sanitizing
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(a) OG: bakery (b) Adv: purse (c) OG: mouse trap (d) Adv: birdhouse

(e) OG: Std. Schnauzer (f) Adv: Mini. Schnauzer (g) OG: Labrador (h) Adv: Doberman

Figure 2: Examples of clean images and their corresponding adversarial example. The adversarial
labels are obtained by transferring the modified images to the InceptionResNetV2-ens-adv model.

techniques we tested jpeg compression, Destylization (Wu et al.) and Instragram-Filter-Removal-
Network (Kinli et al., 2021). Preliminary tests indicate that these methods cannot effectively remove
the adversarial perturbations produced by combining multiple filters. In the case of jpeg compression
we obtain, in most cases, an increasing number of attacks.

4.5 DECEPTION ABILITY

An effective attack can be evaluated also with respect to its deception ability, that can be measured
by the distance between the original and the assigned class after the modification. To do this we
computed the rank of the class of the transformed image inside the class distribution of the original
image (descending order with respect to the prediction probabilities): the further away, the stronger
the deception is. Similarly, we also examined the rank of the right class in the distribution of the
modified images in order to check how far away it was moved.

Preliminary results showed that more than 38% of the modified images have been classified with a
class that in the original distribution was, on average, over the 5th place. On the other hand, in more
than 28% the right class was placed, on average, over the 5th position in the distribution computed
for the filtered images.

5 CONCLUSIONS AND FUTURE WORKS

In this work we present the algorithm AGV-multi-network for the optimization of Instagram-style
image filters in a multi-network setting able to fool classification systems with a low cost in term of
queries and a high transferability rate.

The algorithm was experimentally tested on a subset of the ImageNet validation set. From the
testing phase we can conclude that: (i) the algorithm shows very good transferability rate also in the
case of adversarial trained network and with respect to other method producing images with evident
artifacts; (ii) the algorithm is able to craft the attacks using a very limited number of queries.

There is a big room for improvements that are under study. In particular we aim to exploit the multi-
objective fitness function of the original AGV algorithm in order to craft targeted deceptions, move
the right classification even further away in the modified class distribution, apply automatic measure
for image quality assessment and optimize the attacks also to avoid detection methods.
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A APPENDIX

We report different adversarial examples generated by state-of-the-art methods and similar systems.

(a) OG: Std. schnauzer (b) OG: Mini. schnauzer (c) OG: Mini. schnauzer (d) Adv: Mini. schnauzer

Figure 3: Examples of different adversarial perturbations styles crafted on the same image by AGV-
multi-network with different configurations.
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(a) Adv. samples crafted by SGM on ResNet-152 (b) Zoom on the adv sample

(c) Adv. samples crafted by SGM on DenseNet-201 (d) Zoom on the adv sample

Figure 4: Advesarial samples crafted by SGM (Wu et al., 2020) method. The adversarial perturba-
tions creates visible artifacts in the image.
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(a) Adv. samples crafted by AGV-multi-network (b) Zoom on the adv sample

(c) Adv. samples crafted by AGV-multi-network (d) Zoom on the adv sample

Figure 5: Examples of adversarial samples generated by AGV-multi-network. The adversarial per-
turbation does not create artificial patterns in the image.
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(a) Original (b) Clarendon (c) Gingham (d) Juno

(e) Reyes (f) Lark (g) Hudson (h) Slumber

(i) Stinson (j) Rise (k) Perpetua

Figure 6: The effects produced by applying filters individually with default paramters.
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(a) Clean imange (b) SemanticAdv (c) Colorfool

(d) Clean image (e) Colorfool

(f) Clean image (g) Edgefool

(h) Clean image (i) Filterfool

Figure 7: Adversarial examples generated with other filter-based and colorization systems.
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(a) ACE-Ins with color style guidance from Instagram filters

(b) ReColorAdv adversarial examples

(c) cAdv adversarial examples

Figure 8: Adversarial examples generated with other filter-based and colorization systems.
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