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ABSTRACT

As numerous meta-learning algorithms improve performance when solving few-
shot classification problems for practical applications, accurate prediction of un-
certainty, though challenging, has been considered essential. In this study, we con-
template modeling uncertainty in a few-shot classification framework and propose
a straightforward method that appropriately predicts task uncertainty. We suppose
that the random sampling of tasks can generate those in which it may be hard for
the model to infer the queries from the support examples. Specifically, measuring
the distributional mismatch between support and query sets via class-wise simi-
larities, we propose novel meta-training that lets the model predict with careful
confidence. Moreover, our method is algorithm-agnostic and readily expanded to
include a range of meta-learning models. Through extensive experiments includ-
ing dataset shift, we present that our training strategy helps the model avoid being
indiscriminately confident, and thereby, produce calibrated classification results
without the loss of accuracy.

1 INTRODUCTION

With the great success of deep learning over the last decade, there has been growing interest in
investigating methods that are more intuitive to mimic human intelligence. One of the desirable
characteristics of human cognition is the ability to learn new information quickly. Few-shot learning
is a problem that requires machines to learn with a few examples, and it is usually solved by meta-
learning algorithms. Through training over a number of few-shot tasks, the meta-learning model
learns to acclimate rapidly to new data and perform desired tasks with the help of prior across-task
knowledge. Noteworthy approaches include learning metric space (Koch et al., 2015; Snell et al.,
2017; Sung et al., 2018), learning update rule (Ravi & Larochelle, 2017; Andrychowicz et al., 2016),
or learning an initialization (Maclaurin et al., 2015; Finn et al., 2017).

Meanwhile, calibration is critical in real-life because the model should correctly inform humans
or other models of its degree of uncertainty. Misplaced confidence or overconfidence of a deep
network can result in dramatically different outcomes in the decision-making process, such as during
autonomous driving (Helldin et al., 2013) or medical diagnoses (Cabitza et al., 2017). Calibration
is even more crucial in few-shot learning, for given a few numbers of data at hand, the model is
likely to put wrong confidence into the predictions of the unknown data. Also, existing calibration
methods, while effective in general classification, are not readily applicable to the few-shot learning.
Therefore, we present a novel method to measure task-level uncertainty and exploit it to make a
well-calibrated model.

When the model is meta-trained to solve the few-shot classification, it generates a task by randomly
choosing classes and sampling support and query examples of corresponding classes. However,
we suppose in this way a variety of tasks can be generated, and there are some tasks in which it
may be hard for the model to infer the queries from the support examples. Common meta-learning
approaches force the model to learn anyway, lacking the discussion about task generation. In this
study, we design an algorithm-agnostic calibration method for a few-shot classification model by
diminishing the learning signal from those ill-defined tasks. This novel training lets the model
predict with careful confidence, ultimately obtaining better calibration ability.

To summarize, our contributions are as follows:
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Figure 1: After adaptation to the
support examples (blue), inference is
made from the query examples (red),
which guides the following meta-
update. While Task 1 comprises
well-distributed Dspt and Dqry, Task 2
holds a significant support-query dis-
crepancy. We limit the feedback flow
from Task 2.

• We propose a simple and straightforward method by which a few-shot classification model
learns the ill-defined tasks in a timid way, so as not to place the wrong confidence.

• We extend our approach from an optimization-based to a metric-based framework, con-
firming that our method is versatile and can be easily expanded to include a range of meta-
learning models.

• We demonstrate that we can design an uncertainty-aware model that is suitable for calibra-
tion and robustness.

To the best of our knowledge, there has been a work that used weighted meta-update in reinforce-
ment learning literature (Xu et al., 2019) to prioritize and give different weights for each trajectory.
However, our work is the first one that quantified task uncertainty and applied it in the few-shot
classification framework. Moreover, we validate our work through a dataset shift experiment, which
is set to be more challenging and hardly ever addressed due to the degradation of the estimation
ability (Snoek et al., 2019).

2 PRELIMINARIES

2.1 PROBLEM SETUP

A meta-learning problem is composed of tasks from a task distribution p(τ), and for each meta-
training task τ ∼ p(τ) there is a training set and test set. We denote each as a support set, D(τ)

spt

and query set,D(τ)
qry , respectively. In typical few-shot classification scenarios, each task is comprised

of data from N randomly selected classes and k support examples per class, with a total of kN
examples, {(x(τ)

s , y
(τ)
s )}kNs=1 := D(τ)

spt . This is calledN -way k-shot problem. Also, there is a disjoint

query set, {(x(τ)
q , y

(τ)
q )}k′Nq=1 := D(τ)

qry . Meta-training is an iterative process of optimization on Dqry
after being seenDspt. This setup resembles learning a novel task with only a few examples of training
data. The adaptation onDspt corresponds to training with the novel task data. Given a few examples,
meta-learner is expected to perform predictions on unseen data, which in our setup is Dqry. That is,
the meta-learner evolves by acquiring general information across the tasks by optimizing on Dqry.

2.2 UNCERTAINTY IN FEW-SHOT CLASSIFICATION

A good meta learner should not only perform well on given tasks but should also make reasonable
decisions based on aleatoric or epistemic uncertainty (Der Kiureghian & Ditlevsen, 2009). While
aleatory is irreducible uncertainty from data, including class overlap, observation noise, or data
ambiguity, episteme arises from the stochasticity of the model itself, and can be reduced by obtaining
sufficient data. For example, aleatory is the case when ‘dog’ images have inherently high noise (e.g.,
blurred and corrupted), and thus, have the appearance of other class such as ‘cat’ (known-unknown).
Episteme arises when the model is not sufficiently trained for it to match the images to ‘dog’.

There is another source, distributional uncertainty, which is ascribed to a mismatch between training
and test data (Malinin & Gales, 2018). In few-shot classification, this corresponds to the discrep-
ancy between support and query set, often caused by intra-class variations (Chen et al., 2019). For
example, distributional uncertainty may arise when the ‘dog’ class includes support examples as
‘bulldogs’ while by chance, the query is ‘chihuahua’, resulting in large uncertainty of mapping ‘chi-
huahua’ to any class (unknown-unknown). Typical meta-learning algorithms do not consider this
mismatch, which we call support-query discrepancy, and naı̈vely adapt to every observed support

2



Under review as a conference paper at ICLR 2021

example. Appendix A provides the formalized description of distributional uncertainty and its re-
lation to the few-shot learning. In this work, we propose a straightforward method of training an
uncertainty-aware model (Figure 1), where we measure the distributional mismatch within a task
and constrain the feedback from uncertain tasks.

3 TASK CALIBRATION METHOD

Despite the importance of distributional uncertainty modeling, the problem setup, which restricts
the number of data, renders the model extremely sensitive to the distribution of given data. There-
fore, we focus on task-level distributional uncertainty instead of considering that of individual data
and models. We suggest that this can be implemented by a non-Bayesian approach with an appro-
priate measure. We propose task calibration model-agnostic meta-learning (TCMAML), a variant
of MAML (Finn et al., 2017), that can estimate task distributional uncertainty during meta-training
and utilize it to modulate the optimization of global parameters. Thereafter, we extend our approach
to the metric-based learning model.

3.1 BRIEF REVIEW OF MAML

Before introducing our new approach, we provide a brief review of model-agnostic meta-learning
(MAML) (Finn et al., 2017) to promote readers’ understanding. MAML learns a proper initializa-
tion of globally shared θ that is quickly adjusted to each task τ by a few gradient descent steps.
After being adapted to support examples, MAML updates θ by optimizing on the query set, mini-
mizing task-specific loss Lτ with a task-adapted parameter φτ . This is summarized as the bi-level
optimization.

inner-level: φτ ← θ − β∇θL(θ;D(τ)
spt ) (1)

outer-level: θ ← θ − α

T

T∑
τ=1

∇θLτ (φτ ;D(τ)
qry ) (2)

The meta-update (2) aggregates gradients over multiple tasks, so that the tasks are learned simultane-
ously. If we can measure the task uncertainty, adaptive weighting of task-specific losses is possible,
i.e., L =

∑T
τ=1 wτLτ (φτ ) where T is the number of tasks in a meta-batch. Each weight reflects

the uncertainty of a specific task. If a task τ has a large uncertainty component, the small value of
wτ will decrease the contribution of∇θLτ .

3.2 TCMAML

We suggest that class-wise similarity would be a good metric to estimate task uncertainty. As the
similarity between classes increases, it becomes harder to distinguish one from another. The simi-
larity is measured in the embedding space mapped by hφτ , the feature extractor before the classifier.

With the pairs of query inputs and labels (x
(τ)
q , y

(τ)
q ), we collect the average features for every class

c, hφτ ,c := 1
k′

∑
{q:y(τ)q =c} hφτ (x

(τ)
q ), where h maintains feature dimensions. hφτ contains the

information about the support and query data because the average features of the query inputs are
parameterized by the task parameter φτ , while φτ is derived from the adaptation on the support data
as (1). Therefore, the relations between support and query data determines hφτ . We will go deeper
in the next section.

We now define the cosine similarity matrix Cτ , as for all i, j ∈ {1, · · · , N},

[Cτ ]ij = SC(hφτ ,ci ,hφτ ,cj ) :=
h
>
φτ ,cihφτ ,cj

‖hφτ ,ci‖ · ‖hφτ ,cj‖
(3)

calculates how correlated the two class embeddings are. The diagonal line of Cτ is always 1, and
the rest of the elements are between [−1, 1]. To map the similarity matrix into a scalar, we use

Frobenius norm. For C ∈ RN×N , the Frobenius norm of the matrix is ‖C‖F =
√∑

i,j [C]2ij . From

now on, we will simply use a similarity score sτ to denote ‖Cτ‖F.
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In few-shot classification, it is important to carefully consider the task generation. More specifically,
we prefer to sample the tasks considering how well the task is defined and how much it is reliable
to train with. The original meta-loss in (2) assumes equal reliability for uniformly sampled tasks;
p(τ) = 1

T , ∀τ . Let q(τ) be our desired task generating distribution. There is no straightforward
way to sample from q(τ), but we can alternatively use importance sampling.

Eτ∼q(τ)Lτ (θ) = Eτ∼p(τ)
q(τ)

p(τ)
Lτ (θ) ≈ 1

T
∑
τ

q(τ)

p(τ)
Lτ (θ) =

∑
τ

q(τ)Lτ (θ) (4)

Now if we sample the tasks randomly from p(τ) and compute the importance weight q(τ), we
can easily get the adaptive empirical risk, which allows training with the prior knowledge of task
configuration.

TCMAML estimates q(τ) with a softmax function over sτ values. Consequently, we modify the
meta-update rule (2) as follows:

θ ← θ − α
T∑
τ=1

∇θ

[
wτ · Lτ (φτ ;D(τ)

qry )

]
, wτ =

exp(−sτ/T )∑T
τ=1 exp(−sτ/T )

(5)

where T is a scaling factor. Designing the importance weight as above implies large weight on
the well-defined tasks, where the measured class-wise similarity is low, and small weight on the
ill-defined tasks, where the similarity is high. While the softmax function is an exponential scaling,
linear scaling is also possible; wτ = (1/sτ )/

∑T
τ=1(1/sτ ). However, we empirically found that the

exponential scaling better performs. Refer to Appendix B.2 for linear scaling TCMAML.

3.3 RELATION WITH DISTRIBUTIONAL UNCERTAINTY

The meta-update (5) indicates that for an uncertain task, a small weight value is multiplied, so that
its contribution to the updates of θ is weak. In this sense, TCMAML considers task distributional
uncertainty by measuring the similarity between the query examples. If we assume L as a cross-
entropy loss, φτ from task adaptation (1) is an approximation of the maximum likelihood estimate
with observed support examples.

φτ = arg max
θ

∏
s

p(y(τ)s |x(τ)
s ,θ), (x(τ)

s , y(τ)s ) ∈ D(τ)
spt (6)

Figure 2: Average similarity scores
with 95% confidence interval. Stan-
dard indicates general few-shot
tasks. Poorly-defined indicates
extremely large support-query dis-
crepancy; images from mismatched
classes, and Well-defined imitates
τ∗. More details in Appendix B.4.

Let φτ∗ be the parameter from a task where there is no
distributional uncertainty. This is satisfied when D(τ∗)

spt

has exactly the same distribution as D(τ∗)
qry . We aim to

maximize p(D(τ∗)
qry |θ) in meta-learning, which is attained

when θ = φτ∗ , from eq.(6) and D(τ∗)
spt ≈ D

(τ∗)
qry . We can

assume that to make a clear distinction between differ-
ent classes the embedded representation vectors should
be less correlated. Therefore in task τ∗, the query in-
puts’ embedded vectors, hφτ∗ ,c, are less correlated be-
cause φτ∗ optimally distinguishes D(τ∗)

qry .

In contrast, if there is a significant distributional mis-
match betweenD(τ)

spt andD(τ)
qry , φτ is the suboptimal solu-

tion to maximize p(D(τ)
qry |θ), because the parameters can-

not infer D(τ)
qry from D(τ)

spt . In the previous example, the
parameters adapted from ”bulldog” images might not sep-
arately distinguish ”chihuahua” from another class such
as ”cat”. This implies higher correlation between the embedded vectors hφτ ,c. Therefore, we can
compare the class-wise cosine similarity, SC , computed using the average features in task τ∗ and τ .

SC(hφτ∗ ,ci ,hφτ∗ ,cj ) ≤ SC(hφτ ,ci ,hφτ ,cj ), ∀ i, j (7)

4



Under review as a conference paper at ICLR 2021

From (3) and (5), the above inequality leads to smaller weights on the loss function of uncertain
tasks. For a general task τ , a significant mismatch between the distribution of D(τ)

spt and D(τ)
qry in-

creases the inequality gap.

Figure 2 shows the similarity scores of tasks from different distributions with real-world images.
In well-defined tasks as τ∗, the adapted model is good at distinguishing the query representations
because they are less correlated. On the other hand, in the extremely discrepant case where the
classes of support images do not correspond to those of query images, between-class similarities
are high because the model cannot infer the query set from observing the support set. General few-
shot classification tasks lie between these well-defined and poorly-defined ones. TCMAML is thus
trained by imposing a prior regarding whether a given input task has high distributional uncertainty
or not.

3.4 EXTENSION TO THE METRIC-BASED MODEL

We emphasize that our task calibration approach can be easily extended to a metric-based approach.
Unlike optimization-based models such as MAML, a metric-based model does not require a process
of explicit adaptation to the task. Instead, the model calculates the distances between the query
and support data in a non-parametric way. In this study, we use prototypical network, i.e., Pro-
toNet (Snell et al., 2017), which is a high-performance metric-based few-shot learning method, and
propose and apply our task-calibrated version, TCProtoNet.

Using the distance vector of each query to the support prototypes p = [p1, . . . , pN ]>, we collect the
average vectors for each class, dφτ ,c := 1

k′

∑
{q:y(τ)q =c} d(x

(τ)
q ,p), where (x

(τ)
q , y

(τ)
q ) ∈ D(τ)

qry and

d(·,p) ∈ RN+ hold. The assembly of a similarity matrix using the average vectors and the weight
computation are effected similarly as in section 3.2. We empirically demonstrate that TCProtoNet
performs better calibration than vanilla ProtoNet. The result implies that in a range of few-shot
learning models, our method is versatile and applicable to more recent methods such as task depen-
dent adaptive metric, TADAM (Oreshkin et al., 2018).

4 RELATED WORK

Uncertainty estimation in deep learning has been persistently studied despite the challenges (Gal,
2016; Lakshminarayanan et al., 2017; Guo et al., 2017; Jiang et al., 2018). Meanwhile, Depeweg
et al. (2017) dealt with the decomposition of uncertainty in Bayesian neural networks to better under-
stand and identify their characteristics. Our work also investigates different sources of uncertainty,
initially being inspired by Malinin & Gales (2018), which builds Dirichlet Prior Network to explic-
itly model distributional uncertainty. We extend their argument to a few-shot learning framework
without requiring any additional parameters or networks. In parallel, Sensoy et al. (2018) parameter-
ized Dirichlet using the evidence vector to regularize predictive distribution, to penalize divergence
from the uncertain state.

Few-shot image classification is one of the most challenging tasks for coping with high degrees of
uncertainty (Fe-Fei et al., 2003). Estimation and judgment over the uncertainty become challeng-
ing when encountered with high-variance data such as a large-scale image set. To overcome this
issue, several recent studies have relied on designing Bayesian neural networks. These networks use
posterior approximation to quantify parameter uncertainty, which is a type of epistemic uncertainty.
Probabilistic MAML (Finn et al., 2018) is a variant of MAML (Finn et al., 2017), which approxi-
mates the distribution over model parameters by optimizing the variational lower bound. Bayesian
MAML (Kim et al., 2018) uses the Stein variational gradient descent for more flexible modeling of
posterior. Ravi & Beatson (2019) and Gordon et al. (2019) both amortize approximate inference.
Neural Processes (Garnelo et al., 2018) are a combination of a stochastic process and neural network
that learns the distribution of functions while representing uncertainty, although they are yet to be
proven capable of solving large-scale classification problems. The Bayesian models must compute
posterior inference, and most approaches use empirical approximation, which usually requires heavy
computations. Conversely, our method uses a non-Bayesian approach, which is computationally ad-
vantageous and does not rely on posterior approximation. The TCMAML running time is almost
the same as that for vanilla MAML.
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5 EXPERIMENTS

5.1 EXPERIMENTAL DETAILS

We mainly used two different datasets for the experiments: mini-ImageNet and CUB-200-2011.

mini-ImageNet (Vinyals et al., 2016) dataset contains 100 classes and 600 images per class. We
followed the standard protocol which was initially provided by Ravi & Larochelle (2017), splitting
(train, validation, test) set to (64, 16, 20) non-overlapped classes.

CUB-200-2011 (Wah et al., 2011) dataset is composed of 200 bird species classes incorporating
11,788 fine-grained images. According to Hilliard et al. (2018), it is divided into (100, 50, 50)
classes for (train, validation, test) set.

Thanks to their work conducted on fair comparison in the few-shot classification setup, most of our
implementation details follow Chen et al. (2019) both in 1-shot and 5-shot tasks. Every accuracy
reported is the test accuracy, which was evaluated from 1000 tasks randomly drawn from the test set.
By default, we used a Conv-4 backbone, CNN with four convolutional blocks (Vinyals et al., 2016),
to not overestimate the performance by using deeper networks. Furthermore, MAML and TCMAML
were trained with a first-order approximation of derivatives for the efficiency (Finn et al., 2017).

Dataset Shift. Additionally, we conducted dataset shift experiments (Chen et al., 2019), in which the
train set is the entire mini-ImageNet dataset, and validation and test sets are from CUB-200. mini-
ImageNet → CUB-200 was implemented with a ResNet-18 backbone (He et al., 2016) for better
convergence. The dataset shift is significantly more challenging than a typical few-shot classification
setting because the model has to predict the examples from completely different distributions to
those of the train set. This is an intriguing situation from a practical perspective since for most
real-world problems it cannot be assumed that new tasks would be from among those with which
the model is familiar. However, not much research on uncertainty in few-shot learning has been
attempted on shifted datasets.

5.2 CALIBRATION RESULTS

Our main contribution is well-calibrated classification. The model is well-calibrated when it makes
its decisions based on the predicted uncertainty. The correctness of a perfectly calibrated model
will match the confidence level (the largest value of the softmax output). For example, the model
is miscalibrated or overconfident when the confidence is 0.8 on average, but only 70 out of 100
samples are correct. The quantified measures for miscalibration include expected calibration error
(ECE) and maximum calibration error (MCE),

ECE =

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)|, MCE = max

m∈{1,··· ,M}
|acc(Bm)− conf(Bm)| (8)

where acc(·) and conf(·), respectively, are the empirical accuracy and average confidence for each
bin. Here, Bm, referred to as bin, is a subset of samples such that the sample’s prediction confidence
falls into the m-th partition. Refer to Guo et al. (2017) for a detailed derivation.

Table 1 and 2 summarize the error rate and accuracy. MAML+TS denotes temperature scaling after
training MAML. Temperature scaling (Guo et al., 2017) is one of the calibration methods widely
used in general classification, which learns a temperature parameter to control the confidence. It
works as post-processing on the validation set. However, in few-shot learning setup, train, vali-
dation, and test set all have non-overlapped classes, and the unseen classes are given in the future
tasks. Existing calibration methods such as temperature scaling find the best parameter for the
known classes, which is not applicable in few-shot classification. This is why MAML+TS produced
somewhat random results; a few results are better than MAML but the rest are severely poor.

In most experiments, TCMAML exhibited a significantly decreased error rate than vanilla MAML
and ABML, as well as TCProtoNet outperforming ProtoNet. ABML, amortized Bayesian meta-
learning (Ravi & Beatson, 2019), is one of the Bayesian methods for few-shot learning and is also
based on the MAML algorithm. Notably, while producing calibrated results, TCMAML and TCPro-
toNet yielded consistent accuracy without incurring the loss of prediction capability. On the other
hand, ABML produced poor accuracy with high ECE/MCE rate except for the 1-shot mini-ImageNet
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Table 1: Calibration results for mini-ImageNet experiments. The test accuracy is reported with a
95% confidence interval.

5-Way 1-Shot 5-Way 5-Shot

Methods Accuracy (%) ECE (%) MCE (%) Accuracy ECE MCE

MAML 46.92 ± 0.63 4.04 8.77 63.18 ± 0.59 1.46 3.98
MAML+TS 46.92 ± 0.63 1.39 4.59 63.18 ± 0.59 6.01 8.79
ABML 43.47 ± 0.58 1.48 4.82 60.06 ± 0.53 2.97 4.93
TCMAML 47.20 ± 0.63 0.80 5.80 62.96 ± 0.58 1.62 4.09

ProtoNet 48.30 ± 0.62 1.26 4.53 67.61 ± 0.54 0.70 1.43
TCProtoNet 49.52 ± 0.63 0.89 3.00 67.12 ± 0.53 0.55 1.27

Table 2: Calibration results (%) for CUB-200 and mini-ImageNet → CUB-200 experiments. The
accuracies are reported in Appendix B.5.

CUB-200 mini-ImageNet→ CUB-200
5-Way 1-Shot 5-Way 5-Shot 5-Way 1-Shot 5-Way 5-Shot

Methods ECE MCE ECE MCE ECE MCE ECE MCE

MAML 2.22 2.94 2.39 3.66 18.02 35.80 18.28 25.27
MAML+TS 8.62 13.47 2.04 3.65 16.71 35.33 20.89 27.99
ABML1 3.34 5.00 2.29 4.59 - - - -
TCMAML 1.40 2.74 2.27 3.36 15.06 27.88 17.53 24.65

ProtoNet 3.88 6.31 0.46 4.44 4.17 6.61 0.50 1.72
TCProtoNet 2.87 5.37 0.34 0.85 3.47 4.64 0.49 1.30
1 ABML is not implemented on dataset shift experiment, due to its inefficiency. Refer to

Appendix B.3, regarding the reimplementation of ABML.

case. Also, TCMAML’s improvement was more significant in 1-shot experiments compared to the
5-shot, because 1-shot tasks bring more distributional uncertainty that induces the wrong confidence
of a model. For example, in 5-shot mini-ImageNet, MAML was already well-calibrated and there
was no more improvement.

Interestingly, TCProtoNet has a better calibration ability than TCMAML. MAML has explicit inner-
level optimization, which adapts rapidly to the task, regardless of uncertainty. ProtoNet, on the
other hand, updates the parameters using the distance loss between the support prototypes and query
set. Therefore, ProtoNet actually warps the embedding space towards reducing the support-query
discrepancy. Thus, it can be observed that different learning strategies highly influence the model’s
calibration abilities.

5.3 TASK UNCERTAINTY REFLECTS PREDICTABILITY

One might be curious whether task uncertainty correlates well to the difficulty of a given task.
Figure 3 (left) shows that our measure of task uncertainty reflects the model’s reliability for making
correct predictions. There is a clear trend of low accuracy when the task has large discrepancy in the
support and query distribution. In other words, distributional uncertainty is strongly related to the
classification accuracy. However, the epistemic and aleatoric uncertainty are much more exacting to
measure and do not intuitively explain the difficulty of a task.

We further studied evaluating only those tasks that were estimated to be well-defined. In Figure 3
(right), we excluded the outlier tasks of which uncertainty values exceeded the threshold we set.
The baseline accuracy for all 1000 tasks is 76.03%. From removing approximately half of all tasks
(when threshold is 3.5), the test accuracy reached 81.01% (gaining + 4.98%).
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Figure 3: Left: TCMAML was trained on 5-shot CUB-200 train set, and thereafter evaluated on
different test sets. Each dot represents a test task. 1000 tasks were evaluated for each dataset and
each task consisted of 75 query examples, 15 per class to be classified. y-axis is task accuracy, the
accuracy of 75 queries. Right: The test accuracy (solid line) and the number of tasks (dashed line)
that were evaluated while excluding the outlier tasks. The test set was CUB-200.

5.4 META-TRAINING WITH CORRUPTED TASKS

Our task calibration method is robust against data corruption. Meta-training with corrupted data is
challenging to the model because it introduces large noise that impedes the accumulation and the
transfer of meta-knowledge. Nevertheless, robustness is crucial in that the model should still learn
meta-knowledge, even among those tasks, to be transferred to the target tasks.

To this end, we manipulated the task sampling process in meta-train phase. Specifically, with some
fixed probability, we corrupted the tasks to include random Gaussian images. That is, a corrupted
task consists of 5 support images from mini-ImageNet train set and 15 query images that have pixel
values from N (0, 1). We found out that MAML is already robust against this attack due to the
informative feature reuse (Raghu et al., 2019) and overfitting to the uncorrupted images; thus, there
was no improvement with TCMAML. On the other hand, metric-based model as ProtoNet is fragile
because this type of model learns directly from matching the query examples to the support set. If
the support and query set are heterogeneous, ProtoNet is easily damaged by unwanted updates.

Table 3: Test results (%) after meta-training under corrupted tasks condition.

p = 0.25 p = 0.5

Methods Accuracy Decrease Accuracy Decrease

MAML 62.27 ± 0.57 −0.91 61.12 ± 0.59 −2.06
TCMAML 61.82 ± 0.58 −1.14 61.03 ± 0.57 −1.93

ProtoNet 61.38 ± 0.55 −6.23 43.60 ± 0.50 −24.01
TCProtoNet 63.45 ± 0.56 −3.67 48.65 ± 0.53 −18.47

When 25% of tasks were corrupted (p = 0.25), ProtoNet performance dropped to 61.38%. Not
surprisingly, 50% corruption (p = 0.5) led to a further decrease, which is 24.01%p lower than
without-corruption training. TCProtoNet managed to exceed its counterpart, 63.45% and 48.65% in
25% and 50% corruption, respectively.

6 CONCLUSION

In this study, we asserted that large-scale few-shot classification problems should be examined by
carefully estimating uncertainty. We postulate that the few-shot classification contains large discrep-
ancy between the support and query set, although typical meta-learning algorithms do not consider
this. We demonstrated that our suggested class-wise similarity score is related to distributional un-
certainty and reflects the predictability of a task. Further, we demonstrated that task calibration can
be extended easily to other methods, such as metric-based learning, via TCProtoNet. The calibra-
tion results verified reliable decision-making without the ability to classify being degraded. Lastly,
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we found out the task calibration method acquires robustness to the data corruption during meta-
training.
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A DETAILED DESCRIPTION ABOUT DISTRIBUTIONAL UNCERTAINTY

Here we use the same few-shot classification setup as in the paper. To address the uncertainty in
meta-learning, recent works built Bayesian neural networks to formalize posterior distribution over
the task-specific parameters φτ , which is an adapted result from D(τ)

spt and global parameter θ. The
main idea of the Bayesian approach is using the posterior of φτ as a prior when computing the
predictive distribution. Marginalizing over task-specific parameters would give good estimates of
an output, considering model’s epistemic uncertainty.

p(y|x,Dspt,θ) =

∫
p(y|x,φ)p(φ|Dspt,θ) dφ (9)

Malinin & Gales (2018) extended above equation to explicitly capture distributional uncertainty,
via parameterizing a distribution over categorical distribution, p(µ|x,φ) where µ stands for the
categorical probability; µ = [µ1, · · · , µN ]> = [p(y = 1), · · · , p(y = N)]>. Given enough training
data we can assume a point estimate for the model parameters, φ̂. Then (9) can be reformulated as:

p(y|x,Dspt,θ) =

∫ ∫
p(y|µ)p(µ|x,φ)p(φ|Dspt,θ) dµ dφ (10)

=

∫
p(y|µ)p(µ|x, φ̂) dµ (11)

where φ̂ ∼ p(φ|Dspt,θ) = δ(φ− φ̂). (12)

p(µ|x, φ̂) is a prior for categorical distribution, for example Dirichlet prior,

p(µ|x, φ̂;α) =
Γ
(∑N

c=1 αc
)∏N

c=1 Γ(αc)

N∏
c=1

µαc−1c (13)

where αc is a non-negative concentration parameter for class c.

In the case when input has high aleatoric uncertainty, p(µ|x, φ̂) from (13) must be sharp at the
center of the (N − 1) simplex, being confident of imposing uncertain predictions. It is satisfied
with symmetric Dirichlet where αcs are the same and larger than 1. Conversely, when there exists
high distributional uncertainty, desired Dirichlet prior should be flat, i.e., α = [1, · · · , 1]>. This
is because support and query examples form different distributions, so there is no prior belief of
mapping query examples to any prediction, x 7→ y.

Although Malinin & Gales (2018) and Sensoy et al. (2018) addressed distributional uncertainty by
parameterizing Dirichlet prior over categorical distribution, they trained the model with a strong as-
sumption that the distributional mismatch of data is known in advance. However, in few-shot learn-
ing problem setup, it is unknown whether the uncertain prediction is attributed to the distribution,
model, or data itself. Moreover, every few-shot learning task could potentially involve distributional
uncertainty due to the limited number of support examples. Thus, it is not easy for the model to
decide how much of the meta-learned prior experience it should make use to solve a given task.

We suppose it is more crucial to detect the distributional mismatch in few-shot image classification,
with an assumption that the epistemic uncertainty is relatively lower than the aleatoric or distribu-
tional uncertainty. Since deep networks such as CNN extract highly informative features from the
images (Chen et al., 2019; Raghu et al., 2019), uncertainty may not strongly depend on the model’s
stochasticity. While the Bayesian models can explicitly represent parameter uncertainty in simple
problems, it cannot estimate distributional mismatch within complex data. Besides, there is another
pitfall. Although few-shot classification constitutes a task with only a small amount of examples,
there are in fact large enough data in total and meta-learner is trained under millions of randomly
composed tasks. Enough data typically shrink the model posterior and reduce the episteme.

B EXPERIMENTAL MATERIALS

B.1 HYPERPARAMETERS

We used a Conv-4 backbone except for dataset shift experiments. The Conv-4 architecture (Vinyals
et al., 2016) stacks 4 blocks that are each comprised of (Convolution + BatchNorm + ReLU + Max-
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Pool). When training, we used data augmentation (RandomResizedCrop, ColorJitter, RandomHori-
zontalFlip), and each image is resized to the resolution of 84 (224 in the dataset shift). Meta-training
lasts 1600 epochs for 5-shot and 2400 epochs for 1-shot experiments, with 25 episodes per epoch.
One episode samples 4 tasks (T = 4) and each task samples 15 queries per class (k′ = 15). We
used Adam optimizer (Kingma & Ba, 2014) with learning rate 5e-4. For MAML, the learning rate
in the inner-loop update is 1e-2 and the number of inner-loop steps is 5.

In addition, computing weights for each task requires a scaling factor, according to (5). T is a scaling
hyperparameter that needs to be tuned, depending on the dataset, type of feature extractor, and the
size of a matrix (number of classes), etc. Note that T → ∞ means equally weighted sum, leading
to vanilla MAML. In our experiments, we searched T from {1/2, 1, 2}.

B.2 LINEAR SCALING TCMAML

In (5), we computed wτ with a softmax over the similarity scores. While the softmax function is an
exponential scaling (ES), normalizing by linear scaling (LS) is also possible. In this case, we do not
need a scaling factor.

wτ =
1/sτ∑T
τ=1 1/sτ

(14)

Table 4 exhibits the results of linear scailng TCMAML. However, in most experiments, TCMAML
(ES) is comparable with or better than TCMAML (LS). Depending on the similarity score values,
linear scaling may have small weight variations across tasks, and produce similar results as MAML.

Table 4: ECE (%) and MCE (%) comparisons between MAML, TCMAML with linear scaling, and
TCMAML with exponential scaling.

mini-ImageNet CUB-200 mini-ImageNet → CUB-200
1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

Methods ECE MCE ECE MCE ECE MCE ECE MCE ECE MCE ECE MCE

MAML 4.04 8.77 1.46 3.98 2.22 2.94 2.39 3.66 18.02 35.80 18.28 25.27
TCMAML (LS) 1.25 4.66 1.86 4.49 2.63 3.34 1.68 2.70 16.46 39.46 18.24 24.39
TCMAML (ES) 0.80 5.80 1.62 4.09 1.40 2.74 2.27 3.36 15.06 27.88 17.53 24.65

B.3 REIMPLEMENTATION OF ABML

ABML (Ravi & Beatson, 2019) is a Bayesian approach that estimates uncertainty in meta-learning.
We reimplemented the ABML algorithm because 1) they only reported mini-ImageNet 5-way 1-
shot experiment result and 2) our experimental setup is slightly different from theirs. Therefore, we
implemented ABML based on our setup.

First, we sampled 4 tasks within an episode as we did in the TCMAML experiments. Second,
Ravi & Beatson (2019) did not use data augmentation, but we used the same dataloaders as other
experiments of ours. This includes the same data augmentation scheme. Third, we used a first-order
approximation of derivatives as TCMAML. For the other setups, such as the number of ensemble
networks to train and validate, learning rates, and KL-divergence reweighting factor, we followed
the original paper’s default values.

However, we did not implement ABML on dataset shift experiment due to its inefficiency of memory
and computation. ABML is a Bayesian method, and this implies that ABML is trained by marginal-
izing over model parameters. In implementation, this requires a significant computation overhead
because it should hold several models and receive their gradients in parallel. During the meta-
training of ABML, 5 ensemble networks work in parallel, and during the meta-testing, 10 ensemble
networks are employed. In Figure 4, TCMAML and ABML show an enormous gap of GPU memory
usage, even though they are both MAML-based methods. We can also find that ABML takes a lot of
time to compute during the meta-train phase. Because of ABML’s inefficiency, we could not apply
it to a ResNet-18 model, which is a backbone for dataset shift experiments. It exceeds the capacity
of a single GPU we own, and also it takes excessive amount of time to be converged.
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Figure 4: The amount of resource used while training on mini-ImageNet 5-way 5-shot with a Conv-4
backbone. Tested on a single GeForce RTX 2080Ti GPU. Left: GPU memory usage (GB) during
the training (meta-train) phase and the evaluation (meta-test) phase. Right: Time consumption (sec)
per 100 meta-update iterations in the meta-train phase.

B.4 EXPERIMENTAL SETUP FOR FIGURE 2

We now describe how we generated Figure 2 in the paper. We measured the class-wise similarity
scores of 1000 training tasks, where the tasks are sampled from some manipulated distribution.
The dataset we used here is mini-ImageNet, and we followed the 5-way 1-shot MAML experiment
protocol. We describe the way that we manipulated the task sampling distribution.

Standard is a general 1-shot experiment. For the support set, 1 image is sampled from each class.
For the query set, 15 images are sampled from the corresponding class.

Well-defined tasks are sampled so that there is no distributional uncertainty. Although it is hard to
perfectly get rid of the uncertainty, it is possible to make the distribution ofD(τ)

spt andD(τ)
qry similar. To

this end, we sample 100 support images per class and corresponding 15 query images. By changing
few-shot tasks into data-rich many-shot tasks, we could simulate on the low uncertainty regime.
Adapting to 100 support images (but we did not change the number of adaptation steps) allows θ to
be near optimal to maximize the likelihood of the query set.

Poorly-defined tasks are constructed to make extremely large support-query discrepancy, large dis-
tributional uncertainty. As the Standard setting, a Poorly-defined task samples 1 support image
and 15 query images, but they are from different classes. For instance, the class labels of support
images can be {hair slide,carousel,wok,photocopier,jellyfish}, and the class
labels of query images can be {ant,vase,dalmatian,school bus,king crab}.

B.5 TEST ACCURACY FOR TABLE 2

In Table 5, we display every test accuracy for CUB-200 and dataset shift experiments. Note that
ABML poorly performs in CUB-200 5-shot, while it maintained comparable performance in 1-shot.
Also, ProtoNet-based methods outstrip MAML-based methods with large margin in dataset shift
experiments.

Table 5: Test accuracy (%) with a 95% confidence interval.

CUB-200 mini-ImageNet→ CUB-200

Methods 1-Shot 5-Shot 1-Shot 5-Shot

MAML 56.76 ± 0.78 75.62 ± 0.58 34.24 ± 0.55 49.34 ± 0.57
MAML+TS 56.76 ± 0.78 75.62 ± 0.58 34.24 ± 0.55 49.34 ± 0.57
ABML 54.99 ± 0.70 69.59 ± 0.56 - -
TCMAML 56.55 ± 0.75 76.03 ± 0.57 33.48 ± 0.52 50.44 ± 0.56

ProtoNet 57.03 ± 0.68 77.79 ± 0.49 44.20 ± 0.78 64.97 ± 0.69
TCProtoNet 56.91 ± 0.69 77.23 ± 0.50 45.04 ± 0.80 64.08 ± 0.71

13



Under review as a conference paper at ICLR 2021

C QUALITATIVE EXAMPLE

Task 1

Task 2

Task 3

Task 4

support set query set weights

0.2732

0.2294

0.3248

0.1725

Task 1 Task 2 Task 3 Task 4

Classes
tank, green mamba,

cocktail shaker, bolete,
spider web

chime, French bulldog,
tobacco shop, jellyfish,

clog

snorkel, hotdog, robin,
Gordon setter, yawl

fire screen, miniature
poodle, tobacco shop,

frying pan, ear

Figure 5: An example of a 4-task batch and their TCMAML weights.

In Figure 5, we depicted an example of weight computation given real images as the input data.
This is a sampled batch of tasks, where the minibatch size is 4, from mini-ImageNet train set. As it
describes, TCMAML gives different weights to each task, regarding the support-query discrepancy.
For example, in Task 1, each query image is easily matched to their corresponding support images.
The computed weight to this well-defined task is 0.2732. However, Task 4 includes somewhat
unclear matching between the support and query images. In this kind of task, even the adapted
model cannot confidently distinguish the query images, resulting in the lower weight, 0.1725.

D RELIABILITY DIAGRAMS

Reliability diagrams (Niculescu-Mizil & Caruana, 2005) visually present model calibration, plotting
empirical accuracy versus average prediction confidence, the largest value of the output distribution.
Figure 6 describes reliability diagrams comparing between MAML, ABML and TCMAML. We can
find that TCMAML has its bars closer to the y = x line than MAML and ABML, implying more
reliable predictions. By the way, CUB experiments show slightly different aspects. MAML is dif-
fident on its predictions, with the empirical accuracy higher than the confidence. The model which
is not sufficiently confident can cause another type of problem. As opposed to the overconfidence,
low confidence often occurs when there are ambiguous images with low accuracy. This situation is
vulnerable to adversarial attack or perturbation of images (Chakraborty et al., 2018), readily avail-
able to decrease overall accuracy due to the model’s low confidence. In this case, the model which
can accurately tell easy tasks apart is needed. TCMAML again succeeds in calibration with enough
confidence in such tasks.
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MAML ABML TCMAML

Not Implemented

Figure 6: Reliability diagrams from MAML (left column), ABML (middle), and TCMAML (right)
classification results. All experiments are 1-shot, and from the top row datasets are mini-ImageNet,
CUB-200, and mini-ImageNet→ CUB-200. Red bars indicate the empirical accuracy of the samples
whose prediction confidence falls into the specific interval. Perfectly calibrated model should have
its bars aligned to y = x line (dashed). Deviation from the line is highlighted as blue if average
confidence is higher than accuracy; overconfident, and dark if accuracy is higher; diffident. Note
that the confidence is always above 0.2 because there are 5 classes. Best seen in color.
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