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Abstract

Understanding and explaining the behavior of machine learning models is essen-
tial for building transparent and trustworthy AI systems. We introduce DEX-
TER, a data-free framework that employs diffusion models and large language
models to generate global, textual explanations of visual classifiers. DEXTER
operates by optimizing text prompts to synthesize class-conditional images that
strongly activate a target classifier. These synthetic samples are then used to elicit
detailed natural language reports that describe class-specific decision patterns
and biases. Unlike prior work, DEXTER enables natural language explanation
about a classifier’s decision process without access to training data or ground-
truth labels. We demonstrate DEXTER’s flexibility across three tasks—activation
maximization, slice discovery and debiasing, and bias explanation—each illus-
trating its ability to uncover the internal mechanisms of visual classifiers. Quan-
titative and qualitative evaluations, including a user study, show that DEXTER
produces accurate, interpretable outputs. Experiments on ImageNet, Waterbirds,
CelebA, and FairFaces confirm that DEXTER outperforms existing approaches
in global model explanation and class-level bias reporting. Code is available at
https://github.com/perceivelab/dexter.

1 Introduction

How can we systematically uncover and explain a deep visual classifier’s decision-making process in
a way that is both comprehensive and human-interpretable?
This question is crucial as AI systems are increasingly deployed in high-stakes applications, where
interpretability and trust are as important as accuracy. However, the lack of transparency in model
reasoning, often exacerbated by the reliance on spurious correlations—irrelevant features that dis-
proportionately influence predictions— undermines confidence in these systems, making decisions
difficult to justify. For instance, ImageNet-trained classifiers have been shown to favor background
textures or lighting conditions over intrinsic object properties [41, 9]. Addressing these issues requires
explainability techniques that extend beyond local attribution, offering a global perspective on a
model’s reasoning patterns, biases, and learned representations.

Existing methods for model explainability, such as GradCAM [39] and Integrated Gradients [43]
provide local explanations and require data. These methods focus on analyzing individual predictions
by attributing importance to specific pixels or regions in an image. While these methods are extremely
useful for highlighting areas of interest, they do not offer a global understanding of model behavior. In
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contrast, activation maximization techniques [26–28] have been instrumental in globally visualizing
the features learned by neural network, but the generated images are often abstract and challenging to
interpret. While existing methods offer useful insights into model behavior and feature representations,
they often fall short of capturing the global reasoning patterns and biases behind predictions. In
particular, visual explanations can be hard to interpret and may lack the ability to convey high-level
reasoning or reveal subtle spurious correlations—issues that are often better addressed through
complementary textual explanations [18, 6, 16, 3].

Text-based explanations offer an accessible complement to visual methods [11], but they often lack
global perspective or clarity. Recent work [16, 2, 10], including Natural Language Explanation (NLE)
methods [30, 37, 15], combines visual and textual cues to reveal model biases, but typically relies on
labeled data, annotations, or pretrained vision-language mappings [2].

We propose DEXTER, a framework that generates human-interpretable textual explanations, un-
covering the global reasoning patterns and biases of visual classifiers. DEXTER operates in a fully
data-free setting by leveraging the generative capabilities of diffusion models and the reasoning
power of large language models (LLMs). At its core, DEXTER optimizes soft prompts, which
are mapped to discrete hard prompts, in order to guide a diffusion-based image generation process.
This ensures that the generated images are aligned with the outputs of a target classifier, capturing
the features and concepts prioritized by the model. The generated images are then analyzed by an
LLM, which reasons across them to provide textual explanations of the classifier’s decision-making
process. By combining image generation and textual reasoning, DEXTER not only overcomes the
interpretability challenges of visual explanations but also provides a global understanding of model
behavior, including identifying spurious correlations and biases, without requiring access to any
training data or ground truth labels.

Thus, the core main contributions of DEXTER are:

• Global explanations: A high-level understanding of model decisions, identifying key
features, biases, and patterns beyond local attribution.

• Data-free approach: DEXTER requires only the trained model for explanations, unlike
existing methods, that employ training or ground-truth data.

• Bias identification and explanation: Uncovering and describing spurious correlations to
support model debiasing.

• Natural language reasoning: LLM-generated textual explanations that enhance inter-
pretability over purely visual methods.

We evaluate DEXTER across three tasks: (1) activation maximization to reveal model-prioritized
features, (2) slice discovery to detect underperforming subpopulations, and (3) bias explanation to
identify spurious correlations. Experiments use SalientImageNet [41], Waterbirds [36], CelebA [21],
and FairFaces [14]—datasets widely used in fairness and interpretability research. Across tasks,
DEXTER demonstrates strong performance, offering meaningful insights into model behavior.

2 Related work

Activation Maximization (AM) interprets neural networks by generating inputs that maximize
neuron activations [7]. Early methods often produced unrealistic, uninterpretable images [40, 25],
later improved through regularization [23] and generative priors [26]. DiffExplainer [31] introduced
diffusion-based image generation guided by soft prompts, which improve realism but lack semantic
transparency. This work points toward token-wise optimization, but this direction remains underex-
plored. In contrast, DEXTER builds on this line by replacing soft prompts with discrete (hard) tokens,
which are interpretable and enable both visual and textual global explanations. Although once central
to model interpretability, AM has seen limited progress in recent years, partly because the resulting
images—while optimized for neuron activation—are often difficult to interpret semantically, making
it challenging to draw clear, causal insights about model behavior. The field has largely shifted toward
attribution methods—e.g., GradCAM [39], Integrated Gradients [43], which are computationally
efficient and provide intuitive saliency maps, though they are inherently local and data-dependent.
Other efforts in feature visualization [52] offer insights into internal representations but require
training data and remain focused on visual output. DEXTER revives AM by leveraging modern
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diffusion models and discrete prompt optimization to produce class-level, multimodal explanations in
a fully data-free setting.
Explanation of visual classifiers. Textual and Multimodal Explanations seek to complement vi-
sual saliency with natural language justifications. Approaches like Multimodal Explanations [29],
LIMEx [44], and post-hoc counterfactuals [48] align vision and language to explain model decisions.
However, these methods often rely on ground-truth labels or annotated datasets and are limited to
instance-level explanations. In contrast, DEXTER provides global, class-wise explanations without
supervision or access to data.
Natural Language Explanation (NLE) methods aim to generate human-readable justifications,
typically using VQA-style benchmarks [30, 37, 15]. Recent approaches integrate vision and language
into unified architectures [38, 37], but remain supervised and local. DEXTER differs by producing
global textual reports through unsupervised classifier probing—without labels, data, or task-specific
fine-tuning.
Slice Discovery identifies dataset subpopulations where a model underperforms, offering a tar-
geted way to reveal and explain systematic failures in classifier behavior. Traditional methods
analyze embeddings, gradients, or misclassifications [1, 24, 42, 51], while recent approaches leverage
CLIP’s joint text-visual embeddings [8, 12, 50] or use LLMs to generate captions and extract key-
words [46, 16]. Bias-to-Text (B2T)[16] extracts pseudo-bias labels from misclassified image captions,
and LADDER[10] generates bias hypotheses from low-confidence predictions, clustering samples
via LLM-derived pseudo-attributes. Unlike these data-dependent methods, DEXTER discovers and
explains biases in a fully data-free manner, relying only on the classifier’s internal behavior.

3 Method

DEXTER’s framework, shown in Fig. 1, integrates three key components: a text pipeline for
optimizing prompts, a vision pipeline for the image generation process, and a reasoning module
using a vision-language model (VLM). DEXTER begins by optimizing a soft prompt to condition a
BERT model [5] to fill in masked tokens in a predefined sentence. The resulting prompt guides the
stable diffusion process to generate images that maximize the activation of a set of target neurons (e.g.
classification heads) in a given visual classifier. The generated images are then analyzed by the VLM,
which reasons across multiple images to provide coherent, human-readable textual explanations of
the model’s decision-making process.

3.1 Text pipeline

The text pipeline has the goal of optimizing a textual prompt to suitably condition the diffusion
model. We pose prompt generation as a masked language modeling task, and employ a pretrained
and frozen BERT model for this purpose. The structure of the textual prompt to be produced is fully
customizable, and can be controlled by combining portions of fixed text with a set of mask tokens.
For the sake of clarity and without loss of generality, we will assume that the textual prompt has the
structure of a sequence t = [tfixed,m1,m2, . . . ,mN ], where tfixed is the portion of fixed text and all
mi are set to BERT’s [MASK]token. Let temb be the embedding of t, including positional encoding. In
order to alter BERT’s behavior, which would naturally tend to replace mi with the most likely tokens
based on its pretraining, we also prepend to the input sequence a learnable soft prompt p ∈ RP×d,
consisting of a sequence of P vectors, with d being the dimensionality of BERT’s embedding
space [17]. The full input sequence to BERT is thus [p, temb]. We read out the logits corresponding
to the masked tokens, i.e., [l1, . . . , lN ], where each li ∈ RV and V is BERT’s vocabulary size. Each
logit vector li is mapped to a differentiable one-hot vector oi ∈ {0, 1}V ,

∑
oi,j = 1, through a

Gumbel-softmax [22, 13] (with temperature τ = 1), from which the corresponding predicted token
t̂i ∈ {1, . . . , V } is retrieved. The resulting text prompt can be recovered as

[
tfixed, t̂1, . . . , t̂N

]
.

At this point, a practical problem arises, in that standard implementations of diffusion models
(e.g., Stable Diffusion [35]) CLIP’s text encoder [32] is employed to embed textual prompts into a
conditioning vector. Unfortunately, BERT’s and CLIP’s vocabulary overlap only partially. To address
this issue, we employ a translation matrix M ∈ {0, 1}V×W to map each one-hot vector oi to its
corresponding representation in CLIP’s vocabulary, of size W . In M, each row contains a single 1,
indicating the index of the corresponding token in the CLIP vocabulary. Thus, given an original one-
hot vector oi provided by BERT, we can translate it into its CLIP equivalent through o

(C)
i = oiM,

indexing a token t̂(C)
i in CLIP’s vocabulary. For unassigned BERT tokens, the corresponding rows in
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Figure 1: DEXTER investigates classifier biases by optimizing a learnable soft prompt to generate
text prompts. These text prompts condition a diffusion model to generate images that maximize the
activation of the target class in the vision classifier. Images that correctly activate the target class
are stored and later captioned for Bias Reasoning. A VLM reasons using these captions to produce
human-understandable textual explanations of the model’s decisions and potential biases. More
details and clarifications about the pipeline can be found in the Appendices A and B.

M are entirely zero. As a result of this design, the model learns to avoid predicting BERT tokens that
do not have a valid mapping in CLIP, as they correspond to a zero indexing vector o(C)

i , which would
provide a meaningless representation when multiplied by the CLIP embedding look-up table.

The textual prompt used to condition the diffusion model is thus
[
tfixed, t̂

(C)
1 , . . . , t̂(C)

N

]
. Thanks to

the Gumbel-Softmax activation and the linear mapping between vocabularies, the whole process is
fully differentiable, allowing us to optimize the soft prompt p, which is the only learnable parameter,
through classic backpropagation.

3.2 Vision pipeline

The goal of the vision pipeline is to synthesize a realistic and interpretable image that maximizes
the activation of a set of neurons of a visual classifier. In the following, we refer to “neurons” in
a generic way, regardless of whether they encode features (i.e., neurons in intermediate layers)
or classes (i.e., neurons in the output layer, after applying softmax). Given the predicted textual
prompt

[
tfixed, t̂

(C)
1 , . . . , t̂(C)

N

]
(with all tokens ensured to belong to CLIP’s vocabulary as explained in

Sect. 3.1), we feed it to CLIP’s text encoder to obtain an embedding vector e. This vector is then used
to condition a pretrained and frozen diffusion model d. In this work, we use Stable Diffusion, due to
its widespread adoption and versatility in generating high-quality images from textual descriptions.
Let f : I → RK be the target frozen visual classifier, pretrained over a set of C classes, providing as
output the responses of a subset of K selected neurons, whose activations we intend to maximize.
Hence, we can obtain the selected activation vector as n = f (d (e)).
The whole vision pipeline is differentiable, enabling the definition of an optimization objective for n,
which directly affects the learnable soft prompt p in the text pipeline.

In order to guide the generation process to describe the behavior of the visual classifier, we introduce
a neuron activation maximization loss Lact that encourages learning a textual prompt and a synthetic
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image that maximizes the response of the selected n neurons. We define Lact as:

Lact =

K∑
i=1

lact (ni) , (1)

where ni is the activation of the i-th element in n, and lact depends on whether ni is a feature neuron
or a class neuron :

lact(ni) =

{
−ni, if ni is a feature neuron
− log ni, if ni is a class neuron

(2)

3.3 Masked pseudo-labels prediction

In our preliminary experiments, we observed that, when using the activation maximization objective
only, the gradient propagated to the learnable soft prompt p in the text pipeline was too small, slowing
down or even preventing convergence. To address this issue, we introduce, in the text pipeline,
an auxiliary mask prediction task to provide a shorter backpropagation path to p. The design of
the auxiliary task gives us the opportunity to add another explainability feature to our approach:
associating masked tokens with subsets of target neurons, in order to encourage the mapping between
neuron activations and specific portions of the textual prompt.
To facilitate this, we initialize a set of pseudo-labels y1, . . . , yN , one for each mask token position
m1, . . . ,mN . Each pseudo-label yi ∈ {1, . . . , V } is associated with a reference loss Li, initialized
to +∞, and with the set of reference neurons Ni ⊆ {1, . . . ,K}. At each optimization step, for each
mask token mi, BERT predicts the logits li, from which we compute the (standard) softmax vector si
and the corresponding predicted token t̂i, following the notation introduced in Sect. 3.1. We define
the aggregated activation loss Lagg,i for the set of associated reference neurons:

Lagg,i =
∑
j∈Ni

lact(nj). (3)

Then, if Lagg,i is smaller than the corresponding reference loss Li, we update both the pseudo-label
yi ← t̂i and the reference loss Li ← Lagg,i. If the pseudo-label yi has been set for mi (and the
corresponding reference loss Li is finite), we add a cross-entropy loss term Lmask,i = − log si,yi

,
with si,j being the j-th element of the softmax vector si. This approach ensures that the pseudo-labels
are continually refined to better align with the activation patterns of the target neurons as training
progresses, while constraining the model’s parameters to remain within a region of the parameter
space that corresponds to meaningful, interpretable configurations. After the first iteration, where all
yi are set, the overall loss function L is then:

L =

K∑
k=1

lact(nk)−
N∑
i=1

log si,yi . (4)

A possible issue that may arise is the prediction of outlier tokens that could randomly decrease the
activation loss, which would possibly update the pseudo-labels to spurious values. To prevent this, for
each masked token position mi, we maintain a history of aggregated losses for each word predicted
during the optimization process, using the history mean for comparison with the reference loss Li.
For instance, let us assume that masked token mi has been mapped by BERT to vocabulary token
t∗ in T training iterations, building up a list of corresponding aggregated losses

[
L(1)

agg,i, . . . ,L
(T )
agg,i

]
.

Instead of comparing Li with the most recent aggregated loss L(T )
agg,i, we check whether:

1

T

T∑
j=1

L(j)
agg,i < Li, (5)

and only in this case do we update Li. This approach prioritizes the prediction of words with lower
historical activation loss, preventing the selection as pseudo-target outlier words that lead to random
loss fluctuations.
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4 Performance analysis

4.1 Datasets

To demonstrate the versatility and effectiveness of DEXTER as a global explanation framework, we
design a comprehensive evaluation protocol that reflects the core dimensions of model interpretability:
feature relevance, bias identification, and semantic alignment. We evaluate DEXTER across four
key tasks: visual explanation, activation maximization, bias discovery, and bias text explana-
tion, using four widely adopted datasets that enable rigorous and complementary assessments of
interpretability. Each dataset was selected for its alignment with a specific evaluation goal and its
established use in the literature.
SalientImageNet [41] is used to evaluate both visual explanations and activation maximization. It
is a curated subset of ImageNet designed to analyze model reasoning through object and context
annotations. For each class, the top-5 neural features—highly activated units in the penultimate
layer—are annotated as either spurious or core, based on whether they reflect incidental or meaningful
correlations with the target label. This enables a fine-grained assessment of DEXTER’s ability to
highlight robust, semantically grounded features in both explanation and feature synthesis settings.
Waterbirds[36] and CelebA[21] serve as benchmarks for bias discovery. Waterbirds introduces
spurious correlations between bird species and backgrounds (e.g., land vs. water), providing a con-
trolled environment for evaluating slice discovery and DEXTER’s ability to surface underperforming
subpopulations. CelebA offers over 200,000 annotated face images with 40 binary attributes (e.g.,
gender, hairstyle, glasses), allowing us to assess how DEXTER identifies biases in classifier behavior
related to demographic and semantic features.
FairFaces [14] is finally used for bias text explanation, focusing on the articulation of systematic
spurious correlations in facial classification tasks. With over 100,000 images balanced across seven
demographic groups, it enables a rigorous evaluation of how DEXTER captures and communicates
bias in decision-making across diverse populations.
For each evaluation task, detailed optimization strategies, training procedure, VLM prompts and
other information are provided in the appendix.

4.2 Results

We evaluate DEXTER’s visual explanations through quantitative metrics and a user study, then
assess its performance in bias discovery, mitigation, and explanation, showcasing its ability to
identify spurious correlations and enhance fairness. Finally, an ablation study examines the impact
of individual components and DEXTER’s effectiveness in optimizing text prompts for activation
maximization, comparing it to existing methods.

4.2.1 Visual Explanations

We evaluate DEXTER’s visual explanations through qualitative and quantitative comparisons with
DiffExplainer, the only prior method that shares a similar diffusion-based generation pipeline, on the
SalientImageNet in order to assess the semantic relevance and clarity of the synthesized explanations.
For qualitative analysis, we conducted a user study (see Appendix H), involving 100 participants on
Amazon Mechanical Turk, to further assess the interpretability of DEXTER’s visual explanations
compared to DiffExplainer’s (the two methods with the highest CLIP-IQA scores in Tab. 6). Par-
ticipants compared images generated by DiffExplainer and DEXTER alongside GradCAM-based
attention heatmaps from SalientImageNet, evaluating similarity across three feature categories: per-
ceptual features (shape, texture, color), conceptual features (semantics, context), and cases where
no similarity was perceived (None). As shown in Fig. 2, DEXTER was preferred for conceptual
features, while DiffExplainer was favored for perceptual attributes. Notably, DEXTER received fewer
None responses, indicating stronger alignment with classifier attention regions. A chi-square test
(χ2 = 15.36, p = 0.032) confirms a significant difference, with post-hoc analysis highlighting None
and conceptual features as key contributors.
Fig. 3 presents an example of visual and textual explanations generated by DEXTER for Robus-

tResNet50 [41], focusing on the 5 most active features in the penultimate layer for the dog sled
class, which are all categorized as spurious in SalientImageNet. DEXTER-generated images align
more effectively with the classifier’s attended regions compared to those generated by DiffExplainer.
Furthermore, DEXTER provides textual descriptions that clearly explain the semantics of each
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Figure 2: User study results on SalientImageNet: Participants evaluated the alignment between
classifier attention and visual explanations, categorized into perceptual features (shape, texture, color),
conceptual features (context, semantics, multiple elements), and no alignment.

neural feature, offering an interpretable account of the classifier’s reasoning. This approach enhances
interpretability and enables users to either identify spurious correlations, such as the ones in the dog
sled class where none of the five most important features actually include a sled, or confirm the
classifier’s reliance on meaningful, task-relevant attributes.
For quantitative evaluation, we compare DEXTER to DiffExplainer using CLIP-IQA and Semantic
CLIP-IQA [45] (Appendix D). DEXTER achieves higher scores (0.94 ± 0.03 / 0.96 ± 0.03) than
DiffExplainer (0.89 ± 0.09 / 0.89 ± 0.09), indicating better semantic alignment and consistency.
Additional comparisons with GAN-based methods [47, 23, 26] further confirm the advantage of
diffusion-based explanations.
Extended details/examples on the visual explanation task are in Appendix D.

Figure 3: DEXTER and DiffExplainer explanations for RobustResNet50 on "dog sled", showing
spurious top-5 features as core visual elements.

4.2.2 Slice discovery and debiasing

The goal of slice discovery is to identify subgroups of data where the model exhibits worse perfor-
mance compared to the rest of the dataset. We assess slice discovery and debiasing performance using
CelebA and Waterbirds datasets. In the former, the task is “blonde”/“non-blonde” classification, with
the “blonde” class including a low proportion of men (representing a slice). The Waterbirds dataset
tackles “waterbird“/“landbird” classification, and is built so that a portion of waterbird images feature
a land background, and vice versa, thus introducing a slice per class. We perform slice discovery
with DEXTER by first identifying words that maximize the activation of a given class. Specifically,
we leverage DEXTER’s optimization process to obtain several descriptive words for each class. Fol-
lowing this step, as done by Kim et al. [16], we compute the CLIP similarity between the discovered
words and the images in the dataset: images with high similarity are identified as belonging to a slice.
We thus train a debiased classifier using Distributionally Robust Optimization (DRO) [36, 33] and
evaluate the classification accuracy on the identified slices. We compare this approach with ERM [36],
LfF [24], GEORGE [42], JTT [19], CNC [49], DRO [36], LADDER [10] and DRO-B2T [16]. As
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shown in Tab. 1, DEXTER outperforms state-of-the-art methods on worst-slice prediction for CelebA
and achieves comparable results on Waterbirds, deriving descriptive words directly from the model
without relying on training data. Additional details on the slice discovery task and results are given in
Appendix E.

Table 1: Performance on slice discovery and debiasing.
CelebA Waterbirds

Method Data GT Worst Avg. Worst Avg.

ERM ✓ - 47.7± 2.1 94.9 62.6± 0.3 97.3
LfF ✓ - 77.2 85.1 78.0 91.2
GEORGE ✓ - 54.9± 1.9 94.6 76.2± 2.0 95.7
JTT ✓ - 81.5± 1.7 88.1 83.8± 1.2 89.3
CNC ✓ - 88.8± 0.9 89.9 88.5± 0.3 90.9
DRO ✓ ✓ 90.0± 1.5 93.3 89.9± 1.3 91.5
LADDER ✓ - 89.2± 0.4 89.8 92.4± 0.8 93.1

DRO-B2T ✓ - 90.4± 0.9 93.2 90.7± 0.3 92.1
DEXTER(Ours) - - 91.3± 0.01 91.7 90.5± 0.1 92.0

4.2.3 Bias explanation

To evaluate DEXTER’s ability to identify and explain biases in classifiers, we conduct an analysis
using the FairFaces dataset [14]. Specifically, we train two binary classifiers to distinguish between
two age groups: 20-29 (class 1) and 50-59 (class 2). These classifiers are trained on two variants
of the FairFaces dataset: (1) a balanced dataset with equal male and female representation in both
classes, (2) a dataset where males are overrepresented in class 1, and females are overrepresented
in class 2. These variations allowed us to systematically assess how biases in the training data are
reflected in the classifier’s behavior and how well DEXTER captures these biases.
To generate bias reports for a given classifier, DEXTER produces 50 images that maximize the
model’s prediction for the target class. Each image is captioned using a VLM (ChatGPT-4o mini),
and the list of captions is used to prompt another instance of the VLM to generate a textual bias report.
This approach ensures that the generated reports reflect only the classifier’s internal representations
and decision-making processes (more details about VLM hallucination evaluation in appendix I).
Figure 4 showcases excerpts of two generated bias reports.

Figure 4: DEXTER explanation reports. Report 1 analyzes a classifier trained on a FairFaces
variant with male overrepresentation in class 1, while Report 2 corresponds to a balanced dataset.

We evaluate DEXTER’s bias reports through two complementary approaches:
1. User Study. In addition to the earlier study, participants evaluated and ranked DEXTER’s bias
reports for two classifiers. Informed of dataset biases, they assessed report accuracy, clarity, and
interpretability. We report human Mean Opinion Scores (MOShumans, 1–5 scale), and complement
them with automated evaluations: MOSLLM from a VLM and G-eval [20] metrics, including G-evalcon
for consistency with classifier behavior. These scores jointly assess the linguistic, structural, and
explanatory quality of DEXTER’s outputs.
2. Comparison with training-derived reports. We compare DEXTER’s data-free reports to those
generated from training set images using the same pipeline (captioning + LLM-based reporting).
Their similarity is quantified via sentence transformer similarity (STS) [34], measuring alignment
with data-grounded biases.
Table 2 shows strong agreement between human (MOShumans) and model (MOSLLM) ratings (statis-
tical validation in appendix F.2), with all scores across MOS and G-eval metrics exceeding 3 and
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approaching 4—indicating consistent perceptions of the reports as good to excellent. High STS scores
further confirm that DEXTER’s reports, generated without data, align closely with training-derived
insights. This demonstrates DEXTER’s ability to capture model biases fluently, faithfully, and without
supervision. The bias reasoning enabled by DEXTER also facilitates disparity analysis across a
variety of classifiers (from transformers to CNNs) as shown in Fig. 8 of the supplementary, where we
compare ViT, AlexNet, ResNet50, and RobustResNet50 on ImageNet classes.
Full methodological details and report samples are provided in Appendix F and the supplementary.

Table 2: Evaluation of DEXTER bias reports generated for classifiers trained on FairFaces. The
columns “w Bias” and “w/o Bias” refer to models trained on datasets with and without gender bias,
respectively, for each age group.

Class 0 (20-29) Class 1 (50-59) Mean

Metric w Bias w/o Bias w Bias w/o Bias

STS 0.92 0.85 0.91 0.91 0.90

G-evalcon 4.58± 1.00 4.80± 0.47 3.66± 0.84 3.68± 0.85 4.19± 0.52
MOSLLM 4.29± 0.63 4.80± 0.37 4.63± 0.44 4.19± 0.74 4.48± 0.25
MOShumans 4.20± 0.63 3.89± 0.64 4.10± 0.67 3.88± 0.79 4.01± 0.69

4.2.4 Ablation Study

We investigate how prompt design, auxiliary optimization, and multi-target strategies affect DEX-
TER’s ability to generate effective and interpretable visual explanations. Using 30 SalientImageNet
classes (15 labeled with spurious and 15 with core features), we compare four prompting strategies
by generating 100 images per class and measuring classifier activations: (1) class label only, (2)
ChatGPT-generated descriptions, (3) captions from DiffExplainer, and (4) DEXTER’s optimized
prompts. As shown in Table 3, DEXTER achieves the highest mean score (75.43), effectively
maximizing both spurious (63.00) and core (87.86) features. In contrast, the baseline and ChatGPT
perform moderately, while DiffExplainer underperforms.
We then ablate the role of prompt length and auxiliary loss Lmask by comparing single-word
vs. multi-word optimization, with and without auxiliary supervision. Single-word prompts lack
expressiveness (mean 23.73), and multi-word prompts without auxiliary loss are unstable (mean
11.83). Introducing Lmask improves both cases, with the best performance achieved when combining
multi-word prompts and auxiliary loss (75.43). This highlights the importance of pairing rich prompts
with stable optimization to align explanations with classifier behavior. The standard deviations
reported in Tables 3 and 4 may appear high due to the variation in activation strength across different
classes, as some classes are consistently activated and others only partially. For instance, while some
classes were activated in 100 out of 100 generations, others were only in 20 out of 100. As a result,
this large variation across classes naturally leads to a high overall standard deviation. Full ablation
details are provided in Appendix G.

Finally, we evaluate the faithfulness and robustness of DEXTER’s explanations by testing for bias
propagation and LLM-induced hallucinations. In the first test, we injected adversarial cues (e.g.,
using lion for tiger) into prompt initialization to assess whether upstream biases from BERT or Stable
Diffusion would affect outputs. DEXTER consistently recovered class-relevant features, showing
robustness to such distortions. In the second test, we extracted the most salient visual cue from each
generated text report and added it to the image prompt; the resulting increase in classifier activation
confirms that the cues contained in the text explanation reflect model-relevant features rather than
hallucinations. Full details and statistical validation are provided in Appendix I.

5 Limitations

While DEXTER delivers detailed, data-free global explanations, it is computationally demanding:
prompt optimization takes ∼10 minutes per class, though generating 100 images and the final bias
report is fast (∼15 seconds without backpropagation), making it suitable for offline use. Since
DEXTER relies on Stable Diffusion, there is a risk of NSFW outputs; to mitigate this, we apply its
built-in safety checker to filter and discard inappropriate images during generation.
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Table 3: Comparison between text-prompting strategies for maximizing the target class.
Method Spurious Core Mean

Baseline 43.06± 38.86 86.40± 23.83 64.73± 31.34
ChatGPT description 41.20± 40.78 78.53± 34.02 59.87± 37.40
DiffExplainer 33.20± 41.07 47.66± 44.80 39.83± 42.93
DEXTER (ours) 63.00 ± 31.20 87.86 ± 15.14 75.43 ± 23.17

Table 4: Ablation results for single-word and multi-word prompt optimization,
with/without the auxiliary task Lmask.
Configuration Spurious Core Mean

Single-word 11.13± 27.38 36.33± 38.45 23.73± 32.91
↪→ + Lmask 34.00± 32.72 53.86± 44.64 43.93± 38.68

Multi-word 15.53± 27.93 8.13± 18.74 11.83± 23.33
↪→ + Lmask 63.00 ± 31.20 87.86 ± 15.14 75.43 ± 23.17

6 Conclusion

We introduced DEXTER, a framework for globally explaining deep visual classifiers by combining
diffusion-based activation maximization with textual reasoning. Unlike existing methods, DEXTER
operates in a fully data-free setting, deriving insights solely from the classifier’s internal repre-
sentations. Experiments on SalientImageNet, Waterbirds, CelebA, and FairFaces demonstrate its
effectiveness in uncovering spurious and core features, identifying dataset subpopulations, and gen-
erating human-readable bias explanations. Ablation studies confirmed the impact of multi-word
prompts and auxiliary optimization, while user studies validated the clarity and relevance of DEX-
TER’s textual explanations. Future work will extend its capabilities to multimodal models and on
refining textual reasoning.
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A Glossary

K - The cardinality of the set of neurons of interest, which contains both neurons in intermediate and
output layers of the vision classifier

M - A translation matrix that maps the BERT vocabulary to the CLIP embedding space
Lact - Neuron activation maximization loss. Used to determine if the text prompts and images

activate the desired neurons of the visual classifier (Eq. 1)
Lagg - Aggregated activation loss. Used also to determine if pseudolabels for Lmask (Eq. 3)
Lmask - A cross-entropy loss between the BERT [MASK] token predictions and saved pseudolabels
p - The learnable soft prompt in DEXTER
t - A sequence consisting of tfixed and N [MASK] tokens
temb - The embedding of t, including the positional encoding
tfixed - Text tokens corresponding to "A picture of a"
V - The BERT vocabulary size, 30522
W - The CLIP vocabulary size, 49408

B DEXTER Algorithm

Algorithm 1 DEXTER

Goal: Investigate class c on Vision Classifier f
1: Initialize soft prompt p
2: for iteration = 1 to N do
3: Encode p + tfixed + [MASK] tokens
4: Obtain BERT logits l for masked token prediction
5: Apply Gumbel-Softmax to l to obtain the predicted token t̂
6: Use translation matrix M to convert t̂ to the CLIP vocabulary t̂(C) = t̂M
7: Compute CLIP text embedding e = [tfixed,t̂(C)]
8: Generate image with diffusion model d conditioned on e
9: Apply cross-entropy loss Lact with ground truth c to f(d(e))

10: Apply auxiliary loss Lmask on l using the previous logit with the highest class activation
11: Update p
12: end for

C Training hyperparameters

We adopt CLIP as the text encoder and Stable Diffusion v1.4 2 as the diffusion model. To reduce
inference time, we employ the Latent Consistency Model (LCM) LoRA adapter 3 using 4 inference
steps. DEXTER is trained with a batch size of 1 (i.e., one image per iteration) and a learning rate of 0.1
across all tasks. In the following sections (Appendices D, E and F), the term optimization steps refers
to the number of iterations performed to optimize the trainable soft prompt. Each optimization step
consists of: predicting the masked token, generating an image, and obtaining the visual classifier’s
prediction.

In the following, we detail the parameters and hyperparameter settings described in Sections 3.1
and 3.2: for the textual prompt sequence [tfixed,m1,m2, . . . ,mn], we use “a picture of a
[MASK].” in the single-word optimization scenario, whereas for multi-word optimization, the fixed
prompt is “a picture of a [MASK] with [MASK] and [MASK] and [MASK] and [MASK]
and [MASK].”
We set the sequence P of soft prompts p to 1 (see Sect. C.1), with each embedding having dimension
d = 768, matching BERT’s embedding space. The temperature τ for the Gumbel softmax is kept at

2Hugging Face Stable Diffusion id: compvis/stable-diffusion-v1-4.
3Hugging Face LoRA id: latent-consistency/lcm-lora-sdv1-5.
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its default value of 1.0.
All experiments ran in half-precision on three H100 GPUs. Prompt optimization takes ∼10 minutes
per class, while generating 100 images and the final bias report takes ∼15 seconds without backprop-
agation. DEXTER is designed for offline, global auditing, with a cost aligned to its goal of delivering
comprehensive model insights.

C.1 Number of soft prompts experiments

We set P = 1 to keep the setup minimal and stable. In DEXTER, the soft prompt guides BERT
in selecting hard tokens via masked language modeling, rather than encoding semantics directly.
Expressiveness comes from composing multi-token prompts (typically 5–6), not from prompt dimen-
sionality. Experiments with P > 1 show that increasing P expands the parameter space and weakens
the classifier’s gradient signal, destabilizing optimization in our data-free setting, as shown in Table 5.
We report mean and standard deviation for 8 randomly selected classes (4 core, 4 spurious).

Table 5: DEXTER’s performance using diffent number of P.
P Spurious Core Avg
1 81.25± 18.99 94.25± 4.38 87.75± 11.68
3 75.00± 29.00 44.50± 35.89 59.75± 32.44
5 73.50± 25.66 74.00± 42.75 73.75± 34.20
10 21.25± 31.17 67.75± 40.01 44.50± 35.59

D Visual Explanation Details

This appendix provides additional details on the evaluation of visual explanations generated by
DEXTER, complementing the discussion presented in Section 4.2.1. Specifically, we outline the
methodology behind CLIP-IQA, our proposed Semantic CLIP-IQA metric and the comparison
between DEXTER and prior activation maximization works. Following, a comprehensive analysis of
neural feature maximization. These insights further substantiate the findings reported in the main
paper and demonstrate the robustness of DEXTER in generating interpretable visual explanations.

D.1 Quantitative evaluation metrics: CLIP-IQA and Semantic CLIP-IQA

CLIP-IQA [45] is a metric originally introduced to evaluate image quality. In this work, we leverage
CLIP-IQA to compare the quality of images generated by DEXTER against those produced by other
approaches. Specifically, CLIP-IQA calculates the similarity between generated images and two
fixed prompts, returning the probability that an image is closer in similarity to the first prompt rather
than the second. The fixed prompts used in the original formulation are “Good photo.” and “Bad
photo.”

To incorporate semantic relevance into image quality assessment, we propose Semantic CLIP-IQA.
This metric follows the same evaluation protocol as CLIP-IQA but replaces the fixed prompts with
class-specific prompts: “Good photo of a [CLASS]” and “Bad photo of a [CLASS]”. This
modification ensures that the evaluation captures not only general image quality but also the semantic
alignment between the generated images and the target class.

We here also report in Table 6 a quantitative comparison of visual explanation quality across existing
activation maximization methods. The comparison highlights the significant performance gap between
older GAN-based or optimization-based approaches and diffusion-based methods. In particular,
DEXTER demonstrates superior alignment and consistency, validating its ability to generate more
meaningful and semantically grounded visual explanations.

D.2 Neural Feature Maximization

Neural feature maximization refers our strategy to generate images that emphasize the neural features,
as defined in SalientImageNet (i.e., the features of the penultimate layer of the model), learned by
a neural network for a given class. By optimizing the input image to maximize the activation of
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Table 6: Quantitative comparison between DEXTER and existing activation maximization
methods for visual explanations

Method CLIP-IQA Semantic CLIP-IQA

Yosinski et al. [47] 0.37 ± 0.19 0.33 ± 0.23
Mahendran and Vedaldi [23] 0.82 ± 0.15 0.72 ± 0.15
Nguyen et al. [26] 0.74 ± 0.21 0.57 ± 0.30
DiffExplainer [31] 0.89 ± 0.09 0.90 ± 0.05
DEXTER (ours) 0.94 ± 0.03 0.96 ± 0.03

specific neural features, this method allows for an interpretable visualization of what the model has
learned to recognize as distinctive for a class. This approach is useful for understanding how deep
learning models make decisions and can help identify potential biases or spurious correlations in their
predictions.

In our work, neural feature maximization is performed using 2,000 optimization steps with a single
word prompting strategy (see Sect. 4.2.4). We employ RobustResNet50 as the visual classifier for
this task. Table 7 reports the 30 classes selected from the SalientImageNet dataset, consisting of 15
classes containing spurious features and 15 with only core features. Specifically, we selected all 15
classes from SalientImageNet in which all top-5 features were marked as spurious. Additionally, we
randomly selected another 15 classes from SalientImageNet where all top-5 features were marked as
core.

Table 7: Bias and Non-Bias Classes
Bias Classes Non-Bias Classes

Class_idx Class Name Bias Class_idx Class Name Bias

706 patio ✓ 985 daisy ✗

837 sunglasses ✓ 291 lion ✗

602 horizontal bar ✓ 292 tiger ✗

795 ski ✓ 486 cello ✗

379 howler monkey ✓ 465 bulletproof vest ✗

890 volleyball ✓ 574 golf ball ✗

801 snorkel ✓ 582 grocery store ✗

981 ballplayer ✓ 635 magnetic compass ✗

746 puck ✓ 514 cowboy boot ✗

416 balance beam ✓ 609 jeep ✗

537 dogsled ✓ 624 library ✗

655 miniskirt ✓ 764 rifle ✗

810 space bar ✓ 847 tank ✗

433 bathing cap ✓ 879 umbrella ✗

785 seat belt ✓ 971 bubble ✗

Figure 5 extends Figure 3 by reporting additional comparison between DEXTER and DiffExplainer
across different classes (the full set of comparisons is provided in the supplementary). While DiffEx-
plainer effectively maximizes shapes, colors, and textures, its outputs often lack realism, converging
on abstract or pattern-like images. In contrast, DEXTER, owing to its textual anchor, more reliably
yields semantically coherent representations of the features highlighted by the SalientImageNet
heatmaps. This visually confirms the results of the user study reported in Fig. 2.
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Figure 5: Comparison of DiffExplainer and DEXTER with respect to SalientImagenet for the neural
feature maximization task, covering different classes. The left column displays classes without
spurious features, whereas the right column shows classes with spurious features.
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E Slice Discovery Details

This appendix provides additional details on slice discovery and debiasing using DEXTER, comple-
menting the discussion in Section 4.2.2.
Figure 6 extends Figure 1 to better explain the Slice Discovery pipeline used by DEXTER. We use
the Waterbirds dataset as an example, which consists of two classes: Landbirds and Waterbirds. The
majority of the landbirds samples are visibly on land, and similarly the majority of the waterbirds
are in/near water. While overall this is an easy task for most classifiers, we want to ensure high
performance on the small amount of images where the birds are not in their natural habitats (landbirds
on water, waterbirds on land).

Figure 6: Pipeline for Slice Discovery with DEXTER. The top-k words associated with a class are
encoded using the CLIP Text Encoder and compared with image encodings from the biased dataset.
The appropriate slice is determined based on the similarity between text and image embeddings, along
with the ground truth labels of the dataset images. The dataset is then labeled into four categories:
waterbird on water, waterbird on land, landbird on land, and landbird on water (see right side).

DEXTER identifies the words explaining an input visual classifier, as presented in Sect. 3. Specifically,
given a classifier f and a target class c, it optimizes a text prompt to extract a set of top-k class
words WC = wc1, ..., wck (Tab. 8). Each word wci is encoded using CLIP’s text encoder to obtain
an embedding tci and the class prototype is defined as the average embedding: t̄c = 1

k

∑
tci Then,

following the approach in B2T [16], at inference time, each image xj of the dataset is encoded into
vj using CLIP’s image encoder. The similarity between the image and the class is then computed as:

CLIPscore = similarity(vj , t̄c) (6)

If an image has an higher similarity with the class-words that correspond to its real class it is labeled
as unbiased slice (e.g. an image belonging to class landbirds with an higher similarity with landbirds
class-words), while if an image has an higher similarity with its counterpart class it is labeled as
biased slice (e.g. an image belonging to class landbirds has an higher similarity with waterbirds
class-words). Fig. 7 presents the ROC curves obtained using the CLIP-based matching approach
on the Waterbirds dataset, in comparison with other SOTA slice discovery methods [16, 8, 12]. The
results illustrate how effectively the training images are partitioned into the four groups (waterbird
on water, waterbird on land, landbird on land, landbird on water) by the DEXTER-derived words.
Finally, we follow the debiased training scheme from [36] to train a debiased classifier on the dataset.

In all our slice discovery experiments, we set k = 4 both for CelebA and Waterbirds. We used
1000 DEXTER optimization steps and single word prompting (see Sect. 4.2.4) as an activation
maximization strategy to discover the above words. Tab. 8 reports the discovered words for both
datasets, where class 0 of CelebA has been left blank as in B2T [16].

E.1 Top-k words selection details

The top-k words in Table 8 were obtained by running the DEXTER pipeline multiple times (specifi-
cally k=4 timeless). In each run, we recorded the final (single) pseudo-token selected by the masked
language model at the end of the optimization. To encourage diversity across runs, we excluded
previously selected words from the candidate pool before each new run. However, we also evaluated
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Table 8: Class-wise words discovered by Dexter for Waterbirds and CelebA datasets.
Dataset Class 0 Class 1

Waterbirds fence, woods, jungle, backyard seas, sea, lake, harbor
CelebA — woman, person, head, girl

Table 9: Comparison between multi-run top-k word selection (ours) and single-run frequency-
ranked top-k selection.

Method F1-score Class 0 F1-score Class 1

B2T 0.99 0.75
k = 10 0.98 0.67
k = 5 0.98 0.66
ours 0.99 0.76

how using sampling frequency ranking may affect slice discovery results. In particular, we computed
results using word frequency–based ranking, evaluating performance with the top k = 5 and k = 10
most frequent words. We compare these results against our proposed sampling strategy and B2T for
reference. As shown in Table 9, our strategy with a single word yields superior performance.

Figure 7: ROC curves for slice discovery on the Waterbirds dataset. Each curve is obtained by
comparing the slice assignments predicted by each method with the ground-truth slice labels released
with the dataset.

F Bias Reasoning Details

Given a classifier f and class c, we optimize a prompt t∗ such that a diffusion model generates images
x1, ..., xM that maximize the classifier’s output for c. Each generated image correctly predicted
by the classifier is captioned using a vision-language model g, producing descriptions di(g(xi)).
A language model h then summarizes the captions into a single report, describing the features
associated with class c and possible biases. This process is fully data-free: both image generation and
reasoning depend only on the model’s behavior. For bias reasoning, we generate 50 images classified
as the target class using DEXTER over the course of up to 5,000 optimization steps, employing a
multi-word prompting strategy. These images are then captioned using ChatGPT-4o mini with the
designated Caption System Prompt (detailed below). Subsequently, another instance of ChatGPT-
4o mini analyzes these captions using the following Report System Prompt to extract key class
attributes and identify potential biases in the model. To generate the captions and the reports with
ChatGPT-4o mini we set a temperature of 0.2 to mitigate hallucinations. The max tokens parameter
is set to 0, allowing unrestricted response generation. The top_p is fixed at 1.0, while both the
frequency_penalty and the presence_penalty are set to 0.0. Finally, the model generates n = 1
output.
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We conducted multiple experiments on different visual classifiers:

• The reports presented in Fig. 4 and Appendix F.1 were obtained by analyzing a ResNet18
model trained on the FairFaces dataset.

• Figure 8, instead, provides a bias/not bias categorization for ViT, AlexNet, ResNet50, and
RobustResNet50, all trained on the ImageNet-1000 dataset, rather than full bias reasoning
reports. Supplementary material contains the full bias reports for all the 30 classes (see
Table 7) when analyzing RobustResNet50.

Caption system prompt

You are an assistant specialized in analyzing pictures.
Your goal is to generate the most accurate and detailed description.
You will be given a picture and you will have to describe it inserting all the key attributes that you find that
could be inherent.
Keep the description short (one sentence) while including all the key attributes.

- You have to return only the description of the image. Don’t return other information.
- Don’t describe the image in a poetic way, just describe the visual elements.
- Don’t include any information about the image that is not visible.
- Don’t include any information about the image that is not relevant to the description.
- If the subject is a person describe the ethnicity features and age features.
- Keep the description short (one sentence) while including all the key attributes.

Examples:
Input image: [IMG]
Input text: Describe the image
Output: [CAPTION]

Report system prompt

Context: This task involves analyzing images generated through a process of Class Activation Maximization (CAM).
Using a deep neural network trained on a specific dataset, the CAM approach identifies visual patterns that
strongly activate a specific class label in the network. To enhance this analysis, we use a trainable soft prompt
integrated with a Stable Diffusion model. The soft prompt is optimized to condition Stable Diffusion to create
images that maximize the activation of a chosen class. For each generated image, if the predicted class aligns
with the target class, a caption describing the image is stored.

Analysis: Given a trainable soft prompt and a Stable diffusion model. We optimize the soft prompt to
conditionate stable diffusion to generate pictures that maximize the prediction of a class. If the class
predicted is the same of the class we want to maximize, than we store a caption of that picture.

Task: Given a list of sentences that you will receive, you have to reason on the key attributes that the model
uses to maximize a specific class. Than you’ve to do a report with the explanation of your reasoning. The
report must end saying if the class is biased or not. If you reason that the class is biased you must explain why
otherwise you must explain why the class is not biased.

To write the report follow this structure:
- Title: ### Report on Class Activation Maximization for the Class ’CLASS_NAME’
- Hypothesis on Model Bias

the class to analyze will be given by the user with the list of sentences. The shape of the user prompt will be
the following:

User: ’Class: [CLASS] - Captions: [LIST OF SENTENCES]’
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F.1 Gender Bias Reports

In this section, we report DEXTER’s reports obtained by analyzing the ResNet18 classifier trained on
the FairFaces dataset. As described in Section 4.2.3, we conducted two training procedures for this
visual classifier. In the first procedure, we injected a gender bias across the classes, whereas in the
second, we employed a balanced training set.

Report for class 0 (20-29 years) of a biased classifier (overrepresentation of men)

The analysis suggests that the class ’20 to 29 years old people’ may exhibit some bias. While the model captures
a range of ethnicities and genders, the emphasis on certain skin tones, facial features, and expressions could
lead to a skewed representation of what is considered ’youthful’.
- Skin Tone Bias: The frequent mention of light brown and medium brown skin tones may indicate a bias towards
these tones, potentially neglecting a broader spectrum of skin colors that also represent youth.
- Facial Feature Bias: The focus on specific facial features that are often idealized in media could lead to a
narrow definition of youth, which may not encompass the full diversity of young adults.
- Gender Representation: The slight focus on the overrepresentation of male subjects could suggest a bias in the
training data, which may not equally represent young women.
In conclusion, while the model successfully identifies attributes associated with the class ’20 to 29 years old
people,’ it is essential to recognize the potential biases in representation. The model’s predictions may not
fully encompass the diversity of this age group, indicating a need for more balanced training data to ensure
equitable representation across all demographics.

Report for class 0 (20-29 years) of a balanced classifier (equal representation of men and
women)

Based on the analysis of the model, it does not appear to exhibit significant bias in identifying the class
of 20 to 29 years old individuals. The diversity in hair and eye color, skin tone, and gender representation
suggests that the model is capable of recognizing a broad spectrum of individuals within this age group. The
focus on well-defined facial features and neutral expressions aligns with common perceptions of young adults,
and the inclusion of various ethnic backgrounds indicates an inclusive approach. In conclusion, the class of 20
to 29 years old people, as represented by the model, does not seem to be biased. The attributes identified are
consistent with a diverse and inclusive representation of young adults.

Report for class 1 (50-59 years) of a biased classifier (overrepresentation of women)

Based on the analysis of the model, it can be concluded that the class ’50 to 59 years old people’ is biased. The
bias stems from several factors:
- Representation of Age: The model predominantly features youthful characteristics, which may not accurately
reflect the physical appearance of individuals aged 50 to 59. This suggests that the model may be influenced by
societal standards that equate youthfulness with attractiveness, leading to a misrepresentation of the target age
group.
- Ethnic and Gender Bias: The emphasis on lighter skin tones and the predominance of female subjects indicate
a lack of diversity. This could perpetuate stereotypes and fail to represent the true diversity of individuals
within the 50 to 59 age range.
- Societal Stereotypes: The model’s reliance on neutral or serious expressions may reflect societal stereotypes
about older individuals, which can further skew the representation of this age group.
In conclusion, while the model attempts to maximize the activation of the class ’50 to 59 years old people,’ it
does so through a lens that is biased towards certain physical characteristics, expressions, and demographic
representations. This highlights the importance of ensuring diverse and representative training data to mitigate
bias in machine learning models.

Report for class 1 (50-59 years) of a balanced classifier (equal representation of men and
women)

Based on the analysis, it appears that the class ’50 to 59 years old people’ is not inherently biased. The model
successfully captures a range of attributes that reflect the diversity of individuals within this age group.
However, there are potential biases in the representation of expressions and the predominance of serious or
neutral faces, which may not fully encompass the emotional spectrum of individuals aged 50 to 59. Moreover, the
model’s training data could influence its perception of age, potentially leading to stereotypes about how older
individuals should look or behave. For instance, the emphasis on serious expressions may inadvertently reinforce
the stereotype that older adults are less expressive or joyful. In conclusion, while the class itself is not
biased, the representation of certain attributes, particularly expressions and emotional portrayals, may benefit
from a broader range of depictions to avoid reinforcing stereotypes associated with aging.
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F.2 Bias Report Quality Assessment Metrics

In this section, we provide additional explanations for the metrics used to evaluate the quality of
DEXTER’s bias reports, as shown in Table 2. Following Liu et al. [20], we use the G-eval consistency
metric, which involves prompting a large language model (LLM) to assess a text’s factualness, scoring
each report on a scale from 1 to 5. Since the original prompts for these metrics were designed for
summarization, we create the following G-eval Consistency Prompt to better align with our
task.

Following the G-eval format, we use the Mean Opinion Score of LLM (MOSLLM) metric. This metric
uses the MOSLLM prompt asking the LLM to rate between 1 and 5 the generated reports according
to how well the report accurately describes the existence of bias in the classifier. Additionally, the
MOShumans score represents the average rating given by participants in the user study.

For both the G-eval and MOSLLM configurations, we adopt the same settings as Liu et al. [20].
Specifically, we use gpt-4-0613 with a temperature of 2, max_tokens = 0, top_p = 1.0,
frequency_penalty = 0, and presence_penalty = 0.

To enhance response diversity, we generate n = 20 outputs. Furthermore, in both G-eval and
MOS LLM system prompts, we provide the same evaluation instructions that were given to human
evaluators during the user study, also following the best practices to reduce hallucinations provided
by [4].

To assess whether the LLM’s mean-opinion scores are statistically indistinguishable from those
assigned by human annotators, we applied an independent-samples two one-sided equivalence test
(TOST). The test compared the distribution of MOSLLM to that of MOShumans obtaining a p≪ 0.05.
Thus, within the predefined equivalence bounds (±0.5 for a Likert scale), the LLM’s ratings can be
considered statistically equivalent to human judgments, indicating strong agreement between the two
sets of scores.

G-eval Consistency system prompt

**Instructions for Evaluation**: In this task, we trained a visual classifier twice:
1. First, using a dataset with gender-biased images.
2. Second, using a balanced dataset.

Your task is to evaluate how effectively a given textual description identifies the presence or absence of gender
bias in the visual classifier:
- **Visual Classifier**: A machine learning model trained to distinguish between two classes (e.g., Class 1:
"20-29 years old people" vs. Class 2: "50-59 years old people").

Please make sure you read and understand these instructions carefully. Please keep this document open while
reviewing, and refer to it as needed.

Evaluation Criteria:

Consistency (1-5) - the factual alignment between the question and the description. A factually consistent
description contains statements that are entailed by the question. Annotators were also asked to penalize
descriptions that contained hallucinated facts.

Evaluation Steps:

1. Read the question carefully and identify the main topic and key points.
2. Read the description and compare it to the question. Check if the description covers the main topic and key
points of the question, and if it presents them in a clear and logical order.
3. Assign a score for consistency on a scale of 1 to 5, where 1 is "Bad Description" and 5 is "Excellent
Description" based on the Evaluation Criteria.

Example:

Question:

{{Question}}

Description:

{{Description}}

Evaluation Form (scores ONLY):

- Consistency (1-5):
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MOSLLM system prompt

**Instructions for Evaluation**: In this task, we trained a visual classifier twice:
1. First, using a dataset with gender-biased images.
2. Second, using a balanced dataset.

Your task is to evaluate how effectively a given textual description identifies the presence or absence of gender
bias in the visual classifier:
- **Visual Classifier**: A machine learning model trained to distinguish between two classes (e.g., Class 1:
"20-29 years old people" vs. Class 2: "50-59 years old people").

Please make sure you read and understand these instructions carefully. Please keep this document open while
reviewing, and refer to it as needed.

Evaluation Criteria:

Mean Opinion score (1-5) - Assign a rating to the description based on its effectiveness:

- 1: Bad description (fails to identify bias or provide relevant details).
- 2: Poor description (some effort to address bias, but lacks clarity or completeness).
- 3: Neutral (adequate but not insightful; partially addresses bias).
- 4: Good description (clear and mostly thorough in addressing bias).
- 5: Excellent description (comprehensive, clear, and detailed in identifying bias).

Evaluation Steps:

1. Read the question carefully and identify the main topic and key points.
2. Read the description and compare it to the question. Check if the description covers the main topic and key
points of the question, and if it presents them in a clear and logical order.
3. Assign a score for bias identification on a scale of 1 to 5, where 1 is "Bad Description" and 5 is "Excellent
Description" based on the Evaluation Criteria.

Example:

Question:

{{Question}}
Description:

{{Description}}
Evaluation Form (scores ONLY):

- Rating (1-5):
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F.3 Bias identification of multiple vision classifiers

In Fig. 8 we report an example of disparity analysis across ViT, AlexNet, ResNet50, and Robus-
tResNet50 for multiple ImageNet classes. By revealing class-specific biases and failure patterns,
DEXTER helps identify where each model struggles and can guide data collection efforts when
biases are consistently observed across classifiers. To select key neural features for these classifiers,
we ranked penultimate-layer neurons by their weights to each class and selected the top 5, mirroring
the Salient ImageNet method but without any training data.

Figure 8: Bias analysis across classifiers and SalientImageNet classes. Each cell shows DEXTER-
generated visual explanations and bias assessments (“Biased” or “Not Biased”). While Lion is
unbiased across models, Jeep is biased in ResNet50 but not in its robust version. Baseball Player
remains biased in all models, suggesting dataset-level bias.
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G Additional details on Ablation Study

Figure 9: Procedure to compute the percentage of activations.

In this section, we provide further details on how we compute the activation score reported in Table 3
and Table 4. As shown in Figure 9, once the word(s) are obtained at the end of the optimization
process, we prompt Stable Diffusion to generate 100 distinct images using a fixed prompt tfixed (from
the optimization stage) concatenated with the discovered word(s) t̂C. We then sum all inference steps
in which the visual classifier predicts the target class. Figure 10 illustrates examples of the different
text-prompt strategies, described in Table 3, alongside their corresponding activation scores for the
class Tiger and the class Snorkel.

Figure 10: Examples of corresponding text prompts and generated images for class activation
maximization. For a non-spurious class like tiger, all generated images easily activate the target class.
However, in the case of the snorkel class, DEXTER is able to generate significantly more images that
maximize the activation, and exposes the other features the model pays attention to.
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H User Study Details

Figure 11: Example of a question from the first section of the user study.

Each user study consisted of two parts. The first part aimed to assess the ability of DEXTER to
visually highlight the focus of the target classifier for a specific neural feature, while the second part
evaluated the accuracy of the textual bias reports generated by DEXTER.

In the first part of the study, each participant was presented with 15 randomly images (explaining
specific feature in SalientImageNet) drawn from the outputs of DiffExplainer and DEXTER. An
example is shown in Fig. 11. Participants were asked to assess whether the generated image accurately
represented the attended region of the real image based on attributes such as color, shape, texture,
material, context, or semantic similarity. Additionally, two extra options were provided: “Several
Elements” for cases where multiple similarity criteria were met, and “None” for instances where
none of the criteria applied.

The second part of the study aimed to evaluate the ability of DiffExplainer reports to detect the
presence of bias in the target classifier. The target classifier was trained both with and without gender
bias, and participants were presented with all four reports generated by DEXTER. Examples of
questions for class 0 (20–29 years old) are provided in Fig. 12 and Fig. 13, corresponding to the
models trained with and without the injected gender bias, respectively. Participants were asked to
rate, on a scale from 1 to 5, the extent to which the generated report reflected the presence or absence
of bias.

The user study was conducted with 100 distinct MTurk workers, with an average completion time of
10.32 minutes. Each feature explanation in the first part received an average of 10.38 responses for
DiffExplainer and 10.82 for DEXTER. To minimize response variability, participants were required to
provide a textual justification for their answers in both sections of the questionnaire before submission.
The compensation for each worker was $0.50.

I Diffusion and LLM’s Hallucination evaluation

I.1 Randomness in the diffusion generation process

To assess the stability of Stable Diffusion, we performed intra-class evaluation using DEXTER’s
final prompt. Across three independent runs (100 images each), we measured activation scores with
the target model. If the image generation is unstable, scores will vary significantly. Instead, our
consistent results indicate stability. We report mean and standard deviation for 8 randomly selected
classes (4 core, 4 spurious) across three independent runs (Tab. 10).
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Figure 12: Example of a question from the sec-
ond section of the user study (biased).

Figure 13: Example of a question from the sec-
ond section of the user study (not biased).

Table 10: Intra-class evaluation of randomness in Stable Diffusion generation process.
Type Class Avg
Spurious 890 55.33± 2.49

795 79.00± 1.63
655 96.66± 0.94
706 100.0± 0.00

Core 291 100.0± 0.00
486 95.66± 1.24
514 86.66± 1.24
624 95.66± 1.88

I.2 Bias propagation

To verify that DEXTER’s outputs align with the classifier—rather than reflecting biases from BERT
or Stable Diffusion—we ran a robustness test. We manually injected spurious cues into prompt
initialization (e.g., replacing the starting auxiliary pseudo-target with lion for the class tiger) to
simulate strong upstream bias. Then, for each class in SalientImageNet subset of our paper (split into
“core” and “spurious” categories), we generated 100 images and measured how often the classifier
activated the correct class. We report average classifier activation scores (as defined in Tab. 3 of the
paper) for spurious, core classes, and their average. These results in Tab. 11 show that even with
adversarially biased prompts, DEXTER recovers class-relevant visual patterns, aligning with the
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classifier. Classifier-driven optimization helps correct upstream bias and grounds both visual and
textual outputs in model behavior.

Table 11: Comparison of Spurious, Core, and Average scores under different bias conditions.
Condition Spurious Core Avg
Injected Bias 65.3 88.4 76.8
No Bias 63.0 87.6 75.4

We also evaluated how DEXTER compensates for bias propagation. Specifically, we recorded the
sequence of words selected as pseudotargets during optimization. This was done for both the biased
setting and the standard setting, where the initial pseudotarget is chosen randomly. As shown in the
Table 12, in both cases DEXTER consistently converges toward the most meaningful word, with
the selection path gradually shifting from a random concept to the intended target. This trajectory
suggests that the optimization process does not simply lock onto the first spurious or core concept it
encounters, but instead explores a range of semantically plausible candidates before progressively
refining the prompt toward a stable and interpretable solution, indicating a non-greedy and convergent
behavior rather than an early commitment driven by the mask pseudo-label loss. Convergence analysis
through keyword trajectory during the DEXTER optimization process. The Table 12 illustrates how
DEXTER transitions from initially random concepts to progressively more semantically coherent and
domain-specific words, demonstrating convergence toward a stable explanation.

I.3 Analysis of LLM hallucination impact

Given that large language models can generate statements influenced by their prior knowledge
rather than by factual evidence, we systematically assess the fidelity of our reports and how much
they are aligned with the visual classifier decision-making process. We aim to ensure that each
report highlights genuine visual patterns exploited by the classifier rather than hallucinated elements.
Concretely, for each of the 30 SalientImageNet classes in our experimental setup (Tab. 7), we verify
whether the single most salient visual cue extracted from the corresponding DEXTER report is truly
grounded. Given a class c we form

BASELINE PROMPT: “a picture of a [c]”,
CUE PROMPT: “a picture of a [c] with [cue]0 ... and ’[cue]n’,

where n is the total number of cues obtained automatically from the generated reports via a GPT–4o
mini class-cues extractor. Then, we generate 100 images per prompt with Stable–Diffusion and
measure the Activation Score (AS) on the frozen RobustResNet50 used throughout the paper (4.2.4).
A cue is grounded when AScue > ASbaseline; otherwise it is neutral or wrong.

Statistical significance & confidence interval. For each class we measure ∆i = AScue,i −
ASbaseline,i. Across the 30 classes we obtain

∆̄ = 16.33 pp, s∆ = 23.84 pp.

The two-sided 95% confidence interval is

∆̄± t0.975,29
s∆√
30

= [ 7.43, 25.24 ] pp.

Both a paired t-test (t(29) = 3.79, p = 7.8× 10−4) and a Wilcoxon signed-rank test (W = 19, p =
2.9× 10−4) confirm that the improvement is statistically significant.

Aggregate results. Table 13 contrasts the mean Activation Scores for the two prompts. Adding the
report cue raises the mean score from 64.73% to 81.06% ( +16.33 pp).

• 20/30 classes (67%) improve (peak +81 pp for miniskirt), confirming that the cues capture
genuinely discriminative evidence.

• 7 classes already achieve 100 % with the baseline prompt; the cue therefore leaves perfor-
mance unchanged.
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Table 12: Word-wise convergence path for biased vs unbiased initialized prompt.
Grocery Store (582) Patio (706)

Biased Not Biased Biased Not Biased

motel fan restaurant head
library coffin school book
wedding factory house man
party sale pool the
restaurant factory residence republic
party distillery tree
wedding market window
motel supermarket house
bakery courtyard
supermarket terrace

patio

Table 13: Activation Scores averaged over 30 classes (↑/↓: cue better/worse than baseline).
Prompt Mean AS (%) ∆ Class split

Baseline 64.73 —
Cue (report) 81.06 +16.33 20 ↑ 3 ↓ 7 = 30

• 3 classes degrade:

bubble ∆ = −5 pp; the cue is correct but pertains only to a subset of
bubble instances.

tanks ∆ = −1 pp (100 %→ 99 %); a negligible loss.
rifle ∆ = −17 pp; the cue “individuals in dark clothing” marking the

sole clear failure.

Overall assessment. DEXTER explanations are therefore strongly grounded: in 27 out of 30 classes
the cue is beneficial or neutral, and only one class (rifle) exhibits evidence of hallucination. In the
two minor degradations (bubble,tanks) the reports still isolate genuine—though partial—visual cues.

Evaluation Implications. The consistent increase in classifier confidence when report-derived
cues are injected into the prompt demonstrates that DEXTER’s explanations faithfully align with the
model’s decision boundary, rather than reflecting spurious or hallucinatory artifacts. Together with
the text-based metrics reported in Table 2 for the FairFaces dataset (G-Eval consistency, STS, MOS),
these findings confirm that DEXTER delivers genuinely grounded insights into the visual classifier’s
decision-making process.

Pipeline Robustness. Furthermore, this evaluation implicitly validates the collaborative operation
of all pretrained components (BERT, CLIP, Stable Diffusion, VLM) in our optimization pipeline.
The target visual classifier guides the prompt optimization. BERT selects discriminative keywords,
the diffusion model generates contextually relevant images, and the captioning VLM produces
faithful captions. As a result, the end-to-end process avoids propagating biases or hallucinations from
intermediate models and yields explanations that are solidly grounded in the classifier’s behavior.

I.4 Baseline prompts vs Cue prompts

This section, referring to Sec. I.3, reports the system prompt used to extract the relevant visual cues
from DEXTER’s textual explanations. Furthermore, Table 14 compares class-wise activation scores
produced by the baseline prompt “A picture of a [CLASS]” and by the CUE-enriched prompt.
Large gains appear for classes that were poorly activated in the baseline (e.g., space bar improves
from 6 → 57 , hockey puck from 0 → 79). The results demonstrate that adding concise semantic
cues markedly improves class-specific guidance and reduces hallucinations during image generation.
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Report’s cues extractor system prompt

You are an assistant that reads a bias-analysis report about an ImageNet class and extracts concrete visual cues
that the report claims are important for that class.
Your task
1. Identify up to 5 key visual phrases (2–5 words each) that:

• are explicitly mentioned in the report;

• describe tangible elements that can appear in an image (objects, attributes, background, actions);

• are likely to trigger the classifier according to the report.

2. Return your answer in JSON with two fields:
“‘json "key-phrases": ["phrase1", "phrase2", ...], "full-prompt": "a picture of a <CLASS> with "phrase1" and
"phrase2" and ..."
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Table 14: Activation maximization scores for each class: comparison between the baseline
prompt “A picture of a [CLASS]” and the CUE prompt obtained from the DEXTER’s reports.

Class Baseline prompt AS CUE prompt AS

volleyball A picture of a volleyball 66 A picture of a volleyball with young women playing and
mixed-gender teams and variety of scenarios

78

space bar A picture of a space bar 6 A picture of a space bar grid layouts with framed artworks and
black-and-white imagery

57

umbrella A picture of an umbrella 95 A picture of an umbrella with vibrant outdoor scenes and
garden scenes

100

baseball player A picture of a baseball
player

98 A picture of a baseball player with female athletes and softball
context

100

bubble A picture of a bubble 100 A picture of a bubble with whimsical themes 95

balance beam A picture of a balance beam 0 A picture of a balance beam with athletic attire and physical
activities and indoor training environments and group dynamics
and artistic performances

27

cowboy boot A picture of a cowboy boot 83 A picture of a cowboy boot with various types of boots 96

patio A picture of a patio 100 A picture of a patio with modern architecture and expansive
outdoor spaces and affluent homes and specific landscaping
styles

100

tank A picture of a tank 100 A picture of a tank with camouflage and military environment
and armored vehicle

99

dark glasses A picture of dark glasses 8 A picture of dark glasses with facial hair and an older man 20

daisy A picture of a daisy 100 A picture of a daisy with vibrant colors and natural contexts
and red daisies

100

howler monkey A picture of a howler
monkey

0 A picture of a howler monkey with lush, green environments
and natural habitat

32

tiger A picture of a tiger 100 A picture of a tiger with striped fur and natural habitat and
majestic posture

100

library A picture of a library 76 A picture of a library with books and organized indoor area and
spacious room with furniture and people

97

seat belt A picture of a seat belt 56 A picture of a seat belt with human subjects 73

rifle A picture of a rifle 85 A picture of a rifle with individuals in dark clothing and jackets
and sunglasses and aiming

68

grocery store A picture of a grocery store 84 A picture of a grocery store with diversity of food items and
presence of people and colorful displays

95

snorkel A picture of a snorkel mask 41 A picture of a snorkel mask with young individuals and sharks 94

dogsled A picture of a dogsled 98 A picture of a dogsled with snowy landscapes and
human-animal interaction and specific dog breeds

100

magnetic compass A picture of a magnetic
compass

6 A picture of a magnetic compass with silver compass pendant
and craftsmanship and design
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horizontal bar A picture of a horizontal bar 6 A picture of a horizontal bar in sports and athletic environment 8

ski A picture of a ski 56 A picture of a ski with young individuals with ski attire 100

miniskirt A picture of a miniskirt 19 A picture of a miniskirt with women wearing miniskirts 100

lion A picture of a lion 100 A picture of a lion with distinctive physical traits and social
behavior and natural habitat and human interactions

100

hockey puck A picture of a puck 0 A picture of a puck with ice hockey gameplay and player
confrontations

79

swimming cap A picture of a swimming cap 92 A picture of a swimming cap with children in joyful scenarios
with adults and certain hair types and smiling expressions

99

bulletproof vest A picture of a bulletproof
vest

67 A picture of a bulletproof vest with casual attire 89

cello A picture of a cello 100 A picture of a cello with musical instrument 100

golf ball A picture of a golf ball 100 A picture of a golf ball with spherical objects and white color 100

jeep A picture of a jeep 100 A picture of a jeep, landrover with off-road capability 100

Mean — 64.73 — 81.06
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction of the DEXTER paper clearly and accurately
reflect the paper’s contributions and scope. The three central use cases mentioned in the
abstract (activation maximization, slice discovery and debiasing, and bias explanation) are
all thoroughly addressed and empirically validated in the main body. Additionally, the
introduction carefully outlines both the limitations of existing work and how DEXTER
addresses them, reinforcing that the scope of the claims is realistic and well-motivated.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have added a "Limitations" section in the document that provides areas
where DEXTER could benefit from improvement.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include any formal theoretical results, theorems, or proofs.
Its contributions are methodological and empirical, focusing on the design, implementation,
and evaluation of the DEXTER framework rather than on theoretical analysis.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper includes all necessary information to reproduce its main exper-
imental results, with detailed implementation instructions provided in the appendix. It
specifies datasets, models, evaluation metrics, and experiment settings. The appendix covers
optimization strategies, prompts, training procedures, and evaluation protocols,
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: While the datasets are publicly available the code will be released upon
acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The whole experimental setting has been defined in both the main paper and
the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All main tables in the paper report results across different random seeds using
mean and standard deviation. To assess whether the LLM-generated mean opinion scores
(MOSLLM) were statistically equivalent to those provided by human raters (MOShumans), we
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conducted a Two One-Sided Test (TOST) on the paired MOS values presented in Table
2. For the hallucination evaluation (Sec. I.3), we report both statistical significance and
confidence intervals, validated using a paired t-test and a Wilcoxon signed-rank test.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides information about hardware and time execution in the
"Limitations" section of the main paper and in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research adheres to the NeurIPS Code of Ethics. It does not involve
human subjects beyond anonymized user studies conducted via established platforms, uses
publicly available datasets, and emphasizes transparency, fairness, and bias identification.
The proposed method (DEXTER) is explicitly designed to improve model interpretability
and promote responsible AI use by revealing biases and spurious correlations in classifiers.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: Although the paper does not explicitly discuss the social impacts of DEXTER,
it implicitly highlights, as indicated in the introduction, the growing need for tools capable of
interpreting AI models as they become increasingly sophisticated. In this context, DEXTER
aims to enhance the trustworthiness of these models, fostering a positive impact on the
community that relies on them.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper discusses in the "Limitations" section the potential risk of gen-
erating NSFW content with Stable Diffusion and explains that a safety checker has been
implemented to mitigate this issue.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification:

Table 15: Assets used and licence information.

Asset Type License Github / URL Citation/Reference

SalientImagenet data non-commercial research singlasahil14/salient_imagenet [41]
Waterbirds data non-commercial research kohpangwei/group_DRO [36]
CelebA data non-commercial research https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html [21]
FairFaces data CC BY 4.0 joojs/fairface [14]
BERT Pretrained Model Apache license 2.0 https://huggingface.co/google-bert/bert-base-uncased [5]
CLIP Pretrained Model MIT license openai/CLIP [32]
Stable Diffusion 1.5 Pretrained Model CreativeML Open RAIL-M https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5 [35]
GPT-4o LLM API-based use under OpenAI terms https://platform.openai.com/docs/overview OpenAI

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: While the paper introduces DEXTER as a novel framework and reports
experimental results using standard datasets, it does not release new datasets or models as
our proposed method aims to explain a pretrained model (classifier) using other pretrained
frozen models.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [Yes]
Justification: All information about the user study conducted in this work is provided in both
the main paper and the appendix, including the results and the questionnaire administered to
human evaluators. The appendix contains the full text of the questionnaire as well as details
about participant compensation for each HIT.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper explicitly describes the use of large language models (LLMs) as a
central and original component of its methodology. In DEXTER, LLMs are used to generate
textual prompts and provide human-interpretable explanations of visual classifier behavior.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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