

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EUGENE: EXPLAINABLE STRUCTURE-AWARE GRAPH EDIT DISTANCE ESTIMATION WITH GENERALIZED EDIT COSTS

Anonymous authors

Paper under double-blind review

ABSTRACT

The need to identify graphs with small structural distances from a query arises in domains such as biology, chemistry, recommender systems, and social network analysis. Among several methods for measuring inter-graph distance, Graph Edit Distance (GED) is preferred for its comprehensibility, though its computation is hindered by NP-hardness. Optimization based heuristic methods often face challenges in providing accurate approximations. State-of-the-art GED approximations predominantly utilize neural methods, which, however: (i) lack an *explanatory* edit path corresponding to the approximated GED; (ii) require the NP-hard generation of ground-truth GEDs for training; and (iii) necessitate separate training on each dataset. In this paper, we propose EUGENE, an efficient, algebraic, and structure-aware optimization based method that estimates GED and also provides edit paths corresponding to the estimated cost. Extensive experimental evaluation demonstrates that EUGENE achieves state-of-the-art GED estimation with superior scalability across diverse datasets and generalized cost settings.

1 INTRODUCTION AND RELATED WORK

Graph Edit Distance (GED) quantifies the dissimilarity between a pair of graphs (Bai et al., 2020; Doan et al., 2021; Bai et al., 2019; Ranjan et al., 2022). It finds application in identifying the graph in a collection most similar to a query graph. Given graphs \mathcal{G}_1 and \mathcal{G}_2 , GED is the minimum cost to transform \mathcal{G}_1 into \mathcal{G}_2 through *edit operations*, rendering \mathcal{G}_1 isomorphic to \mathcal{G}_2 . These operations comprise the addition and deletion of edges and nodes and the replacement of their labels, each linked to a cost. Figure 1 presents an example. GED computation is NP-hard (Zeng et al., 2009) and APX-hard (Lin, 1994), hence a challenging task.

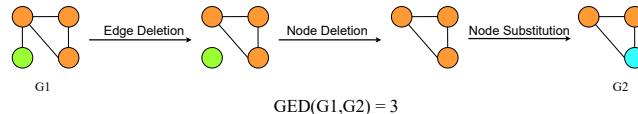


Figure 1: An *edit path* between graphs \mathcal{G}_1 and \mathcal{G}_2 with GED 3; each edit operation costs 1.

Owing to the problem's hardness, several algorithms approximate GED (Blumenthal et al., 2019a). *Optimization* based heuristic GED estimation methods employ strategies such as transformations to the linear-sum assignment problem with error correction or constraints (e.g., NODE (Justice & Hero, 2006), BRANCH-TIGHT (Blumenthal & Gamper, 2018)) and linear-programming relaxations of mixed integer programming (MIP) formulations (e.g., F1 (Lerouge et al., 2017), ADJ-IP (Justice & Hero, 2006), COMPACT-MIP (Blumenthal & Gamper, 2020)). Still, these approaches often afford only limited approximation accuracy.

Recent works have evinced that graph neural networks (GNNs) can achieve state-of-the-art accuracy in approximating GED (Jain et al., 2024; Ranjan et al., 2022; Wang et al., 2021; Bai et al., 2019; 2020; Doan et al., 2021; Li et al., 2019; Zhang et al., 2021; Piao et al., 2023). The general pipeline in this paradigm is to train a GNN-based architecture on a set of graph pairs along with their true GED distance. Some techniques also require the node mapping corresponding to the GED (Piao et al., 2023; Wang et al., 2021).

Although they afford superior accuracy, neural approaches suffer from notable drawbacks:

- **Reliance on NP-hard ground truth:** Generating training data, i.e., *true* GEDs of graph pairs, is prohibitively costly for large graphs, as GED computation is NP-hard. Training data are thus limited to graphs of at most 25 nodes, undermining generalizability to larger ones (§ 4).
- **Lack of interpretability:** Most of them furnish a GED between two graphs *but not* an edit path that entails it; such edit paths reveal crucial functions of protein complexes (Singh et al., 2008a), image alignment (Conte et al., 2003), and gene regulatory pathways (Chen et al., 2018). Some neural methods, e.g., GEDGNN (Piao et al., 2023) and GENN- A^* (Wang et al., 2021) offer interpretability, albeit at the expense of accuracy and/or scalability, as we show in § 4.
- **Lack of generalizability:** Neural approximators do not generalize across datasets. For datasets across different domains (such as chemical compounds vs. function-call graphs), the node label set changes. As the number of parameters in a GNN is a function of the feature dimension in each node, a GNN trained on one domain cannot transfer to another, necessitating *separate* training for each dataset. As training data generation is NP-hard, the pipeline is resource-intensive.

In this paper, we present an optimization based algebraic method called EUGENE: Explainable Structure-aware Graph Edit Distance, which achieves state-of-the-art accuracy and is: (1) *optimization* based heuristic, hence does not require training; (2) *CPU-bound*, therefore unshackled from GPU requirements and resultant greenhouse emissions; and (3) *interpretable*. The innovations empowering these properties are as follows:

- **Optimization problem formulation:** We cast the GED computation problem as an optimization problem extending over Unrestricted Graph Alignment (UGA), grounded on adjacency matrices, over the space of all possible node alignments, represented via *permutation matrices*; this formulation facilitates an optimization based solution, eschewing the need for ground-truth data generation and data-specific training.
- **Interpretability:** To approximate GED, EUGENE minimizes a function over the set of *doubly stochastic* matrices, leading to a convex optimization problem that can be solved by ADAM (Kingma & Ba, 2015). We further refine the approximation by exhorting the doubly stochastic matrix using permutation inducing regularizers and inverse relabelling strategy. By operating directly on matrices, EUGENE yields a GED approximation *explainable* via a node-to-node correspondence.
- **Experimental evaluation:** Extensive experiments encompassing 15 state-of-the-art baselines over 9 datasets and 3 combinations of edits costs establish that EUGENE consistently achieves superior accuracy in GED approximation. Notably, EUGENE, does not rely on training data and thus offers a resource-efficient, GPU-free execution pipeline, which exhibits up to 30 times lower carbon emissions than its neural counterparts.

2 PRELIMINARIES AND PROBLEM FORMULATION

Definition 1 (Graph). A *node-labeled undirected graph* is a triple $\mathcal{G}(\mathcal{V}, \mathcal{E}, \mathcal{L})$ where $\mathcal{V} = [n] \equiv \{1, \dots, n\}$ is the *node set*, $\mathcal{E} \subseteq [n] \times [n]$ is the *edge set*, and $\mathcal{L} : \mathcal{V} \rightarrow \Sigma$ is a *labeling function* that maps nodes to labels, where Σ is the *set of all labels*.

The *adjacency matrix* of \mathcal{G} is $A = [a_{i,j}]_{i,j \in [n]} \in \{0, 1\}^{n \times n}$ such that $a_{ij} = a_{ji} = 1$ if and only if $(i, j) \in E$. We use $\mathbf{1}$ to denote an all-ones vector, J to denote an all-ones square matrix, and O to denote an all-zero square matrix.

Definition 2 (Permutation and Doubly Stochastic Matrices). A *permutation matrix* of size n is a binary-valued matrix $\mathbb{P}^n = \{P \in \{0, 1\}^{n \times n} : P\mathbf{1} = \mathbf{1}, P^T\mathbf{1} = \mathbf{1}\}$. A *doubly stochastic matrix* of size n is a real-valued matrix $\mathbb{W}^n = \{W \in [0, 1]^{n \times n} : W\mathbf{1} = \mathbf{1}, W^T\mathbf{1} = \mathbf{1}\}$.

We define a *quasi-permutation matrix* as a matrix that is *almost* a permutation matrix.

Definition 3 (Entry-wise norm). Let $A = [a_{i,j}]_{i,j \in [n]} \in \mathbb{R}^{n \times n}$ and $p \in \mathbb{N}^+ \cup \{\infty\}$. We define the entry-wise p -norm of A as $\|A\|_p = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{i,j}|^p \right)^{1/p}$ for $p \in \mathbb{N}^+$, and $\|A\|_\infty = \max_{i,j} |a_{i,j}|$. We denote the entry-wise 2-norm (i.e., the Frobenius norm) as $\|\cdot\|_F$.

We denote the *trace* of a matrix A as $\text{tr}(A)$.

Definition 4 (Node mapping). Given two graphs \mathcal{G}_1 and \mathcal{G}_2 of n nodes, a node mapping between \mathcal{G}_1 and \mathcal{G}_2 is a bijection $\pi : \mathcal{V}_1 \rightarrow \mathcal{V}_2$ where $\forall v \in \mathcal{V}_1, \pi(v) \in \mathcal{V}_2$.

Given graphs \mathcal{G}_1 and \mathcal{G}_2 with node counts n_1 and n_2 , respectively, $n_1 < n_2$, we add $(n_2 - n_1)$ isolated dummy nodes with label ϵ to \mathcal{G}_1 . Henceforward, we assume the two given graphs are of the same size.

108 **Definition 5** (Graph Edit Distance under mapping π). *GED between \mathcal{G}_1 and \mathcal{G}_2 under π is:*

$$110 \quad GED_\pi(\mathcal{G}_1, \mathcal{G}_2) = \sum_{v \in \mathcal{V}_1} d_v(\mathcal{L}(v), \mathcal{L}(\pi(v))) + \sum_{\langle v_1, v_2 \rangle \in \mathcal{V}_1 \times \mathcal{V}_1 \wedge v_1 < v_2} d_e(\langle v_1, v_2 \rangle, \langle \pi(v_1), \pi(v_2) \rangle) \quad (1)$$

113 where d_v and d_e are distance functions over the node labels and node pairs respectively.

114 The distance between two identical node labels is 0. If an existing edge is mapped to a non-existing
115 edge, i.e. either $\langle v_1, v_2 \rangle \notin \mathcal{E}_1$ or $\langle \pi(v_1), \pi(v_2) \rangle \notin \mathcal{E}_2$ the cost¹ is κ^2 , otherwise 0. Intuitively, mapping
116 from a dummy node/edge to a real one expresses insertion, while mapping from a real node/edge
117 to a dummy one expresses deletion, and mapping from a real node to a real node of different label
118 denotes replacement. Figure C in the appendix illustrates GED mappings with examples.

119 **Definition 6** (GED). *GED is the minimum distance among all mappings.*

$$121 \quad GED(\mathcal{G}_1, \mathcal{G}_2) = \min_{\pi \in \Phi(\mathcal{G}_1, \mathcal{G}_2)} GED_\pi(\mathcal{G}_1, \mathcal{G}_2) \quad (2)$$

123 $\Phi(\mathcal{G}_1, \mathcal{G}_2)$ denotes all possible node maps from \mathcal{G}_1 to \mathcal{G}_2 .

124 2.1 MAPPING GED TO GRAPH ALIGNMENT

125 We now establish that unrestricted graph alignment (UGA) (Skitsas et al., 2023) forms an instance of
126 GED. Building on this connection, we recast GED by Definition 6 as a *generalized* graph alignment
127 problem, leading to algebraic methods for GED estimation.

128 **Definition 7** (Unrestricted Graph Alignment). *Unrestricted graph alignment calls to find a bijection
129 $\pi : \mathcal{V}_1 \rightarrow \mathcal{V}_2$ that minimizes edge disagreements between the two graphs. Formally:*

$$131 \quad \min_{\pi \in \Phi(\mathcal{G}_1, \mathcal{G}_2)} \|AP_\pi - P_\pi B\|_F^2, \quad (3)$$

133 Here, A and B are the adjacency matrices of graphs \mathcal{G}_1 and \mathcal{G}_2 , respectively, $\|\cdot\|_F$ denotes the
134 Frobenius Norm, and P_π is a permutation matrix, where $P_\pi[i, j] = 1$ if $\pi(i) = j$, otherwise 0.

135 The proof of the following theorem is in Appendix B.

137 **Theorem 1.** *Given graphs \mathcal{G}_1 and \mathcal{G}_2 of size n , if the edge insertion and deletion cost is $\kappa^2 = 2$ and
138 node substitution cost is 0, then $GED(\mathcal{G}_1, \mathcal{G}_2) = \min_{\pi \in \Phi(\mathcal{G}_1, \mathcal{G}_2)} \|AP_\pi - P_\pi B\|_F^2$.*

139 3 EUGENE: PROPOSED METHOD

140 While Theorem 1 establishes graph alignment as a special case of GED, Equation (3) assumes a
141 specific instance of edits costs and ignores node labels, setting node edit costs to 0. We next frame
142 GED as a generalized graph alignment problem with *arbitrary* edit costs.

144 3.1 GED AS GENERALIZED GRAPH ALIGNMENT

145 Given graphs \mathcal{G}_1 and \mathcal{G}_2 , arbitrary costs for node edits, and cost κ^2 for edge edits, where κ is a scalar,
146 we propose a closed-form expression for *generalized* graph alignment:

$$148 \quad \min_{\pi \in \Phi(\mathcal{G}_1, \mathcal{G}_2)} \frac{\|\tilde{A}P_\pi - P_\pi \tilde{B}\|_F^2}{2} + \text{tr}(P_\pi^T D) \quad (4)$$

150 Let A, B be adjacency matrices of $\mathcal{G}_1, \mathcal{G}_2$, respectively, having extended the smaller graph to the size
151 of the larger by adding dummy nodes. We set $\tilde{A} = \kappa \cdot A$, $\tilde{B} = \kappa \cdot B$ and define D as:

$$154 \quad d_{ij} = \begin{cases} d_v(\epsilon, \mathcal{L}(j)), & \text{if } i \text{ is a dummy node in } \mathcal{G}_1 \\ d_v(\mathcal{L}(i), \epsilon), & \text{if } j \text{ is a dummy node in } \mathcal{G}_2 \\ d_v(\mathcal{L}(i), \mathcal{L}(j)), & \text{if } \mathcal{L}(i) \neq \mathcal{L}(j) \end{cases} \quad (5)$$

157 where d_v is the distance function over the node labels by Definition 5 and ϵ is the label assigned to
158 dummy nodes. We show that, with \tilde{A}, \tilde{B}, D as above, Equation (4) amounts to GED with arbitrary
159 edit costs. Intuitively, the first term captures edge edits under mapping π , the second term node edits.
160 The proof is in Appendix B.

161 ¹We define it to be κ^2 instead of κ since it eases the notational burden in subsequent derivations.

162 **Theorem 2.** Given two graphs \mathcal{G}_1 and \mathcal{G}_2 of size n , $GED(\mathcal{G}_1, \mathcal{G}_2) = \min_{\pi \in \Phi(\mathcal{G}_1, \mathcal{G}_2)} \frac{\|\tilde{A}P_\pi - P_\pi\tilde{B}\|_F^2}{2} +$
 163 $tr(P_\pi^T D)$, where \tilde{A} , \tilde{B} and D are defined as above.
 164

165 IPFP (Bougleux et al., 2017) also formulates GED as a quadratic assignment problem, yet it flattens
 166 the permutation matrix into a vector and operates on a cost matrix $C = (c_{ik,jl})_{i,k,j,l}$, where $c_{ik,jl}$
 167 denotes the cost of editing edge (i, j) in one graph to edge (k, l) in the other. In contrast, EUGENE
 168 preserves the permutation matrix structure and operates on adjacency matrices A and B , expressing
 169 edge discrepancies through the difference of the permuted matrices $\tilde{A}P$ and $P\tilde{B}$. This structure-aware
 170 formulation reduces time complexity from $O(n^4)$ in IPFP to $O(n^3)$ and is also more space-efficient:
 171 while C is a dense matrix of size $n^2 \times n^2$, \tilde{A} and \tilde{B} are $n \times n$ and usually sparse. Moreover, EUGENE
 172 is numerically more stable, while C becomes ill-conditioned and thus unsuitable for gradient-
 173 based optimization for similar A and B , which render the rows and columns of C nearly linearly
 174 dependent. Besides, EUGENE naturally accommodates permutation and doubly-stochastic constraints
 175 and maintains a spectral connection to the eigenvalues of A and B , which enables the use of spectral
 176 techniques (Hermanns et al., 2021; Knossow et al., 2009; Singh et al., 2008b). Lastly, IPFP relies
 177 on off-the-shelf optimization methods, while EUGENE uses a custom optimization strategy, which
 178 confers the advantages shown in § 4.

179 Grounded in our structure-aware reformulation of GED as generalized graph alignment problem
 180 based on adjacency matrices, we can leverage advances in graph alignment for GED estimation
 181 purposes. FUGAL (Bommakanti et al., 2024), the current state-of-the-art solution for UGA, relaxes a
 182 quadratic assignment problem with an objective built on a non-convex correlation term to the feasible
 183 set of doubly stochastic matrices and applies the Frank–Wolfe algorithm (Frank & Wolfe, 1956)
 184 guided by a Sinkhorn–Knopp normalization (Cuturi, 2013) to iteratively step within that feasible set
 185 in a direction most aligned with the negative gradient. As our experimental study reveals, while this
 186 approach is good enough for graph alignment, where solutions are evaluated by the proportion of
 187 correctly aligned nodes, it yields poor results in terms of GED, where solutions are strictly evaluated
 188 by the difference of their GED cost from the ground truth. We conclude that GED estimation calls
 189 for a more rigorous approach directly targeting the convex GED cost as the core objective with stable
 190 gradient updates. Nonetheless, we adopt from FUGAL the idea of refining a doubly stochastic matrix
 191 towards a quasi-permutation matrix.

3.2 PERMUTATION-INDUCING REGULARIZATION

192 While Equation (4) provides a closed-form expression, finding the permutation matrix that minimizes
 193 it is notoriously hard, as the space of permutation matrices is not convex. To circumvent this non-
 194 tractability, we relax Equation (3) from the set of permutation matrices to that of doubly stochastic
 195 matrices \mathbb{W}^n , rendering the problem convex (Bento & Ioannidis, 2018), and solve the relaxed form of
 196 Equation (4):

$$\min_{P \in \mathbb{W}^n} \frac{\|\tilde{A}P - P\tilde{B}\|_F^2}{2} + tr(P^T D) \quad (6)$$

$$\text{Constraints: } P\mathbf{1} = \mathbf{1}, P^T\mathbf{1} = \mathbf{1}, 0 \leq P_{ij} \leq 1$$

201 Equation 6 is convex, as it minimizes a convex function over a convex domain (Boyd & Vandenberghe,
 202 2004) and solvable with Adam (Kingma & Ba, 2015), yet the optimal doubly-stochastic matrix does
 203 not solve our exact problem. Still, these two matrix domains are connected as follows (Bommakanti
 204 et al., 2024); the proofs are in Appendix B.

205 **Lemma 1.** A doubly-stochastic matrix A with $tr(A^T(J - A)) = 0$ is a permutation matrix.

207 Utilizing this connection, we add a bias to our objective function in the following form.

$$\min_P \frac{\|\tilde{A}P - P\tilde{B}\|_F^2}{2} + \mu \cdot (tr(P^T D)) + \lambda \cdot (tr(P^T(J - P))) \quad (7)$$

$$\text{Constraints: } P\mathbf{1} = P^T\mathbf{1} = \mathbf{1}, 0 \leq P_{ij} \leq 1$$

212 where μ and λ are weight parameters. FUGAL extracts a non-convex correlation term from this
 213 objective; contrarily, we preserve convexity and thus derive a spectral guarantee:

214 **Theorem 3.** The function in Equation (7) is convex for $\lambda \leq \frac{(\lambda_i(\tilde{A}) - \lambda_j(\tilde{B}))^2}{2}$, for all $i, j \in \{1, 2, \dots, n\}$,
 215 where $\lambda_i(\tilde{A})$ and $\lambda_j(\tilde{B})$ represent the eigenvalues of \tilde{A} and \tilde{B} , respectively.

216 For $\lambda = 0$, the problem in Equation (7) is convex. To derive a quasi-permutation matrix, we solve
 217 Equation (7) with $\lambda = 0$ using Adam and refine the solution by gradually increasing λ , until
 218 it diverges. This regularizer, which drives the double-stochastic matrix to a permutation matrix
 219 drastically enhances approximation accuracy, as we show in Appendix C.9.

220 221 3.3 M-ADAM DETAILS

222 Algorithm 1 outlines our Modified Adam
 223 (M-ADAM) algorithm, which initializes
 224 P as an identity matrix and λ
 225 to 0 (Line 1), and gradually increases λ
 226 (Line 12). For each λ , it starts from the
 227 solution of the previous round and iter-
 228 atively updates it using the objective’s
 229 gradient (Lines 6–9). We employ the
 230 *penalty method* (Yeniyay, 2005) to enforce
 231 doubly-stochastic matrix constraints. For
 232 a given value of λ , the relaxed solu-
 233 tion P is rounded to a permutation ma-
 234 trix H via Hungarian, which is then used
 235 to transform the problem in the subse-
 236 quent iteration (see § 3.4). Figure G illus-
 237 trates the process with an example. M-
 238 ADAM outputs a permutation matrix that
 239 yields an edit path for the approximated
 240 GED (Kuhn, 1955). As the true GED is
 241 the least edit cost over all alignments, the
 242 returned GED upper-bounds the true GED.
 243 Moreover, M-ADAM is a *deterministic* algorithm; for any
 244 given pair of input matrices, it always returns the same output.

245 3.4 INVERSE RELABELING

246 Here, we propose an *inverse relabeling* strategy in M-ADAM. The core term of our objective
 247 is $\|\tilde{A} - P\tilde{B}P^T\|_F^2$, to be minimized over \mathbb{W}^n . After the first gradient-based update iteration with
 248 fixed λ (outer loop in M-ADAM), we begin enforcing permutation constraints via a regularizer. Let H
 249 denote a permutation matrix obtained by rounding the relaxed solution P using Hungarian projection.
 250 Since the feasible set \mathbb{P}^n is discrete, gradients are computed in the relaxed domain \mathbb{W}^n . However,
 251 continuing the optimization near a non-identity permutation H is inefficient. A non-identity H acts
 252 as a rotation of the problem’s coordinate system, causing the components of the gradient to become
 253 highly coupled. This motivates recentering the problem after each outer iteration. Specifically, we
 254 transform $\tilde{A} \leftarrow H\tilde{A}H^\top$. This transformation is equivalent to the variable change $\tilde{P} = H^\top P$, as:
 255

$$\|\tilde{A} - P\tilde{B}P^T\|_F^2 \rightarrow \|H\tilde{A}H^\top - P\tilde{B}P^T\|_F^2 = \|\tilde{A} - H^\top P\tilde{B}\tilde{P}^\top H\|_F^2 = \|\tilde{A} - \tilde{P}\tilde{B}\tilde{P}^\top\|_F^2,$$

256 This variable change to \tilde{P} and multiplication by H^\top revokes the permutation, or *inverts the labeling*,
 257 introduced by H , without altering the feasible space: $\tilde{P} \in \mathbb{W}^n \iff P = H\tilde{P} \in \mathbb{W}^n$, since
 258 multiplying a doubly stochastic matrix by a permutation matrix preserves row and column sums
 259 and non-negativity. The updated \tilde{P} satisfies $\tilde{P} \approx H^\top H = I$, hence gradient updates are performed
 260 in a coordinate system centered around the identity matrix I , allowing for more efficient and ac-
 261 curate corrections to small errors. Our ablation study in § C.9 validates the effectiveness of this
 262 transformation.

263 4 EXPERIMENTS

264 Here, we present a comprehensive evaluation of EUGENE, addressing the following aspects:

- 265 • **Efficacy:** EUGENE tops supervised and heuristic methods across datasets and costs.
- 266 • **Scalability:** EUGENE scales well to large graphs, consistently surpassing baselines.
- 267 • **Efficiency:** EUGENE incurs lower computational costs than heuristic methods with better per-
 268 formance; as it runs on CPUs, it curtails carbon emissions.

270 4.1 EXPERIMENTAL SETUP
271272 Appendix C.1 outlines the hardware and software² environment, Appendices C.3 presents the parameters used, and Appendix C.9 reports on an ablation study.
273274 **Baselines:** We compare EUGENE to 15 state-of-the-art supervised and optimization based heuristic
275 methods. These include the following supervised methods: GRAPHEDX (Jain et al., 2024), GMN-
276 EMBED (Li et al., 2019), GREED (Ranjan et al., 2022), ERIC (Zhuo & Tan, 2022), SIMGNN (Bai
277 et al., 2019), H2MN (Zhang et al., 2021), EGSC (Qin et al., 2021), GOTSIM (Doan et al., 2021),
278 GEDGNN (Piao et al., 2023), GMSM (Pellizzoni et al., 2024). We exclude the neural approximation
279 algorithms GRAPHSIM (Bai et al., 2020) as GRAPHEDX and H2MN have shown vastly better
280 performance (Jain et al., 2024; Zhang et al., 2021). Genn-A* (Wang et al., 2021) does not scale for
281 graphs of sizes more than 10, hence excluded from the analysis. Among the neural methods included,
282 GEDGNN, GMSM and GOTSIM provide a node mapping corresponding to the estimated GED.
283 With all baselines, when edit costs are uniform, we use the official author-released codebases with the
284 original training protocols and default hyperparameters. However, existing baselines do not support
285 non-uniform edit costs, except for GRAPHEDX, which extended support to non-uniform costs and
286 released adapted codebases for all baselines. In the non-uniform cost setting, we use these fine-tuned
287 and publicly available versions provided by the GRAPHEDX authors.
288289 In the heuristic methods category, we compare with the five best-performing methods from the
290 benchmarking study by (Blumenthal et al., 2019b), namely, BRANCH-TIGHT (Blumenthal & Gamper,
291 2018), F1 (Lerouge et al., 2017), ADJ-IP (Justice & Hero, 2006), IPFP (Bougleux et al., 2017) and
292 COMPACT-MIP (Blumenthal & Gamper, 2020). All these heuristic methods furnish an edit path
293 that corresponds to the approximated GED. We utilized the GEDLIB (Blumenthal et al., 2019b)
294 implementation of these methods in our evaluations.
295296 **Datasets:** Table 1 lists the datasets we use. App. C.2 discusses the semantics. AIDS, Molhiv, Mutag,
297 Code2 are labeled whereas IMDB, COIL-DEL, Triangles, Netscience and HighSchool are unlabeled.
298299 **Train-Val-Test Splits:** As in (Jain et al.,
300 2024), we remove isomorphic graphs from
301 the datasets prior to training neural methods
302 to mitigate isomorphism bias via leakage be-
303 tween training and testing Ivanov et al. (2019).
304 Further, for each dataset, we restrict to the
305 graphs of size less than 25 to ensure feasi-
306 bility of ground truth GED computation. As
307 in (Ranjan et al., 2022) and (Jain et al., 2024),
308 we used MIP-F2 (Lerouge et al., 2017) with
309 a time limit of 600 seconds for each graph pair and kept pairs that yielded equal lower and upper
310 bounds as ground truth GED. The training set consists of 5k randomly sampled graph pairs, while
311 the validation and test sets each consist of 1k randomly sampled pairs each.
312313 **Cost Settings:** We evaluate the performance under three different edit cost settings:
314315

- **Case 1 (Nonuniform costs):** The node insertion cost is 3, node deletion cost is 1, edge insertion
316 and deletion costs are 2, and the node substitution cost is 0.
- **Case 2 (Nonuniform costs with substitution):** In addition to Case 1, substituting nodes with
317 unequal labels incurs cost. If the substituted node label is the nearest neighbor based on the
318 similarity ranking of node labels, the cost is 1, otherwise 2. As an illustrative case, the distance
319 between labels is taken as the difference between their label IDs.
- **Case 3 (Uniform costs):** Node/edge insertion and deletion costs 1, node substitution 0.

320 Cost Settings 1 and 3 closely follow those proposed in GRAPHEDX. We introduce Cost Setting 2 to
321 further increase the difficulty of the task. Unlike the other settings, the cost of an edit operation in this
322 case is non-static, it dynamically varies based on the node labels involved, thereby requiring models
323 to account for contextual variations during alignment. We also evaluate on edits costs inspired from
chemistry. The results are discussed in App. C.13.299 Table 1: Datasets.
300

Name	Avg $ \mathcal{V} $	Avg $ \mathcal{E} $	# labels	Domain
AIDS	11.83	24.14	38	Biology
Molhiv	15.47	31.86	119	Biology
Mutag	23.32	44.64	14	Biology
Code2	18.61	37.42	97	Software
IMDB	11.49	63.74	-	Movies
COIL-DEL	8.70	34.44	-	Vision
Triangles	9.11	20.16	-	Synthetic
Netscience	379	914	-	Collaboration
HighSchool	327	5818	-	Proximity

324 ²Our C++ code and datasets are at <https://anonymous.4open.science/r/Eugene-1107>

324 **Metrics:** We use two metrics to assess GED approximation and interpretability: (i) Mean Absolute
 325 Error (MAE), and (ii) Strict Interpretability (SI). MAE serves as a metric to quantify the closeness
 326 of the predicted GED to the true GED. SI is measured as the fraction of graph pairs for which the
 327 predicted GED matches the true GED. A match between the predicted and true GED indicates that
 328 the alignment produced by the method is optimal. Consequently, SI reflects the algorithm’s ability to
 329 produce the optimal node mapping and serves as a measure of interpretability.

330 4.2 BENCHMARKING ACCURACY (MAE)

331 Table 2 presents approximation accuracy in terms of MAE on benchmark datasets under the non-
 332 uniform cost setting (Case 1) and the non-uniform cost with substitution setting (Case 2). Ap-
 333 pendix C.4 shows the comparison under the uniform cost setting and Appendix C.5 shows that on
 334 unlabeled datasets. In all cases, EUGENE outperforms all baselines.

335 **Comparison with Supervised Baselines:** EUGENE outperforms all supervised baselines—including
 336 those providing node alignments—across datasets and cost settings by a large margin. Under the
 337 nonuniform cost setting, it achieves up to 44% lower MAE on Code2 and a 72% reduction on AIDS
 338 compared to the next best method. For nonuniform costs with substitution, the improvement margin
 339 ranges from 44% on Mutag to 63% on Molhiv. GRAPHEDX, EGSC, and ERIC demonstrate the
 340 second-best performance.

341 **Comparison with Heuristic Baselines:** EUGENE demonstrates a substantial improvement over
 342 heuristic baselines. The margin of improvement exceeds 80% across all datasets and both cost settings
 343 when compared to the next-best method, ADJ-IP. Methods BRANCH-TIGHT and COMPACT-MIP
 344 perform considerably worse than EUGENE.

345 Table 2 further reveals that heuristic baselines fall short of supervised ones, which explains why the
 346 community shifted to supervised methods, despite their lack of interpretability, poor generalizability,
 347 and costly training. Though heuristic, EUGENE tops supervised baselines and grants interpretability.
 348 Contrarily, supervised methods that yield node alignments tend to lag, as they trade accuracy for
 349 interpretability. EUGENE makes no such compromise.

351 Table 2: Accuracy comparison among baselines in MAE under different cost settings; green and
 352 yellow cells denote the best and second-best performance, respectively, for each dataset.

353 354 Methods	355 Cost Setting Case 1				356 Cost Setting Case 2			
	357 AIDS	358 Molhiv	359 Code2	360 Mutag	361 AIDS	362 Molhiv	363 Code2	364 Mutag
365 ERIC	366 1.17	367 1.38	368 1.48	369 4.80	370 1.25	371 1.59	372 1.71	373 1.89
374 EGSC	375 1.35	376 1.58	377 1.65	378 1.59	379 1.35	380 1.71	381 1.79	382 1.80
383 GRAPHEDX	384 1.54	385 1.36	386 1.33	387 2.39	388 2.06	389 2.10	390 1.56	391 2.80
392 H2MN	393 1.53	394 2.00	395 1.90	396 1.74	397 1.58	398 2.08	399 2.34	400 2.00
401 GMN-EMBED	402 3.35	403 5.25	404 2.68	405 5.52	406 3.64	407 5.83	408 2.67	409 6.34
410 GREED	411 2.98	412 5.03	413 2.48	414 5.12	415 3.39	416 5.36	417 2.62	418 5.32
419 SIMGNN	420 1.55	421 1.98	422 1.85	423 1.91	424 1.70	425 2.09	426 2.01	427 2.49
428 GEDGNN	429 2.37	430 4.23	431 2.61	432 2.46	433 2.28	434 3.60	435 3.36	436 3.86
437 GOTSIM	438 7.53	439 14.49	440 8.15	441 10.89	442 10.66	443 22.19	444 12.07	445 15.38
446 GMSM	447 15.04	448 25.57	449 21.16	450 26.81	451 21.08	452 34.12	453 32.49	454 35.59
455 BRANCH-TIGHT	456 7.97	457 9.86	458 13.91	459 15.02	460 6.95	461 9.95	462 21.47	463 13.62
464 ADJ-IP	465 1.69	466 4.06	467 5.05	468 4.30	469 3.58	470 5.97	471 6.70	472 6.85
473 F1	474 5.41	475 10.63	476 6.28	477 10.64	478 5.8	479 13.47	480 11.08	481 13.82
482 COMPACT-MIP	483 2.95	484 7.21	485 8.39	486 7.13	487 6.18	488 10.29	489 12.72	490 10.78
491 IPFP	492 5.63	493 9.99	494 6.39	495 9.53	496 8.47	497 14.27	498 13.43	499 14.36
500 EUGENE	501 0.33	502 0.65	503 0.75	504 0.68	505 0.58	506 0.79	507 0.58	508 1.01

509 **Unlabeled datasets:** We observed a similar trend on unlabeled data, as shown in App C.5, EUGENE
 510 achieving an even greater margin of improvement. That is expected, as the absence of node features
 511 limits the effectiveness of GNN-based methods, which distinguish nodes by features. We note the
 512 highest improvement with IMDB dataset, which is also the densest. High density causes oversquashing
 513 in GNNs (Giovanni et al., 2024), and is a likely reason for subpar performance of neural models.

514 4.3 ACCURACY (SI)

515 Table 3 presents the comparison of EUGENE with other baselines in terms of the Strict Interpretability
 516 (SI) metric. While few neural baselines do not explicitly provide alignments, we found the SI score
 517 for all supervised methods to be 0 across all cost settings. This finding indicates that, albeit some

378 neural methods provide explicit node alignments, they fall short in alignment quality. We thus omit
 379 these scores from the table. EUGENE consistently achieves higher SI scores compared to other
 380 heuristic methods, with an improvement of up to 69% on the Code2 dataset under cost setting Case 1.
 381 These superior SI scores highlight EUGENE’s ability to deliver optimal node alignments. Although
 382 supervised baselines generally provide better GED approximations than heuristic methods, heuristic
 383 baselines offer better interpretability. EUGENE surpasses all baselines in both approximation accuracy
 384 and interpretability metrics, establishing itself as the new state-of-the-art for GED approximation
 385 while maintaining interpretability of the approximated GED.

386 Table 3: Accuracy comparison in terms of SI under different cost settings; green and yellow cells
 387 denote the best and second-best performance, respectively, for each dataset.

Methods	Cost Setting Case 1				Cost Setting Case 2			
	AIDS	Molhiv	Code2	Mutag	AIDS	Molhiv	Code2	Mutag
BRANCH-TIGHT	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01
ADJ-IP	0.90	0.69	0.48	0.62	0.69	0.65	0.63	0.46
F1	0.44	0.10	0.05	0.04	0.57	0.15	0.03	0.07
COMPACT-MIP	0.72	0.31	0.03	0.20	0.46	0.31	0.16	0.24
IPFP	0.04	0.02	0.03	0.02	0.01	0.01	0.01	0.01
EUGENE	0.91	0.84	0.82	0.83	0.71	0.67	0.74	0.59

395 4.4 ACCURACY ON LARGE GRAPHS

396 The complexity of GED estimation rises with graph size due to the exponential growth of mappings
 397 in combinatorial space. We evaluate performance exclusively on large graphs to explicitly investigate
 398 this aspect of scalability. We consider graphs with sizes in the range [25, 50] in the test split. Table 4
 399 presents the MAE results under Case 1 and Case 2 cost settings, which demonstrate the superior
 400 scalability of EUGENE to large graphs, with up to 66% lower MAE than the next best performer,
 401 H2MN. Other methods exhibit significantly higher MAE. These findings underscore the practical
 402 applicability of EUGENE for GED approximation on large graphs. SI comparison on large graphs
 403 appears in Appendix C.6.

404 Table 4: Accuracy among baselines in MAE under different cost settings; graph sizes in [25, 50];
 405 green and yellow cells denote best and second-best performance, respectively.

Methods	Cost Setting Case 1				Cost Setting Case 2			
	AIDS	Molhiv	Code2	Mutag	AIDS	Molhiv	Code2	Mutag
ERIC	19.70	9.08	12.24	14.64	18.46	14.08	29.14	9.47
EGSC	35.68	12.68	15.02	15.12	30.22	16.92	16.04	14.31
GRAPHEDX	24.44	21.65	33.01	21.82	20.75	17.01	34.01	15.98
H2MN	6.48	4.59	5.70	3.44	10.86	5.15	10.42	4.54
GMN-EMBED	9.60	10.82	8.52	9.80	9.99	13.68	14.57	11.03
GREED	10.05	10.20	8.46	9.28	9.66	9.50	12.09	9.92
SIMGNN	28.77	10.58	14.02	7.52	25.61	12.63	50.51	12.70
GEDGNN	25.78	11.83	36.75	19.96	23.29	15.27	25.17	17.18
GOTSIM	29.03	25.93	26.87	24.62	29.78	32.47	31.58	30.48
GMSM	44.66	44.62	49.65	44.22	21.08	50.90	66.06	55.94
BRANCH-TIGHT	29.76	24.95	31.54	27.86	26.62	23.23	26.27	28.72
ADJ-IP	23.00	21.98	34.52	21.54	17.81	11.95	46.42	17.00
F1	23.22	11.19	21.92	15.05	30.32	11.56	42.86	17.95
COMPACT-MIP	73.30	40.02	76.71	56.84	59.33	28.95	47.20	41.18
IPFP	17.86	14.65	16.51	16.48	18.65	18.47	24.88	20.16
EUGENE	4.45	3.88	4.14	2.80	3.25	3.73	4.33	4.74

423 Figure 2 presents MAE heatmaps on Code2 for cost setting Case 1. Each point stands for a graph
 424 pair $\mathcal{G}_Q, \mathcal{G}_T$ with coordinates $(\text{GED}(\mathcal{G}_Q, \mathcal{G}_T), (|\mathcal{V}_Q| + |\mathcal{V}_T|)/2)$. Heatmaps for EGSC, H2MN, and
 425 GRAPHEDX have a discernibly darker hue, corroborating that EUGENE enjoys better scalability in
 426 graph size and GED value. Appendix C.11 shows heatmaps for other datasets, while Appendix C.12
 427 presents results on two thousand-scale collaboration networks, Netscience (Newman, 2006) and
 428 HighSchool (Fournet & Barrat, 2014). To our knowledge, no prior GED estimation method handles
 429 graphs of this scale.

430 4.5 COMPARISON WITH FUGAL

431 FUGAL addresses unrestricted graph alignment (UGA), while EUGENE estimates GED and produces
 an alignment corresponding to the approximation. As Theorem 1 shows, UGA is a special case

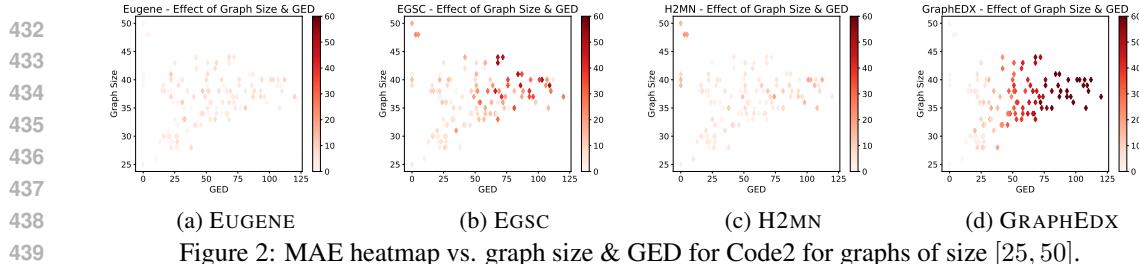


Figure 2: MAE heatmap vs. graph size & GED for Code2 for graphs of size [25, 50].

of GED with node edit costs set to zero. The connection between UGA and GED established in Theorem 2 allows us to draw from UGA methods, though our optimization differs in key ways:

Optimization. EUGENE employs a modified Adam optimizer with a penalty method to enforce doubly stochastic constraints, whereas UGA methods typically use Frank-Wolfe (Frank & Wolfe, 1956) with Sinkhorn-Knopp normalization (Cuturi, 2013). As shown in Table Q, replacing Adam with Frank-Wolfe (EUGENE-FW) leads to weaker performance, confirming the effectiveness of our approach. Our novel *inverse relabelling* strategy further improves GED estimation (§ C.9).

Cost Regularizer. EUGENE integrates node edit costs through a matrix D , while UGA methods may only use similar terms as structural regularizers. To test whether FUGAL could benefit from node edit costs, we evaluated it with EUGENE’s cost matrix D . Table 5 shows that both FUGAL variants yield substantially higher GED error than EUGENE.

One might still believe that FUGAL is inherently tailored for GED instances with zero node edit costs, corresponding to UGA. We thus set all node edit costs to 0 and edge edit costs to 1. Even under this UGA-compatible setting, EUGENE demonstrated superior performance, as shown in Table 6.

This raises the question of why the poor GED estimates from UGA methods are not evident in UGA studies. The key difference lies in evaluation: GED is evaluated strictly by edge and node differences from the ground truth (the QAP objective), while UGA is evaluated more loosely by the fraction of correctly aligned nodes. Hence, GED methods must enforce much stricter fidelity to the QAP objective than UGA methods, as we discuss in the following.

Core Objective Term. EUGENE prioritizes the convex Frobenius norm $\|AP - PB\|_F^2$, which ensures stable updates. UGA methods instead optimize the non-convex correlation term $\text{Tr}(APB^\top P^\top)$ for efficiency, paired with Frank-Wolfe. Substituting this non-convex term into EUGENE caused divergence; even the best result within a 10-minute cap (Table 7) remained far less accurate. This confirms that FUGAL’s core objective is ill-suited for GED estimation.

5 CONCLUSIONS

We introduced EUGENE, an optimization based heuristic method that provides explainable estimates of GED based on a structure-aware representation and relaxation of the underlying optimization problem. Through extensive experimentation, we demonstrated that EUGENE achieves state-of-the-art GED estimates and superior scalability compared to baselines across diverse datasets, even while it eliminates the need to generate supervisory data via NP-hard computations. These features position EUGENE as a promising candidate for practical graph similarity measurement. As our implementation relies solely on CPU resources, it is open to further enhancement.

486

6 REPRODUCIBILITY STATEMENT

488 We have made the implementation of EUGENE publicly available; the code link is provided at the
 489 end of Page 6. The released implementation includes the benchmark test sets, as well as the training
 490 and validation sets used for the neural models. We also provide scripts to generate new test sets
 491 for independent evaluation. Details on data generation, testing setup, and baseline implementations
 492 are described in Section 4. Appendix C.1 specifies the hardware and software environment, and
 493 Appendix C.3 lists the parameters used by EUGENE.

494

495 REFERENCES

497 Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang. SimGNN: A neural
 498 network approach to fast graph similarity computation. In *WSDM*, pp. 384–392, 2019.

499 Yunsheng Bai, Hao Ding, Ken Gu, Yizhou Sun, and Wei Wang. Learning-based efficient graph
 500 similarity computation via multi-scale convolutional set matching. *AAAI*, pp. 3219–3226, 2020.

501 José Bento and Stratis Ioannidis. A family of tractable graph distances. In *Proceedings of the SIAM
 502 International Conference on Data Mining, SDM*, pp. 333–341, 2018.

503 David B. Blumenthal and Johann Gamper. Improved lower bounds for graph edit distance. *IEEE
 504 Transactions on Knowledge and Data Engineering*, 30(3):503–516, 2018. doi: 10.1109/TKDE.
 505 2017.2772243.

506 David B Blumenthal and Johann Gamper. On the exact computation of the graph edit distance.
 507 *Pattern Recognition Letters*, 134:46–57, 2020.

508 David B. Blumenthal, Nicolas Boria, Johann Gamper, Sébastien Bougleux, and Luc Brun. Comparing
 509 heuristics for graph edit distance computation. *The VLDB Journal*, 29(1):419–458, jul 2019a.
 510 ISSN 1066-8888. doi: 10.1007/s00778-019-00544-1. URL <https://doi.org/10.1007/s00778-019-00544-1>.

511 David B Blumenthal, Sébastien Bougleux, Johann Gamper, and Luc Brun. Gedlib: a c++ library for
 512 graph edit distance computation. In *International Workshop on Graph-Based Representations in
 513 Pattern Recognition*, pp. 14–24. Springer, 2019b.

514 Aditya Bommakanti, Harshith Reddy Vonteri, Konstantinos Skitsas, Sayan Ranu, Davide Mottin,
 515 and Panagiotis Karras. Fugal: Feature-fortified unrestricted graph alignment. In A. Globerson,
 516 L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural
 517 Information Processing Systems*, volume 37, pp. 19523–19546. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/22b111819c74453837899689166c4cf9-Paper-Conference.pdf.

518 Sébastien Bougleux, Luc Brun, Vincenzo Carletti, Pasquale Foggia, Benoit Gaüzère, and Mario Vento.
 519 Graph edit distance as a quadratic assignment problem. *Pattern Recognition Letters*, 87:38–46,
 520 2017. ISSN 0167-8655. doi: <https://doi.org/10.1016/j.patrec.2016.10.001>. URL <https://www.sciencedirect.com/science/article/pii/S0167865516302665>. Advances in
 521 Graph-based Pattern Recognition.

522 Stephen Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.

523 Jiazhou Chen, Hong Peng, Guoqiang Han, Hongmin Cai, and Jiulun Cai. HOGMMNC: a higher
 524 order graph matching with multiple network constraints model for gene–drug regulatory
 525 modules identification. *Bioinformatics*, 35(4):602–610, 07 2018. ISSN 1367-4803. doi: 10.1093/
 526 bioinformatics/bty662. URL <https://doi.org/10.1093/bioinformatics/bty662>.

527 D. Conte, P. Foggia, C. Sansone, and M. Vento. Graph matching applications in pattern recognition
 528 and image processing. In *Proceedings 2003 International Conference on Image Processing (Cat.
 529 No.03CH37429)*, volume 2, pp. II–21, 2003. doi: 10.1109/ICIP.2003.1246606.

530 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In *NeurIPS*, pp.
 531 2292–2300, 2013.

540 Asim Kumar Debnath, Rosa L. Lopez de Compadre, Gargi Debnath, Alan J. Shusterman, and Corwin
 541 Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds.
 542 correlation with molecular orbital energies and hydrophobicity. *Journal of Medicinal Chemistry*,
 543 34(2):786–797, 1991. doi: 10.1021/jm00106a046.

544 Khoa D. Doan, Saurav Manchanda, Suchismit Mahapatra, and Chandan K. Reddy. Interpretable
 545 graph similarity computation via differentiable optimal alignment of node embeddings. In *SIGIR*,
 546 pp. 665–674, 2021.

548 Julie Fournet and Alain Barrat. Contact patterns among high school students. *PLoS ONE*, 9
 549 (9):e107878, September 2014. ISSN 1932-6203. doi: 10.1371/journal.pone.0107878. URL
 550 <http://dx.doi.org/10.1371/journal.pone.0107878>.

551 Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. *Naval research
 552 logistics quarterly*, 3(1-2):95–110, 1956.

554 Francesco Di Giovanni, T. Konstantin Rusch, Michael Bronstein, Andreea Deac, Marc Lack-
 555 enby, Siddhartha Mishra, and Petar Veličković. How does over-squashing affect the power
 556 of GNNs? *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL
 557 <https://openreview.net/forum?id=KJRQvRWNs>.

558 Judith Hermanns, Anton Tsitsulin, Marina Munkhoeva, Alex M. Bronstein, Davide Mottin, and
 559 Panagiotis Karras. GRASP: graph alignment through spectral signatures. *CoRR*, abs/2106.05729,
 560 2021. URL <https://arxiv.org/abs/2106.05729>.

561 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
 562 Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on
 563 graphs. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Ad-
 564 vances in Neural Information Processing Systems*, volume 33, pp. 22118–22133. Curran Asso-
 565 ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/fb60d411a5c5b72b2e7d3527cf84fd0-Paper.pdf.

566 International Energy Agency. Global energy & CO₂ status report 2019. <https://www.iea.org/reports/global-energy-co2-status-report-2019>, 2019. IEA, Paris. Licence:
 567 CC BY 4.0.

571 Sergei Ivanov, Sergei Sviridov, and Evgeny Burnaev. Understanding isomorphism bias in graph data
 572 sets. *CoRR*, abs/1910.12091, 2019. URL <http://arxiv.org/abs/1910.12091>.

573 Eeshaan Jain, Indradymuna Roy, Saswat Meher, Soumen Chakrabarti, and Abir De. Graph Edit
 574 Distance with General Costs Using Neural Set Divergence. In *The Thirty-eighth Annual Confer-
 575 ence on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=u7JRmrGutT>.

577 D. Justice and A. Hero. A binary linear programming formulation of the graph edit distance.
 578 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 28(8):1200–1214, 2006. doi:
 579 10.1109/TPAMI.2006.152.

581 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *3rd International
 582 Conference on Learning Representations, ICLR*, 2015.

583 David Knossow, Avinash Sharma, Diana Mateus, and Radu Horaud. Inexact matching of large and
 584 sparse graphs using laplacian eigenvectors. In Andrea Torsello, Francisco Escolano, and Luc Brun
 585 (eds.), *Graph-Based Representations in Pattern Recognition*, Berlin, Heidelberg, 2009. Springer
 586 Berlin Heidelberg.

588 Boris Knyazev, Graham W Taylor, and Mohamed Amer. Understanding attention and generalization
 589 in graph neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
 590 and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Cur-
 591 ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

593 Harold W Kuhn. The hungarian method for the assignment problem. *Naval Research Logistics
 594 Quarterly*, 2(1-2):83–97, 1955.

594 Julien Lerouge, Zeina Abu-Aisheh, Romain Raveaux, Pierre Héroux, and Sébastien Adam. New
 595 binary linear programming formulation to compute the graph edit distance. *Pattern Recognition*,
 596 72:254–265, 2017.

597

598 Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching networks
 599 for learning the similarity of graph structured objects. In *ICML*, pp. 3835–3845, 2019.

600 Chih-Long Lin. Hardness of approximating graph transformation problem. In Ding-Zhu Du and
 601 Xiang-Sun Zhang (eds.), *Algorithms and Computation*, pp. 74–82, Berlin, Heidelberg, 1994.
 602 Springer Berlin Heidelberg. ISBN 978-3-540-48653-4.

603

604 Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
 605 Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. *CoRR*,
 606 abs/2007.08663, 2020. URL <https://arxiv.org/abs/2007.08663>.

607 M. E. J. Newman. Finding community structure in networks using the eigenvectors of matrices. *Phys.
 608 Rev. E*, 74:036104, Sep 2006. doi: 10.1103/PhysRevE.74.036104. URL <https://link.aps.org/doi/10.1103/PhysRevE.74.036104>.

610

611 Paolo Pellizzoni, Carlos Oliver, and Karsten Borgwardt. Structure- and function-aware substitution
 612 matrices via learnable graph matching. In Jian Ma (ed.), *Research in Computational Molecular
 613 Biology*, Cham, 2024. Springer Nature Switzerland.

614 Chengzhi Piao, Tingyang Xu, Xiangguo Sun, Yu Rong, Kangfei Zhao, and Hong Cheng. Computing
 615 graph edit distance via neural graph matching. *Proc. VLDB Endow.*, 16(8):1817–1829, apr 2023.
 616 ISSN 2150-8097. doi: 10.14778/3594512.3594514. URL <https://doi.org/10.14778/3594512.3594514>.

618

619 Can Qin, Handong Zhao, Lichen Wang, Huan Wang, Yulun Zhang, and Yun Fu. Slow learning
 620 and fast inference: Efficient graph similarity computation via knowledge distillation. In
 621 M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp. 14110–14121. Curran Asso-
 622 ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/75fc093c0ee742f6ddaa13fff98f104-Paper.pdf.

624

625 Rishabh Ranjan, Siddharth Grover, Sourav Medya, Venkatesan Chakaravarthy, Yogish Sabharwal,
 626 and Sayan Ranu. Greed: A neural framework for learning graph distance functions. In *Advances in
 627 Neural Information Processing Systems 36: Annual Conference on Neural Information Processing
 628 Systems 2022, NeurIPS 2022, November 29-Decemer 1, 2022*, 2022.

629

630 Kaspar Riesen and Horst Bunke. Iam graph database repository for graph based pattern recognition
 631 and machine learning. In Niels da Vitoria Lobo, Takis Kasparis, Fabio Roli, James T. Kwok,
 632 Michael Georgiopoulos, Georgios C. Anagnostopoulos, and Marco Loog (eds.), *Structural, Syntac-
 633 tic, and Statistical Pattern Recognition*, pp. 287–297, Berlin, Heidelberg, 2008. Springer Berlin
 634 Heidelberg. ISBN 978-3-540-89689-0.

635

636 Rohit Singh, Jinbo Xu, and Bonnie Berger. Global alignment of multiple protein interaction networks
 637 with application to functional orthology detection. *Proceedings of the National Academy of
 638 Sciences*, 105(35):12763–12768, 2008a.

639

640 Rohit Singh, Jinbo Xu, and Bonnie Berger. Global alignment of multiple protein interaction networks
 641 with application to functional orthology detection. *Proceedings of the National Academy of
 642 Sciences*, 105(35):12763–12768, 2008b. doi: 10.1073/pnas.0806627105.

643

644 Konstantinos Skitsas, Karol Orlowski, Judith Hermanns, Davide Mottin, and Panagiotis Karras.
 645 Comprehensive evaluation of algorithms for unrestricted graph alignment. In *Proceedings 26th
 646 International Conference on Extending Database Technology, EDBT 2023, Ioannina, Greece,
 647 March 28-31, 2023*, pp. 260–272. OpenProceedings.org, 2023. doi: 10.48786/EDBT.2023.21.

648

649 Runzhong Wang, Tianqi Zhang, Tianshu Yu, Junchi Yan, and Xiaokang Yang. Combinatorial learning
 650 of graph edit distance via dynamic embedding. In *IEEE Conference on Computer Vision and
 651 Pattern Recognition*, 2021.

648 Pinar Yanardag and S.V.N. Vishwanathan. Deep graph kernels. In *Proceedings of the 21th*
649 *ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '15,
650 pp. 1365–1374, New York, NY, USA, 2015. Association for Computing Machinery. ISBN
651 9781450336642. doi: 10.1145/2783258.2783417. URL <https://doi.org/10.1145/2783258.2783417>.

653 Özgür Yeniay. Penalty function methods for constrained optimization with genetic algorithms.
654 *Mathematical and computational Applications*, 10(1):45–56, 2005.

655 Zhiping Zeng, Anthony Tung, Jianyong Wang, Jianhua Feng, and Lizhu Zhou. Comparing stars: On
656 approximating graph edit distance. *PVLDB*, 2:25–36, 01 2009.

657 Zhen Zhang, Jiajun Bu, Martin Ester, Zhao Li, Chengwei Yao, Zhi Yu, and Can Wang. H2mn: Graph
658 similarity learning with hierarchical hypergraph matching networks. In *KDD*, pp. 2274–2284,
659 2021.

660 Wei Zhuo and Guang Tan. Efficient graph similarity computation with alignment regularization. In
661 S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural*
662 *Information Processing Systems*, volume 35, pp. 30181–30193. Curran Associates, Inc., 2022.

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

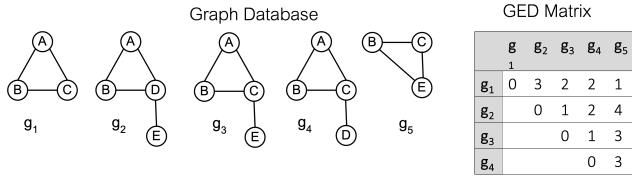
697

698

699

700

701

702
703
704
705
706
707708 Figure C: GED among five graphs; all edit operations cost 1.
709
710711 7 APPENDIX
712713 A RELATED WORK
714

715 **Supervised Methods:** GRAPHEDX (Jain et al., 2024) represents each graph as a set of node and edge
716 embeddings and learn the alignments using a Gumbel-Sinkhorn permutation generator, additionally
717 ensuring that the node and edge alignments are consistent with each other. GREED (Ranjan et al.,
718 2022) employs a siamese network to generate graph embeddings in parallel and estimates the
719 Graph Edit Distance (GED) by computing the norm of their difference. ERIC (Zhuo & Tan, 2022)
720 eliminates the need for explicit node alignment by leveraging a regularizer and computes similarity
721 using a Neural Tensor Network (NTN) and a Multi-Layer Perceptron (MLP) applied to graph-level
722 embeddings obtained from a Graph Isomorphism Network (GIN). GMN (Li et al., 2019) assess graph
723 similarity using Euclidean distance between embeddings and exist in two variants: GMN-EMBED
724 (late interaction) and GMN-MATCH (early interaction), both utilizing message passing to capture
725 structural similarities. SIMGNN (Bai et al., 2019) combines graph-level and node-level embeddings,
726 where a Neural Tensor Network processes graph-level embeddings, while a histogram-based feature
727 vector derived from node similarities enhances the similarity computation. H2MN (Zhang et al., 2021)
728 utilizes hypergraphs to model higher-order node similarity, employing a subgraph matching module
729 at each convolution step before aggregating the final graph embeddings via a readout function and
730 passing them through an MLP. EGSC (Qin et al., 2021) introduces an Embedding Fusion Network
731 (EFN) within a Graph Isomorphism Network (GIN) to generate unified embeddings for graph pairs,
732 which are further processed through an EFN and an MLP to compute the final similarity score.
733 GOTSIM (Doan et al., 2021) approximates GED through a neural network, and simultaneously
734 learns the alignments. Specifically, it formulates the similarity between a pair of graphs as the
735 minimal “transformation” cost from one graph to another in the learnable node-embedding space.
736 GEDGNN (Piao et al., 2023) treats GED computation as a regression task and predict the GED
737 value. A post-processing algorithm based on k -best matching is used to extract node mapping.
738 GMSM (Pellizzoni et al., 2024) uses regularized optimal transport with GNNs to approximate GED.
739

740 **Heuristic Methods:** F1 (Lerouge et al., 2017), ADJ-IP (Justice & Hero, 2006), and COMPACT-
741 MIP (Blumenthal & Gamper, 2020) employ a mixed integer programming framework based on the
742 LP-GED paradigm to approximate the GED. In contrast, BRANCH-TIGHT (Blumenthal & Gamper,
743 2018) iteratively solves instances of the linear sum assignment problem or the minimum-cost perfect
744 bipartite matching problem. IPFP (Bougleux et al., 2017) models GED as a quadratic assignment
745 problem and uses Integer Projected Fixed Point method to approximate the QAP.
746

747 B PROOFS
748

749 **Theorem 1.** Given graphs \mathcal{G}_1 and \mathcal{G}_2 of size n , if the edge insertion and deletion cost is $\kappa^2 = 2$ and
750 node substitution cost is 0, then $GED(\mathcal{G}_1, \mathcal{G}_2) = \min_{\pi \in \Phi(\mathcal{G}_1, \mathcal{G}_2)} \|AP_{\pi} - P_{\pi}B\|_F^2$.
751

752 *Proof.* We derive the set of edge insertions and deletions to convert \mathcal{G}_1 to \mathcal{G}_2 from π . An edge that
753 should be inserted between nodes i and j in \mathcal{G}_1 does not exist in A but exists in B , hence $a_{ij} = 0$
754 and $b_{\pi(i)\pi(j)} = 1$. Likewise, an edge that needs deletion has $a_{ij} = 1$ and $b_{\pi(i)\pi(j)} = 0$. All
755 other (i, j) pairs have $a_{ij} = b_{\pi(i)\pi(j)}$. Let \mathcal{E}_{ins} be the set of edges to be inserted in \mathcal{G}_1 and \mathcal{E}_{del} that
756 of edges to be deleted by π , where without loss of generality an edge (i, j) has $i < j$. As node edit

756 and edge substitutions cost 0, the $GED_\pi(\mathcal{G}_1, \mathcal{G}_2)$ with respect to edit operations induced by π is:
757

$$\begin{aligned}
758 \quad GED_\pi(\mathcal{G}_1, \mathcal{G}_2) &= \sum_{(i,j) \in \mathcal{E}_{ins}} 2 + \sum_{(i,j) \in \mathcal{E}_{del}} 2 = \sum_{(i,j) \in \mathcal{E}_{ins}} 2 \cdot (a_{ij} - b_{\pi(i)\pi(j)})^2 + \sum_{(i,j) \in \mathcal{E}_{del}} 2 \cdot (a_{ij} - b_{\pi(i)\pi(j)})^2 \\
759 \\
760 \quad &= \sum_{(i,j) \in \mathcal{E}_{ins}} ((a_{ij} - b_{\pi(i)\pi(j)})^2 + (a_{ji} - b_{\pi(j)\pi(i)})^2) + \sum_{(i,j) \in \mathcal{E}_{del}} ((a_{ij} - b_{\pi(i)\pi(j)})^2 + (a_{ji} - b_{\pi(j)\pi(i)})^2) \\
761 \\
762 \quad &+ \sum_{i < j, (i,j) \notin \mathcal{E}_{del} \cup \mathcal{E}_{ins}} ((a_{ij} - b_{\pi(i)\pi(j)})^2 + (a_{ji} - b_{\pi(j)\pi(i)})^2) \\
763 \\
764 \quad &= \sum_{(i,j) \in [n] \times [n]} (a_{ij} - b_{\pi(i)\pi(j)})^2 = \|A - P_\pi B P_\pi^T\|_F^2 = \|AP_\pi - P_\pi B\|_F^2
\end{aligned}$$

765 By the given edit costs, $GED(\mathcal{G}_1, \mathcal{G}_2) = \min_{\pi} \{GED_\pi(\mathcal{G}_1, \mathcal{G}_2)\}$, hence,
766

$$770 \quad GED(\mathcal{G}_1, \mathcal{G}_2) = \min_{\pi \in \Phi(\mathcal{G}_1, \mathcal{G}_2)} \|AP_\pi - P_\pi B\|_F^2$$

771 \square

772 **Theorem 2.** Given two graphs \mathcal{G}_1 and \mathcal{G}_2 of size n , $GED(\mathcal{G}_1, \mathcal{G}_2) = \min_{\pi \in \Phi(\mathcal{G}_1, \mathcal{G}_2)} \frac{\|\tilde{A}P_\pi - P_\pi \tilde{B}\|_F^2}{2} +$
773 $tr(P_\pi^T D)$, where \tilde{A} , \tilde{B} and D are defined as above.
774

775 *Proof.* We first reformulate Equation 4 as follows:
776

$$777 \quad \frac{\|\tilde{A}P_\pi - P_\pi \tilde{B}\|_F^2}{2} + tr(P_\pi^T D) = \frac{\|\tilde{A} - P_\pi \tilde{B} P_\pi^T\|_F^2}{2} + tr(P_\pi^T D)$$

778 Using the node-alignment function π , we reformulate the above to:
779

$$780 \quad \sum_{(i,j) \in [n] \times [n]} \kappa^2 \cdot \frac{(a_{ij} - b_{\pi(i)\pi(j)})^2}{2} + \sum_{i \in [n]} d_{i,\pi(i)}$$

781 Further manipulation via the definition of matrix D gives:
782

$$783 \quad \sum_{(i,j) \in [n] \times [n]} \kappa^2 \cdot \frac{(a_{ij} - b_{\pi(i)\pi(j)})^2}{2} + \sum_{i \in \mathcal{G}_1 \text{ is a dummy}} d_v(\epsilon, \mathcal{L}(\pi(i))) + \sum_{i \in \mathcal{G}_1 \text{ mapped to dummy } \pi(i)} d_v(\mathcal{L}(i), \epsilon) + \sum_{\mathcal{L}(i) \neq \mathcal{L}(\pi(i))} d_v(\mathcal{L}(i), \mathcal{L}(\pi(i)))$$

784 Notably, for any $(i, j) \in [n] \times [n]$, if $a_{ij} = 0$ and $b_{\pi(i)\pi(j)} = 1$, an (i, j) edge should be inserted.
785 Likewise, if $a_{ij} = 1$ and $b_{\pi(i)\pi(j)} = 0$, edge (i, j) should be deleted. Otherwise, if $a_{ij} = b_{\pi(i)\pi(j)}$, the
786 term evaluates to 0. Besides, a dummy node i in \mathcal{G}_1 should be inserted with $\pi(i)$ as the corresponding
787 node in \mathcal{G}_2 , while a node i mapped to a dummy node $\pi(i)$ should be deleted. In the event that none
788 of these conditions apply, node i is substituted with node $\pi(i)$. We thus simplify the expression to:
789

$$\begin{aligned}
790 \quad &\sum_{(i,j) \text{ inserted}} \kappa^2 \cdot \frac{b_{\pi(i)\pi(j)}^2 + b_{\pi(j)\pi(i)}^2}{2} + \sum_{(i,j) \text{ deleted}} \kappa^2 \cdot \frac{a_{ij}^2 + a_{ji}^2}{2} + \sum_{i \in \mathcal{G}_1 \text{ is inserted}} d_v(\epsilon, \mathcal{L}(\pi(i))) + \\
791 \\
792 \quad &\sum_{i \in \mathcal{G}_1 \text{ is deleted}} d_v(\mathcal{L}(i), \epsilon) + \sum_{i \in \mathcal{G}_1 \text{ is replaced with } \pi(i)} d_v(\mathcal{L}(i), \mathcal{L}(\pi(i)))
\end{aligned}$$

793 Substituting the values, we obtain:
794

$$\begin{aligned}
795 \quad &\sum_{(i,j) \text{ inserted}} \kappa^2 + \sum_{(i,j) \text{ deleted}} \kappa^2 + \sum_{i \in \mathcal{G}_1 \text{ is inserted}} d_v(\epsilon, \mathcal{L}(\pi(i))) + \sum_{i \in \mathcal{G}_1 \text{ is deleted}} d_v(\mathcal{L}(i), \epsilon) + \sum_{i \in \mathcal{G}_1 \text{ is replaced with } \pi(i)} d_v(\mathcal{L}(i), \mathcal{L}(\pi(i))) \\
796 \\
797 \quad &= GED_\pi(\mathcal{G}_1, \mathcal{G}_2) \tag{8}
\end{aligned}$$

800 Since $GED(\mathcal{G}_1, \mathcal{G}_2) = \min_{\pi} \{GED_\pi(\mathcal{G}_1, \mathcal{G}_2)\}$ and $\min_{\pi \in \Phi(\mathcal{G}_1, \mathcal{G}_2)} \frac{\|\tilde{A}P_\pi - P_\pi \tilde{B}\|_F^2}{2} + tr(P_\pi^T D) =$
801 $GED_\pi(\mathcal{G}_1, \mathcal{G}_2)$, $GED(\mathcal{G}_1, \mathcal{G}_2) = \min_{\pi \in \Phi(\mathcal{G}_1, \mathcal{G}_2)} \frac{\|\tilde{A}P_\pi - P_\pi \tilde{B}\|_F^2}{2} + tr(P_\pi^T D)$.
802 \square

803 **Lemma 1.** A doubly-stochastic matrix A with $tr(A^T(J - A)) = 0$ is a permutation matrix.
804

810 *Proof.* Given that $\text{tr}(A^T(J-A))=0$, it follows that $\sum_i \sum_j a_{ij} \cdot (1-a_{ij})=0$. Since A is doubly-
 811 stochastic, $0 \leq a_{ij} \leq 1$ for all i and j , hence $a_{ij} \cdot (1-a_{ij})$ is non-negative for $1 \leq i, j \leq n$. Thus,
 812 $a_{ij} \cdot (1-a_{ij})=0$ for all i and j . It follows that a_{ij} must be either 0 or 1 for each i and j . As A is
 813 doubly-stochastic and all its entries are either 0 or 1, by definition A is a permutation matrix. \square
 814

815 **Theorem 3.** *The function in Equation (7) is convex for $\lambda \leq \frac{(\lambda_i(\tilde{A})-\lambda_j(\tilde{B}))^2}{2}$, for all $i, j \in \{1, 2, \dots, n\}$,*
 816 *where $\lambda_i(\tilde{A})$ and $\lambda_j(\tilde{B})$ represent the eigenvalues of \tilde{A} and \tilde{B} , respectively.*
 817

818 *Proof.* We begin by considering the first term in Equation (7), $\frac{1}{2} \|\tilde{A}P - P\tilde{B}\|^2$. The second derivative
 819 of this term is given by: $I \otimes \tilde{A}^2 - 2 \cdot (\tilde{B} \otimes \tilde{A}) + \tilde{B}^2 \otimes I$, where \otimes denotes the Kronecker product, and
 820 I represents the identity matrix. The second term in the equation is linear in the matrix P , implying
 821 that its second derivative is zero. The second derivative of the third term is given by: $-2\lambda(I \otimes I)$.
 822 Thus, the Hessian matrix of the entire function is:
 823

$$I \otimes \tilde{A}^2 - 2 \cdot (\tilde{B} \otimes \tilde{A}) + \tilde{B}^2 \otimes I - 2\lambda(I \otimes I).$$

825 For the function to be convex, the Hessian must be positive semidefinite, which requires that its
 826 eigenvalues be non-negative. This leads to the condition:
 827

$$\lambda \leq \frac{\lambda_i(\tilde{A})^2 + \lambda_j(\tilde{B})^2 - 2\lambda_i(\tilde{A})\lambda_j(\tilde{B})}{2} = \frac{(\lambda_i(\tilde{A}) - \lambda_j(\tilde{B}))^2}{2}, \quad (9)$$

830 for all $i, j \in \{1, 2, \dots, n\}$, where $\lambda_i(\tilde{A})$ and $\lambda_j(\tilde{B})$ are the eigenvalues of matrices \tilde{A} and \tilde{B} ,
 831 respectively. \square
 832

833 C EXPERIMENTS

835 C.1 HARDWARE AND SOFTWARE ENVIRONMENTS

836 We ran all experiments on a machine equipped with an Intel Xeon Gold 6142 CPU @1GHz and a
 837 GeForce GTX 1080 Ti GPU. While heuristic methods including EUGENE run on the CPU, supervised
 838 baselines exploit the GPU.
 839

840 C.2 DATASETS

842 The semantics of the datasets are as follows:

- 843 • **AIDS** (Morris et al., 2020): A compilation of graphs originating from the AIDS antiviral screen
 844 database, representing chemical compound structures.
- 845 • **OGBG-Molhiv** (Molhiv) (Hu et al., 2020): Chemical compound datasets of various sizes, where
 846 each graph represents a molecule. Nodes correspond to atoms, and edges represent chemical bonds.
 847 The atomic number of each atom serves as the node label.
- 848 • **OGBG-Code2** (Code2) (Hu et al., 2020): A collection of Abstract Syntax Trees (ASTs) derived
 849 from approximately 450,000 Python method definitions. Each node in the AST is assigned a label
 850 from a set of 97 labels. We considered the graphs as undirected.
- 851 • **Mutagenicity** (Mutag) (Debnath et al., 1991): A chemical compound dataset of drugs categorized
 852 into two classes: mutagenic and non-mutagenic.
- 853 • **IMDB** (Yanardag & Vishwanathan, 2015): This dataset consists of ego-networks of actors and
 854 actresses who have appeared together in films. The graphs in this dataset are unlabelled.
- 855 • **COIL-DEL** (Riesen & Bunke, 2008): This dataset comprises graphs extracted from images of
 856 various objects using the Harris corner detection algorithm. The resulting graphs are unlabelled.
- 857 • **Triangles** (Knyazev et al., 2019): This is a synthetically generated dataset designed for the task of
 858 counting triangles within graphs. The graphs in this dataset are unlabelled.

861 C.3 PARAMETERS

862 Table H lists the parameters used for EUGENE. We set the convergence criterion of M-ADAM
 863 to $\text{abs}(\text{prev_dist} - \text{cur_dist}) < 1e^{-7}$, where prev_dist , cur_dist are the approximated Graph edit
 864 distances in two successive iterations, $itr - 1$ and itr .

864
865
866 Table H: Parameters used in EUGENE.
867
868
869
870

parameter	value
μ	1
α	0.001
σ_{th}	$1e^3$

871
872 Table I: Accuracy Comparison among baselines for unit edit costs. Cells shaded in green denote the
873 best performance in each dataset.

Methods	MAE				SI			
	AIDS	Molhiv	Code2	Mutag	AIDS	Molhiv	Code2	Mutag
ERIC	0.57	0.66	0.56	0.65	0.00	0.00	0.00	0.00
EGSC	0.70	0.81	0.80	0.82	0.00	0.00	0.00	0.00
GRAPHEDX	0.65	0.85	0.59	0.78	0.00	0.00	0.00	0.00
H2MN	0.86	0.94	0.84	0.89	0.00	0.00	0.00	0.00
GMN-EMBED	0.61	0.75	0.76	1.15	0.00	0.00	0.00	0.00
GREED	0.59	0.82	0.75	0.75	0.00	0.00	0.00	0.00
SIMGNN	0.77	0.90	0.79	1.06	0.00	0.00	0.00	0.00
GEDGNN	1.19	2.16	1.50	1.89	0.00	0.00	0.00	0.00
GOTSIM	3.36	5.20	9.76	4.74	0.00	0.00	0.00	0.00
GMSM	7.34	13.04	10.01	13.32	0.00	0.00	0.00	0.00
BRANCH-TIGHT	4.13	4.98	6.79	7.05	0.02	0.02	0.02	0.01
ADJ-IP	0.45	2.16	2.32	2.27	0.83	0.69	0.50	0.62
F1	2.6	5.48	2.82	5.39	0.48	0.13	0.14	0.05
COMPACT-MIP	1.49	4.17	3.93	4.07	0.75	0.27	0.01	0.18
IPFP	2.81	5.19	2.85	4.97	0.08	0.02	0.14	0.02
EUGENE	0.26	0.55	0.72	0.58	0.87	0.74	0.69	0.72

891
892 C.4 ACCURACY UNDER UNIFORM EDIT COST SETTING
893

894 Table I presents the approximation accuracy results in terms of MAE and SI on benchmark datasets
895 under the uniform cost setting (Case 3). For MAE, EUGENE outperforms all baselines on the AIDS,
896 Molhiv, and Mutag datasets, while on the Code2 dataset, ERIC outperforms EUGENE. In terms of SI,
897 EUGENE consistently surpasses all considered baselines. These results establish EUGENE as a robust
898 method capable of accurately estimating GED across diverse cost settings. The difficulty (i.e., MAE)
899 increases as costs become more diverse (i.e., from uniform to non-uniform costs) and the size of the
900 considered edit space expands (i.e., from zero to non-zero cost of substitution). We thus observe the
901 lowest MAE in Setting 3, followed by Setting 1, and the highest MAE in Setting 2.

902 C.5 ACCURACY ON UNLABELED DATASETS
903

904 Table J presents the accuracy comparison of IMDB, COIL-DEL, and Triangles datasets in terms of
905 MAE for cost setting Case 1 and Case 3. As these datasets are unlabelled, Case 2 is not applicable.
906 EUGENE consistently outperforms both supervised and heuristic baselines across all scenarios,
907 demonstrating its robustness and effectiveness for GED prediction across diverse datasets.

908
909 C.6 SI ON LARGE GRAPHS
910

911 Table 3 presents a comparison of EUGENE with other baselines in terms of the Strict Interpretability
912 (SI) metric for graphs of sizes [25, 50]. EUGENE consistently achieves significantly higher SI scores
913 compared to other heuristic methods. These superior SI scores on large graphs highlight EUGENE’s
914 enhanced scalability in delivering interpretable GED, outperforming other non-neural methods.

915 C.7 CARBON EMISSIONS
916

917 Table L presents the total carbon emissions for the top-performing models across various datasets.
EUGENE was executed on a CPU, which operates at a power consumption of approximately 150 watts

918
919 Table J: Accuracy Comparison among baselines in terms of MAE under different cost settings for
920 unlabelled datasets. Cells shaded in green denote the best performance in each dataset.

921 922 Methods	923 924 925 926 927 928 Cost Setting Case 1			929 930 931 932 933 934 935 936 937 Cost Setting Case 3		
	923 924 925 926 927 928 IMDB	923 924 925 926 927 928 COIL-DEL	923 924 925 926 927 928 Triangles	923 924 925 926 927 928 IMDB	923 924 925 926 927 928 COIL-DEL	923 924 925 926 927 928 Triangles
ERIC	10.42	1.41	2.65	3.80	1.87	1.47
EGSC	5.96	3.23	3.80	6.50	3.89	2.82
GRAPHEDX	7.10	1.41	2.26	1.46	1.21	0.50
H2MN	15.51	8.44	7.02	7.20	4.27	3.38
GMN-EMBED	4.75	2.93	3.41	1.37	0.89	0.63
GREED	5.02	2.90	3.39	1.39	0.88	0.73
SIMGNN	7.58	2.00	2.36	3.73	1.04	0.97
GEDGNN	10.78	3.54	1.97	3.31	1.69	1.16
GOTSIM	25.01	9.41	6.94	8.20	4.19	2.84
GMSM	40.70	20.18	16.94	19.67	9.97	8.20
BRANCH-TIGHT	7.22	6.47	5.68	3.58	3.30	2.71
ADJ-IP	1.58	0.71	0.40	1.22	0.23	0.30
F1	8.68	3.75	1.58	4.26	1.75	0.82
COMPACT-MIP	17.05	4.01	1.04	9.56	2.10	0.64
IPFP	18.87	8.67	7.04	9.15	4.27	3.47
EUGENE	1.02	0.43	0.21	0.15	0.21	0.17

938
939 Table K: Accuracy comparison among baselines in terms of SI under different cost settings for graphs
940 of sizes [25, 50]. Cells shaded in green denote the best performance in each dataset.

941 942 Methods	943 944 945 946 947 Cost Setting Case 1				948 949 950 951 952 Cost Setting Case 2			
	943 944 945 946 947 AIDS	943 944 945 946 947 Molhiv	943 944 945 946 947 Code2	943 944 945 946 947 Mutag	943 944 945 946 947 AIDS	943 944 945 946 947 Molhiv	943 944 945 946 947 Code2	943 944 945 946 947 Mutag
BRANCH-TIGHT	0.12	0.03	0.05	0.09	0.01	0.05	0.04	0.04
ADJ-IP	0.18	0.03	0.09	0.10	0.25	0.08	0.13	0.10
F1	0.04	0.00	0.01	0.04	0.03	0.04	0.10	0.03
COMPACT-MIP	0.00	0.00	0.00	0.01	0.05	0.05	0.05	0.04
IPFP	0.01	0.01	0.00	0.01	0.00	0.00	0.01	0.00
EUGENE	0.35	0.31	0.30	0.46	0.36	0.26	0.18	0.16

950 under full load. In contrast, all other neural models utilized a GPU, which consumes approximately
951 250 watts under full load. Our carbon emission estimation follows a standard methodology:
952

$$953 \quad \text{Energy Consumption} = \text{Power (kW)} \times \text{Time (hours)}$$

$$954 \quad \text{CO}_2 \text{ Emissions} = \text{Energy Consumption} \times 475 \text{ gCO}_2/\text{kWh}$$

956 The emission factor of 475 gCO₂/kWh is sourced from International Energy Agency (2019). The
957 carbon emissions account for the time taken to generate ground truth, training, and inference for the
958 neural models, whereas EUGENE, being optimization-based, only includes inference time. While
959 we acknowledge that training and ground-truth computation costs would be amortized over many
960 inferences, it is reasonable to include those costs for any model that requires them. EUGENE
961 demonstrates significantly lower carbon emissions compared to the supervised methods, achieving up
962 to 30 times lower emissions on the Molhiv dataset.

963
964 Table L: Total Carbon Emissions (in grams of CO₂).

967 Model	968 AIDS	969 Molhiv	970 Code2	971 Mutag
ERIC	75.56	204.22	71.42	222.82
EGSC	78.43	215.27	73.23	223.85
GRAPHEDX	410.65	612.09	426.40	251.55
H2MN	437.91	442.55	123.21	277.00
EUGENE	6.06	7.11	8.11	7.28

972
973

Table M: Running times (MM:SS) on benchmark datasets.

Methods	AIDS	Molhiv	Code2	Mutag	IMDB	COIL-DEL	Triangles
EUGENE	05:06	05:59	06:50	06:05	05:09	05:06	04:59
BRANCH-TIGHT	00:24	00:48	03:52	01:17	00:18	00:07	00:13
ADJ-IP	02:38	06:34	09:33	07:12	05:42	02:06	01:29
IPFP	00:20	00:45	01:40	01:20	00:15	00:05	00:09
COMPACT-MIP	10:02	11:47	12:53	12:16	07:35	07:38	05:01
F1	08:04	11:01	11:52	10:51	09:56	08:13	05:11

981

982

983 C.8 EFFICIENCY

984

985 Table M presents the running time of optimization based heuristic methods on the benchmark datasets
 986 for the entire test set. Among these methods, IPFP and BRANCH-TIGHT demonstrates the fastest
 987 runtimes but exhibits the poorest accuracy among all 15 baselines in Table 2 across datasets and cost
 988 settings. Excluding BRANCH-TIGHT and IPFP, EUGENE achieves superior runtime performance
 989 compared to other optimization based methods on the Molhiv, Code2, Mutag and IMDB datasets. On
 990 the AIDS, COIL-DEL and Triangles datasets, ADJ-IP demonstrates better run times, and EUGENE
 991 is second best. Importantly, EUGENE achieves a significant accuracy advantage while maintaining
 992 competitive efficiency, reinforcing its position as both an effective and efficient solution for GED
 993 approximation.

994

995 **Time Complexity Analysis:** The objective function (Eq. (7)) includes matrix multiplications with
 996 a worst-case time complexity of $\mathcal{O}(n^3)$. Gradient calculations also have a worst-case complexity
 997 of $\mathcal{O}(n^3)$ due to matrix multiplications. Thus, the overall time complexity becomes $\mathcal{O}(T \cdot n^3)$,
 998 where T is the number of computation epochs. Additionally, as the algorithm is CPU-bound, GED
 999 computations for each graph pair can be massively parallelized by leveraging multi-core CPUs and
 1000 hyperthreading.

1001

1002 **Impact of Time Budgets:** As certain heuristic baselines employ time constraints, we retained their
 1003 default parameter settings to ensure consistency. To examine how performance varies with increased
 1004 computational budget, we conducted an analysis on the Code2 dataset under **Cost Setting 1**, using
 1005 time budgets of 5, 10, and 15 minutes. The results are presented in Table N.

1006

1007

Table N: GED estimation error (MAE) on Code2 under varying time budgets (minutes).

1008

1009

Method	5 min	10 min	15 min
BRANCH-TIGHT	13.91	13.87	13.88
ADJ-IP	6.98	5.05	3.96
COMPACT-MIP	24.14	8.40	6.10
F1	16.31	6.28	7.72
IPFP	6.44	6.47	6.39

1010

1011

1012 Branch-Tight and IPFP converged within 5 minutes, as evidenced by the absence of any improvement
 1013 in MAE with larger time budgets. The remaining three methods exhibited modest gains when given
 1014 additional time, suggesting that they benefit from prolonged optimization. Still, Eugene achieves a
 1015 MAE of 0.75 within 7 minutes, outperforming all baselines even at the maximum allotted time.

1016

1017

Table O: Accuracy (MAE) of EUGENE vs. EUGENE'.

1018

1019

Datasets	Cost Setting Case 1		Cost Setting Case 2	
	EUGENE	EUGENE'	EUGENE	EUGENE'
AIDS	0.33	10.51	0.58	9.22
Molhiv	0.65	9.96	0.79	11.63
Code2	0.75	13.46	0.58	6.04
Mutag	0.68	19.12	1.01	16.10

1026 Table P: Accuracy (MAE) of EUGENE vs. EUGENE-NoIR.
1027

Datasets	Cost Setting Case 1		Cost Setting Case 2	
	EUGENE	EUGENE-NoIR	EUGENE	EUGENE-NoIR
AIDS	0.33	0.80	0.58	1.15
Molhiv	0.65	1.16	0.79	1.57
Code2	0.75	1.19	0.58	1.02
Mutag	0.68	1.14	1.01	1.53

1034 Table Q: Accuracy comparison of EUGENE with EUGENE-FW in Cost Setting 1
1035

Methods	AIDS	Molhiv	Code2	Mutag
	EUGENE-FW	6.67	11.79	6.59
	EUGENE	0.33	0.65	0.75

1040 C.9 ABLATION STUDY

1042 We have so far evaluated EUGENE, which refines a doubly stochastic matrix toward a quasi-
1043 permutation matrix using a permutation-inducing regularizer before rounding. For comparison,
1044 we introduce a variant, EUGENE', which *directly rounds* the doubly stochastic solution without this
1045 regularization. As shown in Table O, EUGENE yields substantially lower MAE, highlighting the
1046 benefit of guiding the solution closer to a permutation before rounding.

1047 We also assess the impact of the inverse relabelling strategy of M-ADAM, which recenters the
1048 problem after each iteration. To this end, we define a variant, EUGENE-NoIR, that omits this
1049 transformation. Table P reports MAE for both variants: EUGENE consistently outperforms EUGENE-
1050 NoIR, demonstrating the importance of performing gradient updates in coordinates aligned with the
1051 identity.

1052 We also investigate the effect of using the Frank-Wolfe (FW) algorithm in place of Adam within
1053 Algorithm 1. As shown in Table Q, the M-Adam variant significantly outperforms the version that
1054 employs FW (EUGENE-FW), demonstrating the effectiveness of our optimizer choice.

1056 C.10 PARAMETER SENSITIVITY

1058 We analyze the sensitivity of the M-Adam algorithm to the parameters listed in Appendix C.3, as
1059 shown in Tables R and S. A lower value of μ increases the weight of edge costs, whereas a higher μ
1060 prioritizes node costs. Across all datasets, $\mu = 1$ yields the best performance. We use $\alpha = 0.001$ (the
1061 default value for Adam), which performs best on three out of four datasets.

1062 To examine the impact of the λ -scheduling in M-ADAM, we conducted experiment where the
1063 increment step was varied, results are presented in Table T

- 1064 • **Increment = 0.1:** The influence of permutation constraints remained weak throughout optimization,
1065 leading to under-constrained solutions and suboptimal performance.
- 1067 • **Increment = 0.5:** This yielded the best results, striking a balance between exploration and constraint
1068 enforcement, and was adopted as the default setting in Eugene.
- 1069 • **Increment = 1, 2:** The optimizer rapidly enforced hard permutation constraints, prematurely
1070 narrowing the search space and degrading solution quality.

1071 These results emphasize the importance of a carefully tuned λ -schedule in achieving both accuracy
1072 and stability in GED estimation.

1074 C.11 IMPACT OF GRAPH SIZE AND GED

1076 Section 4.4 presented heatmaps of MAE vs. graph size and true GED value on the Code2 dataset.
1077 Heatmaps for the AIDS, Molhiv, and Mutag datasets are provided in Figs. D- F. The conclusions
1078 remain consistent: GRAPHEDX, EGSC, and H2MN exhibit noticeably darker tones across the spectrum
1079 compared to EUGENE, highlighting EUGENE's superior scalability with respect to GED and graph
sizes across datasets.

1080

Table R: Accuracy comparision with varying μ

μ	AIDS	Molhiv	Code2	Mutag
0.1	3.07	9.13	4.97	5.31
0.2	2.29	7.5	2.96	3.98
0.5	0.9	3.39	0.9	1.36
1	0.58	0.79	0.58	1.01
2	0.85	1.14	0.84	1.69

1081

1082

Table S: Accuracy comparision with varying α

α	AIDS	Molhiv	Code2	Mutag
0.1	0.61	0.82	0.62	0.98
0.01	0.58	0.81	0.61	1.02
0.001	0.58	0.79	0.58	1.01

1083

1084

1085

1086

1087

1088

1089

Table T: Effect of varying λ -increment step on GED estimation error (MAE).

Increment step	AIDS	molhiv	code2	Mutag
0.1	1.45	2.08	1.40	2.10
0.5	0.33	0.65	0.75	0.68
1	0.80	1.54	2.77	1.85
2	3.19	6.18	10.01	9.88

1090

1091

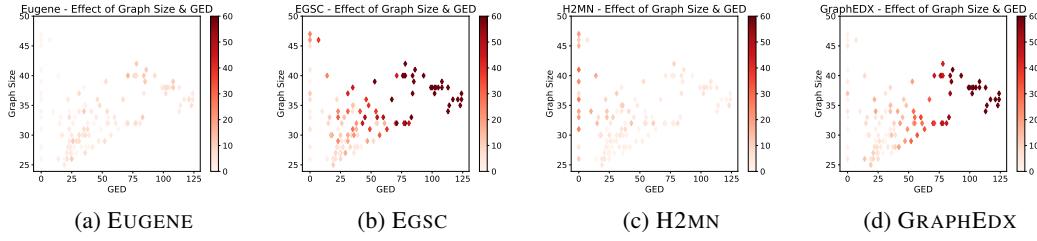
1092

1093

1094

1095

1096



1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Figure D: MAE heatmap vs. graph size & GED for AIDS for graphs of size [25, 50].

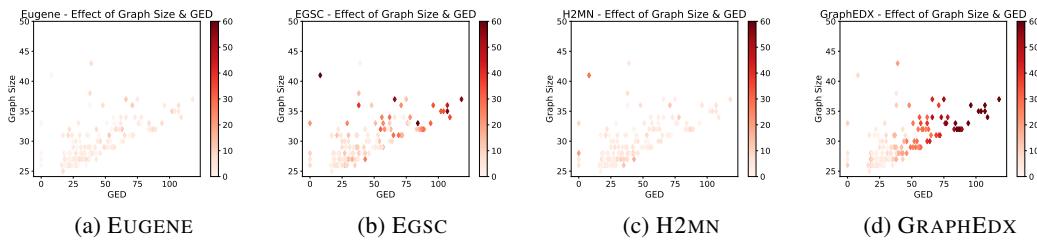


Figure E: MAE heatmap vs. graph size & GED for Molhiv for graphs of size [25, 50].

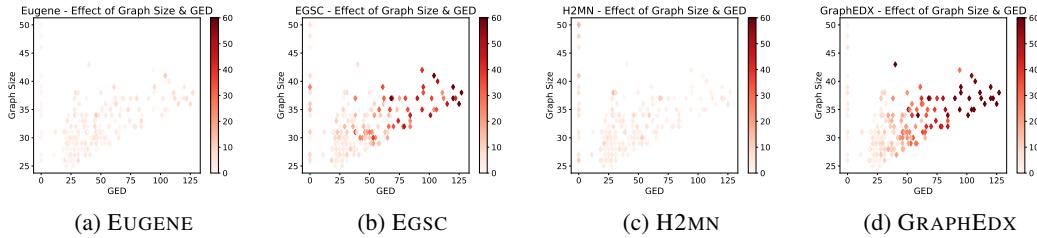


Figure F: MAE heatmap vs. graph size & GED for Mutag for graphs of size [25, 50].

1134 C.12 ACCURACY ON VERY LARGE GRAPHS
1135

1136 As detailed in (Blumenthal & Gamper, 2018), GED methods are traditionally applied to small-
1137 scale graphs due to computational complexity. We extend the feasibility of GED approximation
1138 to substantially larger graphs. We present results on two unlabelled thousand-scale collaboration
1139 network datasets, NetScience ($|V| = 379$, $|E| = 914$) and HighSchool ($|V| = 327$, $|E| = 5818$) in
1140 Table U. To our knowledge, no prior GED approximation benchmark handles graphs of this scale. On
1141 HighSchool, a dense evolving dataset, we compute the GED of the last graph version from versions
1142 containing 80%, 85%, 90%, and 99% of edges. On NetScience, we create five graphs by introducing
1143 small noise to the original graph. Since it's not feasible to create a training set with exact ground-truth
1144 GED for such large graphs, we excluded neural models from our analysis. IPFP didn't terminate
1145 within a time limit of 3 hrs. Results clearly indicate superior scalability of EUGENE both in terms of
1146 MAE and running times.

1147 Table U: Performance comparison on HighSchool and NetScience Datasets
1148
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 152110 152111 152112 152113 152114 152115 152116 152117 152118 152119 152120 152121 152122 152123 152124 152125 152126 152127 152128 152129 1521210 1521211 1521212 1521213 1521214 1521215 1521216 1521217 1521218 1521219 1521220 1521221 1521222 1521223 1521224 1521225 1521226 1521227 1521228 1521229 1521230 1521231 1521232 1521233 1521234 1521235 1521236 1521237 1521238 1521239 15212310 15212311 15212312 15212313 15212314 15212315 15212316 15212317 15212318 15212319 15212320 15212321 15212322 15212323 15212324 15212325 15212326 15212327 15212328 15212329 15212330 15212331 15212332 15212333 15212334 15212335 15212336 15212337 15212338 15212339 15212340 15212341 15212342 15212343 15212344 15212345 15212346 15212347 15212348 15212349 15212350 15212351 15212352 15212353 15212354 15212355 15212356 15212357 15212358 15212359 15212360 15212361 15212362 15212363 15212364 15212365 15212366 15212367 15212368 15212369 15212370 15212371 15212372 15212373 15212374 15212375 15212376 15212377 15212378 15212379 15212380 15212381 15212382 15212383 15212384 15212385 15212386 15212387 15212388 15212389 15212390 15212391 15212392 15212393 15212394 15212395 15212396 15212397 15212398 15212399 15212399 15212400 15212401 15212402 15212403 15212404 15212405 15212406 15212407 15212408 15212409 15212410 15212411 15212412 15212413 15212414 15212415 15212416 15212417 15212418 15212419 15212420 15212421 15212422 15212423 15212424 15212425 15212426 15212427 15212428 15212429 15212430 15212431 15212432 15212433 15212434 15212435 15212436 15212437 15212438 15212439 15212440 15212441 15212442 15212443 15212444 15212445 15212446 15212447 15212448 15212449 15212450 15212451 15212452 15212453 15212454 15212455 15212456 15212457 15212458 15212459 15212460 15212461 15212462 15212463 15212464 15212465 15212466 15212467 15212468 15212469 15212470 15212471 15212472 15212473 15212474 15212475 15212476 15212477 15212478 15212479 15212480 15212481 15212482 15212483 15212484 15212485 15212486 15212487 15212488 15212489 15212490 15212491 15212492 15212493 15212494 15212495 15212496 15212497 15212498 15212499 15212499 15212500 15212501 15212502 15212503 15212504 15212505 15212506 15212507 15212508 15212509 15212510 15212511 15212512 15212513 15212514 15212515 15212516 15212517 15212518 15212519 15212520 15212521 15212522 15212523 15212524 15212525 15212526 15212527 15212528 15212529 15212530 15212531 15212532 15212533 15212534 15212535 15212536 15212537 15212538 15212539 15212540 15212541 15212542 15212543 15212544 15212545 15212546 15212547 15212548 15212549 15212550 15212551 15212552 15212553 15212554 15212555 15212556 15212557 15212558 15212559 15212560 15212561 15212562 15212563 15212564 15212565 15212566 15212567 15212568 15212569 15212570 15212571 15212572 15212573 15212574 15212575 15212576 15212577 15212578 15212579 15212580 15212581 15212582 15212583 15212584 15212585 15212586 15212587 15212588 15212589 15212590 15212591 15212592 15212593 15212594 15212595 15212596 15212597 15212598 15212599 15212599 15212600 15212601 15212602 15212603 15212604 15212605 15212606 15212607 15212608 15212609 15212610 15212611 15212612 15212613 15212614 15212615 15212616 15212617 15212618 15212619 15212620 15212621 15212622 15212623 15212624 15212625 15212626 15212627 15212628 15212629 15212630 15212631 15212632 15212633 15212634 15212635 15212636 15212637 15212638 15212639 15212640 15212641 15212642 15212643 15212644 15212645 15212646 15212647 15212648 15212649 15212650 15212651 15212652 15212653 15212654 15212655 15212656 15212657 15212658 15212659 15212660 15212661 15212662 15212663 15212664 15212665 15212666 15212667 15212668 15212669 15212670 15212671 15212672 15212673 15212674 15212675 15212676 15212677 15212678 15212679 15212680 15212681 15212682 15212683 15212684 15212685 15212686 15212687 15212688 15212689 15212690 15212691 15212692 15212693 15212694 15212695 15212696 15212697 15212698 15212699 15212699 15212700 15212701 15212702 15212703 15212704 15212705 15212706 15212707 15212708 15212709 15212710 15212711 15212712 15212713 15212714 15212715 15212716 15212717 15212718 15212719 15212720 15212721 15212722 15212723 15212724 15212725 15212726 15212727 15212728 15212729 15212730 15212731 15212732 15212733 15212734 15212735 15212736 15212737 15212738 15212739 15212740 15212741 15212742 15212743 15212744 15212745 15212746 15212747 15212748 15212749 15212750 15212751 15212752 15212753 15212754 15212755 15212756 15212757 15212758 15212759 15212760 15212761 15212762 15212763 15212764 15212765 15212766 15212767 15212768 15212769 15212770 15212771 15212772 15212773 15212774 15212775 15212776 15212777 15212778 15212779 15212780 15212781 15212782 15212783 15212784 15212785 15212786 15212787 15212788 15212789 15212790 15212791 15212792 15212793 15212794 15212795 15212796 15212797 15212798 15212799 15212799 15212800 15212801 15212802 15212803 15212804 15212805 15212806 15212807 15212808 15212809 15212810 15212811 15212812 15212813 15212814 15212815 15212816 15212817 15212818 15212819 15212820 15212821 15212822 15212823 15212824 15212825 15212826 15212827 15212828 15212829 15212830 15212831 15212832 15212833 15212834 15212835 15212836 15212837 15212838 15212839 15212840 15212841 15212842 15212843 15212844 15212845 15212846 15212847 15212848 15212849 15212850 15212851 15212852 15212853 15212854 15212855 15212856 15212857 15212858 15212859 15212860 15212861 15212862 15212863 15212864 15212865 15212866 15212867 15212868 15212869 15212870 15212871 15212872 15212873 15212874 15212875 15212876 15212877 15212878 15212879 15212880 15212881 15212882 15212883 15212884 15212885 15212886 15212887 15212888 15212889 15212890 15212891 15212892 15212893 15212894 15212895 15212896 15212897 15212898 15212899 15212899 15212900 15212901 15212902 15212903 15212904 15212905 15212906 15212907 15212908 15212909 15212910 15212911 15212912 15212913 15212914 15212915 15212916 15212917 15212918 15212919 15212920 15212921 15212922 15212923 15212924 15212925 15212926 15212927 15212928 15212929 15212930 15212931 15212932 15212933 15212934 15212935 15212936 15212937 15212938 15212939 15212940 15212941 15212942 15212943 15212944 15212945 15212946 15212947 15212948 15212949 15212950 15212951 15212952 15212953 15212954 15212955 15212956 15212957 15212958 15212959 15212960 15212961 15212962 15212963 15212964 15212965 15212966 15212967 15212968 15212969 15212970 15212971 15212972 15212973 15212974 15212975 15212976 15212977 1521

1188 We presented the results in Table V. Eugene outperforms competing baselines under the proposed
 1189 chemistry-informed edit cost setting, demonstrating its ability to effectively capture real-world
 1190 molecular similarity.

1191

1192 C.14 ILLUSTRATIVE EXAMPLE OF EUGENE 'S PIPELINE

1193

1194 We considered two graphs of sizes 12, 11 respectively and show four stages of EUGENE 's operation:
 1195 (i) the initial mapping; (ii) the doubly stochastic matrix generated after the first iteration of Algorithm 1
 1196 ($\lambda = 0$); (iii) the quasi-permutation matrix at the end of third iteration of Algorithm 1; (iv) The final
 1197 mapping returned by EUGENE. The optimal transformation from Graph 1 to Graph 2 involves
 1198 removing node 10, removing the edge from node 1 to node 4, and adding an edge from node 5 to node
 1199 9 in Graph 1. As the figure shows, by the third iteration, our novel regularizer has turned the doubly
 1200 stochastic matrix to a sparse one. At the end, the algorithm achieves the *optimal* node alignment.
 1201 After iteration 3, nodes 6 and 7 of Graph 1 have similar weightage for nodes 5 and 6 of Graph 2,
 1202 as these nodes share similar structural neighborhoods. Node 10 is mapped to node 11, which is a
 1203 dummy node in Graph 2, indicating that it should be deleted.

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

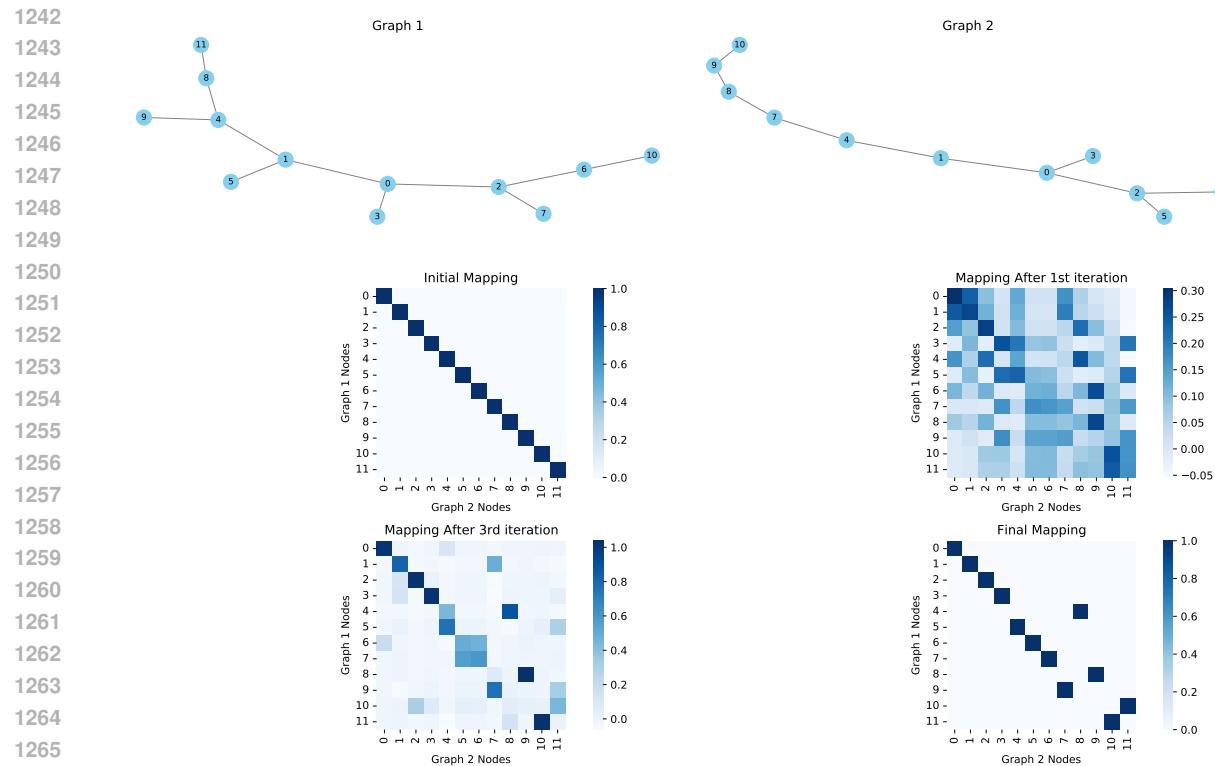


Figure G: Operational stages of EUGENE