
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EUGENE: EXPLAINABLE STRUCTURE-AWARE GRAPH
EDIT DISTANCE ESTIMATION WITH GENERALIZED
EDIT COSTS

Anonymous authors
Paper under double-blind review

ABSTRACT

The need to identify graphs with small structural distances from a query arises in
domains such as biology, chemistry, recommender systems, and social network
analysis. Among several methods for measuring inter-graph distance, Graph Edit
Distance (GED) is preferred for its comprehensibility, though its computation is
hindered by NP-hardness. Optimization based heuristic methods often face chal-
lenges in providing accurate approximations. State-of-the-art GED approximations
predominantly utilize neural methods, which, however: (i) lack an explanatory
edit path corresponding to the approximated GED; (ii) require the NP-hard gen-
eration of ground-truth GEDs for training; and (iii) necessitate separate training
on each dataset. In this paper, we propose EUGENE, an efficient, algebraic, and
structure-aware optimization based method that estimates GED and also provides
edit paths corresponding to the estimated cost. Extensive experimental evaluation
demonstrates that EUGENE achieves state-of-the-art GED estimation with superior
scalability across diverse datasets and generalized cost settings.

1 INTRODUCTION AND RELATED WORK

Graph Edit Distance (GED) quantifies the dissimilarity between a pair of graphs (Bai et al., 2020;
Doan et al., 2021; Bai et al., 2019; Ranjan et al., 2022). It finds application in identifying the graph
in a collection most similar to a query graph. Given graphs G1 and G2, GED is the minimum cost
to transform G1 into G2 through edit operations, rendering G1 isomorphic to G2. These operations
comprise the addition and deletion of edges and nodes and the replacement of their labels, each
linked to a cost. Figure 1 presents an example. GED computation is NP-hard (Zeng et al., 2009) and
APX-hard (Lin, 1994), hence a challenging task.

Edge Deletion Node Deletion Node Substitution

G1 G2
GED(G1,G2) = 3

Figure 1: An edit path between graphs G1 and G2 with GED 3; each edit operation costs 1.

Owing to the problem’s hardness, several algorithms approximate GED (Blumenthal et al., 2019a).
Optimization based heuristic GED estimation methods employ strategies such as transformations
to the linear-sum assignment problem with error correction or constraints (e.g., NODE (Justice &
Hero, 2006), BRANCH-TIGHT (Blumenthal & Gamper, 2018)) and linear-programming relaxations
of mixed integer programming (MIP) formulations (e.g., F1 (Lerouge et al., 2017), ADJ-IP (Justice
& Hero, 2006), COMPACT-MIP (Blumenthal & Gamper, 2020)). Still, these approaches often afford
only limited approximation accuracy.

Recent works have evinced that graph neural networks (GNNs) can achieve state-of-the-art accuracy
in approximating GED (Jain et al., 2024; Ranjan et al., 2022; Wang et al., 2021; Bai et al., 2019;
2020; Doan et al., 2021; Li et al., 2019; Zhang et al., 2021; Piao et al., 2023). The general pipeline in
this paradigm is to train a GNN-based architecture on a set of graph pairs along with their true GED
distance. Some techniques also require the node mapping corresponding to the GED (Piao et al.,
2023; Wang et al., 2021).

Although they afford superior accuracy, neural approaches suffer from notable drawbacks:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• Reliance on NP-hard ground truth: Generating training data, i.e., true GEDs of graph pairs,
is prohibitively costly for large graphs, as GED computation is NP-hard. Training data are thus
limited to graphs of at most 25 nodes, undermining generalizability to larger ones (§ 4).

• Lack of interpretability: Most of them furnish a GED between two graphs but not an edit path that
entails it; such edit paths reveal crucial functions of protein complexes (Singh et al., 2008a), image
alignment (Conte et al., 2003), and gene regulatory pathways (Chen et al., 2018). Some neural
methods, e.g., GEDGNN (Piao et al., 2023) and GENN-A∗ (Wang et al., 2021) offer interpretability,
albeit at the expense of accuracy and/or scalability, as we show in § 4.

• Lack of generalizability: Neural approximators do not generalize across datasets. For datasets
across different domains (such as chemical compounds vs. function-call graphs), the node label set
changes. As the number of parameters in a GNN is a function of the feature dimension in each
node, a GNN trained on one domain cannot transfer to another, necessitating separate training for
each dataset. As training data generation is NP-hard, the pipeline is resource-intensive.

In this paper, we present an optimization based algebraic method called EUGENE: Explainable
Structure-aware Graph Edit Distance, which achieves state-of-the-art accuracy and is: (1) optimization
based heuristic, hence does not require training; (2) CPU-bound, therefore unshackled from GPU
requirements and resultant greenhouse emissions; and (3) interpretable. The innovations empowering
these properties are as follows:

• Optimization problem formulation: We cast the GED computation problem as an optimization
problem extending over Unrestricted Graph Alignment (UGA), grounded on adjacency matrices,
over the space of all possible node alignments, represented via permutation matrices; this formula-
tion facilitates an optimization based solution, eschewing the need for ground-truth data generation
and data-specific training.

• Interpretability: To approximate GED, EUGENE minimizes a function over the set of doubly
stochastic matrices, leading to a convex optimization problem that can be solved by ADAM (Kingma
& Ba, 2015). We further refine the approximation by exhorting the doubly stochastic matrix using
permutation inducing regularizers and inverse relabelling strategy. By operating directly on
matrices, EUGENE yields a GED approximation explainable via a node-to-node correspondence.

• Experimental evaluation: Extensive experiments encompassing 15 state-of-the-art baselines over
9 datasets and 3 combinations of edits costs establish that EUGENE consistently achieves superior
accuracy in GED approximation. Notably, EUGENE, does not rely on training data and thus offers
a resource-efficient, GPU-free execution pipeline, which exhibits up to 30 times lower carbon
emissions than its neural counterparts.

2 PRELIMINARIES AND PROBLEM FORMULATION

Definition 1 (Graph). A node-labeled undirected graph is a triple G(V, E ,L) where V = [n] ≡
{1, . . . , n} is the node set, E ⊆ [n]× [n] is the edge set, and L : V → Σ is a labeling function that
maps nodes to labels, where Σ is the set of all labels.
The adjacency matrix of G is A = [ai,j]i,j∈[n] ∈ {0, 1}n×n such that aij = aji = 1 if and only
if (i, j) ∈ E. We use 1 to denote an all-ones vector, J to denote an all-ones square matrix, and O to
denote an all-zero square matrix.
Definition 2 (Permutation and Doubly Stochastic Matrices). A permutation matrix of size n is a
binary-valued matrix Pn = {P ∈ {0, 1}n×n : P1 = 1, PT1 = 1}. A doubly stochastic matrix of
size n is a real-valued matrix Wn = {W ∈ [0, 1]n×n : W1 = 1,WT1 = 1}.

We define a quasi-permutation matrix as a matrix that is almost a permutation matrix.
Definition 3 (Entry-wise norm). Let A= [aij]i,j∈[n] ∈ Rn×n and p ∈ N+ ∪ {∞}. We define the

entry-wise p-norm of A as ∥A∥p =
(∑n

i=1

∑n
j=1 |aij |p

)1/p

for p∈N+, and ∥A∥∞=maxi,j |ai,j |.
We denote the entry-wise 2-norm (i.e., the Frobenius norm) as ∥ · ∥F .

We denote the trace of a matrix A as tr(A).
Definition 4 (Node mapping). Given two graphs G1 and G2 of n nodes, a node mapping between G1
and G2 is a bijection π : V1 → V2 where ∀v ∈ V1, π(v) ∈ V2.

Given graphs G1 and G2 with node counts n1 and n2, respectively, n1<n2, we add (n2−n1) isolated
dummy nodes with label ϵ to G1. Henceforward, we assume the two given graphs are of the same size.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Definition 5 (Graph Edit Distance under mapping π). GED between G1 and G2 under π is:

GEDπ(G1,G2) =
∑
v∈V1

dv(L(v),L(π(v))) +
∑

⟨v1,v2⟩∈V1×V1∧
v1<v2

de(⟨v1, v2⟩, ⟨π(v1), π(v2)⟩) (1)

where dv and de are distance functions over the node labels and node pairs respectively.

The distance between two identical node labels is 0. If an existing edge is mapped to a non-existing
edge, i.e, either ⟨v1, v2⟩ ̸∈ E1 or ⟨π(v1), π(v2)⟩ ̸∈ E2 the cost1 is κ2, otherwise 0. Intuitively, mapping
from a dummy node/edge to a real one expresses insertion, while mapping from a real node/edge
to a dummy one expresses deletion, and mapping from a real node to a real node of different label
denotes replacement. Figure C in the appendix illustrates GED mappings with examples.
Definition 6 (GED). GED is the minimum distance among all mappings.

GED(G1,G2) = min
∀π∈Φ(G1,G2)

GEDπ(G1,G2) (2)

Φ(G1,G2) denotes all possible node maps from G1 to G2.

2.1 MAPPING GED TO GRAPH ALIGNMENT

We now establish that unrestricted graph alignment (UGA) (Skitsas et al., 2023) forms an instance of
GED. Building on this connection, we recast GED by Definition 6 as a generalized graph alignment
problem, leading to algebraic methods for GED estimation.
Definition 7 (Unrestricted Graph Alignment). Unrestricted graph alignment calls to find a bijection
π : V1 → V2 that minimizes edge disagreements between the two graphs. Formally:

min
π∈Φ(G1,G2)

∥APπ − PπB∥2F , (3)

Here, A and B are the adjacency matrices of graphs G1 and G2, respectively, ∥.∥F denotes the
Frobenius Norm, and Pπ is a permutation matrix , where Pπ[i, j] = 1 if π(i) = j, otherwise 0.

The proof of the following theorem is in Appendix B.
Theorem 1. Given graphs G1 and G2 of size n, if the edge insertion and deletion cost is κ2 = 2 and
node substitution cost is 0, then GED(G1, G2) = minπ∈Φ(G1,G2) ∥APπ − PπB∥2F .

3 EUGENE: PROPOSED METHOD

While Theorem 1 establishes graph alignment as a special case of GED, Equation (3) assumes a
specific instance of edits costs and ignores node labels, setting node edit costs to 0. We next frame
GED as a generalized graph alignment problem with arbitrary edit costs.

3.1 GED AS GENERALIZED GRAPH ALIGNMENT

Given graphs G1 and G2, arbitrary costs for node edits, and cost κ2 for edge edits, where κ is a scalar,
we propose a closed-form expression for generalized graph alignment:

min
π∈Φ(G1,G2)

||ÃPπ − PπB̃||2F
2

+ tr(PT
π D) (4)

Let A,B be adjacency matrices of G1, G2, respectively, having extended the smaller graph to the size
of the larger by adding dummy nodes. We set Ã = κ ·A, B̃ = κ ·B and define D as:

dij =


dv(ϵ,L(j)), if i is a dummy node in G1
dv(L(i), ϵ), if j is a dummy node in G2
dv(L(i),L(j))), if L(i) ̸= L(j)

(5)

where dv is the distance function over the node labels by Definition 5 and ϵ is the label assigned to
dummy nodes. We show that, with Ã, B̃,D as above, Equation (4) amounts to GED with arbitrary
edit costs. Intuitively, the first term captures edge edits under mapping π, the second term node edits.
The proof is in Appendix B.

1We define it to be κ2 instead of κ since it eases the notational burden in subsequent derivations.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Theorem 2. Given two graphs G1 and G2 of size n, GED(G1, G2) = minπ∈Φ(G1,G2)
||ÃPπ−PπB̃||2F

2 +

tr(PT
π D), where Ã, B̃ and D are defined as above.

IPFP (Bougleux et al., 2017) also formulates GED as a quadratic assignment problem, yet it flattens
the permutation matrix into a vector and operates on a cost matrix C = (cik,jl)i,k,j,l, where cik,jl
denotes the cost of editing edge (i, j) in one graph to edge (k, l) in the other. In contrast, EUGENE
preserves the permutation matrix structure and operates on adjacency matrices A and B, expressing
edge discrepancies through the difference of the permuted matrices ÃP and PB̃. This structure-aware
formulation reduces time complexity from O(n4) in IPFP to O(n3) and is also more space-efficient:
while C is a dense matrix of size n2×n2, Ã and B̃ are n×n and usually sparse. Moreover, EUGENE
is numerically more stable, while C becomes ill-conditioned and thus unsuitable for gradient-
based optimization for similar A and B, which render the rows and columns of C nearly linearly
dependent. Besides, EUGENE naturally accommodates permutation and doubly-stochastic constraints
and maintains a spectral connection to the eigenvalues of A and B, which enables the use of spectral
techniques (Hermanns et al., 2021; Knossow et al., 2009; Singh et al., 2008b). Lastly, IPFP relies
on off-the-shelf optimization methods, while EUGENE uses a custom optimization strategy, which
confers the advantages shown in § 4.

Grounded in our structure-aware reformulation of GED as generalized graph alignment problem
based on adjacency matrices, we can leverage advances in graph alignment for GED estimation
purposes. FUGAL (Bommakanti et al., 2024), the current state-of-the-art solution for UGA, relaxes a
quadratic assignment problem with an objective built on a non-convex correlation term to the feasible
set of doubly stochastic matrices and applies the Frank–Wolfe algorithm (Frank & Wolfe, 1956)
guided by a Sinkhorn–Knopp normalization (Cuturi, 2013) to iteratively step within that feasible set
in a direction most aligned with the negative gradient. As our experimental study reveals, while this
approach is good enough for graph alignment, where solutions are evaluated by the proportion of
correctly aligned nodes, it yields poor results in terms of GED, where solutions are strictly evaluated
by the difference of their GED cost from the ground truth. We conclude that GED estimation calls
for a more rigorous approach directly targeting the convex GED cost as the core objective with stable
gradient updates. Nonetheless, we adopt from FUGAL the idea of refining a doubly stochastic matrix
towards a quasi-permutation matrix.

3.2 PERMUTATION-INDUCING REGULARIZATION

While Equation (4) provides a closed-form expression, finding the permutation matrix that minimizes
it is notoriously hard, as the space of permutation matrices is not convex. To circumvent this non-
tractability, we relax Equation (3) form the set of permutation matrices to that of doubly stochastic
matrices Wn, rendering the problem convex (Bento & Ioannidis, 2018), and solve the relaxed form of
Equation (4):

min
P∈Wn

||ÃP − PB̃||2F
2

+ tr(PTD)

Constraints: P1 = 1, PT 1 = 1, 0 ≤ Pij ≤ 1

(6)

Equation 6 is convex, as it minimizes a convex function over a convex domain (Boyd & Vandenberghe,
2004) and solvable with Adam (Kingma & Ba, 2015), yet the optimal doubly-stochastic matrix does
not solve our exact problem. Still, these two matrix domains are connected as follows (Bommakanti
et al., 2024); the proofs are in Appendix B.

Lemma 1. A doubly-stochastic matrix A with tr(AT (J −A)) = 0 is a permutation matrix.

Utilizing this connection, we add a bias to our objective function in the following form.

min
P

||ÃP−PB̃||2F
2

+µ · (tr(PTD)) + λ · (tr(PT(J−P)))

Constraints: P1=PT 1=1, 0≤Pij≤1

(7)

where µ and λ are weight parameters. FUGAL extracts a non-convex correlation term from this
objective; contrarily, we preserve convexity and thus derive a spectral guarantee:

Theorem 3. The function in Equation (7) is convex for λ≤ (λi(Ã)−λj(B̃))2

2 , for all i, j∈{1, 2, . . . , n},
where λi(Ã) and λj(B̃) represent the eigenvalues of Ã and B̃, respectively.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

For λ = 0, the problem in Equation (7) is convex. To derive a quasi-permutation matrix, we solve
Equation (7) with λ = 0 using Adam and refine the solution by gradually increasing λ, until
it diverges. This regularizer, which drives the double-stochastic matrix to a permutation matrix
drastically enhances approximation accuracy, as we show in Appendix C.9.

3.3 M-ADAM DETAILS Algorithm 1 M-ADAM

Notations:
f =

||ÃP−PB̃||2F
2 + µ · (tr(PTD)), g = tr(PT (J − P))

pnlt= ||P 1−1||2+||PT 1−1||2+||max(0,−P)||2+||max(0, P−J)||2

Input: matrices Ã, B̃, D Output: permutation matrix P

Algorithm:

1: P←I , σ←5,λ←0, m0←0, v0←0, β1←0.9, β2←0.99, P̃←I ,
H̃ ← I

2: while true do
3: t← 0
4: while not converged do
5: t← t + 1
6: grad← ∇f + σ · ∇pnlt + λ · ∇g
7: mt ← β1 ·mt−1 + (1− β1) · grad; m̂t ← mt/(1− βt

1)

8: vt ← β2 · vt−1 + (1− β2) · grad2; v̂t ← vt/(1− βt
2)

9: P ← P − α · m̂t/(
√
v̂t + ϵ)

10: if diverged then
11: break
12: σ ← σ ∗ 2, λ← λ + 0.5
13: H ← Hungarian(P), Ã← HÃH⊤, D ← HD

14: P̃ ← H̃⊤P , H̃ ← HH̃
15: if σ > σth then
16: break

17: return P̃

Algorithm 1 outlines our Modified Adam
(M-ADAM) algorithm, which initial-
izes P as an identity matrix and λ
to 0 (Line 1), and gradually increases λ
(Line 12). For each λ, it starts from the
solution of the previous round and iter-
atively updates it using the objective’s
gradient (Lines 6–9). We employ the
penalty method (Yeniay, 2005) to enforce
doubly-stochastic matrix constraints. For
a given value of λ, the relaxed solu-
tion P is rounded to a permutation ma-
trix H via Hungarian, which is then used
to transform the problem in the subse-
quent iteration (see § 3.4). Figure G illus-
trates the process with an example. M-
ADAM outputs a permutation matrix that
yields an edit path for the approximated
GED (Kuhn, 1955). As the true GED is
the least edit cost over all alignments, the
returned GED upper-bounds the true GED. Moreover, M-ADAM is a deterministic algorithm; for any
given pair of input matrices, it always returns the same output.

3.4 INVERSE RELABELING

Here, we propose an inverse relabeling strategy in M-ADAM. The core term of our objective
is ||Ã − PB̃PT ||2F , to be minimized over Wn. After the first gradient-based update iteration with
fixed λ (outer loop in M-ADAM), we begin enforcing permutation constraints via a regularizer. Let H
denote a permutation matrix obtained by rounding the relaxed solution P using Hungarian projection.

Since the feasible set Pn is discrete, gradients are computed in the relaxed domain Wn. However,
continuing the optimization near a non-identity permutation H is inefficient. A non-identity H acts
as a rotation of the problem’s coordinate system, causing the components of the gradient to become
highly coupled. This motivates recentering the problem after each outer iteration. Specifically, we
transform Ã← HÃH⊤. This transformation is equivalent to the variable change P̃ = H⊤P , as:

∥Ã− PB̃P⊤∥2F → ∥HÃH⊤ − PB̃P⊤∥2F = ∥Ã−H⊤PB̃P̃⊤H∥2F = ∥Ã− P̃ B̃P̃⊤∥2F ,

This variable change to P̃ and multiplication by H⊤ revokes the permutation, or inverts the labeling,
introduced by H , without altering the feasible space: P̃ ∈ Wn ⇐⇒ P = HP̃ ∈ Wn, since
multiplying a doubly stochastic matrix by a permutation matrix preserves row and column sums
and non-negativity. The updated P̃ satisfies P̃ ≈ H⊤H = I , hence gradient updates are performed
in a coordinate system centered around the identity matrix I , allowing for more efficient and ac-
curate corrections to small errors. Our ablation study in § C.9 validates the effectiveness of this
transformation.

4 EXPERIMENTS

Here, we present a comprehensive evaluation of EUGENE, addressing the following aspects:
• Efficacy: EUGENE tops supervised and heuristic methods across datasets and costs.

• Scalability: EUGENE scales well to large graphs, consistently surpassing baselines.

• Efficiency: EUGENE incurs lower computational costs than heuristic methods with better perfor-
mance; as it runs on CPUs, it curtails carbon emissions.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.1 EXPERIMENTAL SETUP

Appendix C.1 outlines the hardware and software2 environment, Appendices C.3 presents the param-
eters used, and Appendix C.9 reports on an ablation study.

Baselines: We compare EUGENE to 15 state-of-the-art supervised and optimization based heuristic
methods. These include the following supervised methods: GRAPHEDX (Jain et al., 2024), GMN-
EMBED (Li et al., 2019), GREED (Ranjan et al., 2022), ERIC (Zhuo & Tan, 2022), SIMGNN (Bai
et al., 2019), H2MN (Zhang et al., 2021), EGSC (Qin et al., 2021), GOTSIM (Doan et al., 2021),
GEDGNN (Piao et al., 2023), GMSM (Pellizzoni et al., 2024). We exclude the neural approximation
algorithms GRAPHSIM (Bai et al., 2020) as GRAPHEDX and H2MN have shown vastly better
performance (Jain et al., 2024; Zhang et al., 2021). Genn-A* (Wang et al., 2021) does not scale for
graphs of sizes more than 10, hence excluded from the analysis. Among the neural methods included,
GEDGNN, GMSM and GOTSIM provide a node mapping corresponding to the estimated GED.
With all baselines, when edit costs are uniform, we use the official author-released codebases with the
original training protocols and default hyperparameters. However, existing baselines do not support
non-uniform edit costs, except for GRAPHEDX, which extended support to non-uniform costs and
released adapted codebases for all baselines. In the non-uniform cost setting, we use these fine-tuned
and publicly available versions provided by the GRAPHEDX authors.

In the heuristic methods category, we compare with the five best-performing methods from the
benchmarking study by (Blumenthal et al., 2019b), namely, BRANCH-TIGHT (Blumenthal & Gamper,
2018), F1 (Lerouge et al., 2017), ADJ-IP (Justice & Hero, 2006), IPFP (Bougleux et al., 2017) and
COMPACT-MIP (Blumenthal & Gamper, 2020). All these heuristic methods furnish an edit path
that corresponds to the approximated GED. We utilized the GEDLIB (Blumenthal et al., 2019b)
implementation of these methods in our evaluations.

Datasets: Table 1 lists the datasets we use. App. C.2 discusses the semantics. AIDS, Molhiv, Mutag,
Code2 are labeled whereas IMDB, COIL-DEL, Triangles, Netscience and HighSchool are unlabeled.

Table 1: Datasets.

Name Avg |V| Avg |E| # labels Domain

AIDS 11.83 24.14 38 Biology
Molhiv 15.47 31.86 119 Biology
Mutag 23.32 44.64 14 Biology
Code2 18.61 37.42 97 Software
IMDB 11.49 63.74 - Movies
COIL-DEL 8.70 34.44 - Vision
Triangles 9.11 20.16 - Synthetic
Netscience 379 914 - Collaboration
HighSchool 327 5818 - Proximity

Train-Val-Test Splits: As in (Jain et al.,
2024), we remove isomorphic graphs from
the datasets prior to training neural methods
to mitigate isomorphism bias via leakage be-
tween training and testing Ivanov et al. (2019).
Further, for each dataset, we restrict to the
graphs of size less than 25 to ensure feasi-
bility of ground truth GED computation. As
in (Ranjan et al., 2022) and (Jain et al., 2024),
we used MIP-F2 (Lerouge et al., 2017) with
a time limit of 600 seconds for each graph pair and kept pairs that yielded equal lower and upper
bounds as ground truth GED. The training set consists of 5k randomly sampled graph pairs, while
the validation and test sets each consist of 1k randomly sampled pairs each.

Cost Settings: We evaluate the performance under three different edit cost settings:

• Case 1 (Nonuniform costs): The node insertion cost is 3, node deletion cost is 1, edge insertion
and deletion costs are 2, and the node substitution cost is 0.

• Case 2 (Nonuniform costs with substitution): In addition to Case 1, substituting nodes with
unequal labels incurs cost. If the substituted node label is the nearest neighbor based on the
similarity ranking of node labels, the cost is 1, otherwise 2. As an illustrative case, the distance
between labels is taken as the difference between their label IDs.

• Case 3 (Uniform costs): Node/edge insertion and deletion costs 1, node substitution 0.

Cost Settings 1 and 3 closely follow those proposed in GRAPHEDX. We introduce Cost Setting 2 to
further increase the difficulty of the task. Unlike the other settings, the cost of an edit operation in this
case is non-static, it dynamically varies based on the node labels involved, thereby requiring models
to account for contextual variations during alignment. We also evaluate on edits costs inspired from
chemistry. The results are discussed in App. C.13.

2Our C++ code and datasets are at https://anonymous.4open.science/r/Eugene-1107/

6

https://anonymous.4open.science/r/Eugene-1107/

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Metrics: We use two metrics to assess GED approximation and interpretability: (i) Mean Absolute
Error (MAE), and (ii) Strict Interpretability (SI). MAE serves as a metric to quantify the closeness
of the predicted GED to the true GED. SI is measured as the fraction of graph pairs for which the
predicted GED matches the true GED. A match between the predicted and true GED indicates that
the alignment produced by the method is optimal. Consequently, SI reflects the algorithm’s ability to
produce the optimal node mapping and serves as a measure of interpretability.

4.2 BENCHMARKING ACCURACY (MAE)
Table 2 presents approximation accuracy in terms of MAE on benchmark datasets under the non-
uniform cost setting (Case 1) and the non-uniform cost with substitution setting (Case 2). Ap-
pendix C.4 shows the comparison under the uniform cost setting and Appendix C.5 shows that on
unlabeled datasets. In all cases, EUGENE outperforms all baselines.

Comparison with Supervised Baselines: EUGENE outperforms all supervised baselines—including
those providing node alignments—across datasets and cost settings by a large margin. Under the
nonuniform cost setting, it achieves up to 44% lower MAE on Code2 and a 72% reduction on AIDS
compared to the next best method. For nonuniform costs with substitution, the improvement margin
ranges from 44% on Mutag to 63% on Molhiv. GRAPHEDX, EGSC, and ERIC demonstrate the
second-best performance.

Comparison with Heuristic Baselines: EUGENE demonstrates a substantial improvement over
heuristic baselines. The margin of improvement exceeds 80% across all datasets and both cost settings
when compared to the next-best method, ADJ-IP. Methods BRANCH-TIGHT and COMPACT-MIP
perform considerably worse than EUGENE.

Table 2 further reveals that heuristic baselines fall short of supervised ones, which explains why the
community shifted to supervised methods, despite their lack of interpretability, poor generalizability,
and costly training. Though heuristic, EUGENE tops supervised baselines and grants interpretability.
Contrarily, supervised methods that yield node alignments tend to lag, as they trade accuracy for
interpretability. EUGENE makes no such compromise.

Table 2: Accuracy comparison among baselines in MAE under different cost settings; green and
yellow cells denote the best and second-best performance, respectively, for each dataset.

Cost Setting Case 1 Cost Setting Case 2
Methods AIDS Molhiv Code2 Mutag AIDS Molhiv Code2 Mutag

ERIC 1.17 1.38 1.48 4.80 1.25 1.59 1.71 1.89
EGSC 1.35 1.58 1.65 1.59 1.35 1.71 1.79 1.80
GRAPHEDX 1.54 1.36 1.33 2.39 2.06 2.10 1.56 2.80
H2MN 1.53 2.00 1.90 1.74 1.58 2.08 2.34 2.00
GMN-EMBED 3.35 5.25 2.68 5.52 3.64 5.83 2.67 6.34
GREED 2.98 5.03 2.48 5.12 3.39 5.36 2.62 5.32
SIMGNN 1.55 1.98 1.85 1.91 1.70 2.09 2.01 2.49

GEDGNN 2.37 4.23 2.61 2.46 2.28 3.60 3.36 3.86
GOTSIM 7.53 14.49 8.15 10.89 10.66 22.19 12.07 15.38
GMSM 15.04 25.57 21.16 26.81 21.08 34.12 32.49 35.59

BRANCH-TIGHT 7.97 9.86 13.91 15.02 6.95 9.95 21.47 13.62
ADJ-IP 1.69 4.06 5.05 4.30 3.58 5.97 6.70 6.85
F1 5.41 10.63 6.28 10.64 5.8 13.47 11.08 13.82
COMPACT-MIP 2.95 7.21 8.39 7.13 6.18 10.29 12.72 10.78
IPFP 5.63 9.99 6.39 9.53 8.47 14.27 13.43 14.36

EUGENE 0.33 0.65 0.75 0.68 0.58 0.79 0.58 1.01

Unlabeled datasets: We observed a similar trend on unlabeled data, as shown in App C.5, EUGENE
achieving an even greater margin of improvement. That is expected, as the absence of node features
limits the effectiveness of GNN-based methods, which distinguish nodes by features. We note the
highest improvement with IMDB dataset, which is also the densest. High density causes oversquash-
ing in GNNs (Giovanni et al., 2024), and is a likely reason for subpar performance of neural models.

4.3 ACCURACY (SI)
Table 3 presents the comparison of EUGENE with other baselines in terms of the Strict Interpretability
(SI) metric. While few neural baselines do not explicitly provide alignments, we found the SI score
for all supervised methods to be 0 across all cost settings. This finding indicates that, albeit some

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

neural methods provide explicit node alignments, they fall short in alignment quality. We thus omit
these scores from the table. EUGENE consistently achieves higher SI scores compared to other
heuristic methods, with an improvement of up to 69% on the Code2 dataset under cost setting Case 1.
These superior SI scores highlight EUGENE’s ability to deliver optimal node alignments. Although
supervised baselines generally provide better GED approximations than heuristic methods, heuristic
baselines offer better interpretability. EUGENE surpasses all baselines in both approximation accuracy
and interpretability metrics, establishing itself as the new state-of-the-art for GED approximation
while maintaining interpretability of the approximated GED.
Table 3: Accuracy comparison in terms of SI under different cost settings; green and yellow cells
denote the best and second-best performance, respectively, for each dataset.

Cost Setting Case 1 Cost Setting Case 2
Methods AIDS Molhiv Code2 Mutag AIDS Molhiv Code2 Mutag

BRANCH-TIGHT 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
ADJ-IP 0.90 0.69 0.48 0.62 0.69 0.65 0.63 0.46
F1 0.44 0.10 0.05 0.04 0.57 0.15 0.03 0.07
COMPACT-MIP 0.72 0.31 0.03 0.20 0.46 0.31 0.16 0.24
IPFP 0.04 0.02 0.03 0.02 0.01 0.01 0.01 0.01

EUGENE 0.91 0.84 0.82 0.83 0.71 0.67 0.74 0.59

4.4 ACCURACY ON LARGE GRAPHS

The complexity of GED estimation rises with graph size due to the exponential growth of mappings
in combinatorial space. We evaluate performance exclusively on large graphs to explicitly investigate
this aspect of scalability. We consider graphs with sizes in the range [25, 50] in the test split. Table 4
presents the MAE results under Case 1 and Case 2 cost settings, which demonstrate the superior
scalability of EUGENE to large graphs, with up to 66% lower MAE than the next best performer,
H2MN. Other methods exhibit significantly higher MAE. These findings underscore the practical
applicability of EUGENE for GED approximation on large graphs. SI comparison on large graphs
appears in Appendix C.6.
Table 4: Accuracy among baselines in MAE under different cost settings; graph sizes in [25, 50];
green and yellow cells denote best and second-best performance, respectively.

Cost Setting Case 1 Cost Setting Case 2
Methods AIDS Molhiv Code2 Mutag AIDS Molhiv Code2 Mutag

ERIC 19.70 9.08 12.24 14.64 18.46 14.08 29.14 9.47
EGSC 35.68 12.68 15.02 15.12 30.22 16.92 16.04 14.31
GRAPHEDX 24.44 21.65 33.01 21.82 20.75 17.01 34.01 15.98
H2MN 6.48 4.59 5.70 3.44 10.86 5.15 10.42 4.54
GMN-EMBED 9.60 10.82 8.52 9.80 9.99 13.68 14.57 11.03
GREED 10.05 10.20 8.46 9.28 9.66 9.50 12.09 9.92
SIMGNN 28.77 10.58 14.02 7.52 25.61 12.63 50.51 12.70

GEDGNN 25.78 11.83 36.75 19.96 23.29 15.27 25.17 17.18
GOTSIM 29.03 25.93 26.87 24.62 29.78 32.47 31.58 30.48
GMSM 44.66 44.62 49.65 44.22 21.08 50.90 66.06 55.94

BRANCH-TIGHT 29.76 24.95 31.54 27.86 26.62 23.23 26.27 28.72
ADJ-IP 23.00 21.98 34.52 21.54 17.81 11.95 46.42 17.00
F1 23.22 11.19 21.92 15.05 30.32 11.56 42.86 17.95
COMPACT-MIP 73.30 40.02 76.71 56.84 59.33 28.95 47.20 41.18
IPFP 17.86 14.65 16.51 16.48 18.65 18.47 24.88 20.16

EUGENE 4.45 3.88 4.14 2.80 3.25 3.73 4.33 4.74

Figure 2 presents MAE heatmaps on Code2 for cost setting Case 1. Each point stands for a graph
pair GQ, GT with coordinates (GED(GQ, GT), (|VQ| + |VT |)/2). Heatmaps for EGSC, H2MN, and
GRAPHEDX have a discernibly darker hue, corroborating that EUGENE enjoys better scalability in
graph size and GED value. Appendix C.11 shows heatmaps for other datasets, while Appendix C.12
presents results on two thousand-scale collaboration networks, Netscience (Newman, 2006) and
HighSchool (Fournet & Barrat, 2014). To our knowledge, no prior GED estimation method handles
graphs of this scale.

4.5 COMPARISON WITH FUGAL

FUGAL addresses unrestricted graph alignment (UGA), while EUGENE estimates GED and produces
an alignment corresponding to the approximation. As Theorem 1 shows, UGA is a special case

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 25 50 75 100 125
GED

25

30

35

40

45

50

Gr
ap

h
Si

ze

Eugene - Effect of Graph Size & GED

0

10

20

30

40

50

60

(a) EUGENE

0 25 50 75 100 125
GED

25

30

35

40

45

50

Gr
ap

h
Si

ze

EGSC - Effect of Graph Size & GED

0

10

20

30

40

50

60

(b) EGSC

0 25 50 75 100 125
GED

25

30

35

40

45

50

Gr
ap

h
Si

ze

H2MN - Effect of Graph Size & GED

0

10

20

30

40

50

60

(c) H2MN

0 25 50 75 100 125
GED

25

30

35

40

45

50

Gr
ap

h
Si

ze

GraphEDX - Effect of Graph Size & GED

0

10

20

30

40

50

60

(d) GRAPHEDX

Figure 2: MAE heatmap vs. graph size & GED for Code2 for graphs of size [25, 50].

of GED with node edit costs set to zero. The connection between UGA and GED established in
Theorem 2 allows us to draw from UGA methods, though our optimization differs in key ways:

Table 5: GED estimation error (MAE) under Cost Setting 1.

Method AIDS Molhiv Code2 Mutag

FUGAL 7.12 11.72 6.53 11.60
FUGAL-Node Edit Costs 7.71 12.65 7.93 12.49
EUGENE 0.33 0.65 0.75 0.68

Optimization. EUGENE employs a mod-
ified Adam optimizer with a penalty
method to enforce doubly stochastic con-
straints, whereas UGA methods typically
use Frank-Wolfe (Frank & Wolfe, 1956)
with Sinkhorn-Knopp normalization (Cu-
turi, 2013). As shown in Table Q, replacing
Adam with Frank–Wolfe (EUGENE-FW) leads to weaker performance, confirming the effectiveness
of our approach. Our novel inverse relabelling strategy further improves GED estimation (§ C.9).

Cost Regularizer. EUGENE integrates node edit costs through a matrix D, while UGA methods
may only use similar terms as structural regularizers. To test whether FUGAL could benefit from node
edit costs, we evaluated it with EUGENE’s cost matrix D. Table 5 shows that both FUGAL variants
yield substantially higher GED error than EUGENE.

Table 6: GED estimation error (MAE) under zero node
edit costs (UGA setting).

Method AIDS Molhiv Code2 Mutag

FUGAL 4.71 6.98 8.52 8.44
EUGENE 0.28 0.50 0.74 0.55

One might still believe that FUGAL is inherently
tailored for GED instances with zero node edit
costs, corresponding to UGA. We thus set all
node edit costs to 0 and edge edit costs to 1.
Even under this UGA-compatible setting, EU-
GENE demonstrated superior performance, as
shown in Table 6.

Table 7: Replacing EUGENE ’s Frobenius norm with
FUGAL’s non-convex correlation term.

Method AIDS Molhiv Code2 Mutag

EUGENE (FUGAL QAP) 5.43 7.53 17.82 12.65
EUGENE 0.33 0.65 0.75 0.68

This raises the question of why the poor GED
estimates from UGA methods are not evident in
UGA studies. The key difference lies in evalua-
tion: GED is evaluated strictly by edge and node
differences from the ground truth (the QAP ob-
jective), while UGA is evaluated more loosely
by the fraction of correctly aligned nodes. Hence, GED methods must enforce much stricter fidelity
to the QAP objective than UGA methods, as we discuss in the following.

Core Objective Term. EUGENE prioritizes the convex Frobenius norm ∥AP − PB∥2F , which en-
sures stable updates. UGA methods instead optimize the non-convex correlation term Tr(APB⊤P⊤)
for efficiency, paired with Frank-Wolfe. Substituting this non-convex term into EUGENE caused
divergence; even the best result within a 10-minute cap (Table 7) remained far less accurate. This
confirms that FUGAL’s core objective is ill-suited for GED estimation.

5 CONCLUSIONS

We introduced EUGENE, an optimization based heuristic method that provides explainable estimates
of GED based on a structure-aware representation and relaxation of the underlying optimization
problem. Through extensive experimentation, we demonstrated that EUGENE achieves state-of-the-art
GED estimates and superior scalability compared to baselines across diverse datasets, even while it
eliminates the need to generate supervisory data via NP-hard computations. These features position
EUGENE as a promising candidate for practical graph similarity measurement. As our implementation
relies solely on CPU resources, it is open to further enhancement.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

We have made the implementation of EUGENE publicly available; the code link is provided at the
end of Page 6. The released implementation includes the benchmark test sets, as well as the training
and validation sets used for the neural models. We also provide scripts to generate new test sets
for independent evaluation. Details on data generation, testing setup, and baseline implementations
are described in Section 4. Appendix C.1 specifies the hardware and software environment, and
Appendix C.3 lists the parameters used by EUGENE.

REFERENCES

Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang. SimGNN: A neural
network approach to fast graph similarity computation. In WSDM, pp. 384–392, 2019.

Yunsheng Bai, Hao Ding, Ken Gu, Yizhou Sun, and Wei Wang. Learning-based efficient graph
similarity computation via multi-scale convolutional set matching. AAAI, pp. 3219–3226, 2020.

José Bento and Stratis Ioannidis. A family of tractable graph distances. In Proceedings of the SIAM
International Conference on Data Mining, SDM, pp. 333–341, 2018.

David B. Blumenthal and Johann Gamper. Improved lower bounds for graph edit distance. IEEE
Transactions on Knowledge and Data Engineering, 30(3):503–516, 2018. doi: 10.1109/TKDE.
2017.2772243.

David B Blumenthal and Johann Gamper. On the exact computation of the graph edit distance.
Pattern Recognition Letters, 134:46–57, 2020.

David B. Blumenthal, Nicolas Boria, Johann Gamper, Sébastien Bougleux, and Luc Brun. Comparing
heuristics for graph edit distance computation. The VLDB Journal, 29(1):419–458, jul 2019a.
ISSN 1066-8888. doi: 10.1007/s00778-019-00544-1. URL https://doi.org/10.1007/
s00778-019-00544-1.

David B Blumenthal, Sébastien Bougleux, Johann Gamper, and Luc Brun. Gedlib: a c++ library for
graph edit distance computation. In International Workshop on Graph-Based Representations in
Pattern Recognition, pp. 14–24. Springer, 2019b.

Aditya Bommakanti, Harshith Reddy Vonteri, Konstantinos Skitsas, Sayan Ranu, Davide Mottin,
and Panagiotis Karras. Fugal: Feature-fortified unrestricted graph alignment. In A. Glober-
son, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Ad-
vances in Neural Information Processing Systems, volume 37, pp. 19523–19546. Curran Asso-
ciates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/22b111819c74453837899689166c4cf9-Paper-Conference.pdf.

Sébastien Bougleux, Luc Brun, Vincenzo Carletti, Pasquale Foggia, Benoit Gaüzère, and Mario Vento.
Graph edit distance as a quadratic assignment problem. Pattern Recognition Letters, 87:38–46,
2017. ISSN 0167-8655. doi: https://doi.org/10.1016/j.patrec.2016.10.001. URL https://www.
sciencedirect.com/science/article/pii/S0167865516302665. Advances in
Graph-based Pattern Recognition.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Jiazhou Chen, Hong Peng, Guoqiang Han, Hongmin Cai, and Jiulun Cai. HOGMMNC: a higher
order graph matching with multiple network constraints model for gene–drug regulatory mod-
ules identification. Bioinformatics, 35(4):602–610, 07 2018. ISSN 1367-4803. doi: 10.1093/
bioinformatics/bty662. URL https://doi.org/10.1093/bioinformatics/bty662.

D. Conte, P. Foggia, C. Sansone, and M. Vento. Graph matching applications in pattern recognition
and image processing. In Proceedings 2003 International Conference on Image Processing (Cat.
No.03CH37429), volume 2, pp. II–21, 2003. doi: 10.1109/ICIP.2003.1246606.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In NeurIPS, pp.
2292–2300, 2013.

10

https://doi.org/10.1007/s00778-019-00544-1
https://doi.org/10.1007/s00778-019-00544-1
https://proceedings.neurips.cc/paper_files/paper/2024/file/22b111819c74453837899689166c4cf9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/22b111819c74453837899689166c4cf9-Paper-Conference.pdf
https://www.sciencedirect.com/science/article/pii/S0167865516302665
https://www.sciencedirect.com/science/article/pii/S0167865516302665
https://doi.org/10.1093/bioinformatics/bty662

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Asim Kumar Debnath, Rosa L. Lopez de Compadre, Gargi Debnath, Alan J. Shusterman, and Corwin
Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds.
correlation with molecular orbital energies and hydrophobicity. Journal of Medicinal Chemistry,
34(2):786–797, 1991. doi: 10.1021/jm00106a046.

Khoa D. Doan, Saurav Manchanda, Suchismit Mahapatra, and Chandan K. Reddy. Interpretable
graph similarity computation via differentiable optimal alignment of node embeddings. In SIGIR,
pp. 665–674, 2021.

Julie Fournet and Alain Barrat. Contact patterns among high school students. PLoS ONE, 9
(9):e107878, September 2014. ISSN 1932-6203. doi: 10.1371/journal.pone.0107878. URL
http://dx.doi.org/10.1371/journal.pone.0107878.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956.

Francesco Di Giovanni, T. Konstantin Rusch, Michael Bronstein, Andreea Deac, Marc Lack-
enby, Siddhartha Mishra, and Petar Veličković. How does over-squashing affect the power
of GNNs? Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=KJRoQvRWNs.

Judith Hermanns, Anton Tsitsulin, Marina Munkhoeva, Alex M. Bronstein, Davide Mottin, and
Panagiotis Karras. GRASP: graph alignment through spectral signatures. CoRR, abs/2106.05729,
2021. URL https://arxiv.org/abs/2106.05729.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on
graphs. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 22118–22133. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf.

International Energy Agency. Global energy & CO2 status report 2019. https://www.iea.org/
reports/global-energy-co2-status-report-2019, 2019. IEA, Paris. Licence:
CC BY 4.0.

Sergei Ivanov, Sergei Sviridov, and Evgeny Burnaev. Understanding isomorphism bias in graph data
sets. CoRR, abs/1910.12091, 2019. URL http://arxiv.org/abs/1910.12091.

Eeshaan Jain, Indradyumna Roy, Saswat Meher, Soumen Chakrabarti, and Abir De. Graph Edit
Distance with General Costs Using Neural Set Divergence. In The Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems, 2024. URL https://openreview.net/
forum?id=u7JRmrGutT.

D. Justice and A. Hero. A binary linear programming formulation of the graph edit distance.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(8):1200–1214, 2006. doi:
10.1109/TPAMI.2006.152.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations, ICLR, 2015.

David Knossow, Avinash Sharma, Diana Mateus, and Radu Horaud. Inexact matching of large and
sparse graphs using laplacian eigenvectors. In Andrea Torsello, Francisco Escolano, and Luc Brun
(eds.), Graph-Based Representations in Pattern Recognition, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

Boris Knyazev, Graham W Taylor, and Mohamed Amer. Understanding attention and generalization
in graph neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

Harold W Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83–97, 1955.

11

http://dx.doi.org/10.1371/journal.pone.0107878
https://openreview.net/forum?id=KJRoQvRWNs
https://arxiv.org/abs/2106.05729
https://proceedings.neurips.cc/paper_files/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
https://www.iea.org/reports/global-energy-co2-status-report-2019
https://www.iea.org/reports/global-energy-co2-status-report-2019
http://arxiv.org/abs/1910.12091
https://openreview.net/forum?id=u7JRmrGutT
https://openreview.net/forum?id=u7JRmrGutT
https://proceedings.neurips.cc/paper_files/paper/2019/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Julien Lerouge, Zeina Abu-Aisheh, Romain Raveaux, Pierre Héroux, and Sébastien Adam. New
binary linear programming formulation to compute the graph edit distance. Pattern Recognition,
72:254–265, 2017.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching networks
for learning the similarity of graph structured objects. In ICML, pp. 3835–3845, 2019.

Chih-Long Lin. Hardness of approximating graph transformation problem. In Ding-Zhu Du and
Xiang-Sun Zhang (eds.), Algorithms and Computation, pp. 74–82, Berlin, Heidelberg, 1994.
Springer Berlin Heidelberg. ISBN 978-3-540-48653-4.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. CoRR,
abs/2007.08663, 2020. URL https://arxiv.org/abs/2007.08663.

M. E. J. Newman. Finding community structure in networks using the eigenvectors of matrices. Phys.
Rev. E, 74:036104, Sep 2006. doi: 10.1103/PhysRevE.74.036104. URL https://link.aps.
org/doi/10.1103/PhysRevE.74.036104.

Paolo Pellizzoni, Carlos Oliver, and Karsten Borgwardt. Structure- and function-aware substitution
matrices via learnable graph matching. In Jian Ma (ed.), Research in Computational Molecular
Biology, Cham, 2024. Springer Nature Switzerland.

Chengzhi Piao, Tingyang Xu, Xiangguo Sun, Yu Rong, Kangfei Zhao, and Hong Cheng. Computing
graph edit distance via neural graph matching. Proc. VLDB Endow., 16(8):1817–1829, apr 2023.
ISSN 2150-8097. doi: 10.14778/3594512.3594514. URL https://doi.org/10.14778/
3594512.3594514.

Can Qin, Handong Zhao, Lichen Wang, Huan Wang, Yulun Zhang, and Yun Fu. Slow learn-
ing and fast inference: Efficient graph similarity computation via knowledge distillation. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems, volume 34, pp. 14110–14121. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/75fc093c0ee742f6dddaa13fff98f104-Paper.pdf.

Rishabh Ranjan, Siddharth Grover, Sourav Medya, Venkatesan Chakaravarthy, Yogish Sabharwal,
and Sayan Ranu. Greed: A neural framework for learning graph distance functions. In Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, November 29-Decemer 1, 2022, 2022.

Kaspar Riesen and Horst Bunke. Iam graph database repository for graph based pattern recognition
and machine learning. In Niels da Vitoria Lobo, Takis Kasparis, Fabio Roli, James T. Kwok,
Michael Georgiopoulos, Georgios C. Anagnostopoulos, and Marco Loog (eds.), Structural, Syntac-
tic, and Statistical Pattern Recognition, pp. 287–297, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg. ISBN 978-3-540-89689-0.

Rohit Singh, Jinbo Xu, and Bonnie Berger. Global alignment of multiple protein interaction networks
with application to functional orthology detection. Proceedings of the National Academy of
Sciences, 105(35):12763–12768, 2008a.

Rohit Singh, Jinbo Xu, and Bonnie Berger. Global alignment of multiple protein interaction networks
with application to functional orthology detection. Proceedings of the National Academy of
Sciences, 105(35):12763–12768, 2008b. doi: 10.1073/pnas.0806627105.

Konstantinos Skitsas, Karol Orlowski, Judith Hermanns, Davide Mottin, and Panagiotis Karras.
Comprehensive evaluation of algorithms for unrestricted graph alignment. In Proceedings 26th
International Conference on Extending Database Technology, EDBT 2023, Ioannina, Greece,
March 28-31, 2023, pp. 260–272. OpenProceedings.org, 2023. doi: 10.48786/EDBT.2023.21.

Runzhong Wang, Tianqi Zhang, Tianshu Yu, Junchi Yan, and Xiaokang Yang. Combinatorial learning
of graph edit distance via dynamic embedding. In IEEE Conference on Computer Vision and
Pattern Recognition, 2021.

12

https://arxiv.org/abs/2007.08663
https://link.aps.org/doi/10.1103/PhysRevE.74.036104
https://link.aps.org/doi/10.1103/PhysRevE.74.036104
https://doi.org/10.14778/3594512.3594514
https://doi.org/10.14778/3594512.3594514
https://proceedings.neurips.cc/paper_files/paper/2021/file/75fc093c0ee742f6dddaa13fff98f104-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/75fc093c0ee742f6dddaa13fff98f104-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Pinar Yanardag and S.V.N. Vishwanathan. Deep graph kernels. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’15,
pp. 1365–1374, New York, NY, USA, 2015. Association for Computing Machinery. ISBN
9781450336642. doi: 10.1145/2783258.2783417. URL https://doi.org/10.1145/
2783258.2783417.

Özgür Yeniay. Penalty function methods for constrained optimization with genetic algorithms.
Mathematical and computational Applications, 10(1):45–56, 2005.

Zhiping Zeng, Anthony Tung, Jianyong Wang, Jianhua Feng, and Lizhu Zhou. Comparing stars: On
approximating graph edit distance. PVLDB, 2:25–36, 01 2009.

Zhen Zhang, Jiajun Bu, Martin Ester, Zhao Li, Chengwei Yao, Zhi Yu, and Can Wang. H2mn: Graph
similarity learning with hierarchical hypergraph matching networks. In KDD, pp. 2274–2284,
2021.

Wei Zhuo and Guang Tan. Efficient graph similarity computation with alignment regularization. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems, volume 35, pp. 30181–30193. Curran Associates, Inc., 2022.

13

https://doi.org/10.1145/2783258.2783417
https://doi.org/10.1145/2783258.2783417

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure C: GED among five graphs; all edit operations cost 1.

7 APPENDIX

A RELATED WORK

Supervised Methods: GRAPHEDX (Jain et al., 2024) represents each graph as a set of node and edge
embeddings and learn the alignments using a Gumbel-Sinkhorn permutation generator, additionally
ensuring that the node and edge alignments are consistent with each other. GREED (Ranjan et al.,
2022) employs a siamese network to generate graph embeddings in parallel and estimates the
Graph Edit Distance (GED) by computing the norm of their difference. ERIC (Zhuo & Tan, 2022)
eliminates the need for explicit node alignment by leveraging a regularizer and computes similarity
using a Neural Tensor Network (NTN) and a Multi-Layer Perceptron (MLP) applied to graph-level
embeddings obtained from a Graph Isomorphism Network (GIN). GMN (Li et al., 2019) assess graph
similarity using Euclidean distance between embeddings and exist in two variants: GMN-EMBED
(late interaction) and GMN-MATCH (early interaction), both utilizing message passing to capture
structural similarities. SIMGNN (Bai et al., 2019) combines graph-level and node-level embeddings,
where a Neural Tensor Network processes graph-level embeddings, while a histogram-based feature
vector derived from node similarities enhances the similarity computation. H2MN (Zhang et al., 2021)
utilizes hypergraphs to model higher-order node similarity, employing a subgraph matching module
at each convolution step before aggregating the final graph embeddings via a readout function and
passing them through an MLP. EGSC (Qin et al., 2021) introduces an Embedding Fusion Network
(EFN) within a Graph Isomorphism Network (GIN) to generate unified embeddings for graph pairs,
which are further processed through an EFN and an MLP to compute the final similarity score.
GOTSIM (Doan et al., 2021) approximates GED through a neural network, and simultaneously
learns the alignments. Specifically, it formulates the similarity between a pair of graphs as the
minimal “transformation” cost from one graph to another in the learnable node-embedding space.
GEDGNN (Piao et al., 2023) treats GED computation as a regression task and predict the GED
value. A post-processing algorithm based on k-best matching is used to extract node mapping.
GMSM (Pellizzoni et al., 2024) uses regularized optimal transport with GNNs to approximate GED.

Heuristic Methods: F1 (Lerouge et al., 2017), ADJ-IP (Justice & Hero, 2006), and COMPACT-
MIP (Blumenthal & Gamper, 2020) employ a mixed integer programming framework based on the
LP-GED paradigm to approximate the GED. In contrast, BRANCH-TIGHT (Blumenthal & Gamper,
2018) iteratively solves instances of the linear sum assignment problem or the minimum-cost perfect
bipartite matching problem. IPFP (Bougleux et al., 2017) models GED as a quadratic assignment
problem and uses Integer Projected Fixed Point method to aproximate the QAP.

B PROOFS

Theorem 1. Given graphs G1 and G2 of size n, if the edge insertion and deletion cost is κ2 = 2 and
node substitution cost is 0, then GED(G1, G2) = minπ∈Φ(G1,G2) ∥APπ − PπB∥2F .

Proof. We derive the set of edge insertions and deletions to convert G1 to G2 from π. An edge that
should be inserted between nodes i and j in G1 does not exist in A but exists in B, hence aij = 0
and bπ(i)π(j) = 1. Likewise, an edge that needs deletion has aij = 1 and bπ(i)π(j) = 0. All
other (i, j) pairs have aij = bπ(i)π(j). Let Eins be the set of edges to be inserted in G1 and Edel that
of edges to be deleted by π, where without loss of generality an edge (i, j) has i < j. As node edit

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

and edge substitutions cost 0, the GEDπ(G1,G2) with respect to edit operations induced by π is:

GEDπ(G1,G2) =
∑

(i,j)∈Eins

2+
∑

(i,j)∈Edel

2 =
∑

(i,j)∈Eins

2·(aij−bπ(i)π(j))
2+

∑
(i,j)∈Edel

2·(aij−bπ(i)π(j))
2

=
∑

(i,j)∈Eins

(
(aij − bπ(i)π(j))

2 + (aji − bπ(j)π(i))
2) +

∑
(i,j)∈Edel

(
(aij − bπ(i)π(j))

2 + (aji − bπ(j)π(i))
2)

+
∑

i<j,(i,j)/∈Edel∪Eins

(
(aij − bπ(i)π(j))

2 + (aji − bπ(j)π(i))
2)

=
∑

(i,j)∈[n]×[n]

(aij − bπ(i)π(j))
2 = ∥A− PπBPT

π ∥2F = ∥APπ − PπB∥2F

By the given edit costs, GED(G1,G2) = minπ {GEDπ(G1,G2)}, hence,

GED(G1,G2) = min
π∈Φ(G1,G2)

∥APπ − PπB∥2F

Theorem 2. Given two graphs G1 and G2 of size n, GED(G1, G2) = minπ∈Φ(G1,G2)
||ÃPπ−PπB̃||2F

2 +

tr(PT
π D), where Ã, B̃ and D are defined as above.

Proof. We first reformulate Equation 4 as follows:

||ÃPπ−PπB̃||2F
2 + tr(PT

π D) =
||Ã−PπB̃PT

π ||
2
F

2 + tr(PT
π D)

Using the node-alignment function π, we reformulate the above to:∑
(i,j)∈[n]×[n] κ

2 · (aij−bπ(i)π(j))
2

2 +
∑

i∈[n] di,π(i)

Further manipulation via the definition of matrix D gives:∑
(i,j)∈[n]×[n]

κ2 ·
(aij − bπ(i)π(j))

2

2
+

∑
i∈G1is a dummy

dv(ϵ,L(π(i))) +
∑

i∈G1mapped to dummy π(i)

dv(L(i), ϵ) +
∑

L(i)̸=L(π(i))

dv(L(i),L(π(i)))

Notably, for any (i, j) ∈ [n]× [n], if aij = 0 and bπ(i)π(j) = 1, an (i, j) edge should be inserted.
Likewise, if aij=1 and bπ(i)π(j)=0, edge (i, j) should be deleted. Otherwise, if aij=bπ(i)π(j), the
term evaluates to 0. Besides, a dummy node i in G1 should be inserted with π(i) as the corresponding
node in G2, while a node i mapped to a dummy node π(i) should be deleted. In the event that none
of these conditions apply, node i is substituted with node π(i). We thus simplify the expression to:∑

(i,j) inserted

κ2 ·
b2π(i)π(j) + b2π(j)π(i)

2
+

∑
(i,j) deleted

κ2 ·
a2ij + a2ji

2
+

∑
i∈G1is inserted

dv(ϵ,L(π(i)))+∑
i∈G1is deleted

dv(L(i), ϵ) +
∑

i∈G1 is replacedwith π(i)

dv(L(i),L(π(i)))

Substituting the values, we obtain:∑
(i,j) inserted

κ2 +
∑

(i,j) deleted

κ2 +
∑

i∈G1is inserted

dv(ϵ,L(π(i))) +
∑

i∈G1is deleted

dv(L(i), ϵ) +
∑

i∈G1 is replaced with π(i)

dv(L(i),L(π(i)))

= GEDπ(G1,G2) (8)

Since GED(G1,G2) = minπ {GEDπ(G1,G2)} and minπ∈Φ(G1,G2)
||ÃPπ−PπB̃||2F

2
+ tr(PT

π D) =

GEDπ(G1,G2), GED(G1,G2) = minπ∈Φ(G1,G2)
||ÃPπ−PπB̃||2F

2
+ tr

(
PT
π D

)
.

Lemma 1. A doubly-stochastic matrix A with tr(AT (J −A)) = 0 is a permutation matrix.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. Given that tr(AT (J−A))=0, it follows that
∑

i

∑
j aij · (1−aij)=0. Since A is doubly-

stochastic, 0 ≤ aij ≤ 1 for all i and j, hence aij ·(1−aij) is non-negative for 1 ≤ i, j ≤ n. Thus,
aij ·(1−aij)=0 for all i and j. It follows that aij must be either 0 or 1 for each i and j. As A is
doubly-stochastic and all its entries are either 0 or 1, by definition A is a permutation matrix.

Theorem 3. The function in Equation (7) is convex for λ≤ (λi(Ã)−λj(B̃))2

2 , for all i, j∈{1, 2, . . . , n},
where λi(Ã) and λj(B̃) represent the eigenvalues of Ã and B̃, respectively.

Proof. We begin by considering the first term in Equation (7), 1
2∥ÃP −PB̃∥2. The second derivative

of this term is given by: I⊗ Ã2−2 · (B̃⊗ Ã)+ B̃2⊗ I , where⊗ denotes the Kronecker product, and
I represents the identity matrix. The second term in the equation is linear in the matrix P , implying
that its second derivative is zero. The second derivative of the third term is given by: −2λ(I ⊗ I).
Thus, the Hessian matrix of the entire function is:

I ⊗ Ã2 − 2 · (B̃ ⊗ Ã) + B̃2 ⊗ I − 2λ(I ⊗ I).

For the function to be convex, the Hessian must be positive semidefinite, which requires that its
eigenvalues be non-negative. This leads to the condition:

λ ≤ λi(Ã)2 + λj(B̃)2 − 2λi(Ã)λj(B̃)

2
=

(λi(Ã)− λj(B̃))2

2
, (9)

for all i, j ∈ {1, 2, . . . , n}, where λi(Ã) and λj(B̃) are the eigenvalues of matrices Ã and B̃,
respectively.

C EXPERIMENTS

C.1 HARDWARE AND SOFTWARE ENVIRONMENTS

We ran all experiments on a machine equipped with an Intel Xeon Gold 6142 CPU @1GHz and a
GeForce GTX 1080 Ti GPU. While heuristic methods including EUGENE run on the CPU, supervised
baselines exploit the GPU.

C.2 DATASETS

The semantics of the datasets are as follows:
• AIDS (Morris et al., 2020): A compilation of graphs originating from the AIDS antiviral screen

database, representing chemical compound structures.
• OGBG-Molhiv (Molhiv) (Hu et al., 2020): Chemical compound datasets of various sizes, where

each graph represents a molecule. Nodes correspond to atoms, and edges represent chemical bonds.
The atomic number of each atom serves as the node label.

• OGBG-Code2 (Code2) (Hu et al., 2020): A collection of Abstract Syntax Trees (ASTs) derived
from approximately 450,000 Python method definitions. Each node in the AST is assigned a label
from a set of 97 labels. We considered the graphs as undirected.

• Mutagenicity (Mutag) (Debnath et al., 1991): A chemical compound dataset of drugs categorized
into two classes: mutagenic and non-mutagenic.

• IMDB (Yanardag & Vishwanathan, 2015): This dataset consists of ego-networks of actors and
actresses who have appeared together in films. The graphs in this dataset are unlabelled.

• COIL-DEL (Riesen & Bunke, 2008): This dataset comprises graphs extracted from images of
various objects using the Harris corner detection algorithm. The resulting graphs are unlabelled.

• Triangles (Knyazev et al., 2019): This is a synthetically generated dataset designed for the task of
counting triangles within graphs. The graphs in this dataset are unlabelled.

C.3 PARAMETERS

Table H lists the parameters used for EUGENE. We set the convergence criterion of M-ADAM
to abs(prev dist− cur dist) < 1e−7, where prev dist, cur dist are the approximated Graph edit
distances in two successive iterations, itr − 1 and itr.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table H: Parameters used in EUGENE.

parameter value

µ 1
α 0.001
σth 1e3

Table I: Accuracy Comparison among baselines for unit edit costs. Cells shaded in green denote the
best performance in each dataset.

MAE SI
Methods AIDS Molhiv Code2 Mutag AIDS Molhiv Code2 Mutag

ERIC 0.57 0.66 0.56 0.65 0.00 0.00 0.00 0.00
EGSC 0.70 0.81 0.80 0.82 0.00 0.00 0.00 0.00
GRAPHEDX 0.65 0.85 0.59 0.78 0.00 0.00 0.00 0.00
H2MN 0.86 0.94 0.84 0.89 0.00 0.00 0.00 0.00
GMN-EMBED 0.61 0.75 0.76 1.15 0.00 0.00 0.00 0.00
GREED 0.59 0.82 0.75 0.75 0.00 0.00 0.00 0.00
SIMGNN 0.77 0.90 0.79 1.06 0.00 0.00 0.00 0.00

GEDGNN 1.19 2.16 1.50 1.89 0.00 0.00 0.00 0.00
GOTSIM 3.36 5.20 9.76 4.74 0.00 0.00 0.00 0.00
GMSM 7.34 13.04 10.01 13.32 0.00 0.00 0.00 0.00

BRANCH-TIGHT 4.13 4.98 6.79 7.05 0.02 0.02 0.02 0.01
ADJ-IP 0.45 2.16 2.32 2.27 0.83 0.69 0.50 0.62
F1 2.6 5.48 2.82 5.39 0.48 0.13 0.14 0.05
COMPACT-MIP 1.49 4.17 3.93 4.07 0.75 0.27 0.01 0.18
IPFP 2.81 5.19 2.85 4.97 0.08 0.02 0.14 0.02

EUGENE 0.26 0.55 0.72 0.58 0.87 0.74 0.69 0.72

C.4 ACCURACY UNDER UNIFORM EDIT COST SETTING

Table I presents the approximation accuracy results in terms of MAE and SI on benchmark datasets
under the uniform cost setting (Case 3). For MAE, EUGENE outperforms all baselines on the AIDS,
Molhiv, and Mutag datasets, while on the Code2 dataset, ERIC outperforms EUGENE. In terms of SI,
EUGENE consistently surpasses all considered baselines. These results establish EUGENE as a robust
method capable of accurately estimating GED across diverse cost settings. The difficulty (i.e., MAE)
increases as costs become more diverse (i.e., from uniform to non-uniform costs) and the size of the
considered edit space expands (i.e., from zero to non-zero cost of substitution). We thus observe the
lowest MAE in Setting 3, followed by Setting 1, and the highest MAE in Setting 2.

C.5 ACCURACY ON UNLABELLED DATASETS

Table J presents the accuracy comparison of IMDB, COIL-DEL, and Triangles datasets in terms of
MAE for cost setting Case 1 and Case 3. As these datasets are unlabelled, Case 2 is not applicable.
EUGENE consistently outperforms both supervised and heuristic baselines across all scenarios,
demonstrating its robustness and effectiveness for GED prediction across diverse datasets.

C.6 SI ON LARGE GRAPHS

Table 3 presents a comparison of EUGENE with other baselines in terms of the Strict Interpretability
(SI) metric for graphs of sizes [25, 50]. EUGENE consistently achieves significantly higher SI scores
compared to other heuristic methods. These superior SI scores on large graphs highlight EUGENE’s
enhanced scalability in delivering interpretable GED, outperforming other non-neural methods.

C.7 CARBON EMISSIONS

Table L presents the total carbon emissions for the top-performing models across various datasets.
EUGENE was executed on a CPU, which operates at a power consumption of approximately 150 watts

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table J: Accuracy Comparison among baselines in terms of MAE under different cost settings for
unlabelled datasets. Cells shaded in greendenote the best performance in each dataset.

Cost Setting Case 1 Cost Setting Case 3
Methods IMDB COIL-DEL Triangles IMDB COIL-DEL Triangles

ERIC 10.42 1.41 2.65 3.80 1.87 1.47
EGSC 5.96 3.23 3.80 6.50 3.89 2.82
GRAPHEDX 7.10 1.41 2.26 1.46 1.21 0.50
H2MN 15.51 8.44 7.02 7.20 4.27 3.38
GMN-EMBED 4.75 2.93 3.41 1.37 0.89 0.63
GREED 5.02 2.90 3.39 1.39 0.88 0.73
SIMGNN 7.58 2.00 2.36 3.73 1.04 0.97

GEDGNN 10.78 3.54 1.97 3.31 1.69 1.16
GOTSIM 25.01 9.41 6.94 8.20 4.19 2.84
GMSM 40.70 20.18 16.94 19.67 9.97 8.20

BRANCH-TIGHT 7.22 6.47 5.68 3.58 3.30 2.71
ADJ-IP 1.58 0.71 0.40 1.22 0.23 0.30
F1 8.68 3.75 1.58 4.26 1.75 0.82
COMPACT-MIP 17.05 4.01 1.04 9.56 2.10 0.64
IPFP 18.87 8.67 7.04 9.15 4.27 3.47

EUGENE 1.02 0.43 0.21 0.15 0.21 0.17

Table K: Accuracy comparison among baselines in terms of SI under different cost settings for graphs
of sizes [25, 50]. Cells shaded in green denote the best performance in each dataset.

Cost Setting Case 1 Cost Setting Case 2
Methods AIDS Molhiv Code2 Mutag AIDS Molhiv Code2 Mutag

BRANCH-TIGHT 0.12 0.03 0.05 0.09 0.01 0.05 0.04 0.04
ADJ-IP 0.18 0.03 0.09 0.10 0.25 0.08 0.13 0.10
F1 0.04 0.00 0.01 0.04 0.03 0.04 0.10 0.03
COMPACT-MIP 0.00 0.00 0.00 0.01 0.05 0.05 0.05 0.04
IPFP 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.00

EUGENE 0.35 0.31 0.30 0.46 0.36 0.26 0.18 0.16

under full load. In contrast, all other neural models utilized a GPU, which consumes approximately
250 watts under full load. Our carbon emission estimation follows a standard methodology:

Energy Consumption = Power (kW)× Time (hours)
CO2 Emissions = Energy Consumption× 475 gCO2/kWh

The emission factor of 475 gCO2/kWh is sourced from International Energy Agency (2019). The
carbon emissions account for the time taken to generate ground truth, training, and inference for the
neural models, whereas EUGENE, being optimization-based, only includes inference time. While
we acknowledge that training and ground-truth computation costs would be amortized over many
inferences, it is reasonable to include those costs for any model that requires them. EUGENE
demonstrates significantly lower carbon emissions compared to the supervised methods, achieving up
to 30 times lower emissions on the Molhiv dataset.

Table L: Total Carbon Emissions (in grams of CO2).

Model AIDS Molhiv Code2 Mutag

ERIC 75.56 204.22 71.42 222.82
EGSC 78.43 215.27 73.23 223.85

GRAPHEDX 410.65 612.09 426.40 251.55
H2MN 437.91 442.55 123.21 277.00

EUGENE 6.06 7.11 8.11 7.28

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table M: Running times (MM:SS) on benchmark datasets.

Methods AIDS Molhiv Code2 Mutag IMDB COIL-DEL Triangles

EUGENE 05:06 05:59 06:50 06:05 05:09 05:06 04:59
BRANCH-TIGHT 00:24 00:48 03:52 01:17 00:18 00:07 00:13
ADJ-IP 02:38 06:34 09:33 07:12 05:42 02:06 01:29
IPFP 00:20 00:45 01:40 01:20 00:15 00:05 00:09
COMPACT-MIP 10:02 11:47 12:53 12:16 07:35 07:38 05:01
F1 08:04 11:01 11:52 10:51 09:56 08:13 05:11

C.8 EFFICIENCY

Table M presents the running time of optimization based heuristic methods on the benchmark datasets
for the entire test set. Among these methods, IPFP and BRANCH-TIGHT demonstrates the fastest
runtimes but exhibits the poorest accuracy among all 15 baselines in Table 2 across datasets and cost
settings. Excluding BRANCH-TIGHT and IPFP, EUGENE achieves superior runtime performance
compared to other optimization based methods on the Molhiv, Code2, Mutag and IMDB datasets. On
the AIDS, COIL-DEL and Triangles datasets, ADJ-IP demonstrates better run times, and EUGENE
is second best. Importantly, EUGENE achieves a significant accuracy advantage while maintaining
competitive efficiency, reinforcing its position as both an effective and efficient solution for GED
approximation.

Time Complexity Analysis: The objective function (Eq. (7)) includes matrix multiplications with
a worst-case time complexity of O(n3). Gradient calculations also have a worst-case complexity
of O(n3) due to matrix multiplications. Thus, the overall time complexity becomes O(T · n3),
where T is the number of computation epochs. Additionally, as the algorithm is CPU-bound, GED
computations for each graph pair can be massively parallelized by leveraging multi-core CPUs and
hyperthreading.

Impact of Time Budgets: As certain heuristic baselines employ time constraints, we retained their
default parameter settings to ensure consistency. To examine how performance varies with increased
computational budget, we conducted an analysis on the Code2 dataset under Cost Setting 1, using
time budgets of 5, 10, and 15 minutes. The results are presented in Table N.

Table N: GED estimation error (MAE) on Code2 under varying time budgets (minutes).

Method 5 min 10 min 15 min

BRANCH-TIGHT 13.91 13.87 13.88
ADJ-IP 6.98 5.05 3.96
COMPACT-MIP 24.14 8.40 6.10
F1 16.31 6.28 7.72
IPFP 6.44 6.47 6.39

Branch-Tight and IPFP converged within 5 minutes, as evidenced by the absence of any improvement
in MAE with larger time budgets. The remaining three methods exhibited modest gains when given
additional time, suggesting that they benefit from prolonged optimization. Still, Eugene achieves a
MAE of 0.75 within 7 minutes, outperforming all baselines even at the maximum allotted time.

Table O: Accuracy (MAE) of EUGENE vs. EUGENE’.

Cost Setting Case 1 Cost Setting Case 2
Datasets EUGENE EUGENE’ EUGENE EUGENE’

AIDS 0.33 10.51 0.58 9.22
Molhiv 0.65 9.96 0.79 11.63
Code2 0.75 13.46 0.58 6.04
Mutag 0.68 19.12 1.01 16.10

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table P: Accuracy (MAE) of EUGENE vs. EUGENE-NoIR.

Cost Setting Case 1 Cost Setting Case 2
Datasets EUGENE EUGENE-NoIR EUGENE EUGENE-NoIR

AIDS 0.33 0.80 0.58 1.15
Molhiv 0.65 1.16 0.79 1.57
Code2 0.75 1.19 0.58 1.02
Mutag 0.68 1.14 1.01 1.53

Table Q: Accuracy comparison of EUGENE with EUGENE-FW in Cost Setting 1

Methods AIDS Molhiv Code2 Mutag
EUGENE-FW 6.67 11.79 6.59 13.09
EUGENE 0.33 0.65 0.75 0.68

C.9 ABLATION STUDY

We have so far evaluated EUGENE, which refines a doubly stochastic matrix toward a quasi-
permutation matrix using a permutation-inducing regularizer before rounding. For comparison,
we introduce a variant, EUGENE’, which directly rounds the doubly stochastic solution without this
regularization. As shown in Table O, EUGENE yields substantially lower MAE, highlighting the
benefit of guiding the solution closer to a permutation before rounding.

We also assess the impact of the inverse relabelling strategy of M-ADAM, which recenters the
problem after each iteration. To this end, we define a variant, EUGENE-NoIR, that omits this
transformation. Table P reports MAE for both variants: EUGENE consistently outperforms EUGENE-
NoIR, demonstrating the importance of performing gradient updates in coordinates aligned with the
identity.

We also investigate the effect of using the Frank-Wolfe (FW) algorithm in place of Adam within
Algorithm 1. As shown in Table Q, the M-Adam variant significantly outperforms the version that
employs FW (EUGENE-FW), demonstrating the effectiveness of our optimizer choice.

C.10 PARAMETER SENSITIVITY

We analyze the sensitivity of the M-Adam algorithm to the parameters listed in Appendix C.3, as
shown in Tables R and S. A lower value of µ increases the weight of edge costs, whereas a higher µ
prioritizes node costs. Across all datasets, µ = 1 yields the best performance. We use α = 0.001 (the
default value for Adam), which performs best on three out of four datasets.

To examine the impact of the λ-scheduling in M-ADAM, we conducted experiment where the
increment step was varied, results are presented in Table T

• Increment = 0.1: The influence of permutation constraints remained weak throughout optimization,
leading to under-constrained solutions and suboptimal performance.

• Increment = 0.5: This yielded the best results, striking a balance between exploration and constraint
enforcement, and was adopted as the default setting in Eugene.

• Increment = 1, 2: The optimizer rapidly enforced hard permutation constraints, prematurely
narrowing the search space and degrading solution quality.

These results emphasize the importance of a carefully tuned λ-schedule in achieving both accuracy
and stability in GED estimation.

C.11 IMPACT OF GRAPH SIZE AND GED

Section 4.4 presented heatmaps of MAE vs. graph size and true GED value on the Code2 dataset.
Heatmaps for the AIDS, Molhiv, and Mutag datasets are provided in Figs. D- F. The conclusions
remain consistent: GRAPHEDX, EGSC, and H2MN exhibit noticeably darker tones across the spectrum
compared to EUGENE, highlighting EUGENE’s superior scalability with respect to GED and graph
sizes across datasets.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table R: Accuracy comparision with varying µ

µ AIDS Molhiv Code2 Mutag

0.1 3.07 9.13 4.97 5.31
0.2 2.29 7.5 2.96 3.98
0.5 0.9 3.39 0.9 1.36
1 0.58 0.79 0.58 1.01
2 0.85 1.14 0.84 1.69

Table S: Accuracy comparision with varying α

α AIDS Molhiv Code2 Mutag

0.1 0.61 0.82 0.62 0.98
0.01 0.58 0.81 0.61 1.02
0.001 0.58 0.79 0.58 1.01

Table T: Effect of varying λ-increment step on GED estimation error (MAE).

Increment step AIDS molhiv code2 Mutag

0.1 1.45 2.08 1.40 2.10
0.5 0.33 0.65 0.75 0.68
1 0.80 1.54 2.77 1.85
2 3.19 6.18 10.01 9.88

0 25 50 75 100 125
GED

25

30

35

40

45

50

Gr
ap

h
Si

ze

Eugene - Effect of Graph Size & GED

0

10

20

30

40

50

60

(a) EUGENE

0 25 50 75 100 125
GED

25

30

35

40

45

50

Gr
ap

h
Si

ze

EGSC - Effect of Graph Size & GED

0

10

20

30

40

50

60

(b) EGSC

0 25 50 75 100 125
GED

25

30

35

40

45

50

Gr
ap

h
Si

ze

H2MN - Effect of Graph Size & GED

0

10

20

30

40

50

60

(c) H2MN

0 25 50 75 100 125
GED

25

30

35

40

45

50

Gr
ap

h
Si

ze

GraphEDX - Effect of Graph Size & GED

0

10

20

30

40

50

60

(d) GRAPHEDX

Figure D: MAE heatmap vs. graph size & GED for AIDS for graphs of size [25, 50].

0 25 50 75 100
GED

25

30

35

40

45

50

Gr
ap

h
Si

ze

Eugene - Effect of Graph Size & GED

0

10

20

30

40

50

60

(a) EUGENE

0 25 50 75 100
GED

25

30

35

40

45

50

Gr
ap

h
Si

ze

EGSC - Effect of Graph Size & GED

0

10

20

30

40

50

60

(b) EGSC

0 25 50 75 100
GED

25

30

35

40

45

50

Gr
ap

h
Si

ze

H2MN - Effect of Graph Size & GED

0

10

20

30

40

50

60

(c) H2MN

0 25 50 75 100
GED

25

30

35

40

45

50

Gr
ap

h
Si

ze

GraphEDX - Effect of Graph Size & GED

0

10

20

30

40

50

60

(d) GRAPHEDX

Figure E: MAE heatmap vs. graph size & GED for Molhiv for graphs of size [25, 50].

0 25 50 75 100 125
GED

25

30

35

40

45

50

Gr
ap

h
Si

ze

Eugene - Effect of Graph Size & GED

0

10

20

30

40

50

60

(a) EUGENE

0 25 50 75 100 125
GED

25

30

35

40

45

50

Gr
ap

h
Si

ze

EGSC - Effect of Graph Size & GED

0

10

20

30

40

50

60

(b) EGSC

0 25 50 75 100 125
GED

25

30

35

40

45

50

Gr
ap

h
Si

ze

H2MN - Effect of Graph Size & GED

0

10

20

30

40

50

60

(c) H2MN

0 25 50 75 100 125
GED

25

30

35

40

45

50

Gr
ap

h
Si

ze

GraphEDX - Effect of Graph Size & GED

0

10

20

30

40

50

60

(d) GRAPHEDX

Figure F: MAE heatmap vs. graph size & GED for Mutag for graphs of size [25, 50].

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C.12 ACCURACY ON VERY LARGE GRAPHS

As detailed in (Blumenthal & Gamper, 2018), GED methods are traditionally applied to small-
scale graphs due to computational complexity. We extend the feasibility of GED approximation
to substantially larger graphs. We present results on two unlabelled thousand-scale collaboration
network datasets, Netscience (|V | = 379, |E| = 914) and HighSchool (|V | = 327, |E| = 5818) in
Table U. To our knowledge, no prior GED approximation benchmark handles graphs of this scale. On
HighSchool, a dense evolving dataset, we compute the GED of the last graph version from versions
containing 80%, 85%, 90%, and 99% of edges. On NetScience, we create five graphs by introducing
small noise to the original graph. Since it’s not feasible to create a training set with exact ground-truth
GED for such large graphs, we excluded neural models from our analysis. IPFP didn’t terminate
within a time limit of 3 hrs. Results clearly indicate superior scalabilty of EUGENE both in terms of
MAE and running times.

Table U: Performance comparison on HighSchool and NetScience Datasets

MAE Running Time (sec)
Methods HighSchool NetScience HighSchool NetScience

ADJ-IP 4568 152.99 2695 1446
BRANCH-TIGHT 582 833 1115 2369
F1 5032 859.4 1912 1526

EUGENE 0 22.8 961 1372

C.13 ILLUSTRATIVE EXAMPLE WITH DOMAIN-SPECIFIC EDIT COSTS

To model meaningful structural similarity, we design edit costs with domain-specific heuristics from
chemistry for Molhiv dataset.

Node Substitution Cost. Substituting one atom for another alters a molecule’s electronic properties,
reactivity, and biological function. To account for these effects, node substitution costs are assigned
based on the electronegativity difference between atoms:

• Low Cost (1): Applied when the electronegativity difference is less than 0.2. These substitutions
typically involve chemically similar atoms that frequently co-occur in analogous functional groups.

• Moderate Cost (2): Assigned when the difference lies in [0.2, 0.7], indicating moderate chemical
dissimilarity.

• High Cost (3): Used when the difference exceeds 0.7, reflecting substitutions likely to disrupt
molecular structure and activity.

Node Insertion / Deletion Cost. The cost of inserting or deleting a node is determined by the bond
multiplicity of the associated atom:

• Cost = 3: Atom participates in at least one triple bond.

• Cost = 2: Atom participates in at least one double bond but no triple bond.

• Cost = 1: Atom is involved only in single bonds.

This hierarchy reflects the increasing structural and energetic disruption when removing atoms from
more rigid bonding environments.

Edge Insertion / Deletion Cost. Edge insertion and deletion costs are set uniformly to 1.

Table V: GED estimation error (MAE) on Molhiv under chemistry-informed edit costs.

Method EUGENE ERIC EGSC GRAPHEDX GREED

Molhiv 1.30 2.09 1.94 1.74 2.58

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

We presented the results in Table V. Eugene outperforms competing baselines under the proposed
chemistry-informed edit cost setting, demonstrating its ability to effectively capture real-world
molecular similarity.

C.14 ILLUSTRATIVE EXAMPLE OF EUGENE ’S PIPELINE

We considered two graphs of sizes 12, 11 respectively and show four stages of EUGENE ’s operation:
(i) the initial mapping; (ii) the doubly stochastic matrix generated after the first iteration of Algorithm 1
(λ = 0); (iii) the quasi-permutation matrix at the end of third iteration of Algorithm 1; (iv) The final
mapping returned by EUGENE. The optimal transformation from Graph 1 to Graph 2 involves
removing node 10, removing the edge from node 1 to node 4, and adding an edge from node 5 to node
9 in Graph 1. As the figure shows, by the third iteration, our novel regularizer has turned the doubly
stochastic matrix to a sparse one. At the end, the algorithm achieves the optimal node alignment.
After iteration 3, nodes 6 and 7 of Graph 1 have similar weightage for nodes 5 and 6 of Graph 2,
as these nodes share similar structural neighborhoods. Node 10 is mapped to node 11, which is a
dummy node in Graph 2, indicating that it should be deleted.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0

1

2

3

4

5
6

7

8

9

10

11
Graph 1

0
1

2

3
4

5

6

7

8

9

10
Graph 2

0 1 2 3 4 5 6 7 8 9 10 11
Graph 2 Nodes

0
1
2
3
4
5
6
7
8
9

10
11

Gr
ap

h
1

No
de

s

Initial Mapping

0 1 2 3 4 5 6 7 8 9 10 11

Graph 2 Nodes

0
1
2
3
4
5
6
7
8
9

10
11

Gr
ap

h
1

No
de

s

Mapping After 1st iteration

0 1 2 3 4 5 6 7 8 9 10 11

Graph 2 Nodes

0
1
2
3
4
5
6
7
8
9

10
11

Gr
ap

h
1

No
de

s

Mapping After 3rd iteration

0 1 2 3 4 5 6 7 8 9 10 11

Graph 2 Nodes

0
1
2
3
4
5
6
7
8
9

10
11

Gr
ap

h
1

No
de

s

Final Mapping

0.0

0.2

0.4

0.6

0.8

1.0

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure G: Operational stages of EUGENE

24

	Introduction and Related work
	Preliminaries and Problem Formulation
	Mapping GED to Graph Alignment

	Eugene: Proposed Method
	GED as Generalized Graph Alignment
	Permutation-Inducing Regularization
	M-Adam Details
	Inverse Relabeling

	Experiments
	Experimental Setup
	Benchmarking Accuracy (MAE)
	Accuracy (SI)
	Accuracy on Large Graphs
	Comparison with Fugal

	Conclusions
	Reproducibility Statement
	Appendix
	Related Work
	Proofs
	Experiments
	Hardware and Software environments
	Datasets
	Parameters
	Accuracy under Uniform Edit Cost Setting
	Accuracy on Unlabelled Datasets
	SI on Large Graphs
	Carbon Emissions
	Efficiency
	Ablation Study
	Parameter Sensitivity
	Impact of Graph Size and GED
	Accuracy on Very Large Graphs
	Illustrative Example with domain-specific edit costs
	Illustrative Example of Eugene ’s Pipeline

