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Abstract

Tandem spoken language understanding
(SLU) systems suffer from the so-called
automatic speech recognition (ASR) error
propagation problem. Additionally, as the
ASR is not optimized to extract semantics, but
solely the linguistic content, relevant semantic
cues might be left out of its transcripts. In
this work, we propose a multimodal language
understanding (MLU) architecture to mitigate
these problems. Our solution is based on
two compact unidirectional long short-term
memory (LSTM) models that encode speech
and text information. A fusion layer is also
used to fuse audio and text embeddings.
Two fusion strategies are explored: a simple
concatenation of these embeddings and a
cross-modal attention mechanism that learns
the contribution of each modality. The first
approach showed to be the optimal solution
to robustly extract semantic information from
audio-textual data. We found that attention
is less effective at testing time when the text
modality is corrupted. Our model is evaluated
on three SLU datasets and robustness is tested
using ASR outputs from three off-the-shelf
ASR engines. Results show that the proposed
approach effectively mitigates the ASR error
propagation problem for all datasets.

1 Introduction

Speech signals carry out the linguistic message,
with speaker intentions, as well as his/her specific
traits and emotions. As depicted in Figure 1, to ex-
tract semantic meaning from audio, tandem spoken
language understanding (SLU) uses a pipeline that
starts with an automatic speech recognizer (ASR)
that transcribes the linguistic information into text,
and a natural language understanding (NLU) mod-
ule that interprets the ASR textual output. Such
solutions offer several drawbacks (Serdyuk et al.,
2018)(Bastianelli et al., 2020). First, the NLU
relies on ASR transcripts to attain the semantic
information. Because the ASR is not error-free,
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Figure 1: Tandem SLU vs proposed SLU architectures.
The former relies solely on ASR transcripts to extract
semantics whereas the latter fuses audio and text data
to improve robustness of the SLU system.

the NLU module needs to deal with ASR errors
while extracting the semantic information (Simon-
net et al., 2017)(Zhu et al., 2018)(Simonnet et al.,
2018)(Huang and Chen, 2020). This is a major
issue as error propagation significantly affects the
overall SLU performance as shown in (Bastianelli
et al., 2020).

Another drawback of such approaches is the
fact that the two modules (ASR and NLU) are
optimized independently with separate objectives
(Serdyuk et al., 2018)(Agrawal et al., 2020). While
the ASR is trained to transcribe the linguistic con-
tent, the NLU is optimized to extract the semantic
information, commonly from clean text (Huang
et al., 2020). Hence, the tandem approach is not
globally optimal for the SLU task. To overcome
this, end-to-end (e2e) SLU solutions have been pro-
posed as an alternative to the ASR-NLU pipeline
(Haghani et al., 2018)(Lugosch et al., 2019). As
pointed out in (Bastianelli et al., 2020), a recurrent
problem of e2e SLU solutions is the scarcity of pub-
licly available resources which leads to sub-optimal
performance.

In this paper, we are interested in improving the
robustness of tandem SLU systems. As depicted
in Figure 1, this can be achieved by replacing the
NLU by the so-called multimodal language under-
standing (MLU) module. Such MLU-based solu-



tion fuses text transcripts with their corresponding
speech signal. We evaluate two fusion strategies.
One based on a simple concatenation of text and
audio embeddings and the other one base on a cross-
modal attention layer. The fusion is performed on
the outputs of the text and speech encoders. Our
results show that, for an error-free ASR, combin-
ing text and speech while extracting meaning from
the user’s utterance can help to improve perfor-
mance. Experiments also show that our solution
leads to SLU robustness as it helps to mitigate per-
formance degradation caused by noisy ASR tran-
scripts. To confirm that, the SLU robustness was
assessed on three SLU datasets with different com-
plexity: (1) the SNIPS dataset (Saade et al., 2019);
(2) the Fluent Speech Command (FSC) dataset (Lu-
gosch et al., 2019); and (3) the recent released
and challenging Spoken Language Understanding
Resource Package (SLURP) dataset (Bastianelli
et al., 2020). We also tested our solution using
ASR trascripts from three off-the-shelf ASR en-
gines. The contribution of this work can be summa-
rized as follows. First, we propose a multimodal
architecture that uses speech information to lever-
age the performance of traditional tandem SLU
solutions. Second, we show that such approach
confers robustness to SLU solutions by mitigating
performance degradation due to ASR error propa-
gation.

The remainder of this document is organized as
follows. In Section 2, we review the related work
on SLU and multimodal approaches. Section 3
presents the proposed method. Section 4 describes
our experimental setup and Section 5 discusses our
results. Section 6 gives the conclusion and future
works.

2 Related Work

Joint ASR+NLU optimization. One drawback of
tandem SLU solutions is that the ASR and the NLU
are optimized separately. The literature offers dif-
ferent approaches to mitigate this problem. For
example, in (Kim et al., 2017), the authors jointly
train an online SLU and a language model. They
show that a multi-task solution that learns to pre-
dict intent and slot labels together with the arrival
of new words can achieve good performance in in-
tent detection and language modeling with a small
degradation on the slot filling task when compared
to independently trained models. In (Haghani et al.,
2018), the authors propose to jointly optimize both

ASR and NLU modules to improve performance.
Several e2e SLU encoder-decoder architectures are
explored. It is shown that better performance is
achieved when an e2e SLU solution that performs
domain, intent, and argument predictions is jointly
trained with an e2e model that learns to generate
transcripts from the same audio input. This study
provides two important considerations. First, joint
optimization induces the model to learn from er-
rors that matter more for SLU. Second, the authors
also found from their experimental results that di-
rect prediction of semantics from audio, neglecting
the ground truth transcript, leads to sub-optimal
performance.

End-to-end SLU. Recently, we have witnessed
an increasing interest in minimizing SLU latency
as well as the joint optimization problem with
end-to-end (e2e) SLU models. Such solutions
bypass the need of an ASR and extracts semantics
directly from the speech signal. In (Lugosch et al.,
2019), for example, the authors introduce the
FSC dataset and present a pre-training strategy
for e2e SLU models. Their approach is based on
using ASR targets, such as words and phonemes,
that are used to pre-train the initial layers of
their final model. These classifiers once trained
are discarded and the embeddings from the
pre-trained layers are used as features for the
SLU task. The authors show that improved
performance on large and small SLU training
sets was achieved with the proposed pre-training
approach. Similarly, in (Chen et al., 2018), the
authors propose to fine-tune the lower layers of an
end-to-end CNN-RNN based model that learns
to predict graphemes. This pre-trained acoustic
model is optimized with the CTC loss and then
combined with a semantic model to predict intents.
A relevant and more recent research is presented
in (Mhiri et al., 2020). In this work, the proposed
speech-to-intent model is built based on a global
max-pooling layer that allows for processing
speech signals of varied length, also with the
ability to process a given speech segment while
receiving an upcoming segment from the same
speech. In (Potdar et al., 2021), an end-to-end
streaming SLU framework is proposed. With a
unidirectional LSTM architecture, optimized with
the alignment-free CTC loss, and pre-trained with
the cross-entropy criterion, the authors show that
their solution can predict multiple intentions in
an online and incremental way. Their results are



comparable to the performance of start-of-the-art
non-streaming models for single-intent and
multi-intent classification.

Multimodal SLU. A recurrent problem of e2e
SLU solutions is the limited number of publicly
available resources (i.e. semantically annotated
speech data) (Bastianelli et al., 2020). Because
there are much more NLU resources (i.e. seman-
tically annotated text without speech), many ef-
forts have been made towards transfer learning
techniques that enable the extraction of acoustic
embeddings that borrow knowledge from state-of-
the-art language models such as BERT (Devlin
et al., 2018). In (Huang et al., 2020), for instance,
the authors propose two strategies to leverage per-
formance of e2e speech-to-intent systems with un-
paired text data. The first method consists of two
losses: (1) one that optimizes the entire network
based on text and speech embeddings, extracted
from their respective pretrained models, and are
used to classify intents; and (2) another loss that
minimizes the mean square error between speech
and text representations. This second loss only
back-propagates to the speech branch as the goal
is to make speech embeddings resemble text em-
beddings. The second method is based on a data
augmentation strategy that uses a text-to-speech
(TTS) system to convert annotated text to speech.
In (Sar et al., 2020), the authors show that the per-
formance of a speech-only e2e SLU model can be
improved by training the model with non-parallel
audio-textual data. For that, the authors propose
a multiview learning technique based on two uni-
modal branches consisting of an encoder for each
modality. The unimodal branches receive either
text or speech as input in order to produce the
output. The authors first train the text branch as
more resources are available. After, the classifier
is frozen and the speech encoder is trained. As
the final step, both branches are fine-tuned using
parallel data and the shared classifier.

3 Proposed Model

3.1 Spoken Utterance Classification

As a special case of SLU, spoken utterance classifi-
cation (SUC) aims at classifying the observed ut-
terance into one of the predefined semantic classes
L = {ly,...,lx} (Masumura et al., 2018). Thus,
a semantic classifier is trained to maximize the
class-posterior probability for a given observation,

W = {w1,ws, ..., w; }, representing a sequence of
tokens. This is achieved by the following probabil-
ity:

L* = arg mLaxP(LWV, 0) (1)

where 6 represents the parameters of the end-to-
end neural network model. In this work, our as-
sumption is that the robustness of such network
can be improved if an additional modality, X =
{x1, z9, ..., T, }, representing acoustic features, is
combined with the text transcript. Thus, Eq. (1)
can be re-written as follow:

L* = argmLaXP(LH/V, X,0) ()

3.2 Architecture Overview

We adopt two compact unidirectional long short-
term memory (LSTM) encoders to process speech
and text modalities independently. As shown in Fig-
ure 2, the LSTM speech encoder receives wav2vec
embedded features as input and fine-tunes the
speech representation for the downstream SLU task.
Likewise, word2vec text embeddings are provided
to the LSTM text encoder which further enhance
the text representation. The whole model then con-
sists of a speech encoder, a text encoder, and a fu-
sion layer. Instead of an over-parameterized LSTM
encoders, we choose a compact approach that we
detail in the following sections.
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Figure 2: Diagram depicting the proposed multimodal
language understanding (MLU) architecture used to
predict semantic labels from audio-textual data. As fu-
sion strategies, we explore (1) a simple concatenation
of the two modalities and (2) a soft alignment between
speech and text modalities which is achieved using
a cross-modal attention layer that projects the speech
onto the text space.

3.3 Wav2vec Embeddings

We use the wav2vec model to extract deep semantic
features from speech. While state-of-the-art mod-



els require massive amount of transcribed audio
data to achieve optimal performance, wav2vec is an
unsupervised pre-trained model trained on a large
amount of unlabelled audio (Schneider et al., 2019).
The motivation to adopt wav2vec relies on the fact
that the model is able to learn a general audio rep-
resentation that helps to leverage the performance
of downstream tasks (Schneider et al., 2019). Thus,
given an audio signal, x; € X, a five-layer convo-
lutional neural network, f : X — Z, is applied
in order to obtain a low frequency feature repre-
sentation, z; € Z, which encodes about 30 ms of
audio at every 10 ms. Following, a context network,
g : Z — C, is applied to the encoded audio and
adjacent embeddings, z;, ..., 2y, are used to attain
a single contextualized vector, ¢; = g(z;, ..., zy).
Note that ¢; represents roughly 210ms of audio con-
text with each step ¢ comprising a 512-dimensional
feature vector (Schneider et al., 2019).

3.4 LSTM Speech Encoder

A single-layer LSTM is used to further improve
the speech representation from wav2vec for the
downstream SLU task. Thus, it takes wav2vec
embeddings as input and is optimized to output
semantic labels such as slot values and intents. The
feature dimension is controlled with a projection
layer as shown bellow:

s; = LSTM(c;),i € {1..N} 3)

S, = Wspsi (4)

where c; is the sequence of 512-dimensional
wav2vec feature representation, with ¢ being the
frame index. The hidden states of the unidirec-
tional LSTM is represented by s; which is a 1024-
dimensional representation that undergoes a projec-
tion layer, W, leading to S;. The projection layer
is an alternative LSTM architecture, proposed in
(Sak et al., 2014), that minimizes the computational
complexity of LSTM models. In our architecture,
we project a 1024-dimensional features to half of
this dimension.

3.5 LSTM Text Encoder

The text encoder takes word embeddings as input
and is trained on the downstream task to output
semantic labels in a similar way as the speech en-
coder. A single-layer LSTM is adopted to capture

temporal context from the input text representation,
as shown bellow:

h; = LSTM(e;),j € {1...M} (5)

where e; is a sequence of 256-dimensional word
representation, with j being the word index in a
sentence. The hidden states of the unidirectional
LSTMs are represented by h; which is a 512-
dimensional feature representation.

3.6 Cross-modal Fusion Layer

The cross-modal fusion layer receives output from
the speech and text encoders. Note that the feature
representation from these encoders, s; and h;, are
512-dimensional vectors with different timestep
lengths, denoted by N and M, respectively, for
speech and text modalities. The cross-modal fusion
layer then comprises a simple concatenation of
speech and text embeddings, as shown below:

o = [mean-pooling(s;), mean-pooling(h;)] (6)

where o is a fixed-length vector attained after ap-
plying average pooling on the hidden states of s;
and h;. As suggested in (Lin et al., 2020), mean-
pooling can be used to attain the high-level seman-
tic representation within an utterance. In our case,
it also solves the alignment issue between speech
and text modalities as they are based on length.
Note that o undergoes a linear transformation prior
to computing softmax with cross entropy for clas-
sification, as follow:

o=W'o, o€ R (7
e
b= "= ()
Yooy €%
L
L= —Zyl log p; &)
=1

where W is a matrix with trainable parameters and
0y is the [-th element in 0, and y; is 1 for the ground-
truth label and 0 otherwise.

3.7 Cross-modal Attention Fusion Layer

The cross-modal attention layer investigated here
receives output from the speech and text encoders,
s; and h;. The motivation to apply the attention
mechanism is two fold. First, it helps to optimize
the model taking into account the contribution of



SLURP SNIPS FSC
# Speakers 97 69 177
# Audio files (headset) 30,043 2,943 34,603
# Audio files (Close-talk) - 2,943 37,674
Duration [hs] 19 5.5 58
Avg. length [s] 23 34 29

Table 1: Statistics of audio samples for SLURP, SNIPS
and FSC (Bastianelli et al., 2020).

each modality for the downstream task. Moreover,
it develops a context matrix of attention weights
that are used to learn the soft alignment between
speech and text modalities, as proposed in (Xu
et al., 2019). This is attained by projecting the
speech representation onto the text space. For in-
stance, the attention weight between the speech
frame ¢ and the word embed 5 can be calculated us-
ing the hidden state s; of the speech LSTM encoder
and the hidden state h; of the text LSTM encoder
(Xu et al., 2019), as shown bellow:

aj; = tanh(uT§i + vThj +b) (10)
et
= 1
(12)

S; = Z Q;iS;
7

with u, v and b being learnable parameters. In
Eq. (11) the normalized attention weight, o ;, is
attained, representing the soft alignment strength
between the j-th word and the i-th speech frame.
Note that the alignment between speech feature vec-
tors corresponding to the j-th word is the weighted
summation of hidden states from the speech LSTM
econder which is denoted by s; in Eq. (12). The fi-
nal part comprises an average pooling, as described
bellow:

(13)

where 0 is a fixed-length vector, attained after ap-
plying average pooling on S;, that undergoes a lin-
ear transformation similar to the one discussed in
the previous section.

6 = mean-pooling([Sy, ..., Sps])

4 Experimental Setup
4.1 Datasets

Three SLU datasets are used in our experiments.
The reader is referred to Table 1 for partial statis-
tics of audio samples for these datasets. The FSC

dataset which comprises single-channel audio clips
sampled at 16 kHz. The data was collected us-
ing crowdsourcing, with participants requested to
cite random phrases for each intent twice. It con-
tains about 19 hours of speech, providing a total
of 30,043 utterances cited by 97 different speakers.
The data is split in such a way that the training set
contains 14.7 hours of data, totaling 23,132 utter-
ances from 77 speakers. Validation and test sets
comprise 1.9 and 2.4 hours of speech, leading to
3,118 utterances from 10 speakers and 3,793 utter-
ances from other 10 speakers, respectively. The
dataset comprises a total of 31 unique intent labels
resulted in a combination of three slots per audio:
action, object, and location. The latter can be ei-
ther “none”, “kitchen”, “bedroom”, “washroom”,
“English”, “Chinese”, “Korean”, or “German”. In
our experiments, we defined intent as the combina-
tion of action and object, which led to a total of 15
different intent labels. Location was defined as slot,
which led to a total of 8 different slot labels. More
details about the dataset can be found in (Lugosch
et al., 2019).

SNIPS is the second dataset considered. It con-
tains a few thousand text queries. Recordings were
crowdsourced and one spoken utterance was col-
lected for each text query in the dataset. There are
two domains available: smartlights (English) and
smartspeakers (English and French). In our exper-
iments only the former was used as it comprised
only English sentences. With a reduced vocabulary
size of approximately 400 words, the data contains
6 intents allowing to turn on or off the light, or
change its brightness or color (Saade et al., 2019).

The recent released SLURP dataset is also con-
sidered in our experiments. It is a multi-domain
dataset for end-to-end SLU and comprises approxi-
mately 72,000 audio recordings (58 hours of acous-
tic material), consisting of user interactions with a
home assistant. The data is annotated with three
levels of semantics: Scenario, Action and Intent,
having 18, 56 and 101 classes, respectively. The
dataset collection was performed by first annotat-
ing textual data, which was then used as golden
transcripts for audio data collection. For that, 100
participants were asked to read out the collected
prompts. This was performed in a typical home or
office environment. Although SLURP offers dis-
tant and close-talk recordings, only the latter were
used in our experiments. For more details about the
dataset, the reader can refer to (Bastianelli et al.,
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Figure 3: Pipeline for generating ASR text transcripts.

2020).

Note that compared to other datasets, SLURP is
much more challenging. The authors in (Bastianelli
et al., 2020), directly compared SLURP to FSC and
SNIPS in different aspects. For instance, SLURP
contains 6x more sentences than SNIPS and 2.5x
more audio samples than FSC. It also covers 9
times more domains and 10 times lexically richer
than both FSC and SNIPS. SLURP also provides
a larger number of speakers compared to FSC and
SNIPS. Next, we describe three ASR engines used
to generate text transcripts. We also present the
performance of these engines in terms of WER for
each SLU dataset.

4.2 ASR engines

In order to evaluate the performance of our model
in a more realistic setting, we simulate the gen-
eration of text transcripts from ASR engines as
depicted in Figure 3. This is particularly impor-
tant to assess the robustness of SLU models when
golden transcripts are not available.

4.3 Noise Injection

Introducing noise into a neural network input is a
form of data augmentation that improves robust-
ness and leads to better generalization (Coulombe,
2018). To increase the robustness of our proposed
model, we injected noise word into the training
set. We used lexical replacement which consists
of proposing one or more words that can replace
a given word. Thus, we choose a random word
from the vocabulary V' with the main constraint
to not be the target word w in an utterance. This
was achieved by perturbing golden transcripts by
adding, dropping, or replacing a few words in a
sentence. During training, we randomly selected
30 % of sentences within a batch to be corrupted
with noise. Moreover, only 1/3 of words within a
sentence were corrupted.

4.4 Experimental Settings

Our network is trained on mini-batches of 16 sam-
ples over a total of 200 epochs. Early-stopping
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Figure 4: Word error rate (WER) based on true ASR
engines (cmu, google, cloud and wit) for the three in-
vestigated datasets.

is used in order to avoid overffiting, thus training
is interrupted if the accuracy on the validation set
is not improved after 20 epochs. Our model was
trained using the Adam optimizer (Kingma and Ba,
2014), with the initial learning rate set to 0.0001.
Dropout probability was set to 0.3 and the parame-
ter for weight decay was set to 0.002. Datasets are
separated into training, validation and test sets and
the hyperparameters are selected based on the per-
formance on the validation set. All reported results
are based on the accuracy on the test set.

Our experiments are based on 4 models trained
to predict semantic labels: (1) the NLU base-
line; (2) the E2E SLU; (3) the MLU and (4) the
MLU(ATT) that uses attention mechanism. The
first model is based on the text LSTM encoder and
is trained with text-only (TO). The second model is
based on the speech LSTM encoder and is trained
with speech-only (SO). The two MLU models are
based on text and speech and use output embed-
dings from the pre-trained LSTM encoders men-
tioned before.

5 Results

5.1 Impact of ASR Error Propagation on
NLU

In Table 2, we investigate the impact of the ASR er-
ror propagation into our NLU model. For this, tran-
scripts sampled from CMU, WIT and Google ASR
engines were mixed with golden transcript samples.
This was performed only for the test set and we
can observe a similar trend across all datasets and
tasks. Performance decays as the number of ASR
transcript samples increases. The performance on
the FSC dataset is least affected by ASR outputs,
specially when the transcripts from the commer-



20% 40% 60% 80% 100 %
Task Engine FSC

CMU | 90.79 8275 74.05 6592 57.27

Intent WIT | 99.23 98.44 97.83 96.75 96.38
Google | 99.23 9844 98.15 9741 96.94

CMU | 9575 91.85 87.34 8241 77.92

Slot WIT | 99.26 99.07 98.02 97.62 96.88
Google | 99.57 98.41 98.73 98.73 98.31

SNIPS

CMU | 8494 8093 69.56 60.53 51.5

Intent WIT | 93.64 9431 91.63 90.63 88.29
Google | 9531 9096 89.29 87.28 83.61

SLURP

CMU | 73.71 62.52 49.89 38.85 30.46

Scenario  WIT | 83.42 81.66 79.00 77.34 75.47
Google | 83.42 82.07 80.34 78.00 76.69

CMU | 71.77 60.90 49.21 37.78 29.22

Action WIT | 80.56 7844 7642 74.01 72.53
Google | 80.87 7839 76.58 73.89 7243

CMU | 66.66 54.52 42.64 30.65 21.57

Intent WIT | 76.11 73.18 70.54 67.71 65.77
Google | 76.47 7374 71.29 68.72 66.86

Table 2: Effect of mixing golden transcripts with vary-
ing amount of ASR transcript output on our NLU
model. We investigate SLURP, FSC and SNIPS
datasets as well as three ASR engines: CMU, WIT and
Google.

cial ASR engines were used. This is because the
FSC is less challenging compared to the other two
datasets, as discussed in (Bastianelli et al., 2020)
and also shown in Figure 4. For the academic
ASR engine, CMU, we observe a decay of 42 %
for intent classification and 22 % for slot predic-
tion. The NLU performance is also evaluated on
the SNIPS dataset. We first notice a lower accu-
racy compared to the FSC dataset and this is due
to the characteristic of SNIPS, i.e., less samples to
train the neural network and overall a slightly more
challenging dataset as observed in Table 2. The
performance on the SLURP dataset is the most af-
fected by noisy ASR transcripts. For the academic
ASR engine, for example, performance can get as
low as 21 %, for intent prediction, and as low as
30 % for scenario and action predictions, repre-
senting a decay in performance of approximately
72 %, 64 % and 64 %, respectively. As shown in
Figure 3 and discussed in (Bastianelli et al., 2020),
SLURP is a more challenging SLU dataset. For the
other two comercial ASR engines, the impact of
ASR transcripts are much lower but still exists for
the SLURP dataset, representing a decay in terms
of accuracy of roughly 15 %, 11 % and 12 % for
intent, scenario and action predictions respectively.

Model FSC SNIPS SLURP
Intent Slots Intent Scenario Action Intent
E2ESLU 99.41 9939  63.87 69.98 60.80 58.22
NLU 100.00 100.00 95.98 86.85 83.24 78.59
MLU 100.00 100.00 93.31 87.67 84.26 78.72
MLU(ATT | 100.00 100.00 92.64 85.42 81.14  74.68

Table 3: Accuracy results for the SLURP, FSC and
SNIPS datasets when gold transcripts are available for
training and testing the NLU, MLU and the MLU with
the attention mechanism.

5.2 Combination of Speech and Text

In Table 3, we compare the performance of the
NLU baseline, E2E SLU and the two MLU ap-
proaches. Across all datasets, the E2E SLU pro-
vided lower accuracy compared to the NLU and
MLU solutions. This is expected such solutions are
harder to train because speech signals accommo-
dates not just variability due to the linguistic infor-
mation, but also intra- and inter-speaker variability
(Bent and Holt, 2017), and information from the
acoustic environment. Not surprisingly, the FSC
showed to be the easiest task with accuracy as high
as 100 % for all modalities, with a slight decay for
speech-only, achieving 99.41 % and 99.39 % accu-
racy for intent and slot classification, respectively.
The gap between E2E SLU and the other modalities
is more significant for the SNIPS and SLURP, with
the former being linguistically more challenging.
For instance, our TO model is able to achieve 95.98
% accuracy for intent classification on the SNIPS
dataset while our SO model achieves only 63.87
%. Similar trend is observed for the SLURP tasks.
Note that the MLU provides better performance
when compared to the MLU(ATT). One explana-
tion is that the speech features are noisier (com-
prising much more variability), and the attention
weights tend to lean more towards text, neglecting
complementary information from the speech signal.
The MLU approach without attention also outper-
formed our NLU model for the SLURP dataset.
The best performance for the SNIPS dataset was
achieved with the NLU approach.

5.3 SLU Robustness Towards ASR Error
Propagation

In Figure 5, we evaluate the robustness of the pro-
posed MLU towards ASR error propagation. To
evaluate a more realistic scenario, results are re-
ported using 100 % of ASR output, i.e., we assume
no access to golden transcripts during test. We
considered two approaches during training: with
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Figure 5: SLU performance when ASR transcripts from the CMU ASR engine is used during test and training is
performed (a) without noise injection and (b) with noise injection.

and without noise injection. In all experiments,
we found that introducing noise during training
(see Figure 5-b) was beneficial and helped to in-
crease robustness. We also observed that our model
was more valuable for low quality ASR transcripts
attained from the academic ASR (i.e. CMU en-
gine) and results are shown in Figure 5. For the
commercial ASR engines, which provide higher
quality transcripts, performance of the proposed
MLU without attention is equivalent to text-only
and slightly better in some cases.

5.4 Limitations and Future Work

A clear limitation of this work is its results to-
wards the larger and more challenging SLURP
dataset. Although we achieve competitive perfor-
mance compared to the baseline results shared by
the authors in (Bastianelli et al., 2020), results of
our E2E SLU are way below. This corroborates
with the findings in (Bastianelli et al., 2020), where
several SOTA E2E SLU were tested and were not
able to surpass the proposed modular (ASR+NLU)
baselines as well. Note that the two baselines pre-
sented in (Bastianelli et al., 2020), are way more
complex than our single-layer LSTM combined
with word2vec embeddings. As for our MLU on
the SLURP dataset, it was severely affected by the
quality of the text transcripts.

As future work, we plan to propose a low-latency
MLU architecture. We will adapt and evaluated
the proposed MLU model for a streaming scenario
where chunks of speech and text are processed in
an online fashion and predictions of semantic labels
are incrementally performed.

6 Conclusion

In this paper, we propose a multimodal language
understanding (MLU) architecture, which com-
bines speech and text to predict semantic informa-
tion. Our main goal was to mitigate ASR error prop-
agation into traditional NLU. The proposed model
is based on two unidirectional LSTM encoders that
learn speech and text representation, respectively.
Two fusion approaches are explored and compared.
The first one is based on a cross-modal attention
mechanism, which is meant to align speech and
text embeddings attained from the speech and text
encoders. The second one is based on a simple
concatenation of speech and text embeddings av-
eraged over the LSTM timesteps. Performance
is evaluated on 3 dataset, namely, SLURP, FSC
and SNIPS. We also used three out-of-the-shelf
ASR engines to investigate the impact of transcript
errors and the robustness of the proposed model
when golden transcripts are not available. We first
show that our model outperforms the text-only as
well as the audio-only modules when golden tran-
scripts are used as input. For instance, the proposed
model achieves 87.16 %, 83.75 % and 79.18 %
accuracy for scenario, action and intent classifica-
tion in SLURP dataset, respectively, outperforming
text-only and speech-only for the first two tasks.
We also evaluated the robustness of our towards
ASR transcripts. Results show that the proposed
approach can robustly extract semantic information
from audio-textual data.
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