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Abstract

Tandem spoken language understanding001
(SLU) systems suffer from the so-called002
automatic speech recognition (ASR) error003
propagation problem. Additionally, as the004
ASR is not optimized to extract semantics, but005
solely the linguistic content, relevant semantic006
cues might be left out of its transcripts. In007
this work, we propose a multimodal language008
understanding (MLU) architecture to mitigate009
these problems. Our solution is based on010
two compact unidirectional long short-term011
memory (LSTM) models that encode speech012
and text information. A fusion layer is also013
used to fuse audio and text embeddings.014
Two fusion strategies are explored: a simple015
concatenation of these embeddings and a016
cross-modal attention mechanism that learns017
the contribution of each modality. The first018
approach showed to be the optimal solution019
to robustly extract semantic information from020
audio-textual data. We found that attention021
is less effective at testing time when the text022
modality is corrupted. Our model is evaluated023
on three SLU datasets and robustness is tested024
using ASR outputs from three off-the-shelf025
ASR engines. Results show that the proposed026
approach effectively mitigates the ASR error027
propagation problem for all datasets.028

1 Introduction029

Speech signals carry out the linguistic message,030

with speaker intentions, as well as his/her specific031

traits and emotions. As depicted in Figure 1, to ex-032

tract semantic meaning from audio, tandem spoken033

language understanding (SLU) uses a pipeline that034

starts with an automatic speech recognizer (ASR)035

that transcribes the linguistic information into text,036

and a natural language understanding (NLU) mod-037

ule that interprets the ASR textual output. Such038

solutions offer several drawbacks (Serdyuk et al.,039

2018)(Bastianelli et al., 2020). First, the NLU040

relies on ASR transcripts to attain the semantic041

information. Because the ASR is not error-free,042

Figure 1: Tandem SLU vs proposed SLU architectures.
The former relies solely on ASR transcripts to extract
semantics whereas the latter fuses audio and text data
to improve robustness of the SLU system.

the NLU module needs to deal with ASR errors 043

while extracting the semantic information (Simon- 044

net et al., 2017)(Zhu et al., 2018)(Simonnet et al., 045

2018)(Huang and Chen, 2020). This is a major 046

issue as error propagation significantly affects the 047

overall SLU performance as shown in (Bastianelli 048

et al., 2020). 049

Another drawback of such approaches is the 050

fact that the two modules (ASR and NLU) are 051

optimized independently with separate objectives 052

(Serdyuk et al., 2018)(Agrawal et al., 2020). While 053

the ASR is trained to transcribe the linguistic con- 054

tent, the NLU is optimized to extract the semantic 055

information, commonly from clean text (Huang 056

et al., 2020). Hence, the tandem approach is not 057

globally optimal for the SLU task. To overcome 058

this, end-to-end (e2e) SLU solutions have been pro- 059

posed as an alternative to the ASR-NLU pipeline 060

(Haghani et al., 2018)(Lugosch et al., 2019). As 061

pointed out in (Bastianelli et al., 2020), a recurrent 062

problem of e2e SLU solutions is the scarcity of pub- 063

licly available resources which leads to sub-optimal 064

performance. 065

In this paper, we are interested in improving the 066

robustness of tandem SLU systems. As depicted 067

in Figure 1, this can be achieved by replacing the 068

NLU by the so-called multimodal language under- 069

standing (MLU) module. Such MLU-based solu- 070
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tion fuses text transcripts with their corresponding071

speech signal. We evaluate two fusion strategies.072

One based on a simple concatenation of text and073

audio embeddings and the other one base on a cross-074

modal attention layer. The fusion is performed on075

the outputs of the text and speech encoders. Our076

results show that, for an error-free ASR, combin-077

ing text and speech while extracting meaning from078

the user’s utterance can help to improve perfor-079

mance. Experiments also show that our solution080

leads to SLU robustness as it helps to mitigate per-081

formance degradation caused by noisy ASR tran-082

scripts. To confirm that, the SLU robustness was083

assessed on three SLU datasets with different com-084

plexity: (1) the SNIPS dataset (Saade et al., 2019);085

(2) the Fluent Speech Command (FSC) dataset (Lu-086

gosch et al., 2019); and (3) the recent released087

and challenging Spoken Language Understanding088

Resource Package (SLURP) dataset (Bastianelli089

et al., 2020). We also tested our solution using090

ASR trascripts from three off-the-shelf ASR en-091

gines. The contribution of this work can be summa-092

rized as follows. First, we propose a multimodal093

architecture that uses speech information to lever-094

age the performance of traditional tandem SLU095

solutions. Second, we show that such approach096

confers robustness to SLU solutions by mitigating097

performance degradation due to ASR error propa-098

gation.099

The remainder of this document is organized as100

follows. In Section 2, we review the related work101

on SLU and multimodal approaches. Section 3102

presents the proposed method. Section 4 describes103

our experimental setup and Section 5 discusses our104

results. Section 6 gives the conclusion and future105

works.106

2 Related Work107

Joint ASR+NLU optimization. One drawback of108

tandem SLU solutions is that the ASR and the NLU109

are optimized separately. The literature offers dif-110

ferent approaches to mitigate this problem. For111

example, in (Kim et al., 2017), the authors jointly112

train an online SLU and a language model. They113

show that a multi-task solution that learns to pre-114

dict intent and slot labels together with the arrival115

of new words can achieve good performance in in-116

tent detection and language modeling with a small117

degradation on the slot filling task when compared118

to independently trained models. In (Haghani et al.,119

2018), the authors propose to jointly optimize both120

ASR and NLU modules to improve performance. 121

Several e2e SLU encoder-decoder architectures are 122

explored. It is shown that better performance is 123

achieved when an e2e SLU solution that performs 124

domain, intent, and argument predictions is jointly 125

trained with an e2e model that learns to generate 126

transcripts from the same audio input. This study 127

provides two important considerations. First, joint 128

optimization induces the model to learn from er- 129

rors that matter more for SLU. Second, the authors 130

also found from their experimental results that di- 131

rect prediction of semantics from audio, neglecting 132

the ground truth transcript, leads to sub-optimal 133

performance. 134

End-to-end SLU. Recently, we have witnessed 135

an increasing interest in minimizing SLU latency 136

as well as the joint optimization problem with 137

end-to-end (e2e) SLU models. Such solutions 138

bypass the need of an ASR and extracts semantics 139

directly from the speech signal. In (Lugosch et al., 140

2019), for example, the authors introduce the 141

FSC dataset and present a pre-training strategy 142

for e2e SLU models. Their approach is based on 143

using ASR targets, such as words and phonemes, 144

that are used to pre-train the initial layers of 145

their final model. These classifiers once trained 146

are discarded and the embeddings from the 147

pre-trained layers are used as features for the 148

SLU task. The authors show that improved 149

performance on large and small SLU training 150

sets was achieved with the proposed pre-training 151

approach. Similarly, in (Chen et al., 2018), the 152

authors propose to fine-tune the lower layers of an 153

end-to-end CNN-RNN based model that learns 154

to predict graphemes. This pre-trained acoustic 155

model is optimized with the CTC loss and then 156

combined with a semantic model to predict intents. 157

A relevant and more recent research is presented 158

in (Mhiri et al., 2020). In this work, the proposed 159

speech-to-intent model is built based on a global 160

max-pooling layer that allows for processing 161

speech signals of varied length, also with the 162

ability to process a given speech segment while 163

receiving an upcoming segment from the same 164

speech. In (Potdar et al., 2021), an end-to-end 165

streaming SLU framework is proposed. With a 166

unidirectional LSTM architecture, optimized with 167

the alignment-free CTC loss, and pre-trained with 168

the cross-entropy criterion, the authors show that 169

their solution can predict multiple intentions in 170

an online and incremental way. Their results are 171
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comparable to the performance of start-of-the-art172

non-streaming models for single-intent and173

multi-intent classification.174

175

Multimodal SLU. A recurrent problem of e2e176

SLU solutions is the limited number of publicly177

available resources (i.e. semantically annotated178

speech data) (Bastianelli et al., 2020). Because179

there are much more NLU resources (i.e. seman-180

tically annotated text without speech), many ef-181

forts have been made towards transfer learning182

techniques that enable the extraction of acoustic183

embeddings that borrow knowledge from state-of-184

the-art language models such as BERT (Devlin185

et al., 2018). In (Huang et al., 2020), for instance,186

the authors propose two strategies to leverage per-187

formance of e2e speech-to-intent systems with un-188

paired text data. The first method consists of two189

losses: (1) one that optimizes the entire network190

based on text and speech embeddings, extracted191

from their respective pretrained models, and are192

used to classify intents; and (2) another loss that193

minimizes the mean square error between speech194

and text representations. This second loss only195

back-propagates to the speech branch as the goal196

is to make speech embeddings resemble text em-197

beddings. The second method is based on a data198

augmentation strategy that uses a text-to-speech199

(TTS) system to convert annotated text to speech.200

In (Sarı et al., 2020), the authors show that the per-201

formance of a speech-only e2e SLU model can be202

improved by training the model with non-parallel203

audio-textual data. For that, the authors propose204

a multiview learning technique based on two uni-205

modal branches consisting of an encoder for each206

modality. The unimodal branches receive either207

text or speech as input in order to produce the208

output. The authors first train the text branch as209

more resources are available. After, the classifier210

is frozen and the speech encoder is trained. As211

the final step, both branches are fine-tuned using212

parallel data and the shared classifier.213

3 Proposed Model214

3.1 Spoken Utterance Classification215

As a special case of SLU, spoken utterance classifi-216

cation (SUC) aims at classifying the observed ut-217

terance into one of the predefined semantic classes218

L = {l1, ..., lk} (Masumura et al., 2018). Thus,219

a semantic classifier is trained to maximize the220

class-posterior probability for a given observation,221

W = {w1, w2, ..., wj}, representing a sequence of 222

tokens. This is achieved by the following probabil- 223

ity: 224

L∗ = argmax
L

P (L|W, θ) (1) 225

where θ represents the parameters of the end-to- 226

end neural network model. In this work, our as- 227

sumption is that the robustness of such network 228

can be improved if an additional modality, X = 229

{x1, x2, ..., xn}, representing acoustic features, is 230

combined with the text transcript. Thus, Eq. (1) 231

can be re-written as follow: 232

L∗ = argmax
L

P (L|W,X, θ) (2) 233

3.2 Architecture Overview 234

We adopt two compact unidirectional long short- 235

term memory (LSTM) encoders to process speech 236

and text modalities independently. As shown in Fig- 237

ure 2, the LSTM speech encoder receives wav2vec 238

embedded features as input and fine-tunes the 239

speech representation for the downstream SLU task. 240

Likewise, word2vec text embeddings are provided 241

to the LSTM text encoder which further enhance 242

the text representation. The whole model then con- 243

sists of a speech encoder, a text encoder, and a fu- 244

sion layer. Instead of an over-parameterized LSTM 245

encoders, we choose a compact approach that we 246

detail in the following sections. 247

Figure 2: Diagram depicting the proposed multimodal
language understanding (MLU) architecture used to
predict semantic labels from audio-textual data. As fu-
sion strategies, we explore (1) a simple concatenation
of the two modalities and (2) a soft alignment between
speech and text modalities which is achieved using
a cross-modal attention layer that projects the speech
onto the text space.

3.3 Wav2vec Embeddings 248

We use the wav2vec model to extract deep semantic 249

features from speech. While state-of-the-art mod- 250
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els require massive amount of transcribed audio251

data to achieve optimal performance, wav2vec is an252

unsupervised pre-trained model trained on a large253

amount of unlabelled audio (Schneider et al., 2019).254

The motivation to adopt wav2vec relies on the fact255

that the model is able to learn a general audio rep-256

resentation that helps to leverage the performance257

of downstream tasks (Schneider et al., 2019). Thus,258

given an audio signal, xi ∈ X , a five-layer convo-259

lutional neural network, f : X → Z , is applied260

in order to obtain a low frequency feature repre-261

sentation, zi ∈ Z , which encodes about 30 ms of262

audio at every 10 ms. Following, a context network,263

g : Z → C, is applied to the encoded audio and264

adjacent embeddings, zi, ..., zv, are used to attain265

a single contextualized vector, ci = g(zi, ..., zv).266

Note that ci represents roughly 210ms of audio con-267

text with each step i comprising a 512-dimensional268

feature vector (Schneider et al., 2019).269

3.4 LSTM Speech Encoder270

A single-layer LSTM is used to further improve271

the speech representation from wav2vec for the272

downstream SLU task. Thus, it takes wav2vec273

embeddings as input and is optimized to output274

semantic labels such as slot values and intents. The275

feature dimension is controlled with a projection276

layer as shown bellow:277

si = LSTM(ci), i ∈ {1...N} (3)278

si =Wspsi (4)279

280

where ci is the sequence of 512-dimensional281

wav2vec feature representation, with i being the282

frame index. The hidden states of the unidirec-283

tional LSTM is represented by si which is a 1024-284

dimensional representation that undergoes a projec-285

tion layer, Wsp, leading to si. The projection layer286

is an alternative LSTM architecture, proposed in287

(Sak et al., 2014), that minimizes the computational288

complexity of LSTM models. In our architecture,289

we project a 1024-dimensional features to half of290

this dimension.291

3.5 LSTM Text Encoder292

The text encoder takes word embeddings as input293

and is trained on the downstream task to output294

semantic labels in a similar way as the speech en-295

coder. A single-layer LSTM is adopted to capture296

temporal context from the input text representation, 297

as shown bellow: 298

hj = LSTM(ej), j ∈ {1...M} (5) 299

where ei is a sequence of 256-dimensional word 300

representation, with j being the word index in a 301

sentence. The hidden states of the unidirectional 302

LSTMs are represented by hj which is a 512- 303

dimensional feature representation. 304

3.6 Cross-modal Fusion Layer 305

The cross-modal fusion layer receives output from 306

the speech and text encoders. Note that the feature 307

representation from these encoders, si and hj , are 308

512-dimensional vectors with different timestep 309

lengths, denoted by N and M , respectively, for 310

speech and text modalities. The cross-modal fusion 311

layer then comprises a simple concatenation of 312

speech and text embeddings, as shown below: 313

o = [mean-pooling(si),mean-pooling(hj)] (6) 314

where o is a fixed-length vector attained after ap- 315

plying average pooling on the hidden states of si 316

and hj . As suggested in (Lin et al., 2020), mean- 317

pooling can be used to attain the high-level seman- 318

tic representation within an utterance. In our case, 319

it also solves the alignment issue between speech 320

and text modalities as they are based on length. 321

Note that o undergoes a linear transformation prior 322

to computing softmax with cross entropy for clas- 323

sification, as follow: 324

o =W>o,o ∈ RL (7) 325

pl =
eol∑L

k=1 e
ok

(8) 326

L = −
L∑
l=1

yl log pl (9) 327

where W is a matrix with trainable parameters and 328

ol is the l-th element in o, and yl is 1 for the ground- 329

truth label and 0 otherwise. 330

3.7 Cross-modal Attention Fusion Layer 331

The cross-modal attention layer investigated here 332

receives output from the speech and text encoders, 333

si and hj . The motivation to apply the attention 334

mechanism is two fold. First, it helps to optimize 335

the model taking into account the contribution of 336
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SLURP SNIPS FSC
# Speakers 97 69 177

# Audio files (headset) 30,043 2,943 34,603
# Audio files (Close-talk) - 2,943 37,674

Duration [hs] 19 5.5 58
Avg. length [s] 2.3 3.4 2.9

Table 1: Statistics of audio samples for SLURP, SNIPS
and FSC (Bastianelli et al., 2020).

each modality for the downstream task. Moreover,337

it develops a context matrix of attention weights338

that are used to learn the soft alignment between339

speech and text modalities, as proposed in (Xu340

et al., 2019). This is attained by projecting the341

speech representation onto the text space. For in-342

stance, the attention weight between the speech343

frame i and the word embed j can be calculated us-344

ing the hidden state si of the speech LSTM encoder345

and the hidden state hj of the text LSTM encoder346

(Xu et al., 2019), as shown bellow:347

aj,i = tanh(u>si + v>hj + b) (10)348

αj,i =
eaj,i∑N
t=1 e

aj,t
(11)349

s̃j =
∑
i

αj,isi (12)350

with u, v and b being learnable parameters. In351

Eq. (11) the normalized attention weight, αj,i, is352

attained, representing the soft alignment strength353

between the j-th word and the i-th speech frame.354

Note that the alignment between speech feature vec-355

tors corresponding to the j-th word is the weighted356

summation of hidden states from the speech LSTM357

econder which is denoted by s̃j in Eq. (12). The fi-358

nal part comprises an average pooling, as described359

bellow:360

õ = mean-pooling([̃s1, ..., s̃M ]) (13)361

where õ is a fixed-length vector, attained after ap-362

plying average pooling on s̃j , that undergoes a lin-363

ear transformation similar to the one discussed in364

the previous section.365

4 Experimental Setup366

4.1 Datasets367

Three SLU datasets are used in our experiments.368

The reader is referred to Table 1 for partial statis-369

tics of audio samples for these datasets. The FSC370

dataset which comprises single-channel audio clips 371

sampled at 16 kHz. The data was collected us- 372

ing crowdsourcing, with participants requested to 373

cite random phrases for each intent twice. It con- 374

tains about 19 hours of speech, providing a total 375

of 30,043 utterances cited by 97 different speakers. 376

The data is split in such a way that the training set 377

contains 14.7 hours of data, totaling 23,132 utter- 378

ances from 77 speakers. Validation and test sets 379

comprise 1.9 and 2.4 hours of speech, leading to 380

3,118 utterances from 10 speakers and 3,793 utter- 381

ances from other 10 speakers, respectively. The 382

dataset comprises a total of 31 unique intent labels 383

resulted in a combination of three slots per audio: 384

action, object, and location. The latter can be ei- 385

ther “none”, “kitchen”, “bedroom”, “washroom”, 386

“English”, “Chinese”, “Korean”, or “German”. In 387

our experiments, we defined intent as the combina- 388

tion of action and object, which led to a total of 15 389

different intent labels. Location was defined as slot, 390

which led to a total of 8 different slot labels. More 391

details about the dataset can be found in (Lugosch 392

et al., 2019). 393

SNIPS is the second dataset considered. It con- 394

tains a few thousand text queries. Recordings were 395

crowdsourced and one spoken utterance was col- 396

lected for each text query in the dataset. There are 397

two domains available: smartlights (English) and 398

smartspeakers (English and French). In our exper- 399

iments only the former was used as it comprised 400

only English sentences. With a reduced vocabulary 401

size of approximately 400 words, the data contains 402

6 intents allowing to turn on or off the light, or 403

change its brightness or color (Saade et al., 2019). 404

The recent released SLURP dataset is also con- 405

sidered in our experiments. It is a multi-domain 406

dataset for end-to-end SLU and comprises approxi- 407

mately 72,000 audio recordings (58 hours of acous- 408

tic material), consisting of user interactions with a 409

home assistant. The data is annotated with three 410

levels of semantics: Scenario, Action and Intent, 411

having 18, 56 and 101 classes, respectively. The 412

dataset collection was performed by first annotat- 413

ing textual data, which was then used as golden 414

transcripts for audio data collection. For that, 100 415

participants were asked to read out the collected 416

prompts. This was performed in a typical home or 417

office environment. Although SLURP offers dis- 418

tant and close-talk recordings, only the latter were 419

used in our experiments. For more details about the 420

dataset, the reader can refer to (Bastianelli et al., 421
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Figure 3: Pipeline for generating ASR text transcripts.

2020).422

Note that compared to other datasets, SLURP is423

much more challenging. The authors in (Bastianelli424

et al., 2020), directly compared SLURP to FSC and425

SNIPS in different aspects. For instance, SLURP426

contains 6x more sentences than SNIPS and 2.5x427

more audio samples than FSC. It also covers 9428

times more domains and 10 times lexically richer429

than both FSC and SNIPS. SLURP also provides430

a larger number of speakers compared to FSC and431

SNIPS. Next, we describe three ASR engines used432

to generate text transcripts. We also present the433

performance of these engines in terms of WER for434

each SLU dataset.435

4.2 ASR engines436

In order to evaluate the performance of our model437

in a more realistic setting, we simulate the gen-438

eration of text transcripts from ASR engines as439

depicted in Figure 3. This is particularly impor-440

tant to assess the robustness of SLU models when441

golden transcripts are not available.442

4.3 Noise Injection443

Introducing noise into a neural network input is a444

form of data augmentation that improves robust-445

ness and leads to better generalization (Coulombe,446

2018). To increase the robustness of our proposed447

model, we injected noise word into the training448

set. We used lexical replacement which consists449

of proposing one or more words that can replace450

a given word. Thus, we choose a random word451

from the vocabulary V with the main constraint452

to not be the target word w in an utterance. This453

was achieved by perturbing golden transcripts by454

adding, dropping, or replacing a few words in a455

sentence. During training, we randomly selected456

30 % of sentences within a batch to be corrupted457

with noise. Moreover, only 1/3 of words within a458

sentence were corrupted.459

4.4 Experimental Settings460

Our network is trained on mini-batches of 16 sam-461

ples over a total of 200 epochs. Early-stopping462

Figure 4: Word error rate (WER) based on true ASR
engines (cmu, google, cloud and wit) for the three in-
vestigated datasets.

is used in order to avoid overffiting, thus training 463

is interrupted if the accuracy on the validation set 464

is not improved after 20 epochs. Our model was 465

trained using the Adam optimizer (Kingma and Ba, 466

2014), with the initial learning rate set to 0.0001. 467

Dropout probability was set to 0.3 and the parame- 468

ter for weight decay was set to 0.002. Datasets are 469

separated into training, validation and test sets and 470

the hyperparameters are selected based on the per- 471

formance on the validation set. All reported results 472

are based on the accuracy on the test set. 473

Our experiments are based on 4 models trained 474

to predict semantic labels: (1) the NLU base- 475

line; (2) the E2E SLU; (3) the MLU and (4) the 476

MLU(ATT) that uses attention mechanism. The 477

first model is based on the text LSTM encoder and 478

is trained with text-only (TO). The second model is 479

based on the speech LSTM encoder and is trained 480

with speech-only (SO). The two MLU models are 481

based on text and speech and use output embed- 482

dings from the pre-trained LSTM encoders men- 483

tioned before. 484

5 Results 485

5.1 Impact of ASR Error Propagation on 486

NLU 487

In Table 2, we investigate the impact of the ASR er- 488

ror propagation into our NLU model. For this, tran- 489

scripts sampled from CMU, WIT and Google ASR 490

engines were mixed with golden transcript samples. 491

This was performed only for the test set and we 492

can observe a similar trend across all datasets and 493

tasks. Performance decays as the number of ASR 494

transcript samples increases. The performance on 495

the FSC dataset is least affected by ASR outputs, 496

specially when the transcripts from the commer- 497
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20 % 40 % 60 % 80 % 100 %
Task Engine FSC

Intent
CMU 90.79 82.75 74.05 65.92 57.27
WIT 99.23 98.44 97.83 96.75 96.38

Google 99.23 98.44 98.15 97.41 96.94

Slot
CMU 95.75 91.85 87.34 82.41 77.92
WIT 99.26 99.07 98.02 97.62 96.88

Google 99.57 98.41 98.73 98.73 98.31
SNIPS

Intent
CMU 84.94 80.93 69.56 60.53 51.5
WIT 93.64 94.31 91.63 90.63 88.29

Google 95.31 90.96 89.29 87.28 83.61
SLURP

Scenario
CMU 73.71 62.52 49.89 38.85 30.46
WIT 83.42 81.66 79.00 77.34 75.47

Google 83.42 82.07 80.34 78.00 76.69

Action
CMU 71.77 60.90 49.21 37.78 29.22
WIT 80.56 78.44 76.42 74.01 72.53

Google 80.87 78.39 76.58 73.89 72.43

Intent
CMU 66.66 54.52 42.64 30.65 21.57
WIT 76.11 73.18 70.54 67.71 65.77

Google 76.47 73.74 71.29 68.72 66.86

Table 2: Effect of mixing golden transcripts with vary-
ing amount of ASR transcript output on our NLU
model. We investigate SLURP, FSC and SNIPS
datasets as well as three ASR engines: CMU, WIT and
Google.

cial ASR engines were used. This is because the498

FSC is less challenging compared to the other two499

datasets, as discussed in (Bastianelli et al., 2020)500

and also shown in Figure 4. For the academic501

ASR engine, CMU, we observe a decay of 42 %502

for intent classification and 22 % for slot predic-503

tion. The NLU performance is also evaluated on504

the SNIPS dataset. We first notice a lower accu-505

racy compared to the FSC dataset and this is due506

to the characteristic of SNIPS, i.e., less samples to507

train the neural network and overall a slightly more508

challenging dataset as observed in Table 2. The509

performance on the SLURP dataset is the most af-510

fected by noisy ASR transcripts. For the academic511

ASR engine, for example, performance can get as512

low as 21 %, for intent prediction, and as low as513

30 % for scenario and action predictions, repre-514

senting a decay in performance of approximately515

72 %, 64 % and 64 %, respectively. As shown in516

Figure 3 and discussed in (Bastianelli et al., 2020),517

SLURP is a more challenging SLU dataset. For the518

other two comercial ASR engines, the impact of519

ASR transcripts are much lower but still exists for520

the SLURP dataset, representing a decay in terms521

of accuracy of roughly 15 %, 11 % and 12 % for522

intent, scenario and action predictions respectively.523

Model FSC SNIPS SLURP
Intent Slots Intent Scenario Action Intent

E2ESLU 99.41 99.39 63.87 69.98 60.80 58.22
NLU 100.00 100.00 95.98 86.85 83.24 78.59
MLU 100.00 100.00 93.31 87.67 84.26 78.72

MLU(ATT 100.00 100.00 92.64 85.42 81.14 74.68

Table 3: Accuracy results for the SLURP, FSC and
SNIPS datasets when gold transcripts are available for
training and testing the NLU, MLU and the MLU with
the attention mechanism.

5.2 Combination of Speech and Text 524

In Table 3, we compare the performance of the 525

NLU baseline, E2E SLU and the two MLU ap- 526

proaches. Across all datasets, the E2E SLU pro- 527

vided lower accuracy compared to the NLU and 528

MLU solutions. This is expected such solutions are 529

harder to train because speech signals accommo- 530

dates not just variability due to the linguistic infor- 531

mation, but also intra- and inter-speaker variability 532

(Bent and Holt, 2017), and information from the 533

acoustic environment. Not surprisingly, the FSC 534

showed to be the easiest task with accuracy as high 535

as 100 % for all modalities, with a slight decay for 536

speech-only, achieving 99.41 % and 99.39 % accu- 537

racy for intent and slot classification, respectively. 538

The gap between E2E SLU and the other modalities 539

is more significant for the SNIPS and SLURP, with 540

the former being linguistically more challenging. 541

For instance, our TO model is able to achieve 95.98 542

% accuracy for intent classification on the SNIPS 543

dataset while our SO model achieves only 63.87 544

%. Similar trend is observed for the SLURP tasks. 545

Note that the MLU provides better performance 546

when compared to the MLU(ATT). One explana- 547

tion is that the speech features are noisier (com- 548

prising much more variability), and the attention 549

weights tend to lean more towards text, neglecting 550

complementary information from the speech signal. 551

The MLU approach without attention also outper- 552

formed our NLU model for the SLURP dataset. 553

The best performance for the SNIPS dataset was 554

achieved with the NLU approach. 555

5.3 SLU Robustness Towards ASR Error 556

Propagation 557

In Figure 5, we evaluate the robustness of the pro- 558

posed MLU towards ASR error propagation. To 559

evaluate a more realistic scenario, results are re- 560

ported using 100 % of ASR output, i.e., we assume 561

no access to golden transcripts during test. We 562

considered two approaches during training: with 563
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(a) Without noise injection (b) With noise injection

Figure 5: SLU performance when ASR transcripts from the CMU ASR engine is used during test and training is
performed (a) without noise injection and (b) with noise injection.

and without noise injection. In all experiments,564

we found that introducing noise during training565

(see Figure 5-b) was beneficial and helped to in-566

crease robustness. We also observed that our model567

was more valuable for low quality ASR transcripts568

attained from the academic ASR (i.e. CMU en-569

gine) and results are shown in Figure 5. For the570

commercial ASR engines, which provide higher571

quality transcripts, performance of the proposed572

MLU without attention is equivalent to text-only573

and slightly better in some cases.574

5.4 Limitations and Future Work575

A clear limitation of this work is its results to-576

wards the larger and more challenging SLURP577

dataset. Although we achieve competitive perfor-578

mance compared to the baseline results shared by579

the authors in (Bastianelli et al., 2020), results of580

our E2E SLU are way below. This corroborates581

with the findings in (Bastianelli et al., 2020), where582

several SOTA E2E SLU were tested and were not583

able to surpass the proposed modular (ASR+NLU)584

baselines as well. Note that the two baselines pre-585

sented in (Bastianelli et al., 2020), are way more586

complex than our single-layer LSTM combined587

with word2vec embeddings. As for our MLU on588

the SLURP dataset, it was severely affected by the589

quality of the text transcripts.590

As future work, we plan to propose a low-latency591

MLU architecture. We will adapt and evaluated592

the proposed MLU model for a streaming scenario593

where chunks of speech and text are processed in594

an online fashion and predictions of semantic labels595

are incrementally performed.596

6 Conclusion 597

In this paper, we propose a multimodal language 598

understanding (MLU) architecture, which com- 599

bines speech and text to predict semantic informa- 600

tion. Our main goal was to mitigate ASR error prop- 601

agation into traditional NLU. The proposed model 602

is based on two unidirectional LSTM encoders that 603

learn speech and text representation, respectively. 604

Two fusion approaches are explored and compared. 605

The first one is based on a cross-modal attention 606

mechanism, which is meant to align speech and 607

text embeddings attained from the speech and text 608

encoders. The second one is based on a simple 609

concatenation of speech and text embeddings av- 610

eraged over the LSTM timesteps. Performance 611

is evaluated on 3 dataset, namely, SLURP, FSC 612

and SNIPS. We also used three out-of-the-shelf 613

ASR engines to investigate the impact of transcript 614

errors and the robustness of the proposed model 615

when golden transcripts are not available. We first 616

show that our model outperforms the text-only as 617

well as the audio-only modules when golden tran- 618

scripts are used as input. For instance, the proposed 619

model achieves 87.16 %, 83.75 % and 79.18 % 620

accuracy for scenario, action and intent classifica- 621

tion in SLURP dataset, respectively, outperforming 622

text-only and speech-only for the first two tasks. 623

We also evaluated the robustness of our towards 624

ASR transcripts. Results show that the proposed 625

approach can robustly extract semantic information 626

from audio-textual data. 627
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