Long-Term Wireless Link Scheduling with
State-Augmented Graph Neural Networks

Romina Garcia Camargo Zhiyang Wang
University of Pennsylvania University of California San Diego
rominag@seas.upenn.edu zhw1350ucsd.edu
Navid NaderiAlizadeh Alejandro Ribeiro
Duke University University of Pennsylvania
navid.naderi@duke.edu aribeiro@seas.upenn.edu
Abstract

We address the wireless link scheduling problem in large-scale wireless networks,
subject to a minimum transmission requirement for each link. Unlike traditional
approaches that aim to maximize instantaneous sum rate, we focus on maximizing
long-term average performance, which better reflects the dynamic behavior of
real-world networks. To this end, we formulate a constrained optimization problem
that we solve by operating in the Lagrangian dual domain. The communication
network is modeled as an undirected graph, from which we derive a conflict graph
under a primary interference model, motivating the use of Graph Neural Networks
(GNNs) to parameterize the scheduling policy. Since optimal scheduling decisions
are inherently time-dependent when optimizing time averages, and GNNs are deter-
ministic models, we incorporate state augmentation to handle the stochastic nature
of the task. This augmentation enables the GNN to adapt scheduling decisions
over time, balancing constraint satisfaction with performance maximization. We
validate our approach through extensive numerical simulations, benchmarking
against several baselines.

1 Introduction

The growing complexity and expanding application domains of large-scale wireless communication
networks have underscored the importance of efficient resource management strategies. A central
challenge is wireless link scheduling—determining which links should transmit and when. This prob-
lem plays a pivotal role in ensuring fair resource allocation, mitigating interference, and maintaining
the quality of service (QoS) for end-users, ultimately shaping overall network performance.

The relevance of link scheduling has led to a wide range of proposed solutions, spanning information-
theoretic, optimization-based, and learning-driven approaches [1} 2, 3L 14, 5| 16]. Algorithms from
the information-theoretic line of work [l 2] typically schedule links sequentially, ensuring that
newly scheduled links do not interfere with those already selected. In contrast, [3] introduces a
fractional programming-based method that achieves state-of-the-art performance. A common trend
across recent learning-based approaches is the use of node geographic positions to inform scheduling
decisions [4} 15 16]]. For instance, [3]] constructs graph embeddings based on link distances, while [6]]
exploits the local geometric structure of wireless networks through Riemannian manifolds.

Communication networks naturally exhibit an underlying graph structure that facilitates their mod-
eling and analysis. A common strategy for addressing link scheduling is to represent interference
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using the conflict graph of the communication network, particularly under the primary interference
model [[7]. In this setting, the scheduling problem reduces to finding a Maximum Independent Set
(MIS) of non-interfering links—a well-known NP-hard problem [8, 9]. Recent efforts, such as [[10],
focus on solving the scheduling task through efficient MIS computation, with frameworks designed
to accelerate the discovery of viable transmission sets.

This work introduces a learning-based approach for link scheduling in large-scale wireless networks,
designed to maximize the long-term average sum rate. Our formulation ensures a minimum transmis-
sion requirement for each link, thereby guaranteeing sustained performance across the network. In
contrast to prior work, we shift the focus from instantaneous metrics to time-averaged objectives to
better reflect the variability and fairness demands of dynamic network environments. The central
distinction of our method lies in the incorporation of temporal dependence into the scheduling policy.
We cast the problem as a constrained optimization task and address it through the Lagrangian dual
framework. To accommodate the stochastic nature of the setting, we incorporate state augmentation,
enabling otherwise static models to adapt over time [[11]. A Graph Neural Network (GNN) is used to
parameterize our policy, leveraging the underlying graph topology. We validate our method through
extensive numerical experiments, demonstrating strong performance and generalization across a
range of scenarios.

This article is structured as follows. In Section[2] we formulate the wireless link scheduling problem
with time-averaged objective and constraints. The state augmentation strategy is introduced in Section
[l as well as the proposed algorithm and details on the architecture. We characterize the performance
of our algorithm in Section ] with several numerical experiments. In Section 5] we conclude with
final thoughts and lines for future work.

2 A time-averaged formulation of link scheduling

We consider a device-to-device (D2D) network with K links. Let s; € {0, 1} denote the status
of link i € {1,2,..., K}, where s; = 1 indicates that the link ¢ is scheduled to transmit. Denote
the scheduling status of all links by the vector s = [s1;s9;--- ;5K] € {0,1}¥. Following the
primary interference model, we define two links interfere each other if they share a common device.
The interference patterns can be summarized in the conflict graph G(V, £), where the node set
V ={1,2,..., K} corresponds to the links, and the edge set £ includes (i, j) whenever links ¢ and j
interfere. The unweighted adjacency matrix A € {0, 1}5*¥ encodes the structure of this graph. We
define the per-link rate rq as follows.

rols) = s© [1— Al ()

where 1 denotes a vector with ones in its K entries, ® is the element-wise product and [-]; is the
projection on the positive orthant. The vector term [1 — As], encodes the collisions resulting from
the scheduling decisions s, where a value of 1 in the i-th entry indicates that link ¢ is scheduled
without conflict. The vector rq, therefore, indicates which transmissions are successful. Denote with
r the sum of all successful transmissions (i.e., those that do not collide):

r(s) =1Tro(s) =s'[1 — As],. )

Let us consider time steps ¢ € {0, 1,...,7 — 1} and add the time dependence to our scheduling vector,
s(t). The objective of wireless link scheduling is to design a policy that satisfies the interference
constraints dictated by the network topology, while maximizing the time average of the sum rate
7. We restrict our attention to scheduling sequences {s(t)}7.;' that meet a minimum transmission
requirement for each link, specified by the vector A € Rf , such that rg > A. With these definitions,
the optimal scheduling problem can be formulated as the following constrained optimization problem:

T-1
1
{s*(t)} ! = argmax  — Z sT(1)[1 — As(t)]+ 3
s(t)e{0,1}* t=0

T-1
s.t. % Z s(t) ©[1 — As(t)]+ > A.
=0

We seek an optimal policy that maps the network’s conflict structure to scheduling decisions, defined
as s(t) = ®(A, H), where H are learnable parameters. This formulation provides a tractable and



controllable solution space. However, since the policy ® is deterministic, it produces the same
scheduling decision at each time step for a given static graph. This lack of variability is misaligned
with our goal of maximizing long-term average performance, which requires diversity in scheduling
over time. To introduce the necessary stochasticity, we employ a state-augmentation approach, which
is described in the following section.

3 State augmentation for non-deterministic policies

We reformulate the constrained optimization problem presented in Eq. (3 in the Lagrangian dual
domain. We incorporate a non-negative dual variable vector A € Rf to penalize violations of the
minimum transmission requirement, introducing the constraint in the newly-defined objective. The
Lagrangian function is constructed as follows:

Z({s()15A) = & 3 (TOlLx - As(o)],) + AT ( Z S(H) © [1x — As(t)]4 — A) .

t=0 t=

Nl =

“)
We are interested in finding {s*(¢)}7_," the scheduling decisions for all time steps. From now on, we
omit the notation for t = 0,1, ..., T — 1 for clarity. With the maximization of £, we can obtain the
following:
sf(t,\) = argmax L (s(t),\). 5)
s(t)e{o,1}¥

Furthermore, we can define the dual function g() as the maximization of £ for different values of \.

The global optimum for the dual variable A* can be found by minimizing g(\), i.e.,
gA) = max L(s(t),\), A*=argming(). (6)

s(t)e{0,1}% AERK

The non-convexity of the problem in Eq. (3) results in a positive duality gap. Consequently, the
optimal scheduling decisions s*(t) are not guaranteed to be recovered through iterative primal

gradient ascent and dual gradient descent, but they are contained within the set of solutions obtained
by this procedure.

s*(t) C sf(t, A%). (7

Additionally, as the Lagrangian can be optimized for each time step independently as £ (see Appendix

, the resulting scheduling policy is time invariant, such that for all ¢, ¢ we have s (¢, A) = s (¢, ).

This is not true for the optimal policy s*(¢). Nonetheless, since the dual is always convex, we can
recover the optimal dual variables through dual gradient descent, where 7 is the learning rate:

Akt1 = [Ar —ma(s(t, k) © [1 — As(t, Ai)]+ — A)], . 3
Our formulation is such that Ag P \*, but this does not imply that s’ (¢, Az) s *(t).

Theoretical results show that the proposed primal-dual scheduling policy is both almost surely
feasible and near-optimal when apphed over a sufficiently large number of iterations « [[11} 12].

ngr;ogz Z (t, M) [1 — As(t, Ap)]4 > P* — O(na) )
T g et
Jim_ ~ > 7 z; s(t, A\e) © [1 — As(t, Ae)]4 > A a.s., (10)

where P* is the optimal average sum rate obtained with {s*(¢) }tTgol. The resulting scheduling policy
is feasible and achieves performance within a constant additive gap of the optimum. Nonetheless, even
with infinite iterations, we will not achieve the optimal policy as the function is not concave in s(¢, Ag).
Moreover, the abrupt variations of the dual variables across iterations k induce equally abrupt changes
in the scheduling policy, preventing stable training of a learning-based parameterization.

To overcome the previous limitations, we augment the scheduling policy with a corresponding set
of dual variables A. This allows the policy to incorporate dynamic inputs that reflect constraint
violations at each time step [[L1]. We parameterize the network policy using a GNN, which enables
tractable and controllable policy representations.



Graph Neural Networks Graph Neural Networks consist of a cascade of layers, each comprising a
graph convolutional filter followed by a pointwise nonlinearity [[13,|14]]. These filters are polynomials
on a matrix representation of the graph, aggregating information from neighboring nodes. Formally,
the graph convolutional filter at the [-th layer, with input graph signal x;_1, is expressed as follows:

K-1
yi=> huAFxi 1, x4,y RN, (I
k=0

where {hlk}kK:_Ol are the learnable parameters of the filter in the [-th layer. The output of the
graph convolutional filter is then passed through a pointwise nonlinearity ¢ : R — R, resulting in
x; = o(y;). GNNs possess several desirable properties that make them well-suited for real-world
applications, such as permutation equivariance and transferability on and across scale [[15 16} 17, |18}
19]. To leverage these advantages, we parameterize our scheduling policy with a GNN. We denote
the model ®(A, H;x), with the set of learnable parameters written as H € # and x as the input
graph signal.

3.1 State-augmented GNN (SAGNN) algorithm

We incorporate the dual variable A as the input graph signal to our policy, effectively augmenting
it to the form ®(A, H; X). This introduces a notion of time into the solution, as the dual variable
evolves over the iterations &, and the GNN is able to capture the stochastic nature of the problem. We
rewrite the augmented Lagrangian with a set of dual variables A € Rf as follows.

L:)\<H) = (I)(A, H; A)T[l - A(I)(Aa H; A)]+ + AT ((I)(Aa H; A) © ([1 - A(I)(Aa H; A)]+ - A)) :
(12)

With this new definition, we can rewrite Equation (E])

H* = argmaxEx,, [La(H)]. (13)
HeH

During training, our algorithm optimizes the model parameters using randomly sampled vectors
A ~ px, where py denotes the probability distribution of the dual variable. We employ gradient
ascent to solve the maximization of Ly, iterating over training epochs using a learning rate 7. This
algorithm results in optimal parameters H* for the state-augmented policy in (T3). At execution time,
the trained model is used to compute the scheduling policy for the current A; and the dual variable is
then updated:

Nert = [M - ma(@TAHSA) © (L - AS(AH AL —A)] . (4

This iterative process yields the optimal dual variable A* over time. Constraint satisfaction is
monitored through the dynamics of the dual variables: when the scheduling decisions at a given time
step help meet the transmission requirements, the corresponding dual variables decrease. Conversely,
if constraints are violated, the dual variables increase. This feedback mechanism steers the scheduling
policy toward feasible solutions over time. The training and execution procedures are detailed in

Appendix [B]

4 Numerical experiments

We conduct an extensive set of experiments to characterize the algorithm’s performance[] The
evaluation focuses on constraint satisfaction under varying transmission requirements A, and the
achieved time-averaged sum-rates 7. We assign the same minimum transmission requirement to all
links, i.e., A = A1. Choosing an appropriate value for A is critical. To guide this choice, we use
the average degree of the conflict graph as a proxy for network interference, which provides a rough
upper bound on feasible scheduling capacity [I1]].

'The code used for the experiments can be found in https://github. com/romm32/SAGNN,


https://github.com/romm32/SAGNN

Dataset generation Wireless networks can be naturally modeled and analyzed using graph-based
representations. Among these, Random Geometric Graphs (RGGs) offer a powerful and intuitive
framework. In an RGG, nodes are uniformly distributed over a 2D area, and an edge is drawn
between any pair of nodes separated by a distance less than a specified communication threshold
d.. This structure can be viewed as a noisy variant of a grid graph, where nodes originally placed
on a regular lattice are perturbed by Gaussian noise. We generate RGGs by perturbing grid graphs
and compute the corresponding conflict graphs, which model wireless interference. This approach
provides controllability in network complexity. Three sets of 100 graphs each are used for training,
validation and testing. Each graph contains approximately K ~ 500 links on average.

Experimental setup We use a GNN architecture with L = 3 layers, where the convolutional stages
use TagConv filters [20] of order 3, followed by a leaky ReLU activation as the pointwise nonlinearity.
A sigmoid activation is applied at the output to produce continuous values in the range [0, 1] that
allow propagation of gradients. Since scheduling decisions are binary, a threshold of 0.5 is used at
evaluation time to determine which links are scheduled for transmission. The GNN parameters are
optimized using the Adam optimizer [21] solve (T3), with a learning rate of 5 x 10~°. Evaluation
is carried out considering 7" = 200 time steps. The minimum transmission requirement varies in
A ={0.1,0.125,0.15} for different models, with the dual learning rate set to 2. Further details can
be seen in Appendix [B]

Baselines Several baselines are considered for comparison. A naive p-persistent algorithm deter-
mines a probability of transmission for each link, correlated to its degree of conflict, and samples
Bernoulli trials according to these probabilities. A collision avoidance (CA) version further observes
which conflicting links have been scheduled and chooses one to turn off. FPlinQ [3] is a state-of-the-
art baseline for link scheduling based on fractional programming. It maximizes the instantaneous
sum rate. Finally, the Maximum Weight Independent Set (MWIS) algorithm is the optimal solution
to the problem, where the links are weighted by the dual variable vector.

4.1 Basic performance of the SAGNN algorithm

Figure [Ta] shows the evolution of constraint violations on the validation dataset, specifically the
percentage of links for which Tg < A, where T represents the time-averaged rates achieved per link.
For each value of A, we report the mean and standard deviation across three independently trained
models, applying a running average with a window of 5 for smoother visualization. As expected,
higher values of A increase the problem’s difficulty, approaching the boundary of feasibility. The
results indicate that the algorithm learns to effectively schedule links, ensuring a fair share of
channel access time. Nevertheless, a small fraction of links fail to meet the minimum transmission
requirement.

To assess the severity of the remaining constraint violations, we analyze the violation magnitude
A — 1. We present in Figure [1b] the distribution of these violation levels, normalized such that a
value of 1 corresponds to a complete shortfall. This normalization enables consistent comparison
across different values of A. The results show that, across all transmission requirements, the vast
majority of violations are minor—typically below 15%—with only a few outliers. These findings
provide strong evidence that the proposed algorithm effectively learns to satisfy the transmission
constraints. Moreover, the incorporation of resilience into the model ensures that links at risk of
violating constraints still receive high transmission rates, rather than being neglected due to potential
infeasibility [22] 23]].

4.2 Comparison against baselines

Table [I] presents the performance of our algorithm alongside baseline methods, averaged over
T = 200 time steps on 10 graphs from the testing datasetE] Our algorithm achieves the lowest
constraint violation, demonstrating effective and fair resource allocation across all links. Although it
does not attain the highest average sum rate, it remains competitive while offering inference runtimes
that are orders of magnitude faster (see Appendix [C).

2Only 10 graphs are used due to the high computational cost of running the MWIS benchmark over 200 time
steps per graph.
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Figure 1: (a): Constraint violation during training averaged across 3 experiments, evaluating on the
validation dataset. (b): Level of violation for the testing dataset, normalized by A.
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Figure 2: Percentage of links scheduled at least
once during the first 25 evaluation steps (aver-
aged over 10 test graphs).

We show in Figure 2] the evolution of the percentage of links scheduled at least once during the initial
evaluation steps. SAGNN rapidly approaches the performance of strong baselines such as MWIS.
Unlike FPLinQ, which repeatedly schedules the same subset of links and thus limits diversity in
channel access, SAGNN distributes channel access more evenly across links. Beyond its strong
performance, SAGNN is also naturally suited for decentralized deployment since it relies only
on local information [24]. Moreover, its foundation on GNNs provides valuable transferability
properties—both within and across network scales [[19} 25]]— strengthening its practical relevance.

5 Conclusions

We presented a novel formulation and approach to the wireless link scheduling problem that empha-
sizes long-term performance metrics. By introducing state augmentation, we endowed the scheduling
policy with temporal adaptability, enabling it to achieve strong and consistent performance. This
technique proves effective in managing stochastic tasks and warrants further exploration. Compar-
ative evaluations against several baselines demonstrate that the proposed algorithm achieves fair
channel access while maintaining sustained high sum-rate performance through effective interference
avoidance.

Future work could explore several promising directions. One is the analysis of the distribution of
dual variables, with the goal of designing models that explicitly learn and exploit this distribution.



Another challenge lies in learning discrete probability distributions for the primal variables: in this
work, we relied on the GNN’s ability to approximate binary decisions, a naive but effective strategy.
More advanced techniques—such as policy gradient methods (e.g., REINFORCE) or differentiable
relaxations like the Gumbel-Softmax—may provide significant improvements.
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A Separability properties of £

We summarize the property in the following proposition.
Proposition 1 The scheduling decisions from Eq. (B) can be recovered from the maximization of a
time-decomposed Lagrangian L.
sf(t,\) = argmax L (s(t),\), (15)
s(t)e{0,1}%
where we define L as follows.

L(s(t),A) =sT(t).]1— As®)]4 + AT (s(t) © [1 — As(t)] — A). (16)

Proof. Observe that the sum of averages is equal to the average of sums when the two quantities
have the same number of elements (7', in this case).

N~

T—1
L0 A) = 7 3 (T — As(D)]) + AT ( S s(t) @ [Lx — As(t)]4 - A)

t=

> (T As®)] + AT (s(t) © [1 - As(t)] — A)) (17)

L(s(t),A). (18)

B Proposed algorithms for training and execution

The proposed algorithms for training and execution are presented in Algorithms|I{and |2} respectively.



Algorithm 1 Training Phase for the SAGNN Link Scheduling Algorithm

1: Input: Number of training iterations M, primal learning rate 7yy.
2: Initialize: H, randomly
3: form=20,---,M —1do
4: Randomly sample A ~ pjx.
5: Generate scheduling decisions ® (A, H,,; A).
6: Calculate the augmented Lagrangian according to (I2)).
7: Update the primal parameters
Hm+1 - Hm + nHvH['A(Hm)
8: end for

9: Return: Optimal model parameters H* = Hj;_;.

Algorithm 2 Execution Phase for the SAGNN Link Scheduling Algorithm

1: Input: Optimal model parameters H*, number of time steps 7', dual learning rate 1
2: Initialize: \g = 0

3: fort=0,---,T—1do

4: Generate scheduling decisions s(t) = ® (A, H*; \;).

5 Update the dual parameters

Atr1 = [Ar = A VAL (H)]

4
6: end for
7: Return: Optimal Scheduling decisions s(t), t =0,1,--- , T — 1.

Resilience A resilient formulation of the problem [22] is considered for the experiments to mitigate
the effects that few links with infeasible constraints might have on the overall solution. This introduces
a new term to the Lagrangian function as follows.

LA(H) = ®(A,H;A)T[1 - AD(A,H; )]y (19)
+AT(2(A,H;A) O (1 - A®(A H; A4 — A)) (20)
LS @10

«

While the update of the primal variables is not affected by this change, the update of the dual variables
is adapted:

* * 1
Aii = [Ak - m(fI)T(A,H AR @ ([1— AB(AH A\ — A) + a)\)L. (22)
The resilience factor « is fixed at 0.05.

Probability distribution of A During the first epoch, dual variables are sampled from an arbitrary
uniform distribution /[0, 2], where the upper bound corresponds to the dual learning rate 1. Since
each epoch includes evaluations on both the training and validation sets, we collect the dual variable
vectors encountered during the execution of Algorithm [J] on the training graphs. In subsequent
epochs, instead of sampling from the uniform distribution, we sample dual variable vectors from this
empirical distribution py.

C Runtimes for inference

The performance of our algorithm and the baselines are summarized in Table 2] averaging results
over T = 200 time steps for 10 unseen graphs. While SAGNN does not achieve the highest average
rates, it demonstrates strong overall performance and effectively minimizes constraint violations. The
scheduling time per graph per time step is also reported, highlighting the efficiency of our method
and further supporting its suitability as a practical solution.



Constraint Objective

violation (%) function (%) Runtime
p-persistent 97.57+0.62  2.69+0.08  0.04 + 4.88 x 103 ms
p-persistent CA  85.47+1.44 6.2740.14  0.04+3.73 x 1073 ms
FPLinQ 74914075  25.09+0.75 15.3 + 0.50 ms
MWIS 1554034  27.12+0.21 14.22 +2.30 s
SAGNN 0754045  21.91+0.26 1.11 + 0.03 ms

Table 2: Performance evaluation averaged across 10 graphs from the testing dataset, showing
constraint violation and objective function in percentage of links. We also present average runtime
required for generating a link scheduling for one time step, for one graph.

10



	Introduction
	A time-averaged formulation of link scheduling
	State augmentation for non-deterministic policies
	State-augmented GNN (SAGNN) algorithm

	Numerical experiments
	Basic performance of the SAGNN algorithm
	Comparison against baselines

	Conclusions
	Separability properties of L
	Proposed algorithms for training and execution
	Runtimes for inference

