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Abstract

Large language models (LLMs) have demonstrated exceptional performance in
reasoning tasks such as mathematics and coding, matching or surpassing human
capabilities. However, these impressive reasoning abilities face significant chal-
lenges in specialized domains. Taking Go as an example, although AlphaGo has
established the high performance ceiling of Al systems in Go, mainstream LLMs
still struggle to reach even beginner-level proficiency, let alone perform natural
language reasoning. This performance gap between general-purpose LLMs and
domain experts is significantly limiting the application of LLMs on a wider range
of domain-specific tasks. In this work, we aim to bridge the divide between LLMs’
general reasoning capabilities and expert knowledge in domain-specific tasks. We
perform mixed fine-tuning with structured Go expertise and general long Chain-of-
Thought (CoT) reasoning data as a cold start, followed by reinforcement learning to
integrate expert knowledge in Go with general reasoning capabilities. Through this
methodology, we present LoGos, a powerful LLM that not only maintains outstand-
ing general reasoning abilities, but also conducts Go gameplay in natural language,
demonstrating effective strategic reasoning and accurate next-move prediction. Lo-
Gos achieves performance comparable to human professional players, substantially
surpassing all existing LLMs. Through this work, we aim to contribute insights
on applying general LLM reasoning capabilities to specialized domains. We will
release the first large-scale Go dataset for LLM training, the first LLM Go evalua-
tion benchmark, and the first general LLM that reaches human professional-level
performance in Go at: https://github.com/Entarochuan/LoGos.

1 Introduction

Large language models (LLMs) exemplified by OpenAl-ol and DeepSeek-R1 [Jaech et al., 2024,
Guo et al., 2025] have demonstrated remarkable performance on reasoning tasks such as mathematics
and coding, reaching or surpassing human expert capabilities. However, when focusing on specialized
domains with scarce corpora, LLMs reach boundaries in their reasoning capabilities. In the case of
the Go game, back in 2016, AlphaGo [Silver et al., 2016] has already demonstrated the extraordinary
potential of Al systems. AlphaZero [Silver et al., 2017] further challenged human intelligence by
establishing that Al systems could "master the game of Go without human knowledge". In stark
contrast, existing general LLMs perform far below even beginner level in Go. This stark contrast
between specialized Al systems and general-purpose LLMs has become a significant constraint
limiting LLMs’ applications across broader scenarios.
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Figure 1: Win rates of LoGos against various - PrepErem e et
models. For general LLMs, we select DeepSeek- hr;';ne-; T eomorehortvely analvee the currort board )
R1 > O 1 -mini’ and Claude3.7-Sonnet for game- s‘lah’a. By observing’;he first 20 ,moves,, | can see that both
play Addltlonally, we play LoGos against black and white have established positions in all four corners.
several Specialized Go models. The KataGo- In the upper |eﬂ'corner: Black has foned a structure with 'CIS,
HumanSL model series [Wu, 2019] is designed z:':; dc::f;m' . :‘;:‘::s::"';::::"l"h 0% Dl ancliB- This
to simulate human players at different skill lev- 18 1o o e oo Toon g more on the local
els. KataGo-HumanSL-1k emulates intermedi- battle in the upper right corner, but R8 seems to offer more
ate amateur players, while KataGo-HumanSL- advantages, especially considering that White has already
9d mimics tOp amateur and professional players. invested resources in the lower right corner.

Golaxy-GiantElephant is a well-known Go Al
model that achieves performance comparable to
mid-level professional players.

Figure 2: Given a game state, the model first
analyzes the situation: "In the upper left corner:
Black has formed a structure...", and then choose
the valid next move R8.

Achieving expert-level performance in specialized domains with scarce pre-training corpora presents
considerable challenges for general large language models. The scarcity of domain-specific data
makes it virtually impossible for general LLMs to acquire Go strategies and master the specialized
terminology through pretraining alone. Consequently, approaches based on direct distillation of
general LLMs or pretraining on large-scale domain-specific natural language corpora [Liu et al., 2025,
Wau et al., 2024] face limitations in the context of Go. Unlike tasks such as mathematics and coding,
which benefit from abundant natural language corpora and human reasoning examples, specialized
tasks like Go typically offer only structured domain-specific professional data that can be obtained at
scale. Although some works have demonstrated that LLMs can complete professional tasks such as
Chess through structured prediction [Feng et al., 2023, Schultz et al., 2024], a model that produces
only structured outputs still falls short of the general reasoning model we aspire to develop.

If the necessary condition for achieving natural reasoning is to introduce a large amount of human
reasoning data, then for a field like Go where such data is scarce, integrating professional capabilities
into a general model will inevitably require extensive annotation efforts. This raises a critical question:
Does it mean that incorporating specialized domain capabilities into general models is destined to
remain an unresolved challenge?

To this end, we explore an alternative approach and discover a viable pathway forward. We assume that
while general LLMs perform inadequately on unseen tasks due to their lack of specialized knowledge,
they still demonstrate some reasoning generalization capabilities on novel tasks, attempting to
understand, reason, and think based on task descriptions. Furthermore, while specialized domains
like Go often have limited natural language corpora, they typically possess substantial amounts of
structured domain knowledge. Therefore, we propose a novel training paradigm, which first injects
domain expertise into general models through heuristically constructed expert-level synthetic data at
scale, and then aligns this knowledge with the model’s inherent reasoning capabilities.

Through heuristic rules, we construct a large-scale expert-level Go dataset, comprising a next-step
prediction dataset based on structured domain-specific information and a Go commentary dataset.



Subsequently, we mix this specialized Go dataset with long chain-of-thought (CoT) reasoning data
from domains including code and math for fine-tuning, achieving both the injection of domain
expertise and the cold start of long CoT reasoning capabilities. Following this cold start phase, we
employ Group Relative Policy Optimization (GRPO) [Shao et al., 2024b], encouraging the model to
self-explore using long CoT reasoning forms for the next-step prediction task in Go.

As expected yet interestingly, through such reinforcement learning (RL) process, the fine-tuned model
spontaneously self-explores and develops a stable strategy capable of natural reasoning and prediction
based on correct understanding of board states. Our model achieves performance comparable to
professional Go players, becoming the first general LLM to reach this level of proficiency. Further,
the model maintains outstanding performance on general reasoning tasks such as math and code,
becoming a strong generalized Al model that expert models such as AlphaGo cannot be. Our
experiments conclusively demonstrate that general LLMs can acquire expert-level capabilities in
a specific domain like Go, while maintaining general performance. We firmly believe this method
can be applied to other domains and anticipate its broad application prospects. As alpha is the first
letter in the Greek alphabet, AlphaGo heralded the beginning of a new era in artificial intelligence. In
this work, we name our model LoGos (Language-Oriented Go System), which means "word" and
"thought" in Greek, aspiring to bring the uniquely human capacity of reasoning back to the ancient
game of Go. In summary, this paper makes the following contributions:

1. We introduce LoGos, a general LLM that achieves both expert-level proficiency in the
domain of Go and outstanding performance in general reasoning tasks, demonstrating that
LLMs can attain expert-level performance in specific domains while maintaining general
reasoning capabilities.

2. We propose a training strategy that enables general models to achieve expert-level perfor-
mance in specific domains using only structured domain-specific data which is scalable. We
thoroughly validate the effectiveness of this strategy on Go.

3. We collect, construct, and release the first large-scale Go dataset specifically designed for
LLM training, as well as an evaluation benchmark on Go designed for assessing LLMs.

2 Mixed Learning of Go

In this section, we detail our methodology for enabling general large language models to absorb
expert-level ability in domains exemplified by the game of Go.

We begin by outlining our approach to modeling the next step prediction task within the Go domain.
Subsequently, based on our collected and curated large-scale Go dataset, we construct a large-scale
Go professional dataset covering two tasks: next move prediction and commentary. This dataset
is consisted of a 10-million-scale next-step prediction dataset constructed using heuristic rules,
alongside a 100K-scale commentary dataset.

Following this, we mix the Go professional dataset with general long-chain-of-thought (CoT) rea-
soning data from various domains such as code and mathematics. We fine-tune our base model on
this mixed dataset to cold-start both Go-specific expertise and long-form CoT reasoning capabil-
ities. Using this fine-tuned model as the starting point for reinforcement learning, we encourage
self-exploration through carefully designed queries and rewards that promote long CoT reasoning on
the next move prediction task. We design a segmented reward function to encourage the output of
relatively optimal predictions in a long COT format. In this way, exemplified by the Go game, LLMs
can self-explore expert-level reasoning chains.

2.1 Modeling the Game of Go

We first introduce our approach to modeling the

next move prediction task in Go. As a highly Given the Go game move list below:
. 1.X-Q16 2.0-D16 ... 141.X-J7
complex board game, Go is played on a 19x19 Please predict the next move.

grid, where black moves first and players alter-
nate placing stones until the game ends. The
complexity of board games can be quantified Figure 3: Prompt demonstration for modeling the
as b%, where b denotes the average number of Go game as a next move prediction task.




legal moves per position and d represents the typical game length. With parameters of b ~ 250
and d =~ 150, Go’s complexity substantially exceeds that of other board games like chess (b =~ 35,
d ~ 80), presenting a significantly more challenging task.

In this work, we formulate the entire sequence of moves in a Go game as the input sequence, and
the model’s task is to predict the next move. Specifically, for a Go position after k£ moves, if we
denote the preceding move sequence as {x,, } <, then for a model 7y, the prediction task can be
characterized as:

Tpt1 = To(X1, T2, ..., Tk) e))

Each move position is a combination of a letter and a number coordinate. To distinguish between the
two players, we use X and O to denote black and white stones, respectively. Therefore, given a game
record sequence, the model is provided with a query as demonstrated in Fig. 3.

2.2 Expert-Level Go Dataset Collection

We introduce a large-scale professional Go dataset, comprising a Go commentary training dataset
and a professional Go dataset constructed using heuristic rules for the next-step prediction task.

Next Step Prediction Dataset We collect a
dataset containing over 5 million game records <Stepl> (player identity determination) The

. last move is 141.X-J7. The next player is
played by both top amateur and professional white.
Go players. From these game records, we uni- <Step2> (analysis of several potential next
formly sample over 10 million game states and moves) Try 142.0-010, the subsequent possible
annotate them using the open-source Go en- <Step3> (summary) Considering all the above
gine KataGo [Wu, 2019]. As a Go engine analysis, the best move is 142.0-C10.
that employs Monte Carlo Tree Search (MCTS), <Stepd> (structured output)
KataGo’s output for a given game state includes .

Next player: White

the top 10 most probable next moves, subse- Next position: C10
quent variations for each move, and numerical Win rate: 52.4 %
analysis of the current move. We use KataGo to

annotate these 10 million game states and design
the following heuristic template to construct data

Fi 4: E les of th icti
for model training as seen in Fig. 4. leure xamples of the next step prediction

dataset. The heuristic template consists of four
parts: (i) confirming whether the next player is
Commentary Dataset We collect and pro- pjack or white; (ii) analyzing several possible next
cess 100K Go commentary cases from open re-  oves; (iii) summarizing and selecting the optimal

sources, each containing an independent game ext move: and (iv) structured output.
state and the corresponding comment. We pro-

cess the commentary data into a training dataset where, given a game state, the model’s task is to
provide logically sound commentary with correct terminology usage according to the current game
state.

2.3 Mixed Cold Start

We mix the professional Go dataset with long CoT reasoning data from domains including math-
ematics and code, performing mixed fine-tuning on the base model to serve as the starting point
for GRPO. After fine-tuning, LoGos demonstrates the capability to complete next-step prediction
tasks and provide commentary based on the current game state. Simultaneously, the model maintains
outstanding performance on other general reasoning tasks.

2.4 Self-Exploration with Reinforcement Learning

Based on our analysis of the fine-tuned initial model, we observe that it spontaneously generalizes
reasoning capabilities acquired from long COT reasoning data to the Go prediction task. When
presented with instructions resembling those in CoT reasoning contexts, the model naturally performs
understanding, analysis, reasoning, and summarization for a given game state. However, at this stage,
the initial model still cannot apply the professional knowledge acquired from the professional Go



4+ Query
You are a professional Go player. Your task is o analyze the board position based on the given game record, suggest
lysi ibl.

several potential next moves with analysis, explore that could follow, provide thoughtful reasoning,
and finally summarize by recommending the best next move. In the given game, "X" represents black stones and "O"
Long Reasoning Data

represents white stones.

1.X-Q16 2.0-D16 3.X-R4 4.0-D3 5.X-D5 6.0-C5 7.X-C6 8.0-C4 9.X-D7 10.0-F3 11.X-C14 12.0-FI7 13.X-DI1 14.0-P3 15.X-Q5 16.0-
RI1 17.X-R9 18.0-R14 19.X-R15 20.0-Q14 21.X-O17 22.0-P10 23.X-O4 24.0-R17 25.X-S15 26.0-P18 27.X-QI17 28.0-Q18 29.X-S17
\L 30.0-S18 31.X-R16 32.0-P17 33.X-P16 34.0-016 35.X-O18 36.0-R18 37.X-T18 38.0-015 39.X-MI17 40.0-S14 41.X-P19 42.0-B15
a

é'%%‘o"’

Cold Start Dat:

43.X-N3 44.0-B14 45.X-C12 46.0-S3 47.X-R3 48.0-R2 49.X-Q2 50.0-R6 51.X-P9 52.0-Q7 53.X-S5 54.0-P8 55.X-09 56.0-Q9

i 57.X-R8 58.0-Q8 59.X-S6 60.0-S1 61.X-T2 62.0-Q3 63.X-S2 64.0-Ql 65.X-R1 66.0-F9 67.X-D9 68.0-R2 69.X-02 70.0-L3
EH| 71.X-P2 72.0-M9 73.X-J3 74.0-K5 75.X-G4 76.0-F4 77.X-G6 78.0-F5 79.X-G5 80.0-G3 81.X-K4 82.0-L4 83.X-J5 84.0-Ké
|

T
Ix

O -
1T

Flne Tune Go Professional Data

85.X-J7 86.0-Mé 87.X-J10 88.0-G11 89.X-L8 90.0-M8 91.X-L7 92.0-N5 93.X-L10 94.0-C8
Please predict and analyze the next move.

EI Response
First, | need to analyze the key features of the current position. White has just played at C8, which is clearly a move
targeting Black's left-side formation. White's intention with this move is quite clear: to weaken Black's influence on the
left side while potentially preparing for a future invasion into Black's territory. Let me consider several possible

Inlhul Model

Self Explor l

g
Through calculation and comparison of the possible outcomes of these options, B6 appears to be the most reasonable

X
chaic. It not only directly addrosses Whitd's throat and protocts Black's spaco on the left sido, but also holps Black
Go Expert blisk di leulati !

Firstly, Black playing at E6 is a direct response, aimed at protecting the left-side space and preventing further White

invasion. B6 can connect with Black's previous stone at C6, forming a relatively solid If White ch to

counter at D8, Black can continue strengthening their position with E8, creating a powerful shape. Such a formation not
only resists potential White invasions but also helps Black establish more influence on the left side.
B5 is a more direct choice, more directly confronting White's stones at C4 and C5. This approach might lead to more
intense fighting, but could also help Black establish more structure on the left side. If White counters at D8, Black can
use E8 to continue building their shape.

represents a middle ground b B6 and BS, potentially offering a d balance point. However, if White
counters at D8, Black might need additional steps to build and consolidate their structure.

@

Next move?

more g to my B6 might give Black approximately a 51.8% win rate,
which is a fairly good advantage in the current position.
Additionally, B6 has the benefit of simul dressing multiple directions, i g Black's overall flexibility. If

White counters at D8, Black can continue building their shape with E8, then further adjust based on White's response.
This flexibility is particularly valuable in the current position.

Figure 5: Our methodology for integrating Go professional capabilities with LLMs’ long COT
reasoning abilities. After mixed cold start and GRPO training, our model ultimately successfully
transfers the reasoning capabilities acquired from long CoT data to Go tasks. For a given query, the
model correctly performs analysis, thinking, reasoning, and summarization, ultimately selecting a
reasonable next move.

dataset, resulting in inaccurate prediction results. To address this issue, we introduce a reinforcement
learning phase to enhance the model’s performance on the next-step prediction task. We uniformly
sample from the KataGo annotated data described in Section 2.2, construct queries according to the
game states, and utilize annotation information as metrics for reward calculation.

2.4.1 RL Optimization with GRPO

We utilize a widely used RL method, GRPO (Group Relative Policy Optimization), which is proposed
in DeepSeek-Math For a given problem-answer pair (g, a), GRPO samples a group of independent
responses {0;}$ ; from the old policy 7y,,. Each output is scored by a reward model or reward
function, yleldlng G rewards r = {ry,72,...,rg} correspondingly. GRPO optimizes the LLM by
maximizing the following objective:

Jarro(0) = Elg ~ P(Q), {0i}iZ1 ~ m,1,(0la)]

1 G 1 lo;] bt it . )
EZWZ min %Ai’hclip %71—6,1-"—6 Ai,t _/B]D)KL [7T9H7T7-ef]
i—1 19" = 0014 Oo1d

—mean(ri,ra,...,rq)
std(rl,r2,...,ra)

where A; = © is a group-relative advantage for the i-th response.

2.4.2 Reward Modeling

Specialized for the Go task, we design a reward function that rewards both high-matching moves
and responses that predict the win rates accurately. We sample a subset from KataGo’s annotated
data, and for the top 10 options ranked by KataGo’s win rate, we obtain and sort their win rates
{w;}12,, denoting the highest win rate as w*. We stipulate that the model’s output must include
the predicted next move position along with a win rate estimation for that prediction. The win rates
predicted by the model are denoted as {1; }12,. Based on this design, for a given model output o;,
the corresponding reward 7; is calculated using a piecewise reward function:



B1] (s —w;)|

L= a1 05 =] if rank(i) =1
¢ —ag - % —ag - % if rank(i) € [2, 3]
ri=<c—ay- % —as - % if rank(i) € [4,10] 3)
€3 — Qg — o if rank(i) ¢ [1,10] A format correct
0 otherwise

Here, o, as, B1, B2, c1, c2, c3 are all adjustable parameters, satisfying ¢; > co > ¢35 > a3 + 9.
We heuristically set ¢; = 0.8, co = 0.6, c3 = 0.4 to explicitly reward moves with higher matching
degrees. We set a1 = 0.1, 51 = 10 to reward responses with accurate win rate estimations for the
predicted next move. Meanwhile, as is set to 0.2, with 85 = 10, to reward relatively more matching
predictions within the same ranking level.

With an external reward model such as KataGo, we collect structured expert-level knowledge, which
is rather easy in expert-level reasoning tasks such as exploring scientific discoveries, data analysis,
or controlling systems in the industrial process. By self-exploring the policies with RL training, the
hard-to-generalize expert knowledge can be utilized in a general, powerful reasoning-style LLM.

3 Experiments

3.1 Experimental Setup

Datasets For the selection of long CoT reasoning data, we collect several distilled reasoning
datasets covering a wide range of general tasks including code, mathematics, and general reasoning.
Specifically, our collected datasets include Openthoughts-114K [Team, 2025], NuminaMath-QwQ-
CoT-5M [Team et al., 2025], OpenCodeReasoning [Ahmad et al., 2025], Bespoke-Stratos-17k [Labs,
2025], and AM-DeepSeek-R1-Distilled-1.4M [Zhao et al., 2025].

Benchmarks We propose KataGo-Bench-1K, our original benchmark for measuring LLMs’ Go
capability. KataGo-Bench-1K is a test set of 1,000 samples from KataGo annotation data, with game
states sampled across various player skill levels. For each position, a prediction is considered correct if
the predicted move falls within the annotated candidate moves. Additionally, we measure the model’s
general performance on the following comprehensive benchmarks: GPQA-Diamond [Rein et al.,
2024], BBEH [Kazemi et al., 2025], KOR-Bench [Ma et al., 2024a], AIME, MATH [Hendrycks
et al., 2021], and LiveCodeBench [Jain et al., 2024]. These benchmarks collectively evaluate
model performance across major reasoning domains, including commonsense reasoning, scientific
knowledge, logical reasoning, mathematics, and coding abilities.

Models For foundation models, we conduct training based on the Qwen2.5 series [Yang et al.,
2024], including Qwen2.5-7B-Base and Qwen2.5-32B-Base. For general performance comparison
baselines, we select Qwen2.5-7B-Instruct and Qwen2.5-32B-Instruct, while also comparing with
DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Qwen-32B [Guo et al., 2025] to thoroughly
demonstrate our models’ outstanding performance on general tasks. Furthermore, we evaluate
several mainstream closed-source and open-source models for comparison, including DeepSeek-
R1, OpenAl-ol-mini, and Claude3.7-Sonnet. We also compare Go professional capabilities with
the KataGo-Human-SL model series [Wu, 2019], which is trained on human player game records.
Specifically, this model series encompasses skill levels from 18k (kyu) to 9d (dan), with 27 distinct
proficiency levels arranged sequentially from 18k to 1k, 1k to 1d, and 1d to 9d, where 18k represents
beginner-level players and 9d represents top amateur and professional standards.

3.2 Main Results

Table 1 presents our primary experimental results. First, both our 7B and 32B model achieve Go-
specific performance that significantly surpasses all existing general LLMs. On KataGo-Bench-1K,
the strongest general model apart from LoGos is Claude3.7-Sonnet, which achieves a prediction
accuracy of 34.3%. However, even this performance falls substantially below that of the lowest-
ranked beginner-level Go specilaized model, KataGo-HumanSL-18k (67.4%). In contrast, our



Table 1: Main results on Go professional benchmark and general benchmarks. We evaluate and
compare the models’ performance on KataGo-Bench-1K and several general reasoning benchmarks,
with the evaluation results on general benchmarks obtained using Opencompass [Contributors, 2023].
The score on BBEH is calculated by averaging the results from each subset.

Model | KataGo-Bench | General Benchmark
\GPQA Diamond BBEH KOR-Bench AIME MATH LiveCodeBench

Closed-source Models

DeepSeek-R1 17.6 69.7 44.5 78.3 86.7 97.6 83.8
ol-mini 27.3 61.1 - 70.16 56.7 95.0 75.0
Claude3.7-Sonnet 343 67.7 33.8 64.8 30.0 79.8 63.2
Open-source Models (7B)
Qwen2.5-7B-Base 1.4 28.3 9.9 204 13.3 83.2 9.0
Qwen2.5-7B-Instruct 8.0 39.9 12.9 42.8 33 92.6 16.2
DeepSeek-R1-Distill-Qwen-7B 0.6 41.4 13.1 559 333 88.2 20.4
LoGos(7B) 88.1 37.9 22.1 65.7 40.0 93.2 234
Open-source Models (32B)
Qwen2.5-32B-Base 1.5 359 15.6 42.8 10.0 90.7 13.8
Qwen?2.5-32B-Instruct 6.8 46.0 18.0 58.1 20.0 95.2 29.9
DeepSeek-R1-Distill-Qwen-32B 4.7 56.1 27.4 70.0 46.7 94.5 36.5
LoGos(32B) 88.6 63.6 34.1 74.8 56.7 96.5 50.9
Go Professional Models
KataGo-HumanSL-18k 67.4 - - - - - -
KataGo-HumanSL-1d 79.7 - - - - - -
KataGo-HumanSL-5d 85.5 - - - - - -
KataGo-HumanSL-9d 87.8 - - - - - -
(a) Self-Exploration (b) RL without Cold Start (c) Cold Start with Naive Fitting
* 7B Model 50 ® 7B-Instruct 4 R1-7B < Naive Fitting
= 32B Model 32B-Instruct 4+ R1-32B ® Heuristic Rule
g% g40 g% /./—/"—”_"—w‘
@ @ @
g 30 g 60
E% E E
2 220 2 40
[ [ [
[ ) o o
10 20
i
60 oW 0
0 300 600 900 1200 1500 0 200 400 600 800 1000 0 300 600 900 1200 1500
GRPO Training Steps GRPO Training Steps GRPO Training Steps

Figure 6: Experiments on model self-exploration in the professional Go task. (a) Performance curve
during reinforcement learning from our initial point in the main experiment; (b) Performance when
applying reinforcement learning directly to instruction models without cold start; (¢) Comparison of
reinforcement learning performance when replacing heuristic rule construction with direct prediction
during cold start.

models achieve nearly 2.6 times the accuracy of Claude3.7-Sonnet and even exceed the performance
of KataGo-HumanSL-9d (88.6% and 87.8%), indicating that our models attain proficiency in Go
comparable to professional players.

To verify that LoGos maintains strong general capabilities, we conduct comprehensive evaluations
on various general benchmarks. The results demonstrate that LoGos not only excels in Go-specific
tasks, but also maintains impressive performance across diverse general tasks, including mathematics,
coding, and commonsense reasoning, achieving leading performance within similar model sizes.
Compared to the Qwen2.5 series Instruct models, LoGos consistently outperform across all general
tasks evaluated. Even when compared with DeepSeek-R 1-Distill-Qwen-7B and DeepSeek-R1-Distill-
Qwen-32B, our models achieve comparable performance across general tasks, surpassing the R1
distilled models on most of the benchmarks. These results conclusively demonstrate that our models
have attained expert-level proficiency in Go while preserving outstanding general capabilities.

3.3 Experiments on Self-Exploration
3.3.1 Self-Exploration in Go

We analyze the performance growth of LLMs in Go through reinforcement learning. In Fig. 6(a), we
plot the performance curves during GRPO training, using mixed fine-tuned Qwen2.5-7B-Base and



Qwen2.5-32B-Base as initial points. At the beginning of training, the models’ initial performance
ranges between 60% and 70%, comparable to beginner-level. As the training progresses, both of
the models quickly discover a stable reasoning strategy through self-exploration, and their perfor-
mance rapidly increases, surpassing the KataGo-HumanSL-1d model (representing an medium-level
player). Subsequently, the models’ performance continues to improve throughout the training process,
eventually exceeding the KataGo-HumanSL-9d model, which simulates top human players and
professional players, ultimately achieving a proficiency level comparable to professional Go players.
The experimental results presented above demonstrate that after the cold start phase, LLMs are
capable of exploring reasonable strategies for Go-related tasks through self-exploration.

3.3.2 RL without Cold Start

Given that models can self-explore in Go tasks, a natural question arises: can LLMs discover stable
strategies through self-exploration without requiring a cold start? To investigate this question, we
select the Qwen2.5-7B-Instruct and Qwen2.5-32B-Instruct, along with DeepSeek-R1-Distill-Qwen-
7B and DeepSeek-R1-Distill-Qwen-32B as initial points, and directly apply GRPO training on the Go
task. As seen in Fig. 6(b), our results confirm that although models can improve prediction accuracy
throuth self-exploration, the upper limit is significantly lower without cold start, as the models
ultimately fail to reach the beginner-level performance (67.36%). Notably, the self-exploration ceiling
for DeepSeek’s distilled models is lower than that of Qwen’s instruction models, demonstrating that
cold starting with long reasoning data alone does not directly result in effective generalization in
domain-specific tasks like Go. Based on these observations, we conclude that general reasoning
data alone is insufficient, and domain-specific expertise is necessary for effective performance in
specialized tasks like Go.

3.3.3 Cold Start with Naive Fitting

While we have proved the significance of cold start, the necessity of heuristic rules when constructing
expert-level dataset still needs verification. To investigate this, we try completely removing heuristic
rules and use direct prediction as a substitution. For a given board state, the response directly predicts
the position of the next move. As shown in Fig. 6(c), results on the 7B-size model show that when
using naive fitting for cold start, the model fails to properly acquire Go expertise from the professional
dataset, resulting in significantly lower capability ceiling (below 50%) compared with using heuristic
rules (88%). These results confirm that in the cold start phase, a well-structured and relatively natural
domain-specific expert-level dataset is crucial for helping LLMs raise their exploration ceiling during
the self-exploration stage.

4 Discussion

4.1 Ablation Study on Reward Design

Since our reward function is heuristically designed, it re- 95 | —— Original Top1 Only
quires further investigation. We conduct RL experiments wl Level Only  —+Top3 Only
with several alternative reward designs: (i) rewards given & Human SL 9d
only to the top-1 move; (ii) rewards given only to the top-3 5 ss

moves without distinguishing; and (iii) tiered processing < =

of moves without intra-level rewards (i.e., setting a; and £ & Human St1d

s to zero in Equ. 3). 5.

As shown in Fig. 7, models perform effective self- o

exploration under different reward settings. However, un-

der the top-1 and top-3 reward designs, the sparse reward 0 300 600 900 1200 1500
distribution results in lower performance compared to the GRPQ Training Steps

tiered reward and our original reward function. Comparing

% ﬁA %tl on reward gem n
the original reward function with the tiered reward approach, nd significa Froencd €%
though our reward design ultimately achieved a higher performance ceiling, demonstrating the
advantage of a smoother reward function.
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Figure 8: Analysis on move range

4.2 Case Study on Response Quality

We invite several top amateur Go players to evaluate the generated responses based on move prediction
accuracy and explanation quality. As shown in Tab. 2, our model produces accurate move predictions
in 96.5% of cases, with 55.6% of the explanations correctly given. However, there exist cases with
incorrect explanations or ambiguous descriptions, which we will discuss briefly below.

Firstly, Go contains more than 600 terms, each corresponding to a specific local pattern on the board.
Our model occasionally exhibits issues with incorrect usage of these specialized terms. Moreover, in
certain scenarios, the correctness of the explanation becomes hard to assess. For example, during
the opening phase, outputs such as "establishing strong positional influence" represent a generally
applicable description that, while broadly valid, offers limited informational value.

4.3 Context Curse for LLM Performance in Go
4.3.1 Problem Description

As shown in Fig. 8, we observe that it becomes increasingly challenging for LLMs to comprehend
the game state as the game lengthens. For a given game sequence {x., }, any substitution between
elements x; and x; could possibly create entirely different board positions. As the sequence length
grows, the board structure becomes increasingly complex, requiring the model to capture more
connections, which leads to decreased prediction accuracy. In contrast, models that directly represent
the current board state, like KataGo, maintain performance regardless of game length.

4.3.2 Solution to context curse

To address this issue, we further explore encoding methods for 100 e e I Mo
the game records and design a strategy that incorporates 2-D

board state information directly into the input query. Specif-
ically, for a given move list, we provide the model with the
resulting board state. This state is represented as a 19x19 2-D
array, where the values 1, -1, and 0 denote a black stone, a white
stone, and an empty intersection, respectively. Our Python im-
plementation is based on an open-source Go board rendering
repository https://github. com/SabakiHQ/go-board.

Performance (%)

. . . 0-50 51-100 101-150 151-200 200+
After modifying the query format and following the same exper- Move Range

imental procedure (cold start + RL), we surprisingly find that
the new approach significantly mitigates the model’s "context
curse" problem. Fig. 9 presents the model’s performance under
the new format across various input sequence lengths. It is evident that with this updated input,
the model achieves a markedly more accurate understanding of the board state, maintaining high
prediction accuracy even for sequences exceeding 200 moves. Therefore, we conclude that this new
method (2-D board state rendering) effectively resolves the context curse challenge.

Figure 9: Analysis on move range
(with 2D board rendering applied.)
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4.4 Experiments on Data Mixing Ratio

4.4.1 Impact of Data Mixture Ratios on RL Performance

We first investigate the impact of the data mixture ratio of Go
dataset during the cold-start phase. While holding the training
for the general reasoning dataset to 1 epoch, we compare the
performance of models initialized with 1 versus 2 epochs of
Go data. The models’ performance is evaluated on the KataGo-
Bench-1K benchmark throughout the subsequent RL stage.

—— Mixing 1 Epoch Go
90 | — Mixing 2 Epoch Go

80

70

Performance (%)

As shown in Fig. 10, the model initialized with 2 epochs of Go 60
data exhibits better performance at the initial point. However, 0 250 500 750 1000 1250

as the RL process unfolds, this model does not demonstrate GRPO Training Steps
superior learning capabilities. In contrast, the model trained on .
a single epoch of Go data ultimately achieves a higher perfor- Figure 10: RL performance of dif-
mance ceiling. Guided by this finding, and also considering the ~ferent Go data mixing ratios.
reduced computational requirements, we adopt the one-epoch setting for our cold-start experiment.

4.4.2 Impact of Data Mixture Ratios on Generalization Performance

We then test the model’s performance on general Table 3: Performance on general benchmarks
benchmarks after training for one epoch, mixing a with varying amounts of Go data.

fixed amount of reasoning data and varying quan-

tities of Go data. As demonstrated in Tab. 3, incor- Dataset Without Go 500K 2M 4M 1M
porating a larger volume of Go data does not cause I‘A/IIAI\EI 2;-2 %; 33% g;-g 3;‘9‘
a 51gn1.ﬁcant deg@datlon in the model’s general ‘.= 650 651 664 663 663
reasoning capabilities. GPQA diamond 61.9 612 60.1 59.6 606

5 Related Works

LLM as a Game Player Previous works have shown that LLMs demonstrate capabilities in various
gameplay tasks. Through Chain-of-Thought (CoT) reasoning [Wei et al., 2022], LLM-based agents
constructed through prompt design can complete gameplay tasks such as Pokémon battles, StarCraft
II competitions, and Minecraft strategy simulations [Ma et al., 2024b, Hu et al., 2024, Madge and
Poesio, 2024, Shao et al., 2024a, Gong et al., 2023, Chen et al., 2024]. However, tasks like Go are
relatively more specialized, and general LLMs perform even worse than even beginners, rendering
the approach of building agents for Go based on general LLMs . Some studies have explored the
possibility of training LLMs to learn strategies for games such as chess and poker [Feng et al., 2023,
Zhang et al., 2025, Huang et al., 2024]. Specifically for chess, further works have demonstrated
that templates constructed with heuristic rules can help LLMs learn the trajectories and strategies
generated by professional models in chess tasks [Wang et al., 2024, Schultz et al., 2024].

Domain Expert AI In specialized domains, exemplified by AlphaGo and AlphaFold, Al systems
have demonstrated expert-level capabilities [Silver et al., 2016, Jumper et al., 2021, Meng et al., 2024,
Silver et al., 2017]. Building upon the powerful general capabilities exhibited by LLMs, several stud-
ies have explored methodologies for transforming LLMs into domain experts. A common paradigm
involves synthesizing solutions to specialized problems into learnable data for language models based
on heuristic rules. Leveraging tools such as the Lean language, works like AlphaGeometry [Trinh
et al., 2024] and DeepSeek-Prover [Xin et al., 2024] have investigated approaches to equip LLMs
with the capability of solving Olympic competition-level problems.

6 Conclusion

We present LoGos, a general large language models that achieves expert-level Go proficiency while
maintaining outstanding general performance. We introduce a robust method to mix expert knowledge
into general LLMs and demonstrate the potential of LLMs to acquire expert-level reasoning abilities
in specific domains. We believe that in the future, such a mixing-expert-knowledge method can lead
to a wider range of LLM applications in the Al industry.
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should reflect on how these assumptions might be violated in practice and what the
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deviation from the Code of Ethics.
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(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite all the models, benchmarks and datasets we used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The models, datasets and the benchmark to be released are incorporated with
detailed documentations.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: Instructions given to human Go players are illustrated in Appendix C.3.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
Justification: See Appendix C.3.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations

First, we will discuss the limitations of this work. Although our method effectively and robustly
integrates domain-specific expert-level knowledge into general LLMs, this approach still has several
necessary preconditions for application. Taking Go as an example, our method requires a scalable
source of professional knowledge, such as KataGo. Further, we need to design heuristic rules based
on professional knowledge and construct cold start synthetic data that LLMs can learn from and
understand, thereby training an initial point for self-exploration. In other specialized domains, ac-
quiring such scalable professional knowledge might necessitate the introduction of domain-specific
models/databases, while the design of heuristic rules should also consider the specific task require-
ments. Therefore, this method of mixing-expert-knowledge inevitably requires deep cooperation with
researchers in specialized fields to enable broader applications.

Furthermore, despite the remarkable effectiveness of self-exploration, its training speed is relatively
slower. Consequently, compared with traditional Al models in Go, LoGos is trained on significantly
fewer game states during the RL phase. We therefore believe that the autoregressive architecture
of LLMs might actually constraint the training efficiency when applied to tasks requiring real-time
reasoning, such as Go.

B Experimental Details

B.1 Experimental Settings and Compute Resources

In the mixed cold start phase, we SFT the base models with a maximum sequence length of 32,768
tokens. We employed a cosine annealing learning rate scheduler with rates ranging from 4e-5 to 4e-6.
For training the 7B model, we utilized 32 A800 (80GB) GPUs, while the 32B model required 64
A800 GPUs.

In GRPO training stage, our implementation is primarily based on modifications to the VerL frame-
work [Sheng et al., 2024]. Regarding specific parameter settings, we configure the training batch size
to 64, with 16 roll-outs per data point and a maximum response length of 8,192 tokens. Due to the
significant distribution gap between Go task responses and the reference model’s pretraining data, we
set the KL coefficient (kl_coef) to Se-4. The 7B model training utilizes 32 A800 GPUs, while the
32B model reinforcement learning phase requires 64 GPUs.

B.2 Evaluation Details

For general benchmarks, all evaluations are conducted using the OpenCompass framework. Specif-
ically, the evaluation results for AIME and MATH datasets employ Qwen2.5-72B-Instruct as the
judge model. The performance metrics reported on the BBEH benchmark represent the average
performance across all the subsets.

C Further Discussions

C.1 Analysis on KataGo-Bench-1K

Since most of our experimental results on Go are evaluated based on the performance on the
constructed KataGo-Bench-1K benchmark, it is essential to discuss the fairness of KataGo-Bench-
1K. We select several models with different proficiency levels to play against each other, and calculate

the corresponding ELO ratings based on win-loss outcomes, thereby intuitively representing model
capabilities through competitive relationships. The ELO rating is designed as follows:

ELO(A)pew = ELO(A)oa + K - (Sa — E4) 4)
Where:

o ELO(A)pew is the updated Elo rating of player A after the match
* ELO(A)qq is the previous Elo rating of player A
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» K is the weight coefficient that determines how much a single game will impact the rating
(set to 32)

* S, is the actual score of player A in the match (1 for a win, 0.5 for a draw, O for a loss)

» FE 4 is the expected score of player A, calculated as:

1

Ea= 1 + 10(BLO(B)—ELO(A))/400

&)

Where ELO(B) is the Elo rating of opponent B. The constant 400 determines how much rating
difference corresponds to a specific winning probability.

Based on this ELO rating system, we selected several models with varying performance levels and
conducted a tournament to obtain the corresponding ELO ratings for each model. As shown in
Figure 11, our experimental results demonstrate that the correlation coefficient between the models’
ELO ratings and their performance on KataGo-Bench-1K is » = 0.92, indicating an extremely high
correlation between these two metrics. Therefore, we can conclude that KataGo-Bench-1K is a fair
benchmark that accurately reflects the actual competitive capabilities of the models.
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Figure 11: Correlation between ELO rating and KataGo-Bench-1K performance.

Figure 12: Winrate curve when context curse occurs

C.2 Context Curse: A Case study

In Sec. 4.3, we introduce the phenomenon of declining LLM performance as game state length
increases. Here, we will study on this phenomenon and its underlying causes through several games
between LoGos and Golaxy-GiantElephant. Fig. 12 illustrates the win rate and score progression
during gameplay. The blue line represents Golaxy-GiantElephant’s win rate, while the yellow line
indicates Golaxy-GiantElephant’s lead in points. As observed, LoGos maintained a significant
advantage during the first 160 moves. However, within the subsequent 40 moves, following several
mistakes by LoGos, the game situation completely reversed, ultimately resulting in LoGos’s defeat.

Examining one specific mistake, the board position is shown in Fig. 13. At this juncture, the green
positions represent the top-1 choice annotated by KataGo, whereas the red or brown positions
indicates LoGos’s actual choice, which are incorrect. Black’s previous move was at position HS.

22



Figure 13: Game state when error occurs

LoGos’s prediction included the reasoning: "We need to respond to Black’s challenge at position HS."
In Go, responding to an opponent’s attack in the local area is a common strategy, making this pattern
easily learnable from the training data. However, the superior move at H16 requires comprehensive
value judgment. While such a decision is not particularly difficult for top amateur human players, it
presents a significant challenge for LLMs due to their reliance on serialized input, making global
pattern recognition more difficult. This obstacle is what we name as the "context curse" faced by
LLMs in Go-related tasks.

| | bt VN 1
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Figure 14: Another game state, LoGos chose to respond in the local area again
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C.3 Response Quality: More Case Studies

Instructions Given to Volunteers We invite more than twenty amateur Go enthusiasts to provide
manual evaluations and ratings based on game states and model-generated responses. Our evaluation
process is completely anonymous and randomly distributed, and the instructions do not have any
privacy risks. The instructions are designed as follows:

Given the game state on the board and the response generated by our LLM, please evaluate the
accuracy of the model-generated response. You need to consider both the correctness of the move
itself and the accuracy of the corresponding explanation. The move should be categorized as
correct/incorrect, while the explanation should be classified into three categories: correct,
incorrect, or ambiguous. If you find it difficult to determine the accuracy of the current
response’s explanation, please select the ambiguous category and provide your reasoning.

Figure 15: Instructions given to volunteers

Case Studies on Successful Examples In this part, we present several examples where the model
predictions are accurate. During our experiments and annotation process, the model outputs were in
Chinese. Here, we provide the translated version to facilitate understanding.
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Figure 16: Case 1 Figure 17: Case 2

First, Figure 16 illustrates a correct prediction made by the model at the beginning of the game. For
this particular game state, the generated response is demonstrated in Fig. 18.

In the generated output, LoGos correctly predicts the next move position (D4) while accurately
employing proper terminology: identifying D4 as a star point on the board. Furthermore, LoGos
successfully conduct accurate variation analysis and result summarization, selecting D4 as the correct
next move from among several possible variations. It also appropriately applies the Go principle of
"enter slowly" to support its reasoning for the next move selection.

Figure 17 demonstrates another accurate prediction during the opening phase. This game state is
sampled from a professional player’s match. In this position, the model correctly identifies R8 as the
optimal next move. The corresponding response is shown in Fig. 19. Within this response, the model
again conducted comprehensive reasoning and variation analysis, selecting the correct next move
through a natural and vivid presentation.

Next, we present several mid-game states and their corresponding responses. In a typical Go match,
the period from approximately move 75 to move 200 is characterized by more intense confrontations
and battles between the opponents.

As shown in Figures 20 and 21, these examples illustrate mid-game positions. In such situations, the
model receives input sequences ranging from 75 to 150 moves in length, requiring it to model complex
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Aha, Black’s first move is Q16 at the star point, which is a very solid opening. As
White, we have multiple response options. Let’s analyze them carefully.

In modern Go, facing a star point opening, White has three classic standard responses:
occupying the diagonal star point, playing the small point on the same side, or directly
attaching at the corner. Let’s examine the specific variations:

1. White occupies the diagonal star point at D4 This is the most traditional response,
similar to the "diagonal stepping" concept in ancient Chinese military strategy. If we
choose this variation: 2.0-D4 3.X-Q3 4.0-D17 5.X-C15 6.0-E16 7.X-R6 8.0-C12 According
to AI analysis, White’s win rate in this variation is 52.3%, which is quite balanced.
This approach maintains global flexibility, allowing for pivoting toward different
directions as needed.

2. White occupies the lower-left at D3 This choice is also reasonable, reflecting the
Go proverb "corners first, then sides." The variation might proceed as: 2.0-D3 3.X-Q3
4.0-D17 5.X-C5 6.0-C14 7.X-R6 8.0-C4 The win rate is similarly 52.3%, with this approach
emphasizing development toward the lower-left direction.

3. White chooses to attach at D16 This represents a more direct, aggressive approach:
2.0-D16 3.X-Q3 4.0-D3 5.X-C5 6.0-C4 7.X-D5 8.0-F3 9.X-C17 Although the win rate remains
at 52.3), this approach is more aggressive and might complicate the game prematurely.
After careful consideration, I believe D4 is the optimal choice for three reasons:

1) It adheres to the fundamental Go principle of "corners first, then sides"; 2) It
maintains global balance; 3) It provides more possibilities for subsequent development.
Moreover, since Black has only played one move, there’s no need to define the game

pattern too early. Choosing D4 aligns with the Go maxim "enter slowly," encouraging
patience while waiting for better opportunities.
Next player: White
Next position: D4
Win rate: 52.3J
Figure 18: Response demonstration for case 1
Hmm... this position is quite interesting. White’s 20th move, the small knight’s move

at P4, shows considerable insight-it both restricts Black’s development around Q3 and
lays groundwork for future development in the lower right corner.

(Suddenly sitting upright) However, Black is not to be underestimated! Let’s analyze
several key points carefully:

1. The contest for the lower right corner: R8 is particularly tempting. (Gesturing
over the board) If Black can establish a foothold here, it not only creates resonance
with R5 but also opens a gap in White’s small knight’s formation. I anticipate White
might attempt an invasion at 04, but Black can respond with N4, maintaining initiative
in the center.

2. Potential opportunity in the upper left corner: Q9 is also worth considering.
(Slightly shaking head) While it could construct an interesting shape, it’s perhaps

too passive and doesn’t exert sufficient direct pressure on White. The 46.6% win rate
indeed indicates this isn’t the optimal choice.

3. Other possibilities: (Quickly surveying the board) Other points are either too
conservative or... (suddenly laughing) frankly speaking, they hardly qualify as proper
moves! Especially at this stage, Black needs an assertive approach.

(Rolling a black stone between fingers) After careful analysis, the R8 variation

proves most advantageous: 21.X-R8 22.0-04 23.X-N4 24.0-N5 25.X-M4 (Striking the board
decisively) This allows Black to establish a solid bridgehead in the lower right!
Though the 47.4J, win rate doesn’t represent an overwhelming advantage, the game is still
long, and this choice at least enables Black to maintain initiative.

(Addressing an imaginary opponent) "White-san, your P4 move was indeed elegant, but my
R8 is equally commendable. Let’s see who has the last laugh in the lower right corner!"

Next player: Black
Next position: RS8
Win rate: 47.4J

Figure 19: Response demonstration for case 2
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positional relationships. During this phase, even a minor mistake at any moment can cause dramatic
fluctuations in win probability. We present two cases where the model made correct predictions.
Similar to Case 2, these game states are sampled from professional players’ matches. According to
human evaluation, these game states represent particularly critical phases of play. Figure 22 displays
the model-generated response for the third game state demo. Notably, the model correctly addresses
the challenge appearing on the left side, maintain its local structure, and appropriately applies various
Go terminology and principles. In the demonstrated game state, the move chosen by LoGos (B12) is
the only correct solution. Additionally, the model demonstrated the ability to generate colloquial and
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Figure 20: Case 3 Figure 21: Case 4
Hmm... Black’s 69th move at B1ll is quite sharp. This move has me somewhat perplexed,

as it simultaneously threatens my formation on the left and my development space in the
center-truly a "good move."

(Sitting upright, carefully examining the board) Let me analyze the current position.
The battle on the left side is critical; Black’s Bll move clearly aims to gain
initiative in this area. As White, I need to respond cautiously.

(Taking up a fan and gently waving it) I’ve considered the following response options:
Option One: White B12 This move is direct and effective, embodying the Go principle of
"attack while defending oneself." B12 can resonate with the previous B14, constructing
a stable structure. Let’s project the subsequent variations: 70.0-B12 71.X-E6 (Black
might counterattack here, attempting to establish influence in the center) 72.0-F5 (A
solid response, simultaneously expanding toward the center) 73.X-E5 74.0-F4 75.X-G4
76.0-E7 77.X-F8 (Nodding slightly) In this variation, White’s win rate is 58.9%, making
it a favorable choice.

Option Two: White C11 (Frowning in contemplation) This move also appears promising,
but may lack directness. While C11 offers flexibility, it potentially leaves Black
with more opportunities: 70.0-C11 71.X-C9 72.0-B12 73.X-E6 74.0-F5 75.X-E5 76.0-F4
77.X-G4 (Shaking head gently) In this variation, White’s win rate is 54.8J,, slightly
less advantageous.

(Setting down the fan, crossing hands) Comparatively, B12 clearly prevails. It not
only directly addresses Black’s threat but also accommodates development in multiple
directions, creating excellent synergy with B14. Should Black attempt complications
here, we have sufficient countermeasures.

(Slight smile) While the opponent’s B1ll move did cause some perplexity, our B12 response
should exert some pressure in return. This move adheres to the principle of "enter
slowly when approaching enemy territory" while maintaining our advantage.

Next player: White
Next position: B12
Win rate: 58.9%

Figure 22: Response demonstration for case 3

natural responses.
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Case Studies on Misuse of Go Terms Next, we examine cases that illustrate the two issues
mentioned in Section 4.2: the model’s incorrect usage of specific terminology in particular positions
and the difficulty in evaluating the correctness of model-generated responses. First, Figure 23 shows
a position from the opening stage. Here, the model correctly selects D17 as the predicted next move.
However, the model erroneously describes D17 as a "star point," which actually refers to the position
at D16 one intersection away. While this error does not affect the accuracy of the model’s final
prediction, it objectively reflects discrepancies in the model’s understanding of specific terminology.

Similarly, in Figure 24, the model characterizes the relationship between the predicted next move
F17 and the existing stone at D17 as a "knight’s move," when the correct term should be "one-space
jump"—another instance of terminology misuse. Overall, the model’s terminology errors appear
predominantly during the opening stage, likely because the opening phase involves a richer variety of
shapes and associated terminology.

A°B CDETFGHJ] KLMNOPOQRTST A°B CDETFGHJ] KILMNOPOQRZEST
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Figure 23: Case 5 Figure 24: Case 6

Let us carefully analyze this opening
position. ... 1. *xD17 star point*x*

L Let us analyze the current position
- This is the most orthodox response. ¥y P

carefully. ... 1. F17 - This is m
Choosing the star point in the upper left v y
: : . most recommended move. The elegance of
corner creates a diagonal relationship X X . X
this play lies in: - Forming a knight move

with Black’s stone, representing a very
classical opening strategy. The subsequent
variation might develop as follows:

with D17, building thickness ...

Figure 26: Response demonstration for case 6
Figure 25: Response demonstration for case 5

Case Studies on Ambiguous Explanations In Section 4.2, we also discuss instances where
LoGos provides responses whose correctness is difficult to assess accurately. Below, we present a
corresponding example in Fig. 27. In this position, the model’s prediction at O4 would typically be
described as cutting Black’s connection in the lower right and punishing Black’s overplay in this area.
However, the model characterizes the effect of this move as "not only neutralizing Black’s offensive,
but also establishing a solid base for our side in the lower right." While this description is far from
incorrect, from a response quality perspective, it provides relatively limited effective information and
does not fully align with human-expected intent. Therefore, responses of this quality are considered
ambiguous.

We consider the occurrence of this phenomenon to be quite reasonable. During the GRPO training
phase, we do not incorporate any reward related to terminology usage for the model. Indeed, adding
such a reward is not a straightforward task, as currently no language model possesses the capability
to correctly understand Go board terminology, which implies that training a corresponding reward
model would be an entirely new challenge. Nevertheless, it is surprising that despite not receiving
any terminology-related rewards during training, LoGos still maintains a relatively high descriptive
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accuracy and successfully employs various specific terminologies acquired from the commentary

dataset.

Figure 27: Case 7

<Stepl> (player identity determination) The last move is 141.X-J7. The next
player is white.

<Step2> (analysis of several potential next moves) Try 142.0-C10, the
subsequent possible variation would be: 142.0-C10 143.X-C9 144.0-D9
145.X-D10 146.0-E9 147.X-E10 148.0-F9 149.X-F10 150.0-G9 In this variationm,
white’s win rate is 52.4Y%.

Try 142.0-D10, the subsequent possible variation would be: 142.0-D10
143.X-C10 144.0-C9 145.X-D9 146.0-E9 147.X-E10 148.0-F9 149.X-F10 150.0-G9 In
this variation, white’s win rate is 51.8Y%.

Try 142.0-C9, the subsequent possible variation would be: 142.0-C9 143.X-C10
144.0-D10 145.X-D9 146.0-E9 147.X-E10 148.0-F9 149.X-F10 150.0-G9 In this
variation, white’s win rate is 51.5Y%.

<Step3> (summary) Considering all the above analysis, the best move is
142.0-C10. This move leads to a win rate of 52.4%, which is higher than the
alternatives. The move at C10 effectively controls the left side of the
board while maintaining a balanced position overall.

<Step4> (structured output)

Next player: White
Next position: C10
Win rate: 52.4 %

Figure 29: Examples of the next step prediction dataset. The heuristic template consists of four parts:
(i) confirming whether the next player is black or white; (ii) analyzing several possible next moves;

(iii) summarizing and selecting the optimal next move; and (iv) structured output.

D More Demonstrations of Prompts and Datasets

D.1 Next Step Prediction Dataset

In Fig. 29, we present a complete response constructed based on heuristic rules from the Next Step

Prediction Dataset.

D.2 Commentary Dataset

In Fig. 30, we show a case from the Go Commentary Dataset. The comments are sourced from
professional and top amateur Go players’ game analyses. We collect and process the data to establish
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Move 76: Next, Black could well jump to the star point at the bottom center.
In any case, due to the unfavorable position, Black is now seeking to employ
extraordinary measures.

Figure 30: Example of the Go commentary dataset

one-to-one correspondences between game states and comments, and apply rule-based filtering to
remove low-relevance comments (such as greetings at the beginning of games or announcements of
winners at the end). Through this process, we construct a Go Commentary Dataset comprising 100K
entries.

D.3 System Prompt in GRPO

During the GRPO training phase, we employed a system prompt entirely different from that used
in the cold start phase, aimed at encouraging the model to think and predict through a reasoning
paradigm. Our system prompt is shown in Figure 31.

You are a professional Go player. Your task is to analyze the given game
record, assess the position, select several possible next moves for analysis,
project the subsequent variations, conduct reasonable analysis and reflection,
and finally summarize and select the optimal next move. In the provided game,
"X" represents Black stones, and "0" represents White stones. The board

size is 19x19, with each move coordinate expressed as a letter followed by

a number. Letters range from A-T (skipping I), corresponding to positions
from left to right on the board. Numbers range from 1-19, corresponding to
positions from bottom to top.

You need to first conduct a reasonable analysis and reflection on the current
position, make logical predictions, projections, and analyses of subsequent
moves, and finally summarize your reasoning to select the most appropriate
next move. Please provide rigorous and detailed analytical reasoning, with
timely summaries. Your output format should be:

<reasoning>

Your thought process.

</reasoning>

<answer>

\boxed{Next player: Black/White}

\boxed{Next position: move location}

\boxed{Win rate: percentage}

</answer>

Figure 31: Example of the system prompt used in GRPO

E 2-D Board Rendering Demo

In this section, we briefly introduce the method we use to render a given move list to the 2-D board
state.

For instance, for a move list:

1.X-D16 2.0-D4 3.X-Q4 4.0-Q16 5.X-017 6.0-R14 7.X-C3 8.0-D3 9.X-C4 10.0-D5
11.X-B6 12.0-R6

Figure 32: Example of original move list.

The rendered 2-D board state is shown in Fig. 33. Where 1 represents black, -1 represents white, and
0 represents an empty position.

F More descriptions of Go

Here are some simple explanations for better understanding of Go.
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rco, o, o, o, o, o, o, o, o, o, 0, 0, o, o, o, 0, 0, 0, 01, [0, O, O, O, O, O,
o, o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 01, [0, O, O, O, O, O, O, O, O, O, O, O,
o, 1, o, o, o, o, o1, [0, O, O, 1, O, O, O, O, O, O, O, O, O, O, O, -1, O, O,
o1, [0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O], [0, O, O, O, O,
o, o, o, o0, 0, 0, 0, 0, 0, 0, O, -1, 0, 0], [0, O, O, O, O, O, O, O, O, O, O,
o, o, o, 0, 0, o0, o, o1, [0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,
o, o1, [o, o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, 01, [0, O, O, O,
o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, 0, O, 01, [0, O, O, O, O, O, O, O, O, O,
o, o, o, o0, 0, 0, 0, 0, 01, [0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,
o, o, o1, [0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O], [0, 1, O,
o, o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, -1, 0, 0], [0, O, O, -1, O, O, O, O, O,
o, o, o, o, 0, o0, 0, 0, 0, 01, [0, O, 1, -1, O, O, O, O, O, O, O, O, O, O, O,
i, o, o, o1, [O, O, 1, -1, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O], [oO,
o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, 0, 0, 0, 0], [0, O, O, O, O, O, O,
o0, o, 0, 0, 0, 0, 0, 0, 0, O, 0, 0I1]

Figure 33: Rendered 2-D board state.

* Go is a two-player game where one player uses black stones and moves first, while the other

player uses white stones. The two players take turns placing stones.

* In Go, each stone must be placed on an intersection point. Each stone survives if and only if
it has at least one "liberty" (breathing space). When a stone is surrounded by the opponent’s
stones on all adjacent sides, it is considered to have zero liberties and is "captured”. Typically,
a game ends when all stones from both sides are alive, and further moves cannot guarantee
survival. At this point, both players agree to end the game and count the total number of
their surviving stones plus the enclosed intersection points. The player with the higher total
wins. For experienced players, the game can end simply by mutual agreement that all moves
are complete and there is no more question about the life and death status of stones on the

board, without needing to continue placing stones.

» "Capture" is a professional Go term that refers to the action of placing a stone that removes
all liberties from the opponent’s stones, thereby clearing the captured stones from the board.

This is one of the most fundamental rules of Go.

G Broader Impacts

In this paper, we do not utilize any non-public data. All our game records and commentary data are
obtained from open resources on the internet, containing only move information, comments, and
necessary win-loss relationships, thus posing no privacy risks or negative societal impacts.

From a positive perspective, we propose a strong method for integrating domain-specific expert-level
knowledge with general-purpose LLMs, providing a novel approach for a wider range of LLM

applications in the Al industry.

30




	Introduction
	Mixed Learning of Go
	Modeling the Game of Go
	Expert-Level Go Dataset Collection
	Mixed Cold Start
	Self-Exploration with Reinforcement Learning
	RL Optimization with GRPO
	Reward Modeling


	Experiments
	Experimental Setup
	Main Results
	Experiments on Self-Exploration 
	Self-Exploration in Go
	RL without Cold Start
	Cold Start with Naive Fitting


	Discussion
	Ablation Study on Reward Design
	Case Study on Response Quality
	Context Curse for LLM Performance in Go
	Problem Description
	Solution to context curse

	Experiments on Data Mixing Ratio
	Impact of Data Mixture Ratios on RL Performance
	Impact of Data Mixture Ratios on Generalization Performance


	Related Works
	Conclusion
	Limitations
	Experimental Details
	Experimental Settings and Compute Resources
	Evaluation Details

	Further Discussions
	Analysis on KataGo-Bench-1K
	Context Curse: A Case study
	Response Quality: More Case Studies

	More Demonstrations of Prompts and Datasets
	Next Step Prediction Dataset
	Commentary Dataset
	System Prompt in GRPO

	2-D Board Rendering Demo
	More descriptions of Go
	Broader Impacts

