Under review as a conference paper at ICLR 2025

PREDICTION CONSISTENCY TRAINING ENHANCES SU-
PERVISED LEARNING FOR LEARNING TASKS WITH
COMPLEX LABELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Directly predicting labels from data inputs has been a long-standing supervised
learning paradigm. Its trade-off between compression and prediction is studied
under the information theory framework e.g. Information Bottleneck, especially
in the context of deep learning. It typically assumes that the information content
of labels is significantly less than that of data inputs, leading to model designs
that prioritize compressing and extracting features from data inputs. In fact, recent
supervised learning increasingly faces predicting complex labels, exacerbating the
challenge of learning mappings from compressed latent features to high-fidelity
label representations. Predictive bottlenecks emerge not only from compression
limitations but also from the inherent complexity of feature-to-label transforma-
tions. This paper proposes incorporating scheduled label information into the
model during training to better learn the prediction consistency mapping, which
stems from the consistency mapping concept from generative consistency models.
Unlike traditional approaches predicting labels directly from inputs, in this paper,
the training of our designed conditional consistency involves predicting labels
using inputs and noise-perturbed label hints, pursuing the predictive consistency
across different noise steps. It simultaneously learns the relationship between latent
features and a spectrum of label information from zero to complete, which enables
progressive learning for complex predictions and allows multi-step inference anal-
ogous to gradual denoising, thereby enhancing the prediction quality. Experiments
on vision, text, and graph tasks show the superiority of our consistency supervised
training paradigm, over conventional supervised training in complex label
prediction problems. Source code will be made publicly available upon acceptance.

1 INTRODUCTION

Supervised learning has long been a cornerstone of machine learning, where models are trained to
map input data to corresponding output labels by minimizing prediction error, which measures the
discrepancy between the predicted labels and the ground truth labels. This direct label prediction
paradigm has been widely applied across various domains, from image classification (Krizhevsky
etal., 2012; He et al., 2016; Simonyan & Zisserman, 2014), natural language processing (Vaswani,
2017; Devlin, 2018; Radford, 2018), to structured graph learning (Kipf & Welling, 2016; Velickovi¢
et al., 2017; Wu et al., 2022), due to its simplicity and effectiveness in handling large, annotated
datasets. In such systems, it is very typical to employ a neural network to directly map the data
inputs to labels, with a particular focus on the expressive capacity of (deep) models to compress
high-dimensional inputs into latent representations while preserving relevant information for accurate
predictions, viewed from an information theory perspective (Tishby et al., 2000; Tishby & Zaslavsky,
2015). This compression is believed to contribute to the generalization ability of deep learning
models, particularly in high-dimensional and noisy input scenarios.

This paradigm typically assumes that the labels contain a significantly lower dimensionality and less
information than the data inputs, thus guiding model designs toward compressing and extracting
relevant features from the input space for efficient prediction (Tishby & Zaslavsky, 2015). The
assumption further implies that transforming meaningful latent features to label outputs is relatively
straightforward compared to the challenge of extracting expressive features. However, recent advances

Under review as a conference paper at ICLR 2025

Data Input Noised Labels fo
0+ @@ -
Data Input Label L=d(felx,y)) +d(fo(x,y:),7)
e Sample | +d(Fo(x, 30, FoCoye))
X GRS y [\
£=d(fo(),7) @ @ @ =
Random Noise Noised Label Noised Label Label
(a) Classic Supervised Learning (b) Supervised Consistency Learning

Figure 1: Illustration of supervised consistency Learning (SCL). Unlike traditional approaches
predicting labels directly from inputs, SCL predicts labels using inputs and noise-perturbed label
hints and pursues predictive consistency across different noise steps.

in supervised learning have shown that many modern tasks involve much more complex labels,
leading to new challenges. Examples include image prediction extending to dense, pixel-level
outputs (Long et al., 2015; Chen et al., 2017), natural language processing tasks generating complex
sentences (Brown, 2020; Touvron et al., 2023), and predicting complex structured solutions based
on graph representations (Li et al., 2023; Satorras et al., 2021). These challenges reveal predictive
bottlenecks beyond feature extraction. To address this challenge, one approach involves learning an
efficient representation of the complex labels, facilitating a more effective transformation within the
low-dimensional feature space. Indeed, this can correspond to methods that leverage Variational Auto-
Encoder (VAE) (Kingma, 2013) to perform learning tasks within the latent space (Rombach et al.,
2022; Hottung et al., 2021). However, this approach necessitates that the transformation between
labels and latent features be reversible, requiring the training of two additional neural networks (an
encoder and a decoder) to accurately capture and reconstruct the label information.

In this paper, we propose an alternative approach, aiming to better capture complex label information
by introducing a fundamentally different supervised learning paradigm. We leverage the concept of
consistency mapping from generative consistency models Song et al. (2023) to frame the supervised
learning process as learning the prediction consistency, transitioning from noised labels to full
labels conditioned on the data input. Specifically, we introduce Supervised Consistency Learning
(SCL), which establishes trajectories from different noise levels on the target labels to the raw labels
conditioned on the given data inputs. This process can be interpreted as a conditional generation
mechanism, where high-fidelity labels are inferred from noisy counterparts using the input data as
a conditional guide, as shown in Fig. 1. Yet, within the supervised setup, each training instance has a
reference target label, and the model learns to guide all denoising trajectories to this label by enforcing
this predictive consistency across different noise timesteps, which we define as prediction consistency.

During training, unlike conventional supervised learning predicting labels directly from inputs, SCL
maps noisy labels at varying noise levels back to the true label conditioned on the input data and
enforces different noise timesteps mapping to the same target. By enforcing predictive consistency
across multiple noise levels, the model captures a rich spectrum of label information from entirely
noisy to wholly accurate predictions, fostering a more expressive mapping between latent features
and labels. During inference, the inherent multi-step denoising mechanism also facilitates progressive
refinement, resulting in more flexible and accurate predictions for complex labels. Intuitively, this
process can be seen as learning to predict with varying degrees of solution hints, which benefits
learning by progressively understanding the label information, especially when the labels are complex.

We demonstrate the effectiveness of our approach across a range of tasks involving complex labels
from diverse domains, including vision learning (e.g., semantic segmentation (Long et al., 2015;
Chen et al., 2017)), graph learning (e.g., N-body simulation (Satorras et al., 2021) and combinatorial
optimization (Li et al., 2023)), and natural language processing (e.g., next-token prediction in large
language models (Brown, 2020; Touvron et al., 2023)). The empirical results highlight the superiority
of SCL over traditional supervised learning across various mainstream network backbones.

2 RELATED WORK AND PRELIMINARIES

Supervised Learning and Information Interpretation. In supervised learning (SL), the models
typically learn the direct mapping from the data inputs to labels by minimizing a loss function that
captures the discrepancy between predicted and ground truth labels. In particular, the Information
Bottleneck (IB) principle (Tishby et al., 2000; Tishby & Zaslavsky, 2015) offers a theoretical

Under review as a conference paper at ICLR 2025

framework to analyze (deep) learning systems, indicating that models balance the trade-off between
compression and prediction accuracy. The IB method (Tishby et al., 2000) aims to find a compressed
representation of the input that retains relevant information about the target while discarding irrelevant
details. The IB method formulates this trade-off by minimizing the mutual information between
the input and a compressed representation, while maximizing the mutual information between the
compression and the target. By considering the relationship between the input and the label through
the lens of information theory, IB provides a powerful tool for understanding model generalization
and optimizing feature representations in supervised learning.

Diffusion Models and Consistency Models. Diffusion models are characterized by a forward pro-
cess of noise injection and a reverse process of learnable denoising, where neural networks iteratively
predict data distributions conditioned on increasingly noisy inputs. In continuous space, these models
are closely linked to Stochastic Differential Equations (SDEs), with techniques such as the Probability
Flow ODE offering a deterministic approximation to sample generation (Sohl-Dickstein et al., 2015;
Song & Ermon, 2019; Ho et al., 2020; Song et al., 2020a; Song & Ermon, 2020; Nichol & Dhariwal,
2021; Dhariwal & Nichol, 2021). Extensions to discrete data have also been explored, with noise
distributions modeled as binomial or categorical variables (Sohl-Dickstein et al., 2015; Austin et al.,
2021; Hoogeboom et al., 2021). Building on the advancements of diffusion models, consistency mod-
els (Song et al., 2023; Song & Dhariwal, 2023) have introduced an alternative paradigm to accelerate
the generation process. Rather than iteratively refining noisy samples through a reverse diffusion pro-
cess, consistency models leverage a self-consistency mechanism across different time steps, directly
learning the mappings from noise to data in a single step or a small number of steps. This approach
has shown promise in reducing computational overhead while maintaining high sample quality.

3 SUPERVISED LEARNING TASKS WITH COMPLEX LABELS

Supervised learning aims to train the model to extract compressed features or representations of
input data x € X while retaining the most relevant information about the target label y € Y (Tishby
et al., 2000; Tishby & Zaslavsky, 2015). Note this is based on the assumption that the data provides
sufficient information about the labels, which means the data is abundant. From an information-
theoretic perspective, the mutual information (X, Y") quantifies how much information X provides
about Y. Typically, X is a high dimensional variable of a low-level representation of the data, such
as pixels of an image, whereas Y has a significantly lower dimensionality of the predicted categories,
which generally means that most of the entropy of X is not very informative about Y and that the
relevant features in X are highly distributed and difficult to extract (Tishby & Zaslavsky, 2015). In
deep learning (LeCun et al., 2015), deep neural networks create a compressed representation X g of
X through an encoder, which discards irrelevant information while preserving as much of the mutual
information I(Xg,Y") as possible. The compression is optimized by minimizing (X, Xg), the
information between X and its compressed form X g, while maximizing I(Xg,Y'), the information
between the compressed representation and the target. This trade-off can be formalized in the IB
objective: miny, (x| x) [[(X, Xg) — BI(XE,Y)], where /3 is a Lagrange multiplier that governs the
balance. In real-world scenarios, compression is often lossy, meaning that some information about the
input signal X is inevitably discarded. Consequently, the challenge becomes ensuring that the model
retains only the information about Y that is necessary for the task while minimizing redundancy.

This formulation typically assumes that Y is a low-dimensional vector (e.g., class labels) where the
information content is relatively limited. However, many real-world tasks, especially in structured
prediction (e.g., image segmentation, sequence generation), involve predicting high-dimensional
outputs. In these tasks, the mutual information (X g, Y") can be difficult to maximize because the
high-dimensional labels themselves contain redundancies, and fitting a model to predict them from
X g becomes a non-trivial task. Moreover, the space of possible outputs Y could involve complex cor-
relations that are hard to capture directly. Below, we formalize such tasks with a qualitative definition.

Definition 3.1. A learning task with complex labels is characterized by a label space that exhibits high
complexity due to one or more of the following characteristics: (i) high dimensionality, (ii) intricate
internal structure, or (iii) the presence of significant dependency patterns among label components.

In contrast to traditional tasks with simple scalar or categorical labels, complex labels encode rich,
multi-dimensional, or structured information. Consequently, these tasks require models to capture
sophisticated relationships and dependencies within the label space, transcending straightforward
mappings from input features. The inherent complexity of the label space suggests the need for

Under review as a conference paper at ICLR 2025

learning an effective latent representation Yy of the target Y. This concept aligns with existing
approaches (Rombach et al., 2022; Hottung et al., 202 1)that handle high-dimensional outputs in latent
spaces leveraging methods like Variational Autoencoders (VAE) (Kingma & Welling, 2014). However,
for prediction purposes, these methods rely on the invertibility of the mapping from Y to its latent
representation Yz, requiring both an encoder to compress Y and a decoder to reconstruct Yg back to
Y for prediction. This necessitates learning additional networks to manage latent representations. In
the following section, we present an alternative approach that enhances the model’s ability to capture
I(Xg,Y) directly by leveraging the mechanism of the learning paradigm itself, thereby avoiding the
need for introducing additional networks and its associated computational overhead.

4 THE SUPERVISED CONSISTENCY LEARNING FRAMEWORK

This section presents the proposed supervised consistency learning framework. We begin by introduc-
ing the diffusion trajectories for labels, which form the technical foundation, followed by a detailed
introduction of the training and inference scheme of the consistency learning paradigm.

4.1 DIFFUSION TRAJECTORIES FOR LABELS

Recall the proposed SCL predicts labels using data inputs and noised label hints and pursues the
predictive consistency across different noise steps, as shown in Fig. 1. This section elucidates the
diffusion processes designed to gradually incorporate noise into labels across various label spaces.

Diffusion on Categorical Labels. For multi-dimensional categorical labels in {1,--- , K}V where
K denotes the category number and N denotes the dimension (which could correspond to nodes in a
graph and pixels in an image), we follow discrete diffusion models (Sohl-Dickstein et al., 2015; Austin
et al., 2021; Hoogeboom et al., 2021) to model the diffusion process as introducing multinomial noise
to the label at each timestep. We represent the label as y € {0, 1} *% which is a concatenation of
N one-hot vectors, each representing the categorical assignment of the corresponding dimension. At
each timestep ¢, noise is applied to corrupt the one-hot representation of the label. This noise can be
understood as transitioning between different categories for each of the NV dimensions. Specifically,
starting from the initial point yy = y, the forward diffusion process is defined as:

q(yelyi—1) = Cat(ys; p = y+-1Q¢), (1

where Cat(y;p) is categorical distributions over N one-hot vectors with probabilities given by
p,and Q; = (1 — B)I + B;/K11T € REXK js the transition matrix, which determines the
corruption introduced at timestep ¢, where /3, is the corruption rate at timestep ¢. This ensures that
with probability /3, the corresponding label category can transition to any other category, effectively
introducing noise by redistributing the probability mass across categories. Over time, as ¢ increases,
the labels become progressively noisier, eventually converging towards a uniform distribution over
the K categories (Austin et al., 2021). The cumulative effect of the diffusion process after ¢ steps is:

a(yilyo) = Cat(ys; p = yoQu),)
where Q; = QQ; ... Q; represents the accumulated transition matrix from yq to y;.

Diffusion on Continuous Labels. For multi-dimensional continuous labels in R, where N denotes
the dimensionality (which could correspond to regression outputs, pixel intensities in an image, or
time-series data), we follow Gaussian diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020,
Nichol & Dhariwal, 2021) to model the diffusion process as introducing Gaussian noise to the label
at each timestep. We represent the label as y € RY, where each element corresponds to a continuous
value. At each timestep ¢, Gaussian noise is applied to corrupt the label, progressively pushing it
toward a noisy distribution. Specifically, the forward diffusion process is defined as:

Qyilyi—1) = N(ye; V1 = Biye—1, Bed), 3)

where A (y; i1, 2) is a Gaussian distribution with mean p and covariance %, and 3; controls the
variance of the added noise at timestep ¢. The factor /1 — [3; ensures that the label retains some of
its original value, while the noise is introduced with variance J;, progressively corrupting the label
as t increases. Over time, as t approaches the final timestep 7', the labels become almost entirely
corrupted, converging towards a Gaussian distribution centered at zero. The cumulative effect of this
diffusion process after ¢ steps is described by the marginal distribution:

q(ytlyo) = N(y+; Varyo, (1 — ay)I), 4

Under review as a conference paper at ICLR 2025

where oy = HE:1 (1 — B;) represents the accumulated noise scale from the original label y to the
noisy label y;. As t increases, &; decreases, leading to increased corruption of the label.

4.2 SUPERVISED CONSISTENCY TRAINING SCHEME

To better capture I(X g, Y), where Y contains a substantial amount of information, directly maxi-
mizing the mutual information between X g and Y can be challenging due to the sheer complexity
and size of the label space. Instead of attempting to learn the entire information content of Y at
once, we aim to provide the model with a structured learning process that progressively captures this
information. By exposing the model to noisy versions of Y, we can guide it to learn partial infor-
mation at each step, using these noise-perturbed labels as hints for gradually reconstructing the full
information content of Y. This progressive approach enables the model to focus on simpler aspects
of the label information initially and incrementally build towards mastering the full complexity of Y.
This gradual learning framework not only makes the task of capturing I(X g, Y") more tractable but
also leverages the inherent structure and complexity of Y to guide the progressive learning process.

This noise-based reconstruction process is similar p(yr) = 1

to learning the consistency mappings in consis- |~ N Trajectories
tency models (Song et al., 2023; Song & Dhariwal, :
2024), where the goal is to learn how to map back
to the original data from different noise levels
along the diffusion trajectories. In continuous-
time diffusion models defined on (e, 7] (Song
et al., 2020b), consistency models (Song et al.,
2023) defines the self-consistency property as
points on the same trajectory map to the same Conditioned on Data Input X
initial point, and optimize the learned consistency
function fy(+,-) to satisfy the requirement by:
1) boundary condition: fy(y.,€) = ye; 2) self-
consistency property: fy outputs consistent estima-
tion for arbitrary pairs of (y;, t) that belong to the same trajectory, i.e., fo(y¢,t) = fo(yw,t'),Vt,t' €
[e, T']. The joint effect of these two constraints gradually transmits mapping consistency from low
noise to high noise, and the model gradually learns how to restore the original data in the presence of
higher information loss and finally achieve a reliable data prediction from noise step 7" to data, i.e.,
fo(yr,T) — ye. This directly aligns with our goal of gradually learning I(X g, Y") in the supervised
learning context, as discussed earlier. Yet, the difference from the raw consistency learning process is
that the diffusion trajectories are conditioned on the data input x with a reference optimal solution y
serving as the commonly targeted initial point for all the conditional trajectories. Thus, we define the
consistency condition in the supervised learning context for model optimization below.

P =1

Figure 2: Prediction consistency enforces that all
trajectories conditioned on x consistently map
to the same initial point, i.e., the label y.

Definition 4.1 (Prediction Consistency). Given data input x and a label trajectory {y: }+c[0, 1], We
define the consistency function as f : (x,y:,t) — y, which satisfies: conditioned on x, all points
along any trajectory map to its label, i.e., fo(x,y%,t) = fo(x, y{/, ") = y for distinct trajectories i
and j at distinct steps ¢ and t’.

As illustrated in Fig. 2, the goal of the consistency model fy in the supervised learning context is to
estimate the consistency function from data by learning to enforce prediction consistency. To achieve
such consistency to learn f : x — y, given that the target y is certain and explicit, we do not have to
rely on optimizing the expectation of the variation of the consistency mappings over two noise points
y: and y to propagate the label information across different noise levels. Instead, we additionally
introduce y to optimize the triadic distance to achieve prediction consistency:

EPC(Q) = E[)\ld(fe(X,tht)aY) —|—)\1d(f9(X, y, t/),}’)) +)\2d(f9(X, Y, t)a fg(X, Y, t/))] - (5

Here d(-, -) is a distance metric function and \;, \y are loss weights. In this framework, the boundary
conditions lose their critical importance since the information from y is gradually distributed across
all noise stages. This allows the network 6 to effectively model the consistency function fy over the
entire progression. Thus, the core difference with the raw consistency model is that SCL aims to
recover the exact y given x, where the target distribution converges to an exact target point, and the
model trades the output diversity to better capture y. This calls for the requirement of consistency
extending across all trajectories, rather than being confined within a single trajectory.

Under review as a conference paper at ICLR 2025

Algorithm 1 Consistency Training Procedure Algorithm 2 Multistep Prediction

1: Input: Dataset D, model fy, noise function ¢(-), Input: trained model fy, data input x,
learning rate 7, loss weights Aj, Ao noise function ¢(-), sequence of time

2: repeat points 71 > 7o > - > TN 1

3: Sample (x,y) ~ D, and t1, t ~ Uniform[1, T Sample random noise yr

4 Sampley;, ~ Ayt |y) yto ~ a(ye.ly) Yo — fa(x,yr,T)

5: Yo' fo(x,¥y1,,t1) forn=1to N, —1do

6 V¢ fo(X, Yo, t2) Sample y., ~ q(y-,|30)

7o L+ Md(3ey) +Md (3, y) HAd(36, 36) Vo < fo(X,¥r s Tn)

8: 0+ 0—nVeLl end for

9: until convergence Output: Prediction yq

Specifically, to align with the traditional supervised training paradigm, we retain the original task-
defined loss function for the distance metric d, such as cross-entropy for classification tasks and mean
squared error for regression tasks. This is because the design of the loss function is orthogonal to
our learning framework, allowing them to complement each other. The main modification in our
approach lies in that the model predicts y based on both x and the noise-perturbed versions of y,
while ensuring predictive consistency across different noise levels. In practice, with the noising
schedules corresponding to different label spaces, we randomly sample two time steps ¢; and ¢
and independently apply noise to y, and independently sample from the noise distribution to obtain
y! _and y7,. This ensures that the two noisy samples are independent with respect to both the time
steps and the diffusion trajectories. Then Eq. 5 can be effectively optimized to learn the consistency
predictive mapping, and the whole training process is presented in Alg. 1 and Fig. 1.

4.3 MULTISTEP INFERENCE WITH CONSISTENCY MAPPINGS

With a well-trained fy(-, -, -), we obtain predictions for a given x by sampling y7 from the uniform
distribution and then evaluate the prediction for yg = fo(x,yr,T). This standard single-step
inference requires only one forward pass through the model, offering a fast yet approximate solution
akin to conventional supervised learning methods. On the other hand, accuracy tends to be higher
when ¢ is small, as the label hints contain a richer amount of information. Our objective is to
progressively transfer this high accuracy to larger values of ¢ through training, thereby enhancing
overall model performance. In the ideal case that the consistency loss converges to zero, optimal
results can be achieved in a single step, yet in practice, gradually decreasing ¢ from 7" to O can lead to
accuracy improvements. To achieve such enhancements, a multistep inference strategy can be adopted,
which iteratively alternates between denoising and reintroducing noise. This approach effectively
trades off runtime for enhanced prediction quality, allowing the model to refine its outputs over
multiple inference steps and leverage increasingly rich information embedded in earlier predictions.

Given a sequence of time points 71 > 75 > --- > Ty, _1, at each step 7, the current prediction
Y-,_, is perturbed by a noise function to a noisier state y, . The noise level decreases with each
step, meaning 7,, < 7,—1. The model then denoises the corrupted label by applying fo(X, ¥+, , Tn)s
producing a refined prediction. This process is repeated over successive steps, where each newly
refined label incorporates progressively more accurate information from the previous step. This
enables the model to gradually recover the whole information of y by taking the perhaps approximated
prediction as the label hints and leveraging the incrementally informative hints for the final prediction.
The specific multistep prediction procedure is presented in Alg. 2 and is visualized in Fig. 3.

5 EXPERIMENTS

We test the proposed SCL framework on tasks involving complex labels from diverse domains,
including semantic segmentation (high-dimensional categorical outputs in vision learning), N-body
simulation (high-dimensional continuous outputs in graph learning), combinatorial optimization
problem solving (high-dimensional constrained combinatorial outputs in graph learning), and next-
token prediction (high-dimensional sequential outputs in language modeling).

Under review as a conference paper at ICLR 2025

Test Image & Test Image & SCL (Ours)
Ground Truth Classic SL t=1000 t=691 t=413 t=191 t=49

Label Hint

Label Hint Output

Output

Figure 3: Predictions across varying timesteps based on the last step’s predictions in the multistep
inference procedure. In each step, the model receives the input and label hint and predicts the output.

Table 1: Results on Semantic Segmentation.
Method SCL Pixel Acc.T mloUT Scoret

ResNet50dilated + PPM (Zhao et al., 2017) f/(;;'2‘3‘ 23'33 zgf;

HRNetV2 (Sun et al., 2019))/(;i;}‘ :gz; zi‘ﬁ

5.1 SEMANTIC SEGMENTATION

Semantic segmentation is a classic dense vision task with wide applications that involves classifying
each pixel of an image into a predefined category (Long et al., 2015; Zhao et al., 2017). Unlike
classification tasks that categorize entire images, semantic segmentation analyzes the finer granularity
of images to identify the boundaries and relationships between objects.

Dataset. We utilize the ADE20K dataset (Zhou et al., 2019), which is a commonly used large-scale
scene parsing dataset that contains over 20,000 images with pixel-level annotations. The dataset is
annotated with 150 different object classes, and we make the unannotated pixels into a new category,
denoted as -1, which are ignored during both training and testing. Following previous works (Zhou
etal., 2017;2019), we resize the origial images during training while keeping the aspect ratio constant,
randomly scaling the shorter side to one of the sizes 300, 375, 450, 525, or 600.

Metrics. Following (Zhou et al., 2017; 2019), we adopt three evaluation metrics to measure model
performance: 1) Pixel Accuracy: the proportion of correctly classified pixels. 2) Mean IoU (mloU):
the intersection-over-union between the predicted and ground-truth pixels, averaged over all the
classes. 3) Score: the average value of Pixel Accuracy and Mean IoU. During the testing phase, we
use Multi-Scale Test: evaluate at multiple sizes and then take the average.

Model Design. We generally adopt an encoder-decoder network framework. The encoder compresses
the input by extracting high-level features using a CNN backbone, reducing the spatial resolution while
capturing important semantic information. The decoder then progressively upsamples the compressed
features to recover the original resolution, often using skip connections to retain fine details. To
introduce SCL, we concatenate the image features obtained through the encoder, the timestep
embeddings extracted through sinusoidal position embedding, and the noised labels processed by the
embedding layer. Then, we feed the tensor encompassing the input, timestep, and noised label into
the decoder for further processing. In this task, y € {—1,0, 1,...149}7>W where each entry will be
converted into a one-hot vector of length 151, indicating the classification of the pixels. We adopt the
categorical noising process as presented in Eq. 2 using transition matrices of Q; € [0, 1]151x15%,

Results. For the encoder, we choose ResNet50dilated (He et al., 2016), and HRNetV2 (Sun et al.,
2019). For the decoder, we sequentially selected C1 (one convolution module) with DeepSup (deep
supervision trick), PPM (Pyramid Pooling Module) (Zhao et al., 2017) with DeepSup, and C1. Table 1

Under review as a conference paper at ICLR 2025

Table 3: Comparison of traditional supervised learning and 0018

1 . . GCN GCN-SCL
supervised consistency learning for MSE. 0016 A GAT GAT-SCL
GGNN GGNN-SCL
Method MSE| MAE/} vors
w
GCN (Kipf & Welling, 2016) 0.01064+0.00014 0.0432240.00082 g
GCN-SCL (Ours) 0.00927+0.00020 0.03783+0.00018 0012
GAT (Velickovic et al., 2017) 0.00969£0.00040 0.039964-0.00198 0010
GAT-SCL (Ours) 0.00910+0.00038 0.037260.00068
N 0 2000 4000 6000
GGNN (Li et al., 2015) 0.0122040.00020 0.04614+0.00146 Epochs
GGNN-SCL (Ours) 0.01143::0.00042 0.04336:0.00127 Fjgure 4: MSE curves on test data.

shows that SCL with merely one step achieved 2.63% performance gain in average pixel accuracy
and 2.19% performance gain on mloU. Fig. 3 visually demonstrates how increasing inference steps
further improves predictions, particularly for large background areas.

5.2 N-BODY SIMULATION

The N-body simulation task involves predicting the Table 2: Ablation study on loss construction.
future positions of a set of interacting particles over

. Method MSE| MAE|
time based on initial conditions such as their posi- Traditional SL 001064 0.02322
: 111 . . radaitional . R

tions, \.feloc1t1.es,. and the inherent physical forces W/o A-term, w/o Ap-term 436176 1.62478
governing their interactions (Satorras et al., 2021). /o A-term. W/ Ap-term 4.34559 1.62437
The task’s outputs retain the same dimensionality and ~ w/)\, -term, w/o Ao-term 0.00956 0.03895
complexity as the inputs. The evolution of particle ~ w/ A;-term, w/ Ap-term 0.00927 0.03783

positions and velocities follows fundamental physical
laws such as gravitational or electrostatic interactions. We follow Satorras et al. (2021) to solve the
5-charged-particle system in 3-dimensional space. The system consists of five particles, each with
either a positive or negative charge, and each particle has an associated position and velocity.

Dataset. We collected 3000 trajectories for training, 2000 for validation, and 2000 for testing. Each
trajectory spans 1000 timesteps. For each trajectory, the initial conditions include the particle positions
p(0) = {p1(0),...,p5(0)} € R5*3, the initial velocities v(0) = {v1(0),...,v5(0)} € R5*3, and
the respective charges ¢ = {c1,...,c5} € {—1,1}°. The task is to predict the positions of the five
particles after 1000 timesteps. The model is optimized by minimizing the averaged Mean Squared
Error (MSE) between the predicted positions and the ground truth positions.

Metrics. We adopt two evaluation metrics to evaluate the regression quality for test data: 1) Mean
Square Error (MSE): the average of the squares of the errors between the predicted values and the
true values; 2) Mean Absolute Error (MAE): the average of the absolute differences.

Model Design. We consider the state-of-the-art graph modeling solution for this task, where we input
the concatenation of the initial positions and the velocities as the node features. The charges are input
as edge attributes a;; = c;c;. We take the model outputs as the estimated positions. To introduce
SCL, we adopt two linear layers to encode the input attributes and the noised label, respectively,
and then concatenate them to form the input hidden feature to the subsequent graph neural layers.
We adopt 4 graph neural layers, and for each layer’s output, we integrate the timestep embedding
extracted by the sinusoidal position embedding and a linear layer through addition. In this task,
y € R5%3 and we adopt the Gaussian noising process to produce noised labels as shown in Eq. 4.

Results. We compare the model with the classic graph neural networks, including Graph Convolu-
tional Networks (GCN) (Kipf & Welling, 2016), Graph Attention Network (GAT) (Velickovic et al.,
2017), and Gated Graph Neural Networks (GGNN) (Li et al., 2015). For each model, we compare
the performance with the models trained by the classic SL and our proposed SCL. Table 3 shows
the superiority of SCL on quantitative results with lower estimation errors on both MSE and MAE
under same settings, and Fig. 4 shows performance gain on the test MSE curves within the training
process. Table 2 provides ablation studies on the effects of the \;-term and A,-term and verifies the
effectiveness of every loss term in Eq. 5.

5.3 COMBINATORIAL OPTIMIZATION

Combinatorial Optimization (CO) problems, which involve optimizing discrete variables under given
objectives, generally maintain inherent computational difficulty, e.g. NP-hardness. Adopting the
conventions established in Wang et al. (2022a), we define a CO problem on a graph G(V, E), where

Under review as a conference paper at ICLR 2025

size = 13 size = 13 size = 15 size = 15 size = 16
t=1000 t=691 t=413 t=191 t=49

Figure 5: Prediction results for the MIS solution based on the last step’s predictions across varying
time steps in the multistep inference procedure. Orange indicates the solution.

Table 4: Results on MIS. TS: Tree Search, UL: Unsupervised Learning. * denotes results quoted
from previous works (Li et al., 2023; Zhang et al., 2023).

Method Type RB-[200-300] ER-[700-800]
Sizet Dropl Time Sizet Dropl Time

Intel (Li et al., 2018) SL+G - - - 34.86 2231% 6.06m
DIMES (Qiu et al., 2022) RL+G - - - 3824 1478% 6.12m
DIFUSCO (Sun & Yang, 2023) SL+G 1852 7.81% 16m3s 37.03 18.53% 5m30s

" GCN (Kipf & Welling, 2016) ~ ~ SL+G =~ 1822 9.23% 23s 3535 21.22% 125
GCN-SCL (Ts=1) SL+G 1859 7.37% 35s 36.72 18.17% 11s
GCN-SCL (Ts=5) SL+G 18.74 6.65% 1ml6s 37.80 15.76% 24s
Intel (Li et al., 2018) SL+TS 1847 8.11% 13m4s 38.80 13.43% 20.00m
DGL (Bother et al., 2022) SL+TS 17.36 13.61% 12m47s 3726 16.96% 22.71m
DIFUSCO (Sun & Yang, 2023) SL+S 19.13 4.79% 20m28s 39.12 12.81% 21m43s

" GCN (Kipf & Welling, 2016) ~ ~ "SL+S ~ 1822 923% 26s 3535 21.22% = 255
GCN-SCL (T=1) SL+S 1891 5.81% 42s 3791 15.52% 24s
GCN-SCL (T=5) SL+S 19.38 3.46% Im50s 3981 11.27% 1ml6s

V and E denote the nodes and edges, respectively. Let x € {0,1}/V*2 denote the optimization
variable, where each entry is represented by a one-hot vector, i.e., each entry with (0, 1) indicates
that it is included in x and (1, 0) indicates the opposite. For node-decision problems, x; indicates
whether V; is included in x. The feasible set €2 consists of x satisfying specific constraints as feasible
solutions. A CO problem on G aims to find a feasible x that minimizes the given objective function
I(-; G). Here, we consider the classic node-decision problem Maximal Independent Set (MIS). Given
an undirected graph G = (V, E), an independent set is a subset of vertices S C V' such that no two
vertices in S are adjacent in G. MIS entails finding an independent set of maximum cardinality in G.

Datasets. Two datasets are tested for the MIS ap1e
problem including RB graphs (Zhang et al.,
2023) and ErdsRnyi (ER) graphs (Erdés et al.,

5: Numerical results of the enhancements
achieved by increasing denoising steps.

1960). We randomly sample 200 to 300 vertices #steps Greedy Sampling
uniformly and generate the graph instances. ER Sizef Dropl Time Sizef Dropl Time
: 1 18586 7486% 13s 18888 5.983% 20s
graphs are randomly generated with each edge 2 18604 7397% 20 19246 4201% 30s
maintaining a fixed probability of being present 4 18702 6909% 33s 19366 3.604% 495
: § 19026 5296% 1mOs 19.616 2359% 1m27s
or absent, independently of the other edges. We 16 19284 4012% Imd7s 19702 1932% 2md3s
adopt ER graphs of 700 to 800 nodes with the 32 19438 3.245% 3m3ls 19790 1.493% Smlds

pairwise connection probability set as 0.15.

Metrics. Following previous works (Kool et al., 2018; Joshi et al., 2019), we adopt three evaluation
metrics to measure model performance: 1) Size: the average size of the solutions w.r.t. the corre-
sponding instances, i.e. the objective. 2) Drop: the performance drop w.r.t. size compared to the
optimal solution; 3) Time: the average computational time required to solve the problems.

Model Design. We primarily include graph networks to receive the graph input and output a binary
prediction for each node, indicating the probability of the node being included in the optimal solution.
To introduce SCL, the graph network receives the noised label and the adjacency matrix for the input
node feature and edge feature, respectively. We adopt 12 graph neural layers, and for each layer’s
output, we integrate the timestep embedding extracted by the sinusoidal position embedding and
a linear layer through addition. In this task, y € {0,1}"*? where each entry is a one-hot vector
indicating the selection of the node. We adopt the categorical noising process as presented in Eq. 2.

Results. We compare GCN (Kipf & Welling, 2016) under the classic SL and SCL settings, and we
also include other mainstream neural solvers into comparison with greedy and sampling decoding

Under review as a conference paper at ICLR 2025

(x4). T indicates the number of inference steps during the multistep prediction. Table. 4 shows the
superiority of SCL on solving performance reflected by the solved size and relative drop. We also
show that more inference steps can effectively improve the results in this scenario. Fig. 5 shows the
result variation across the multistep prediction procedure, which gradually improves the prediction.
Table 5 shows the numerical results variation across the multistep prediction procedure.

5.4 NEXT-TOKEN PREDICTION

The next-token prediction task is a cornerstone in natural language processing, forming the foundation
for transformer-based large language models (LLMs) such as GPT (Radford, 2018), LLaMA (Touvron
et al., 2023). The objective of the task is to predict the next token in a sequence, given the preceding
context. The task’s outputs retain similar dimensionality and sequence complexity as the inputs.
Large language models trained on next-token prediction tasks have proven to be highly effective
at capturing both short-term and long-range dependencies in language, enabling them to generate
coherent, contextually appropriate text. This section investigates the effectiveness of SCL in the full
fine-tuning task on the pre-trained LLaMa-2-7B (Touvron et al., 2023) models.

Dataset. The Alpaca (Taori et al., 2023) dataset is based on the self-instruct method (Wang et al.,
2022b), utilizing the OpenAl text-davinci-003 engine to generate a collection of instructions and
demonstrations. These instruction data can be employed for fine-tuning language models. By filtering
out low-quality data, such as hallucinations, incorrect answers, and unclear instructions, we obtain the
Alpaca-cleaned dataset, which serves as the sole training data for all models discussed in this paper.

Metrics. To evaluate the performance of models, we em- Table 6: Evaluation on LLM fine-tuning.
ploy INSTRUCTEVAL (Chia et al., 2023), a comprehen-

sive evaluation suite designed specifically for instruction- ~_Method MMLUT CRASST BBHT
tuned models. INSTRUCTEVAL aims to assess models ~_W/FT 4190 3759 3293
across dimensions such as problem-solving ability, writing ~ FT 46.22 58.29 33.38

proficiency, and alignment with human values. Following ~_FTSCL©urs) 47.10 5948 3475
INSTRUCTEVAL, we use 5-shot direct prompting for MMLU (Hendrycks et al., 2020), O-shot direct
prompting for BBH (Srivastava et al., 2022) and 3-shot direct prompting for CRASS (Frohberg &
Binder, 2022). Detailed descriptions for the benchmarks are presented in Appendix A.5.2.

Model Design. Our modified LLaMA2-7B model retains the original embedding and decoder layers
but introduces a novel mechanism to predict the next token. Instead of the standard approach where
hidden states directly generate token probabilities, we inject Gaussian noise into token embeddings
during training to enhance robustness. This noise is combined with the tokens hidden state to
form an augmented vector, which is passed through an MLP and classification head for prediction.
Additionally, we enforce consistency by minimizing the mean squared error between logits at
randomly selected time steps. In the generation phase, noise is iteratively reduced across steps to
generate tokens sequentially. More detailed descriptions can be found in Appendix A.5.1.

Results. We compare methods for fine-tuning LLMs on the next-token prediction task. The baselines
include the pre-trained LLaMA2-7B model and the LLaMA2-7B model fine-tuned using traditional
full-parameter supervised learning (Taori et al., 2023). In contrast, our method, FT-SCL, also tunes
the full parameters of the model but operates under the supervised consistency learning paradigm.
We also include LoRA (r = 8, o = 16, drop_out = 0.05) (Hu et al., 2021) for comparison. Table 6
shows the superiority of SCL on quantitative results across MMLU, GRASS and BBH.

6 CONCLUSION AND FUTURE WORK

This paper has proposed a novel supervised consistency learning framework beyond the classic
supervised learning paradigm, which has shown superiority in extensive experiments on various
tasks with complex labels. Our approach resembles, to a certain degree, the residual learning
scheme by treating the noisy label as the input, which is counterpart to the raw signal of the input
data. By leveraging label hints perturbed by noise and progressively refining predictions through
multiple inference steps, our method improves predictive performance in challenging scenarios
where traditional direct-label prediction methods may struggle. Empirical results across vision,
text, and graph modalities demonstrate the superiority of the proposed paradigm. Future work will
explore the potential of applying the data diffusion process to other deep learning paradigms, such as
semi-supervised and unsupervised learning.

10

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

This research adheres to ethical standards and does not involve any direct human subjects, nor does
it present any privacy or security concerns. The datasets used in this study are either synthetic or
publicly available without involving sensitive or personally identifiable information. All experiments
and methodologies were conducted in compliance with legal regulations and established research
integrity practices. There are no known conflicts of interest, sponsorship influences, or concerns
related to discrimination, bias, or fairness in our approach. Additionally, the research does not
produce any harmful insights or applications.

REPRODUCIBILITY STATEMENT

We have taken steps to ensure the reproducibility of the results presented in this paper. The experimen-
tal settings, including datasets and model designs, are thoroughly described in Section 5. Additional
details, such as model architectures, noise generation processes, and hyperparameter configurations,
are provided in Appendix A. Source code will be made publicly available upon acceptance.

REFERENCES

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981-17993, 2021.

Maximilian Béther, Otto KiBig, Martin Taraz, Sarel Cohen, Karen Seidel, and Tobias Friedrich.
What’s wrong with deep learning in tree search for combinatorial optimization. arXiv preprint
arXiv:2201.10494, 2022.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully
connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):834-848,
2017.

Yew Ken Chia, Pengfei Hong, Lidong Bing, and Soujanya Poria. Instructeval: Towards holistic
evaluation of instruction-tuned large language models. arXiv preprint arXiv:2306.04757, 2023.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in Neural Information Processing Systems, 34:8780-8794, 2021.

Paul Erdds, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.
Sci, 5(1):17-60, 1960.

Jorg Frohberg and Frank Binder. Crass: A novel data set and benchmark to test counterfactual

reasoning of large language models. In Proceedings of the Thirteenth Language Resources and
Evaluation Conference, pp. 2126-2140, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840-6851, 2020.

11

Under review as a conference paper at ICLR 2025

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. Advances in Neural Information
Processing Systems, 34:12454—12465, 2021.

André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a latent search space for routing
problems using variational autoencoders. In International Conference on Learning Representations,
2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436-444,
2015.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. T2t: From distribution learning in training
to gradient search in testing for combinatorial optimization. In Advances in Neural Information
Processing Systems, 2023.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional
networks and guided tree search. Advances in neural information processing systems, 31, 2018.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3431-3440, 2015.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162-8171, 2021.

Ruizhong Qiu, Zhiging Sun, and Yiming Yang. Dimes: A differentiable meta solver for combinatorial
optimization problems. arXiv preprint arXiv:2210.04123, 2022.

Alec Radford. Improving language understanding by generative pre-training. 2018.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684—10695, 2022.

Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks.
In International conference on machine learning, pp. 9323-9332. PMLR, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

12

Under review as a conference paper at ICLR 2025

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning,
pp. 2256-2265, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv
preprint arXiv:2310.14189, 2023.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. In
The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=WNzy9bRDVG.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438-12448, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adria Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Ke Sun, Yang Zhao, Borui Jiang, Tianheng Cheng, Bin Xiao, Dong Liu, Yadong Mu, Xinggang
Wang, Wenyu Liu, and Jingdong Wang. High-resolution representations for labeling pixels and
regions. arXiv preprint arXiv:1904.04514, 2019.

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial opti-
mization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=Jv8Ff01gVV.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In 2015
ieee information theory workshop (itw), pp. 1-5. IEEE, 2015.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint physics/0004057, 2000.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Haoyu Peter Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. Unsupervised learning for
combinatorial optimization with principled objective relaxation. In Advances in Neural Information
Processing Systems, 2022a.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022b.

13

https://openreview.net/forum?id=WNzy9bRDvG
https://openreview.net/forum?id=WNzy9bRDvG
https://openreview.net/forum?id=JV8Ff0lgVV

Under review as a conference paper at ICLR 2025

Qitian Wu, Wentao Zhao, Zenan Li, David Wipf, and Junchi Yan. Nodeformer: A scalable graph struc-
ture learning transformer for node classification. In Advances in Neural Information Processing
Systems, 2022.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan. Let
the flows tell: Solving graph combinatorial optimization problems with gflownets. arXiv preprint
arXiv:2305.17010, 2023.

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing
network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
2881-2890, 2017.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 633—641, 2017.

Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Semantic understanding of scenes through the ade20k dataset. International Journal of Computer
Vision, 127:302-321, 2019.

14

Under review as a conference paper at ICLR 2025

APPENDIX

A EXPERIMENT DETAILS

A.1 COMPUTATIONAL RESOURCES.

Experiments for semantic segmentation, n-body simulation, and combinatorial optimization are
conducted on a single GPU of NVIDIA RTX 4090, and experiments for next-token prediction are
performed on 8 GPUs of NVIDIA H800.

A.2 EXPERIMENTAL DETAILS FOR SEMANTIC SEGMENTATION
A.2.1 DATASET

To accommodate the dimensions of the images output by the encoder, we downsample the segmenta-
tion maps. Additionally, to prevent rounding errors in subsequent calculations, it is necessary to adjust
the target size’s length and width according to an integer multiple of a constant determined by the
padding parameter. Specifically, the downsampling rates for MobileNetV2dilated, ResNet50dilated,
and HRNetV2 are 8, 8, and 4, respectively, with padding parameters of 8, 8, and 32 for these three
encoders.

A.2.2 CONTEXT AND TIME STEP

Given image information x extracted through the encoder, hint label y, and time step ¢, SCL first
embeds the latter two and then merges these three into a new image information X. The context for
semantic segmentation is generated by adding categorical noise to the ground truth labels. Given
the context y, it is first passed through an embedding layer that maps each classy € {0,1,...,C}
(where C is the number of classes) to a higher-dimensional vector y. ¥ is then processed through
linear layers and activation function.

Time step ¢t is first embedded through the sinusoidal position embedding and then processed through
linear layers and activation function.

t = concat (sin L cos i sin i cos i sin L cos i (6)
B A R A Y o B o B AT %
% = concat(z, Wo(SiLU(W1¥)), W4 (SiLU(W3t))) @)

where d is the embedding dimension, 7" is a large number (usually selected as 10000), concat(-)
denotes concatenation.

A.3 EXPERIMENTAL DETAILS FOR N-BODY SIMULATION
A.3.1 NOISING PROCESS

At timestep t = 0, the label y € R®*? represents the original 3-dimensional coordinates of the
5-body system. We introduce Gaussian noise that gradually transforms the coordinates to points from
the standard Gaussian distributions. The noising process simply follows Eq. 3 and Eq. 4.

A.3.2 MODEL ARCHITECTURE

We follow the implementation of Satorras et al. (2021) to generally implement 4-layer GNNs. With
its learnable edge operation function ¢, and node operation function ¢;,, the graph convolutional
layer follows:

m;; = ¢.(h}, h}, a;)) (8)

m; = Z m;; 9
JEN(3)

hi*' = ¢;,(h{, m,) (10)

15

Under review as a conference paper at ICLR 2025

Where h! € R™ is the nf-dimensional embedding of node v; at layer I. a; ; are the edge attributes.
N (i) represents the set of neighbors of node v;. Here, ¢, and ¢, are approximated by 2-layer
Multilayer Perceptrons (MLPs).

The initial position p° and velocity v from the particles are passed through a linear layer to obtain
the input feature. The label hint is passed through another linear layer, and the obtained feature is
concatenated with the input feature and inputted into the GNN first layer h”. The particle’s charges
are inputted as edge attributes a;; = c;c;. The time step ¢ is first embedded through the sinusoidal
position embedding

~ (.t t .t t .t t >

t = concat | sin —5, cos —, Sin —5, COS —5, ..., Sin —, COS — an

Tda Ta d d Ta Td
and then processed through linear layers and activation functions. Here d is the embedding dimension,
T is a large number (usually selected as 10000), concat(-) denotes concatenation. Then we aggregate
the timestep feature with the node convolutional feature and reformulate the update for node features,
i.e., Eq. 10 as:
hi™! = ¢ (hj,mi) + 6 (t) (12)

where ¢y, is a linear layer model. The output of the GNN h’ is passed through a two layers MLP that
maps it to the estimated position.

A.4 EXPERIMENTAL DETAILS FOR COMBINATORIAL OPTIMIZATION
A.4.1 LABEL ENCODING AND NOISING PROCESS

We represent the solutions of CO problems as x € {0,1}"V*2 with x € Q. The distribution of
x is represented by N Bernoulli distributions indicating whether each entry should be selected,
i.e., p(x) € [0,1]*2. We try to establish transition trajectories from random uniform noise to
high-quality soft-constrained solutions, i.e., x € {0, 1}"*2. These soft-constrained solutions are
directly sampled from the estimated Bernoulli distributions, where feasibility constraints can be
broadly captured through learning and eventually hard-guaranteed by post-processing.

The noising process is formulated as ¢(x1.7|xg) = Hthl q(x¢|x¢—1), which is achieved by multi-
plying x; € {0,1}V*2 at step ¢ with a forward transition probability matrix Q; € [0,1]2*2 which

Be 1—P

indicates the transforming probability of decision state. We set Q; = 1-8 3 (Austin
— bt t

etal.,2021), where §8; € [0, 1] such that the transition matrix is doubly stochastic with strictly positive
entries, ensuring that the stationary distribution is uniform which is an unbiased prior for sampling.
The noising process for each step and the ¢-step marginal are formulated as:

q(x¢|x;—1) = Cat(x;p =x-1Q¢) and q(x4[x0) = Cat (xs; p = X0Q;) (13)
where Cat (x;p) is a categorical distribution over N one-hot variables and Q, = Q;Qz - - - Q;.

A.4.2 MODEL ARCHITECTURE

The MIS problem can be defined as G(V, E), where V € {0,1}" and E € NV*2 denote the nodes
and edges, respectively. For the classic supervised learning, V' is a fully one vector, while for SCL V
is an indicator zero-one vector derived from the ground truth with noise added at time step ¢. E is the
edge index, which contains all pairs of connected nodes.

Input Embedding Layer. For node vector x € {0, 1}, each node will be mapped to a feature vector
X of dimension H. For the time step t, it is embedded through the sinusoidal position embedding.
t = concat (sin LO, cos Lﬂ,sin iz, cos LQ, ...,sin id,cos d) (14)
Ta Ta Ta Ta Ta Ta
where d is the embedding dimension, T is a large number (usually selected as 10000), concat(-)
denotes concatenation.
Next, we compute the input features of the graph convolution layer:
x) = W%, (15)
t? = W3(ReLU(W>t)) (16)

16

Under review as a conference paper at ICLR 2025

where t9 € R, d, is the time feature embedding dimension. Moreover, we initialize edge feature e’
to a zero matrix 0Z*¢,

Graph Convolution Layer. Following Joshi et al. (2019), the cross-layer convolution operation is
formulated as:

xt = x| + ReLUBN(W{x!| + > nl; © Wix})) (17)
jrvi
eil! = e} + ReLU(BN(W3ej; + Wix; + Wix))) (18)
1

1 G(eij)
t= 19
i Zj’wia(eéj’) te (19
where 2! and e! ; denote the node feature vector and edge feature vector at layer I, Wy, -+, W5 €

R"*" denote the model weights, néj denotes the dense attention map. The convolution operation
integrates the edge feature to accommodate the significance of edges in routing problems.

we aggregate the timestep feature with the node convolutional feature and reformulate the update for
node features as follows:

X/t = x| + ReLUBN(Wix} + > " nl; © Wix})) + W§(ReLU(t")) (20)

jrvi
Output Layer. The prediction of the node heatmap in MIS is as follows:

x; = Softmax(norm(ReLU (W, x))) (21)

where L is the number of GCN layers and norm is layer normalization.

A.5 EXPERIMENTAL DETAILS FOR NEXT-TOKEN PREDICTION
A.5.1 MODEL DESIGN

In our approach, we adopt the LLaMA2-7B model as the backbone, preserving the structure of the
embedding and decoder layers. However, we modify the prediction mechanism for the next token
using the hidden states. In a conventional decoder-only language model (LLM), the prediction of the
next token y is achieved by leveraging the preceding context, encoded in a high-dimensional hidden
state h. This hidden state h is then passed through a linear layer, typically referred to as the language
modeling head (Im_head) or unembedding layer, to yield the probability distribution P(y) over the
next token.

In contrast, our model introduces a noise injection mechanism to perturb the token embeddings,
aiming to enhance robustness and generalization.

Training Phase. During the training phase, when the model obtains the last hidden states for each
token, instead of directly passing them through the Im_head to generate logits and compute the cross-
entropy loss with the ground truth labels y, we transform these labels back into its corresponding
embedding yemp. Then add Gaussian noise € ~ N (0, 02) t0 Yemb, resulting in a perturbed embedding:

R R (22)

To inform the model of the noise magnitude, we also perturb the time step ¢, obtaining a corresponding
time embedding temy. The noisy token embedding y; ™ is combined with teps, to form a new noisy

information vector,

hlzoisy — y?oisy + temb. (23)

This noisy information is concatenated with the hidden state h, resulting in the augmented vector

17

Under review as a conference paper at ICLR 2025

h{" = [h; h{*¥]. (24)

Finally, h,,s is passed through a multi-layer perceptron (MLP) and a new classification head to
generate the probability distribution for the next token:

p(y | h28) = softmax(LM_HEAD((MLP(h,,,))). (25)

aug

It is worth noting that for each batch, In addition to aligning p(y | h; *) with the next token ground
truth by minimizing the cross-entropy loss, we randomly generate two time steps, ¢; and t5, and
obtain logits logits(y | hy ®) and logits(y | h,*). We then minimize the mean squared error (MSE)
loss between them to ensure as much consistency as possible.

Generation Phase Now we describe the generation process. After the input passes through the
decoder layers and obtains the last hidden states, we encounter a challenge during the inference
phase since the next token y is unknown. To address this, we input a complete Gaussian noise vector
hi b (€. €), which is denoised by model to generate the next token y;. This process is then iterated,
with y; serving as ¥ for the subsequent iteration. Following the steps outlined in Eq. 22, 23, 24, and

25, we generate yo, and so on, iteratively.

The noise addition time step for each iteration is predetermined as a hyperparameter. In our experi-
ments, we employ a linearly decreasing schedule for the time steps. For instance, with a maximum
noise step of 1000 and 5 iterations, the time steps ¢ are set as [1000, 800, 600, 400, 200], ensuring a
gradual reduction of noise over the course of iterations.

A.5.2 EVALUATION METRICS

The evaluation of large language model performance in this paper includes benchmarks:

* MMLU (Hendrycks et al., 2020): This benchmark assesses models’ world knowledge and rea-
soning abilities across 57 academic disciplines, including STEM, humanities, and social sciences.
Questions range in difficulty from elementary to advanced professional levels, presented in a
multiple-choice format. The evaluation primarily uses few-shot settings to test the models’ gen-
eralization capabilities. In our experiments, a 5-shot direct prompting is utilized to evaluate the
model’s comprehensive performance across various dimensions.

* BBH (Srivastava et al., 2022): It is a subset of 23 challenging tasks from the BIG-Bench benchmark.
It evaluates the ability of models to handle challenging reasoning and problem-solving tasks that go
beyond simple language understanding. It includes complex scenarios such as navigation, logical
deduction, and fallacy detection. For this work, we apply 0-shot direct prompting to measure the
model’s capability in dealing with unseen questions without additional contextual examples.

* CRASS (Frohberg & Binder, 2022): This benchmark is designed to evaluate the model’s ability
to handle complex relational reasoning tasks, specifically in the context of causal structures and
relationships. It includes a variety of problems that test how well the model understands and
predicts causal relationships between different entities or events. For this evaluation, we use 3-shot
direct prompting to assess model reasoning.

B SUPPLEMENTARY EXPERIMENTAL RESULTS

For semantic segmentation, to vividly illustrate the effects of SCL, we present a comparison of
the Intersection over Union (IoU) metrics for all three models across the ADE20K dataset’s 150
categories in Table 7. The results indicate that MobileNetV2dilated, ResNet50dilated, and HRNetV?2
have achieved advantages in IoU on 70.00%, 58.67%, and 64.67% of the categories respectively after
using SCL.

Fig. 6 illustrates the differences in predicting semantic segmentation maps among various models
and training methods, visually reflecting the performance differences between the models as outlined
in Table 1.

18

Under review as a conference paper at ICLR 2025

Table 7: Comparison of Intersection over Union (IoU) for classic supervised learning (SL) versus
the proposed supervised consistency learning (SCL) in semantic segmentation across various neural
backbones. Bold indicates better performance in that category. MoibleNet: MobileNetV2dilated,
ResNet50: ResNet50dilated. Order: Ranked from top to bottom based on the probability of each
category in the ADE20K dataset

. MobileNet ResNet50 HRNetV2 . MobileNet ResNet50 HRNetV2

Object Object

SL SCL SL SCL SL SCL SL SCL SL SCL SL SCL
wall 5517 52.67 7198 72.80 7395 71.89 || building 60.33 6575 80.03 80.19 79.61 80.82
sky 79.30 87.51 9324 93.10 93.31 93.81 | floor 5427 58.03 7631 7673 77.55 7881
tree 50.65 58.62 69.36 71.51 70.95 7235 || ceiling 58.45 7121 7846 80.11 8131 81.71
road 3460 66.73 79.53 79.54 80.43 80.90 || bed 28.84 31.57 8295 83.52 8549 86.75
window 42.03 4620 5626 56.57 5896 58.09 || grass 16.51 1229 6423 6729 6420 65.97
cabinet 20.82 2794 5428 5448 56.17 59.32 | sidewalk 38.18 31.78 60.81 58.59 63.67 64.15
person 51.72 57.58 7425 70.87 77.81 77.85 | earth 16.74 20.66 30.05 34.30 31.14 30.08
door 18.40 24.87 3494 41.76 44.42 4397 || table 31.27 3332 5023 5399 5503 57.98
mount 9.72 13.55 5375 5540 53.10 57.95 || plant 28.90 32.02 43.80 46.78 49.04 49.07
curtain 41.14 3988 64.09 66.14 67.57 68.59 || chair 3372 37.83 5192 5191 5337 55.18
car 68.78 71.61 79.95 79.97 80.24 81.10 | water 2351 21.73 5142 5613 46.04 52.65
picture 51.24 51.66 6299 68.86 66.10 68.41 || sofa 3890 3538 5597 5836 6539 064.57
shelf 21.15 2320 3745 4228 3691 32.79 | house 066 026 5376 4720 40.27 45.35
sea 421 13.54 54.66 39.60 50.72 38.60 || mirror 1626 2199 4881 5845 57.74 57.76
rug 28.43 28.09 50.92 56.00 50.72 57.74 || field 13.88 19.86 21.73 21.02 30.34 30.11
armchair 19.71 3142 36.04 41.07 4194 46.86 || scat 7.84 17.84 4773 5429 4931 50.30
fence 13.16 21.20 29.07 28.81 32.07 34.36 || desk 16.55 17.81 4292 4537 4254 49.21
rock 1456 842 3575 43.65 4028 43.53 || press 1325 1450 41.17 4574 42.14 4793
lamp 40.87 4223 5626 57.37 6133 60.19 || bath 30.84 35.84 67.65 6695 70.14 70.34
railing 8.62 12.23 3197 34.03 24.83 23.84 || cushion 29.01 29.01 4597 4537 5144 5276
base 438 0.66 2439 2546 1736 29.95 | box 519 889 1465 1720 1575 17.49
column 20.77 2055 3933 47.18 4492 48.44 | signboard 2252 2551 2949 23.82 3332 28.03
chest 21.75 3250 3236 3430 38.58 37.99 || counter 435 9.60 1840 4491 18.65 31.87
sand 382 053 2926 4035 2549 34.61 | sink 2845 39.79 6495 64.96 62.80 68.05
skyscraper 20.65 1274 4896 53.04 3132 40.56 || hearth 37.53 5430 5577 59.66 6693 68.47
refrigerator 1792 41.57 66.13 60.50 57.07 56.39 | grandstand 2120 26.21 3836 41.64 39.68 48.53
path 6.39 1545 1851 22.61 2092 23.19 || stairs 13.02 2245 1793 4129 2529 3792
runway 2424 30.83 57.01 4799 69.66 63.95 | case 18.17 1795 42.02 49.53 3340 51.27
pool table 69.94 8599 89.27 87.82 90.97 91.95 || pillow 20.01 28.61 43.04 45.81 49.79 55.60
screen door 226 0.00 57.19 61.30 62.64 67.65 || stairway 887 1692 15.61 17.07 19.60 18.40
river 6.08 275 1058 15.01 1039 11.18 || bridge 11.26 10.04 51.08 55.82 50.82 48.94
bookcase 038 6.81 3690 4099 3745 40.35 || blind 8.16 14.51 36.17 48.03 30.68 41.88
coffee table 31.60 36.12 48.86 49.64 55.00 56.51 || toilet 3747 60.28 83.18 83.18 82.60 83.54
flower 11.66 27.67 30.84 30.62 33.09 28.74 | book 227 1211 3920 41.51 44.86 39.72
hill 286 443 472 1330 526 9.36 || bench 12.83 2020 36.10 33.18 38.11 38.58
countertop 13.96 10.53 47.49 4728 4832 4791 || stove 2540 49.79 67.87 4698 62.05 64.29
palm 1933 17.12 4577 4352 49.66 50.78 || kitchenisland 6.66 15.62 33.46 13.36 25.16 26.50
computer 31.65 30.84 5194 54.03 5427 55.70 || swivel chair 18.94 19.04 51.25 27.42 42.83 3440
boat 929 7.08 4944 5181 3632 63.33 || bar 6.19 1551 1696 4578 28.46 36.18
arcade machine ~ 3.71 995 3870 3.79 2519 23.22 || hovel 1.55 050 9.10 2857 13.78 29.86
bus 25.60 17.04 75.65 7293 81.86 81.73 || towel 1558 655 51.74 5039 48.06 49.66
light 2991 2628 4797 36.87 51.36 42.78 || truck 1.04 417 1406 11.60 1325 15.08
tower 1324 1.01 3598 0.06 29.73 21.27 || chandelier 37.23 46.96 60.83 5858 65.80 64.43
awning 474 526 1951 1240 19.56 10.91 || streetlight 426 474 2525 1723 2741 16.96
booth 1046 24.09 3824 40.57 4594 51.60 | tvset 33.50 37.66 56.26 60.61 5294 57.63
airplane 2225 32.62 49.22 3495 49.59 52.51 || dirt track 414 000 630 0.00 7.04 9.60
apparel 10.07 2231 2723 33.09 26.55 29.69 || pole 9.08 10.10 17.04 6.61 20.83 14.53
land 027 030 050 037 537 0.53 | bannister 1.23 032 10.81 6.69 8.69 12.03
escalator 111 0.00 16.69 582 13.74 17.55 | ottoman 998 2471 36.78 46.73 3040 32.51
bottle 233 189 3348 1425 2557 15.74 || buffet 13.08 3427 3420 8.13 24.84 3198
poster 878 290 1471 10.07 2031 24.07 || stage 256 356 392 810 977 13.98
van 21.37 39.01 4327 3923 39.35 4244 | ship 122 0.00 16.89 000 14.58 11.73
fountain 1.04 062 685 64.03 4.19 5798 || conveyor 19.62 31.73 3720 2391 4830 51.15
canopy 247 6.64 1397 1256 1529 18.08 || washer 3479 1757 58.88 5247 68.04 64.49
plaything 397 640 1594 1929 9.85 12.22 || natatorium 18.05 41.07 2720 028 37.30 35.04
stool 15.65 27.78 28.11 29.88 3575 36.69 | barrel 0.00 000 1437 0.00 8.06 10.63
basket 9.14 1213 2475 2371 2246 23.42 || waterfall 1233 592 4636 1338 49.73 38.72
tent 6.92 10.27 70.53 86.04 83.03 82.68 || bag 1.18 240 632 1233 391 721
minibike 27.88 3032 4475 61.82 43.75 63.65 || cradle 29.83 3351 7556 77.68 76.12 72.63
oven 14.56 30.68 27.24 40.18 4396 52.18 | ball 2516 21.53 2640 30.73 2550 33.23
food 19.20 20.55 4399 3442 4736 50.25 || step 3.02 010 118 0.75 1175 4.44
tank 0.00 9.53 20.04 4280 2091 47.38 | brand 14.60 22.55 22.16 25.29 19.88 28.83
microwave 11.87 1551 3247 3550 3697 37.15 || pot 20.34 2640 34.15 3499 39.20 34.24
animal 19.14 3030 4858 52.32 5212 49.17 || bicycle 34.86 33.71 46.94 4547 41.60 4571
lake 0.14 000 3796 0.00 2751 527 | dishwasher 11.56 4037 5570 56.69 60.57 58.20
screen 26.05 42.53 6032 6538 064.16 64.48 | blanket 527 255 6.07 1839 825 19.16
sculpture 280 214 1378 4.03 25.08 19.24 || hood 5.68 2041 40.03 36.07 49.03 4895
sconce 9.51 21.67 3437 3690 39.11 39.53 || vase 11.92 1410 3235 35.54 29.51 2897
stoplight 3.68 0.79 29.06 2245 27.53 24.33 | tray 066 720 523 084 7.6 378
ashcan 11.77 28.05 38.41 41.58 3846 36.84 | fan 29.23 3455 50.62 39.84 56.09 50.77
pier 087 688 39.02 2996 20.96 38.67 || crtscreen 350 505 184 549 834 9.1
plate 14.07 2438 36.25 36.12 34.82 31.07 || monitor 447 2144 209 4657 16.12 23.76
notice board 18.78 3.77 30.75 41.06 31.50 29.33 || shower 0.00 000 017 0.00 017 0.00
radiator 13.50 1997 39.72 43.61 40.29 42.46 | glass 059 568 11.82 947 11.16 10.19
clock 396 835 2699 2058 19.74 15.70 || flag 391 1581 1959 20.53 2678 29.24

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Test Image & Ground Truth MobileNetV2dilated ResNet50dilated & PPM HRNetV2

Classic SL

SCL (Ours)

.

Classic SL

SCL (Ours)

| Il-

Classic SL

SCL (Ours)

Figure 6: Comparison of classic supervised learning (SL) and the proposed supervised consistency
learning (SCL) on semantic segmentation across different neural backbones.

20

	Introduction
	Related Work and Preliminaries
	Supervised Learning Tasks with Complex Labels
	The Supervised Consistency Learning Framework
	Diffusion Trajectories for Labels
	Supervised Consistency Training Scheme
	Multistep Inference with Consistency Mappings

	Experiments
	Semantic Segmentation
	N-body Simulation
	Combinatorial Optimization
	Next-token Prediction

	Conclusion and Future Work
	Experiment Details
	Computational Resources.
	Experimental Details for Semantic Segmentation
	Dataset
	Context and Time Step

	Experimental Details for N-body Simulation
	Noising Process
	Model Architecture

	Experimental Details for Combinatorial Optimization
	Label Encoding and Noising Process
	Model Architecture

	Experimental Details for Next-token Prediction
	Model Design
	Evaluation Metrics

	Supplementary Experimental Results

