
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PREDICTION CONSISTENCY TRAINING ENHANCES SU-
PERVISED LEARNING FOR LEARNING TASKS WITH
COMPLEX LABELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Directly predicting labels from data inputs has been a long-standing supervised
learning paradigm. Its trade-off between compression and prediction is studied
under the information theory framework e.g. Information Bottleneck, especially
in the context of deep learning. It typically assumes that the information content
of labels is significantly less than that of data inputs, leading to model designs
that prioritize compressing and extracting features from data inputs. In fact, recent
supervised learning increasingly faces predicting complex labels, exacerbating the
challenge of learning mappings from compressed latent features to high-fidelity
label representations. Predictive bottlenecks emerge not only from compression
limitations but also from the inherent complexity of feature-to-label transforma-
tions. This paper proposes incorporating scheduled label information into the
model during training to better learn the prediction consistency mapping, which
stems from the consistency mapping concept from generative consistency models.
Unlike traditional approaches predicting labels directly from inputs, in this paper,
the training of our designed conditional consistency involves predicting labels
using inputs and noise-perturbed label hints, pursuing the predictive consistency
across different noise steps. It simultaneously learns the relationship between latent
features and a spectrum of label information from zero to complete, which enables
progressive learning for complex predictions and allows multi-step inference anal-
ogous to gradual denoising, thereby enhancing the prediction quality. Experiments
on vision, text, and graph tasks show the superiority of our consistency supervised
training paradigm, over conventional supervised training in complex label
prediction problems. Source code will be made publicly available upon acceptance.

1 INTRODUCTION

Supervised learning has long been a cornerstone of machine learning, where models are trained to
map input data to corresponding output labels by minimizing prediction error, which measures the
discrepancy between the predicted labels and the ground truth labels. This direct label prediction
paradigm has been widely applied across various domains, from image classification (Krizhevsky
et al., 2012; He et al., 2016; Simonyan & Zisserman, 2014), natural language processing (Vaswani,
2017; Devlin, 2018; Radford, 2018), to structured graph learning (Kipf & Welling, 2016; Veličković
et al., 2017; Wu et al., 2022), due to its simplicity and effectiveness in handling large, annotated
datasets. In such systems, it is very typical to employ a neural network to directly map the data
inputs to labels, with a particular focus on the expressive capacity of (deep) models to compress
high-dimensional inputs into latent representations while preserving relevant information for accurate
predictions, viewed from an information theory perspective (Tishby et al., 2000; Tishby & Zaslavsky,
2015). This compression is believed to contribute to the generalization ability of deep learning
models, particularly in high-dimensional and noisy input scenarios.

This paradigm typically assumes that the labels contain a significantly lower dimensionality and less
information than the data inputs, thus guiding model designs toward compressing and extracting
relevant features from the input space for efficient prediction (Tishby & Zaslavsky, 2015). The
assumption further implies that transforming meaningful latent features to label outputs is relatively
straightforward compared to the challenge of extracting expressive features. However, recent advances

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

𝒚

Label

𝒙

Data Input

𝒚𝑻 ... 𝒚𝒕 𝒚... 𝒚𝒕! ...

𝒙

Data Input

Sample

𝒚𝒕 𝒚𝒕!

Random Noise

Noised Labels

LabelNoised Label Noised Label

𝒇𝜽

𝒇𝜽

𝓛 = 𝒅 𝒇𝜽 𝒙 , 𝒚

(a) Classic Supervised Learning (b) Supervised Consistency Learning

+
𝓛 = 𝒅 𝒇𝜽 𝒙, 𝒚𝒕 , 𝒚 + 𝒅 𝒇𝜽 𝒙, 𝒚𝒕! , 𝒚

+𝒅 𝒇𝜽 𝒙, 𝒚𝒕 , 𝒇𝜽 𝒙, 𝒚𝒕!

Figure 1: Illustration of supervised consistency Learning (SCL). Unlike traditional approaches
predicting labels directly from inputs, SCL predicts labels using inputs and noise-perturbed label
hints and pursues predictive consistency across different noise steps.

in supervised learning have shown that many modern tasks involve much more complex labels,
leading to new challenges. Examples include image prediction extending to dense, pixel-level
outputs (Long et al., 2015; Chen et al., 2017), natural language processing tasks generating complex
sentences (Brown, 2020; Touvron et al., 2023), and predicting complex structured solutions based
on graph representations (Li et al., 2023; Satorras et al., 2021). These challenges reveal predictive
bottlenecks beyond feature extraction. To address this challenge, one approach involves learning an
efficient representation of the complex labels, facilitating a more effective transformation within the
low-dimensional feature space. Indeed, this can correspond to methods that leverage Variational Auto-
Encoder (VAE) (Kingma, 2013) to perform learning tasks within the latent space (Rombach et al.,
2022; Hottung et al., 2021). However, this approach necessitates that the transformation between
labels and latent features be reversible, requiring the training of two additional neural networks (an
encoder and a decoder) to accurately capture and reconstruct the label information.

In this paper, we propose an alternative approach, aiming to better capture complex label information
by introducing a fundamentally different supervised learning paradigm. We leverage the concept of
consistency mapping from generative consistency models Song et al. (2023) to frame the supervised
learning process as learning the prediction consistency, transitioning from noised labels to full
labels conditioned on the data input. Specifically, we introduce Supervised Consistency Learning
(SCL), which establishes trajectories from different noise levels on the target labels to the raw labels
conditioned on the given data inputs. This process can be interpreted as a conditional generation
mechanism, where high-fidelity labels are inferred from noisy counterparts using the input data as
a conditional guide, as shown in Fig. 1. Yet, within the supervised setup, each training instance has a
reference target label, and the model learns to guide all denoising trajectories to this label by enforcing
this predictive consistency across different noise timesteps, which we define as prediction consistency.

During training, unlike conventional supervised learning predicting labels directly from inputs, SCL
maps noisy labels at varying noise levels back to the true label conditioned on the input data and
enforces different noise timesteps mapping to the same target. By enforcing predictive consistency
across multiple noise levels, the model captures a rich spectrum of label information from entirely
noisy to wholly accurate predictions, fostering a more expressive mapping between latent features
and labels. During inference, the inherent multi-step denoising mechanism also facilitates progressive
refinement, resulting in more flexible and accurate predictions for complex labels. Intuitively, this
process can be seen as learning to predict with varying degrees of solution hints, which benefits
learning by progressively understanding the label information, especially when the labels are complex.

We demonstrate the effectiveness of our approach across a range of tasks involving complex labels
from diverse domains, including vision learning (e.g., semantic segmentation (Long et al., 2015;
Chen et al., 2017)), graph learning (e.g., N-body simulation (Satorras et al., 2021) and combinatorial
optimization (Li et al., 2023)), and natural language processing (e.g., next-token prediction in large
language models (Brown, 2020; Touvron et al., 2023)). The empirical results highlight the superiority
of SCL over traditional supervised learning across various mainstream network backbones.

2 RELATED WORK AND PRELIMINARIES

Supervised Learning and Information Interpretation. In supervised learning (SL), the models
typically learn the direct mapping from the data inputs to labels by minimizing a loss function that
captures the discrepancy between predicted and ground truth labels. In particular, the Information
Bottleneck (IB) principle (Tishby et al., 2000; Tishby & Zaslavsky, 2015) offers a theoretical

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

framework to analyze (deep) learning systems, indicating that models balance the trade-off between
compression and prediction accuracy. The IB method (Tishby et al., 2000) aims to find a compressed
representation of the input that retains relevant information about the target while discarding irrelevant
details. The IB method formulates this trade-off by minimizing the mutual information between
the input and a compressed representation, while maximizing the mutual information between the
compression and the target. By considering the relationship between the input and the label through
the lens of information theory, IB provides a powerful tool for understanding model generalization
and optimizing feature representations in supervised learning.

Diffusion Models and Consistency Models. Diffusion models are characterized by a forward pro-
cess of noise injection and a reverse process of learnable denoising, where neural networks iteratively
predict data distributions conditioned on increasingly noisy inputs. In continuous space, these models
are closely linked to Stochastic Differential Equations (SDEs), with techniques such as the Probability
Flow ODE offering a deterministic approximation to sample generation (Sohl-Dickstein et al., 2015;
Song & Ermon, 2019; Ho et al., 2020; Song et al., 2020a; Song & Ermon, 2020; Nichol & Dhariwal,
2021; Dhariwal & Nichol, 2021). Extensions to discrete data have also been explored, with noise
distributions modeled as binomial or categorical variables (Sohl-Dickstein et al., 2015; Austin et al.,
2021; Hoogeboom et al., 2021). Building on the advancements of diffusion models, consistency mod-
els (Song et al., 2023; Song & Dhariwal, 2023) have introduced an alternative paradigm to accelerate
the generation process. Rather than iteratively refining noisy samples through a reverse diffusion pro-
cess, consistency models leverage a self-consistency mechanism across different time steps, directly
learning the mappings from noise to data in a single step or a small number of steps. This approach
has shown promise in reducing computational overhead while maintaining high sample quality.

3 SUPERVISED LEARNING TASKS WITH COMPLEX LABELS

Supervised learning aims to train the model to extract compressed features or representations of
input data x ∈ X while retaining the most relevant information about the target label y ∈ Y (Tishby
et al., 2000; Tishby & Zaslavsky, 2015). Note this is based on the assumption that the data provides
sufficient information about the labels, which means the data is abundant. From an information-
theoretic perspective, the mutual information I(X,Y) quantifies how much information X provides
about Y . Typically, X is a high dimensional variable of a low-level representation of the data, such
as pixels of an image, whereas Y has a significantly lower dimensionality of the predicted categories,
which generally means that most of the entropy of X is not very informative about Y and that the
relevant features in X are highly distributed and difficult to extract (Tishby & Zaslavsky, 2015). In
deep learning (LeCun et al., 2015), deep neural networks create a compressed representation XE of
X through an encoder, which discards irrelevant information while preserving as much of the mutual
information I(XE , Y) as possible. The compression is optimized by minimizing I(X,XE), the
information between X and its compressed form XE , while maximizing I(XE , Y), the information
between the compressed representation and the target. This trade-off can be formalized in the IB
objective: minp(XE |X) [I(X,XE)− βI(XE , Y)], where β is a Lagrange multiplier that governs the
balance. In real-world scenarios, compression is often lossy, meaning that some information about the
input signal X is inevitably discarded. Consequently, the challenge becomes ensuring that the model
retains only the information about Y that is necessary for the task while minimizing redundancy.

This formulation typically assumes that Y is a low-dimensional vector (e.g., class labels) where the
information content is relatively limited. However, many real-world tasks, especially in structured
prediction (e.g., image segmentation, sequence generation), involve predicting high-dimensional
outputs. In these tasks, the mutual information I(XE , Y) can be difficult to maximize because the
high-dimensional labels themselves contain redundancies, and fitting a model to predict them from
XE becomes a non-trivial task. Moreover, the space of possible outputs Y could involve complex cor-
relations that are hard to capture directly. Below, we formalize such tasks with a qualitative definition.
Definition 3.1. A learning task with complex labels is characterized by a label space that exhibits high
complexity due to one or more of the following characteristics: (i) high dimensionality, (ii) intricate
internal structure, or (iii) the presence of significant dependency patterns among label components.

In contrast to traditional tasks with simple scalar or categorical labels, complex labels encode rich,
multi-dimensional, or structured information. Consequently, these tasks require models to capture
sophisticated relationships and dependencies within the label space, transcending straightforward
mappings from input features. The inherent complexity of the label space suggests the need for

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

learning an effective latent representation YE of the target Y . This concept aligns with existing
approaches (Rombach et al., 2022; Hottung et al., 2021)that handle high-dimensional outputs in latent
spaces leveraging methods like Variational Autoencoders (VAE) (Kingma & Welling, 2014). However,
for prediction purposes, these methods rely on the invertibility of the mapping from Y to its latent
representation YE , requiring both an encoder to compress Y and a decoder to reconstruct YE back to
Y for prediction. This necessitates learning additional networks to manage latent representations. In
the following section, we present an alternative approach that enhances the model’s ability to capture
I(XE , Y) directly by leveraging the mechanism of the learning paradigm itself, thereby avoiding the
need for introducing additional networks and its associated computational overhead.

4 THE SUPERVISED CONSISTENCY LEARNING FRAMEWORK

This section presents the proposed supervised consistency learning framework. We begin by introduc-
ing the diffusion trajectories for labels, which form the technical foundation, followed by a detailed
introduction of the training and inference scheme of the consistency learning paradigm.

4.1 DIFFUSION TRAJECTORIES FOR LABELS

Recall the proposed SCL predicts labels using data inputs and noised label hints and pursues the
predictive consistency across different noise steps, as shown in Fig. 1. This section elucidates the
diffusion processes designed to gradually incorporate noise into labels across various label spaces.

Diffusion on Categorical Labels. For multi-dimensional categorical labels in {1, · · · ,K}N where
K denotes the category number and N denotes the dimension (which could correspond to nodes in a
graph and pixels in an image), we follow discrete diffusion models (Sohl-Dickstein et al., 2015; Austin
et al., 2021; Hoogeboom et al., 2021) to model the diffusion process as introducing multinomial noise
to the label at each timestep. We represent the label as y ∈ {0, 1}N×K , which is a concatenation of
N one-hot vectors, each representing the categorical assignment of the corresponding dimension. At
each timestep t, noise is applied to corrupt the one-hot representation of the label. This noise can be
understood as transitioning between different categories for each of the N dimensions. Specifically,
starting from the initial point y0 = y, the forward diffusion process is defined as:

q(yt|yt−1) = Cat(yt;p = yt−1Qt), (1)

where Cat(y;p) is categorical distributions over N one-hot vectors with probabilities given by
p, and Qt = (1 − βt)I + βt/K11⊤ ∈ RK×K is the transition matrix, which determines the
corruption introduced at timestep t, where βt is the corruption rate at timestep t. This ensures that
with probability βt, the corresponding label category can transition to any other category, effectively
introducing noise by redistributing the probability mass across categories. Over time, as t increases,
the labels become progressively noisier, eventually converging towards a uniform distribution over
the K categories (Austin et al., 2021). The cumulative effect of the diffusion process after t steps is:

q(yt|y0) = Cat(yt;p = y0Q̄t), (2)

where Q̄t = Q1Q2 . . .Qt represents the accumulated transition matrix from y0 to yt.

Diffusion on Continuous Labels. For multi-dimensional continuous labels in RN , where N denotes
the dimensionality (which could correspond to regression outputs, pixel intensities in an image, or
time-series data), we follow Gaussian diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Nichol & Dhariwal, 2021) to model the diffusion process as introducing Gaussian noise to the label
at each timestep. We represent the label as y ∈ RN , where each element corresponds to a continuous
value. At each timestep t, Gaussian noise is applied to corrupt the label, progressively pushing it
toward a noisy distribution. Specifically, the forward diffusion process is defined as:

q(yt|yt−1) = N (yt;
√
1− βtyt−1, βtI), (3)

where N (y;µ,Σ) is a Gaussian distribution with mean µ and covariance Σ, and βt controls the
variance of the added noise at timestep t. The factor

√
1− βt ensures that the label retains some of

its original value, while the noise is introduced with variance βt, progressively corrupting the label
as t increases. Over time, as t approaches the final timestep T , the labels become almost entirely
corrupted, converging towards a Gaussian distribution centered at zero. The cumulative effect of this
diffusion process after t steps is described by the marginal distribution:

q(yt|y0) = N (yt;
√
ᾱty0, (1− ᾱt)I), (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where ᾱt =
∏t

i=1(1− βi) represents the accumulated noise scale from the original label y0 to the
noisy label yt. As t increases, ᾱt decreases, leading to increased corruption of the label.

4.2 SUPERVISED CONSISTENCY TRAINING SCHEME

To better capture I(XE , Y), where Y contains a substantial amount of information, directly maxi-
mizing the mutual information between XE and Y can be challenging due to the sheer complexity
and size of the label space. Instead of attempting to learn the entire information content of Y at
once, we aim to provide the model with a structured learning process that progressively captures this
information. By exposing the model to noisy versions of Y , we can guide it to learn partial infor-
mation at each step, using these noise-perturbed labels as hints for gradually reconstructing the full
information content of Y . This progressive approach enables the model to focus on simpler aspects
of the label information initially and incrementally build towards mastering the full complexity of Y .
This gradual learning framework not only makes the task of capturing I(XE , Y) more tractable but
also leverages the inherent structure and complexity of Y to guide the progressive learning process.

𝑝 𝐲! =
1
𝑁 𝑝 𝐲|𝐱 = 1

𝐲

...
...

...
...

Trajectories

𝑓!(𝐱, 𝐲"
𝒋, 𝑡)

𝑓!(𝐱, 𝐲$𝒊 , 𝑇)

𝑓!(𝐱, 𝐲"!
𝒌 , 𝑡')

(𝐲$(, 𝑇)

(𝐲"
) , 𝑡)

(𝐲"!
* , 𝑡')

Conditioned on Data Input 𝐱

Figure 2: Prediction consistency enforces that all
trajectories conditioned on x consistently map
to the same initial point, i.e., the label y.

This noise-based reconstruction process is similar
to learning the consistency mappings in consis-
tency models (Song et al., 2023; Song & Dhariwal,
2024), where the goal is to learn how to map back
to the original data from different noise levels
along the diffusion trajectories. In continuous-
time diffusion models defined on (ϵ, T] (Song
et al., 2020b), consistency models (Song et al.,
2023) defines the self-consistency property as
points on the same trajectory map to the same
initial point, and optimize the learned consistency
function fθ(·, ·) to satisfy the requirement by:
1) boundary condition: fθ(yϵ, ϵ) = yϵ; 2) self-
consistency property: fθ outputs consistent estima-
tion for arbitrary pairs of (yt, t) that belong to the same trajectory, i.e., fθ(yt, t) = fθ(yt′ , t

′),∀ t, t′ ∈
[ϵ, T]. The joint effect of these two constraints gradually transmits mapping consistency from low
noise to high noise, and the model gradually learns how to restore the original data in the presence of
higher information loss and finally achieve a reliable data prediction from noise step T to data, i.e.,
fθ(yT , T)→ yϵ. This directly aligns with our goal of gradually learning I(XE , Y) in the supervised
learning context, as discussed earlier. Yet, the difference from the raw consistency learning process is
that the diffusion trajectories are conditioned on the data input x with a reference optimal solution y
serving as the commonly targeted initial point for all the conditional trajectories. Thus, we define the
consistency condition in the supervised learning context for model optimization below.
Definition 4.1 (Prediction Consistency). Given data input x and a label trajectory {yt}t∈[0,T], we
define the consistency function as f : (x,yt, t) 7→ y, which satisfies: conditioned on x, all points
along any trajectory map to its label, i.e., fθ(x,yi

t, t) = fθ(x,y
j
t′ , t

′) = y for distinct trajectories i
and j at distinct steps t and t′.

As illustrated in Fig. 2, the goal of the consistency model fθ in the supervised learning context is to
estimate the consistency function from data by learning to enforce prediction consistency. To achieve
such consistency to learn f : x 7→ y, given that the target y is certain and explicit, we do not have to
rely on optimizing the expectation of the variation of the consistency mappings over two noise points
yt and yt′ to propagate the label information across different noise levels. Instead, we additionally
introduce y to optimize the triadic distance to achieve prediction consistency:

LPC(θ) = E
[
λ1d

(
fθ(x,yt, t),y

)
+λ1d

(
fθ(x,yt′ , t

′),y)
)
+λ2d

(
fθ(x,yt, t), fθ(x,yt′ , t

′)
)]
. (5)

Here d(·, ·) is a distance metric function and λ1, λ2 are loss weights. In this framework, the boundary
conditions lose their critical importance since the information from y is gradually distributed across
all noise stages. This allows the network θ to effectively model the consistency function fθ over the
entire progression. Thus, the core difference with the raw consistency model is that SCL aims to
recover the exact y given x, where the target distribution converges to an exact target point, and the
model trades the output diversity to better capture y. This calls for the requirement of consistency
extending across all trajectories, rather than being confined within a single trajectory.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Consistency Training Procedure

1: Input: Dataset D, model fθ, noise function q(·),
learning rate η, loss weights λ1, λ2

2: repeat
3: Sample (x,y) ∼ D, and t1, t2 ∼ Uniform[1, T]
4: Sample yt1 ∼ q(yt1 |y), yt2 ∼ q(yt2 |y)
5: ŷt1

0 ← fθ(x,yt1 , t1)
6: ŷt2

0 ← fθ(x,yt2 , t2)
7: L ← λ1d

(
ŷt1
0 ,y

)
+λ1d

(
ŷt2
0 ,y

)
+λ2d

(
ŷt1
0 , ŷt2

0

)
8: θ ← θ − η∇θL
9: until convergence

Algorithm 2 Multistep Prediction

Input: trained model fθ, data input x,
noise function q(·), sequence of time
points τ1 > τ2 > · · · > τNτ−1

Sample random noise yT

ŷ0 ← fθ(x,yT , T)
for n = 1 to Nτ − 1 do

Sample yτn ∼ q(yτn |ŷ0)
ŷ0 ← fθ(x,yτn , τn)

end for
Output: Prediction ŷ0

Specifically, to align with the traditional supervised training paradigm, we retain the original task-
defined loss function for the distance metric d, such as cross-entropy for classification tasks and mean
squared error for regression tasks. This is because the design of the loss function is orthogonal to
our learning framework, allowing them to complement each other. The main modification in our
approach lies in that the model predicts y based on both x and the noise-perturbed versions of y,
while ensuring predictive consistency across different noise levels. In practice, with the noising
schedules corresponding to different label spaces, we randomly sample two time steps t1 and t2
and independently apply noise to y, and independently sample from the noise distribution to obtain
yi
t1 and yj

t2 . This ensures that the two noisy samples are independent with respect to both the time
steps and the diffusion trajectories. Then Eq. 5 can be effectively optimized to learn the consistency
predictive mapping, and the whole training process is presented in Alg. 1 and Fig. 1.

4.3 MULTISTEP INFERENCE WITH CONSISTENCY MAPPINGS

With a well-trained fθ(·, ·, ·), we obtain predictions for a given x by sampling yT from the uniform
distribution and then evaluate the prediction for y0 = fθ(x,yT , T). This standard single-step
inference requires only one forward pass through the model, offering a fast yet approximate solution
akin to conventional supervised learning methods. On the other hand, accuracy tends to be higher
when t is small, as the label hints contain a richer amount of information. Our objective is to
progressively transfer this high accuracy to larger values of t through training, thereby enhancing
overall model performance. In the ideal case that the consistency loss converges to zero, optimal
results can be achieved in a single step, yet in practice, gradually decreasing t from T to 0 can lead to
accuracy improvements. To achieve such enhancements, a multistep inference strategy can be adopted,
which iteratively alternates between denoising and reintroducing noise. This approach effectively
trades off runtime for enhanced prediction quality, allowing the model to refine its outputs over
multiple inference steps and leverage increasingly rich information embedded in earlier predictions.

Given a sequence of time points τ1 > τ2 > · · · > τNτ−1, at each step τn, the current prediction
yτn−1

is perturbed by a noise function to a noisier state yτn . The noise level decreases with each
step, meaning τn < τn−1. The model then denoises the corrupted label by applying fθ(x,yτn , τn),
producing a refined prediction. This process is repeated over successive steps, where each newly
refined label incorporates progressively more accurate information from the previous step. This
enables the model to gradually recover the whole information of y by taking the perhaps approximated
prediction as the label hints and leveraging the incrementally informative hints for the final prediction.
The specific multistep prediction procedure is presented in Alg. 2 and is visualized in Fig. 3.

5 EXPERIMENTS

We test the proposed SCL framework on tasks involving complex labels from diverse domains,
including semantic segmentation (high-dimensional categorical outputs in vision learning), N-body
simulation (high-dimensional continuous outputs in graph learning), combinatorial optimization
problem solving (high-dimensional constrained combinatorial outputs in graph learning), and next-
token prediction (high-dimensional sequential outputs in language modeling).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Predictions across varying timesteps based on the last step’s predictions in the multistep
inference procedure. In each step, the model receives the input and label hint and predicts the output.

Table 1: Results on Semantic Segmentation.
Method SCL Pixel Acc.↑ mIoU↑ Score↑

ResNet50dilated + PPM (Zhao et al., 2017) % 77.64 39.58 58.61
! 78.63 39.70 59.17

HRNetV2 (Sun et al., 2019) % 78.71 40.77 59.74
! 79.54 42.68 61.11

5.1 SEMANTIC SEGMENTATION

Semantic segmentation is a classic dense vision task with wide applications that involves classifying
each pixel of an image into a predefined category (Long et al., 2015; Zhao et al., 2017). Unlike
classification tasks that categorize entire images, semantic segmentation analyzes the finer granularity
of images to identify the boundaries and relationships between objects.

Dataset. We utilize the ADE20K dataset (Zhou et al., 2019), which is a commonly used large-scale
scene parsing dataset that contains over 20,000 images with pixel-level annotations. The dataset is
annotated with 150 different object classes, and we make the unannotated pixels into a new category,
denoted as -1, which are ignored during both training and testing. Following previous works (Zhou
et al., 2017; 2019), we resize the origial images during training while keeping the aspect ratio constant,
randomly scaling the shorter side to one of the sizes 300, 375, 450, 525, or 600.

Metrics. Following (Zhou et al., 2017; 2019), we adopt three evaluation metrics to measure model
performance: 1) Pixel Accuracy: the proportion of correctly classified pixels. 2) Mean IoU (mIoU):
the intersection-over-union between the predicted and ground-truth pixels, averaged over all the
classes. 3) Score: the average value of Pixel Accuracy and Mean IoU. During the testing phase, we
use Multi-Scale Test: evaluate at multiple sizes and then take the average.

Model Design. We generally adopt an encoder-decoder network framework. The encoder compresses
the input by extracting high-level features using a CNN backbone, reducing the spatial resolution while
capturing important semantic information. The decoder then progressively upsamples the compressed
features to recover the original resolution, often using skip connections to retain fine details. To
introduce SCL, we concatenate the image features obtained through the encoder, the timestep
embeddings extracted through sinusoidal position embedding, and the noised labels processed by the
embedding layer. Then, we feed the tensor encompassing the input, timestep, and noised label into
the decoder for further processing. In this task, y ∈ {−1, 0, 1, ...149}H×W where each entry will be
converted into a one-hot vector of length 151, indicating the classification of the pixels. We adopt the
categorical noising process as presented in Eq. 2 using transition matrices of Qt ∈ [0, 1]151×151.

Results. For the encoder, we choose ResNet50dilated (He et al., 2016), and HRNetV2 (Sun et al.,
2019). For the decoder, we sequentially selected C1 (one convolution module) with DeepSup (deep
supervision trick), PPM (Pyramid Pooling Module) (Zhao et al., 2017) with DeepSup, and C1. Table 1

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Comparison of traditional supervised learning and
supervised consistency learning for MSE.

Method MSE↓ MAE↓
GCN (Kipf & Welling, 2016) 0.01064±0.00014 0.04322±0.00082
GCN-SCL (Ours) 0.00927±0.00020 0.03783±0.00018
GAT (Veličković et al., 2017) 0.00969±0.00040 0.03996±0.00198
GAT-SCL (Ours) 0.00910±0.00038 0.03726±0.00068
GGNN (Li et al., 2015) 0.01220±0.00020 0.04614±0.00146
GGNN-SCL (Ours) 0.01143±0.00042 0.04336±0.00127 Figure 4: MSE curves on test data.

shows that SCL with merely one step achieved 2.63% performance gain in average pixel accuracy
and 2.19% performance gain on mIoU. Fig. 3 visually demonstrates how increasing inference steps
further improves predictions, particularly for large background areas.

5.2 N-BODY SIMULATION

Table 2: Ablation study on loss construction.
Method MSE↓ MAE↓
Traditional SL 0.01064 0.04322
w/o λ1-term, w/o λ2-term 4.36176 1.62478
w/o λ1-term, w/ λ2-term 4.34559 1.62437
w/ λ1-term, w/o λ2-term 0.00956 0.03895
w/ λ1-term, w/ λ2-term 0.00927 0.03783

The N-body simulation task involves predicting the
future positions of a set of interacting particles over
time based on initial conditions such as their posi-
tions, velocities, and the inherent physical forces
governing their interactions (Satorras et al., 2021).
The task’s outputs retain the same dimensionality and
complexity as the inputs. The evolution of particle
positions and velocities follows fundamental physical
laws such as gravitational or electrostatic interactions. We follow Satorras et al. (2021) to solve the
5-charged-particle system in 3-dimensional space. The system consists of five particles, each with
either a positive or negative charge, and each particle has an associated position and velocity.

Dataset. We collected 3000 trajectories for training, 2000 for validation, and 2000 for testing. Each
trajectory spans 1000 timesteps. For each trajectory, the initial conditions include the particle positions
p(0) = {p1(0), . . . , p5(0)} ∈ R5×3, the initial velocities v(0) = {v1(0), . . . , v5(0)} ∈ R5×3, and
the respective charges c = {c1, . . . , c5} ∈ {−1, 1}5. The task is to predict the positions of the five
particles after 1000 timesteps. The model is optimized by minimizing the averaged Mean Squared
Error (MSE) between the predicted positions and the ground truth positions.

Metrics. We adopt two evaluation metrics to evaluate the regression quality for test data: 1) Mean
Square Error (MSE): the average of the squares of the errors between the predicted values and the
true values; 2) Mean Absolute Error (MAE): the average of the absolute differences.

Model Design. We consider the state-of-the-art graph modeling solution for this task, where we input
the concatenation of the initial positions and the velocities as the node features. The charges are input
as edge attributes aij = cicj . We take the model outputs as the estimated positions. To introduce
SCL, we adopt two linear layers to encode the input attributes and the noised label, respectively,
and then concatenate them to form the input hidden feature to the subsequent graph neural layers.
We adopt 4 graph neural layers, and for each layer’s output, we integrate the timestep embedding
extracted by the sinusoidal position embedding and a linear layer through addition. In this task,
y ∈ R5×3 and we adopt the Gaussian noising process to produce noised labels as shown in Eq. 4.

Results. We compare the model with the classic graph neural networks, including Graph Convolu-
tional Networks (GCN) (Kipf & Welling, 2016), Graph Attention Network (GAT) (Veličković et al.,
2017), and Gated Graph Neural Networks (GGNN) (Li et al., 2015). For each model, we compare
the performance with the models trained by the classic SL and our proposed SCL. Table 3 shows
the superiority of SCL on quantitative results with lower estimation errors on both MSE and MAE
under same settings, and Fig. 4 shows performance gain on the test MSE curves within the training
process. Table 2 provides ablation studies on the effects of the λ1-term and λ2-term and verifies the
effectiveness of every loss term in Eq. 5.

5.3 COMBINATORIAL OPTIMIZATION

Combinatorial Optimization (CO) problems, which involve optimizing discrete variables under given
objectives, generally maintain inherent computational difficulty, e.g. NP-hardness. Adopting the
conventions established in Wang et al. (2022a), we define a CO problem on a graph G(V,E), where

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

size = 13
t = 1000

size = 13
t = 691

size = 15
t = 413

size = 15
t = 191

size = 16
t = 49

𝒕 = 𝑻 𝒕 = 𝟎

Figure 5: Prediction results for the MIS solution based on the last step’s predictions across varying
time steps in the multistep inference procedure. Orange indicates the solution.

Table 4: Results on MIS. TS: Tree Search, UL: Unsupervised Learning. ∗ denotes results quoted
from previous works (Li et al., 2023; Zhang et al., 2023).

Method Type RB-[200-300] ER-[700-800]

Size↑ Drop↓ Time Size↑ Drop↓ Time

Intel (Li et al., 2018) SL+G – – – 34.86 22.31% 6.06m
DIMES (Qiu et al., 2022) RL+G – – – 38.24 14.78% 6.12m
DIFUSCO (Sun & Yang, 2023) SL+G 18.52 7.81% 16m3s 37.03 18.53% 5m30s
GCN (Kipf & Welling, 2016) SL+G 18.22 9.23% 23s 35.35 21.22% 12s
GCN-SCL (Ts=1) SL+G 18.59 7.37% 35s 36.72 18.17% 11s
GCN-SCL (Ts=5) SL+G 18.74 6.65% 1m16s 37.80 15.76% 24s

Intel (Li et al., 2018) SL+TS 18.47 8.11% 13m4s 38.80 13.43% 20.00m
DGL (Böther et al., 2022) SL+TS 17.36 13.61% 12m47s 37.26 16.96% 22.71m
DIFUSCO (Sun & Yang, 2023) SL+S 19.13 4.79% 20m28s 39.12 12.81% 21m43s
GCN (Kipf & Welling, 2016) SL+S 18.22 9.23% 26s 35.35 21.22% 25s
GCN-SCL (Ts=1) SL+S 18.91 5.81% 42s 37.91 15.52% 24s
GCN-SCL (Ts=5) SL+S 19.38 3.46% 1m50s 39.81 11.27% 1m16s

V and E denote the nodes and edges, respectively. Let x ∈ {0, 1}N×2 denote the optimization
variable, where each entry is represented by a one-hot vector, i.e., each entry with (0, 1) indicates
that it is included in x and (1, 0) indicates the opposite. For node-decision problems, xi indicates
whether Vi is included in x. The feasible set Ω consists of x satisfying specific constraints as feasible
solutions. A CO problem on G aims to find a feasible x that minimizes the given objective function
l(·;G). Here, we consider the classic node-decision problem Maximal Independent Set (MIS). Given
an undirected graph G = (V,E), an independent set is a subset of vertices S ⊆ V such that no two
vertices in S are adjacent in G. MIS entails finding an independent set of maximum cardinality in G.

Table 5: Numerical results of the enhancements
achieved by increasing denoising steps.

#Steps Greedy Sampling

Size↑ Drop↓ Time Size↑ Drop↓ Time

1 18.586 7.486% 13s 18.888 5.983% 20s
2 18.604 7.397% 20s 19.246 4.201% 30s
4 18.702 6.909% 33s 19.366 3.604% 49s
8 19.026 5.296% 1m0s 19.616 2.359% 1m27s

16 19.284 4.012% 1m47s 19.702 1.932% 2m43s
32 19.438 3.245% 3m31s 19.790 1.493% 5m14s

Datasets. Two datasets are tested for the MIS
problem including RB graphs (Zhang et al.,
2023) and ErdsRnyi (ER) graphs (Erdős et al.,
1960). We randomly sample 200 to 300 vertices
uniformly and generate the graph instances. ER
graphs are randomly generated with each edge
maintaining a fixed probability of being present
or absent, independently of the other edges. We
adopt ER graphs of 700 to 800 nodes with the
pairwise connection probability set as 0.15.

Metrics. Following previous works (Kool et al., 2018; Joshi et al., 2019), we adopt three evaluation
metrics to measure model performance: 1) Size: the average size of the solutions w.r.t. the corre-
sponding instances, i.e. the objective. 2) Drop: the performance drop w.r.t. size compared to the
optimal solution; 3) Time: the average computational time required to solve the problems.

Model Design. We primarily include graph networks to receive the graph input and output a binary
prediction for each node, indicating the probability of the node being included in the optimal solution.
To introduce SCL, the graph network receives the noised label and the adjacency matrix for the input
node feature and edge feature, respectively. We adopt 12 graph neural layers, and for each layer’s
output, we integrate the timestep embedding extracted by the sinusoidal position embedding and
a linear layer through addition. In this task, y ∈ {0, 1}n×2 where each entry is a one-hot vector
indicating the selection of the node. We adopt the categorical noising process as presented in Eq. 2.

Results. We compare GCN (Kipf & Welling, 2016) under the classic SL and SCL settings, and we
also include other mainstream neural solvers into comparison with greedy and sampling decoding

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(×4). Ts indicates the number of inference steps during the multistep prediction. Table. 4 shows the
superiority of SCL on solving performance reflected by the solved size and relative drop. We also
show that more inference steps can effectively improve the results in this scenario. Fig. 5 shows the
result variation across the multistep prediction procedure, which gradually improves the prediction.
Table 5 shows the numerical results variation across the multistep prediction procedure.

5.4 NEXT-TOKEN PREDICTION

The next-token prediction task is a cornerstone in natural language processing, forming the foundation
for transformer-based large language models (LLMs) such as GPT (Radford, 2018), LLaMA (Touvron
et al., 2023). The objective of the task is to predict the next token in a sequence, given the preceding
context. The task’s outputs retain similar dimensionality and sequence complexity as the inputs.
Large language models trained on next-token prediction tasks have proven to be highly effective
at capturing both short-term and long-range dependencies in language, enabling them to generate
coherent, contextually appropriate text. This section investigates the effectiveness of SCL in the full
fine-tuning task on the pre-trained LLaMa-2-7B (Touvron et al., 2023) models.

Dataset. The Alpaca (Taori et al., 2023) dataset is based on the self-instruct method (Wang et al.,
2022b), utilizing the OpenAI text-davinci-003 engine to generate a collection of instructions and
demonstrations. These instruction data can be employed for fine-tuning language models. By filtering
out low-quality data, such as hallucinations, incorrect answers, and unclear instructions, we obtain the
Alpaca-cleaned dataset, which serves as the sole training data for all models discussed in this paper.

Table 6: Evaluation on LLM fine-tuning.
Method MMLU↑ CRASS↑ BBH↑
w/o FT 41.90 37.59 32.93

FT 46.22 58.29 33.38
FT-SCL (Ours) 47.10 59.48 34.75

Metrics. To evaluate the performance of models, we em-
ploy INSTRUCTEVAL (Chia et al., 2023), a comprehen-
sive evaluation suite designed specifically for instruction-
tuned models. INSTRUCTEVAL aims to assess models
across dimensions such as problem-solving ability, writing
proficiency, and alignment with human values. Following
INSTRUCTEVAL, we use 5-shot direct prompting for MMLU (Hendrycks et al., 2020), 0-shot direct
prompting for BBH (Srivastava et al., 2022) and 3-shot direct prompting for CRASS (Frohberg &
Binder, 2022). Detailed descriptions for the benchmarks are presented in Appendix A.5.2.

Model Design. Our modified LLaMA2-7B model retains the original embedding and decoder layers
but introduces a novel mechanism to predict the next token. Instead of the standard approach where
hidden states directly generate token probabilities, we inject Gaussian noise into token embeddings
during training to enhance robustness. This noise is combined with the tokens hidden state to
form an augmented vector, which is passed through an MLP and classification head for prediction.
Additionally, we enforce consistency by minimizing the mean squared error between logits at
randomly selected time steps. In the generation phase, noise is iteratively reduced across steps to
generate tokens sequentially. More detailed descriptions can be found in Appendix A.5.1.

Results. We compare methods for fine-tuning LLMs on the next-token prediction task. The baselines
include the pre-trained LLaMA2-7B model and the LLaMA2-7B model fine-tuned using traditional
full-parameter supervised learning (Taori et al., 2023). In contrast, our method, FT-SCL, also tunes
the full parameters of the model but operates under the supervised consistency learning paradigm.
We also include LoRA (r = 8, α = 16, drop out = 0.05) (Hu et al., 2021) for comparison. Table 6
shows the superiority of SCL on quantitative results across MMLU, GRASS and BBH.

6 CONCLUSION AND FUTURE WORK

This paper has proposed a novel supervised consistency learning framework beyond the classic
supervised learning paradigm, which has shown superiority in extensive experiments on various
tasks with complex labels. Our approach resembles, to a certain degree, the residual learning
scheme by treating the noisy label as the input, which is counterpart to the raw signal of the input
data. By leveraging label hints perturbed by noise and progressively refining predictions through
multiple inference steps, our method improves predictive performance in challenging scenarios
where traditional direct-label prediction methods may struggle. Empirical results across vision,
text, and graph modalities demonstrate the superiority of the proposed paradigm. Future work will
explore the potential of applying the data diffusion process to other deep learning paradigms, such as
semi-supervised and unsupervised learning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

This research adheres to ethical standards and does not involve any direct human subjects, nor does
it present any privacy or security concerns. The datasets used in this study are either synthetic or
publicly available without involving sensitive or personally identifiable information. All experiments
and methodologies were conducted in compliance with legal regulations and established research
integrity practices. There are no known conflicts of interest, sponsorship influences, or concerns
related to discrimination, bias, or fairness in our approach. Additionally, the research does not
produce any harmful insights or applications.

REPRODUCIBILITY STATEMENT

We have taken steps to ensure the reproducibility of the results presented in this paper. The experimen-
tal settings, including datasets and model designs, are thoroughly described in Section 5. Additional
details, such as model architectures, noise generation processes, and hyperparameter configurations,
are provided in Appendix A. Source code will be made publicly available upon acceptance.

REFERENCES

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Maximilian Böther, Otto Kißig, Martin Taraz, Sarel Cohen, Karen Seidel, and Tobias Friedrich.
What’s wrong with deep learning in tree search for combinatorial optimization. arXiv preprint
arXiv:2201.10494, 2022.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully
connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):834–848,
2017.

Yew Ken Chia, Pengfei Hong, Lidong Bing, and Soujanya Poria. Instructeval: Towards holistic
evaluation of instruction-tuned large language models. arXiv preprint arXiv:2306.04757, 2023.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in Neural Information Processing Systems, 34:8780–8794, 2021.

Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.
Sci, 5(1):17–60, 1960.

Jörg Frohberg and Frank Binder. Crass: A novel data set and benchmark to test counterfactual
reasoning of large language models. In Proceedings of the Thirteenth Language Resources and
Evaluation Conference, pp. 2126–2140, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. Advances in Neural Information
Processing Systems, 34:12454–12465, 2021.

André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a latent search space for routing
problems using variational autoencoders. In International Conference on Learning Representations,
2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. T2t: From distribution learning in training
to gradient search in testing for combinatorial optimization. In Advances in Neural Information
Processing Systems, 2023.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional
networks and guided tree search. Advances in neural information processing systems, 31, 2018.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3431–3440, 2015.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171, 2021.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combinatorial
optimization problems. arXiv preprint arXiv:2210.04123, 2022.

Alec Radford. Improving language understanding by generative pre-training. 2018.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks.
In International conference on machine learning, pp. 9323–9332. PMLR, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning,
pp. 2256–2265, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv
preprint arXiv:2310.14189, 2023.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. In
The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=WNzy9bRDvG.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438–12448, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Ke Sun, Yang Zhao, Borui Jiang, Tianheng Cheng, Bin Xiao, Dong Liu, Yadong Mu, Xinggang
Wang, Wenyu Liu, and Jingdong Wang. High-resolution representations for labeling pixels and
regions. arXiv preprint arXiv:1904.04514, 2019.

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial opti-
mization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=JV8Ff0lgVV.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In 2015
ieee information theory workshop (itw), pp. 1–5. IEEE, 2015.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint physics/0004057, 2000.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Haoyu Peter Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. Unsupervised learning for
combinatorial optimization with principled objective relaxation. In Advances in Neural Information
Processing Systems, 2022a.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022b.

13

https://openreview.net/forum?id=WNzy9bRDvG
https://openreview.net/forum?id=WNzy9bRDvG
https://openreview.net/forum?id=JV8Ff0lgVV

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Qitian Wu, Wentao Zhao, Zenan Li, David Wipf, and Junchi Yan. Nodeformer: A scalable graph struc-
ture learning transformer for node classification. In Advances in Neural Information Processing
Systems, 2022.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan. Let
the flows tell: Solving graph combinatorial optimization problems with gflownets. arXiv preprint
arXiv:2305.17010, 2023.

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing
network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
2881–2890, 2017.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 633–641, 2017.

Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Semantic understanding of scenes through the ade20k dataset. International Journal of Computer
Vision, 127:302–321, 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

A EXPERIMENT DETAILS

A.1 COMPUTATIONAL RESOURCES.

Experiments for semantic segmentation, n-body simulation, and combinatorial optimization are
conducted on a single GPU of NVIDIA RTX 4090, and experiments for next-token prediction are
performed on 8 GPUs of NVIDIA H800.

A.2 EXPERIMENTAL DETAILS FOR SEMANTIC SEGMENTATION

A.2.1 DATASET

To accommodate the dimensions of the images output by the encoder, we downsample the segmenta-
tion maps. Additionally, to prevent rounding errors in subsequent calculations, it is necessary to adjust
the target size’s length and width according to an integer multiple of a constant determined by the
padding parameter. Specifically, the downsampling rates for MobileNetV2dilated, ResNet50dilated,
and HRNetV2 are 8, 8, and 4, respectively, with padding parameters of 8, 8, and 32 for these three
encoders.

A.2.2 CONTEXT AND TIME STEP

Given image information x extracted through the encoder, hint label y, and time step t, SCL first
embeds the latter two and then merges these three into a new image information x̃. The context for
semantic segmentation is generated by adding categorical noise to the ground truth labels. Given
the context y, it is first passed through an embedding layer that maps each class y ∈ {0, 1, . . . , C}
(where C is the number of classes) to a higher-dimensional vector ỹ. ỹ is then processed through
linear layers and activation function.

Time step t is first embedded through the sinusoidal position embedding and then processed through
linear layers and activation function.

t̃ = concat

(
sin

t

T
0
d

, cos
t

T
0
d

, sin
t

T
2
d

, cos
t

T
2
d

, . . . , sin
t

T
d
d

, cos
t

T
d
d

)
(6)

x̃ = concat(x,W2(SiLU(W1ỹ)),W4(SiLU(W3t̃))) (7)

where d is the embedding dimension, T is a large number (usually selected as 10000), concat(·)
denotes concatenation.

A.3 EXPERIMENTAL DETAILS FOR N-BODY SIMULATION

A.3.1 NOISING PROCESS

At timestep t = 0, the label y ∈ R5×3 represents the original 3-dimensional coordinates of the
5-body system. We introduce Gaussian noise that gradually transforms the coordinates to points from
the standard Gaussian distributions. The noising process simply follows Eq. 3 and Eq. 4.

A.3.2 MODEL ARCHITECTURE

We follow the implementation of Satorras et al. (2021) to generally implement 4-layer GNNs. With
its learnable edge operation function ϕe and node operation function ϕh, the graph convolutional
layer follows:

mij = ϕe(h
l
i,h

l
j , aij) (8)

mi =
∑

j∈N (i)

mij (9)

hl+1
i = ϕh(h

l
i,mi) (10)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Where hl
i ∈ Rnf is the nf-dimensional embedding of node vi at layer l. aij are the edge attributes.

N (i) represents the set of neighbors of node vi. Here, ϕe and ϕh are approximated by 2-layer
Multilayer Perceptrons (MLPs).

The initial position p0 and velocity v0 from the particles are passed through a linear layer to obtain
the input feature. The label hint is passed through another linear layer, and the obtained feature is
concatenated with the input feature and inputted into the GNN first layer h0. The particle’s charges
are inputted as edge attributes aij = cicj . The time step t is first embedded through the sinusoidal
position embedding

t̃ = concat

(
sin

t

T
0
d

, cos
t

T
0
d

, sin
t

T
2
d

, cos
t

T
2
d

, . . . , sin
t

T
d
d

, cos
t

T
d
d

)
(11)

and then processed through linear layers and activation functions. Here d is the embedding dimension,
T is a large number (usually selected as 10000), concat(·) denotes concatenation. Then we aggregate
the timestep feature with the node convolutional feature and reformulate the update for node features,
i.e., Eq. 10 as:

hl+1
i = ϕh(h

l
i,mi) + ϕt(t̃) (12)

where ϕh is a linear layer model. The output of the GNN hL is passed through a two layers MLP that
maps it to the estimated position.

A.4 EXPERIMENTAL DETAILS FOR COMBINATORIAL OPTIMIZATION

A.4.1 LABEL ENCODING AND NOISING PROCESS

We represent the solutions of CO problems as x ∈ {0, 1}N×2 with x ∈ Ω. The distribution of
x is represented by N Bernoulli distributions indicating whether each entry should be selected,
i.e., p(x) ∈ [0, 1]N×2. We try to establish transition trajectories from random uniform noise to
high-quality soft-constrained solutions, i.e., x ∈ {0, 1}N×2. These soft-constrained solutions are
directly sampled from the estimated Bernoulli distributions, where feasibility constraints can be
broadly captured through learning and eventually hard-guaranteed by post-processing.

The noising process is formulated as q(x1:T |x0) =
∏T

t=1 q(xt|xt−1), which is achieved by multi-
plying xt ∈ {0, 1}N×2 at step t with a forward transition probability matrix Qt ∈ [0, 1]2×2 which

indicates the transforming probability of decision state. We set Qt =

[
βt 1− βt

1− βt βt

]
(Austin

et al., 2021), where βt ∈ [0, 1] such that the transition matrix is doubly stochastic with strictly positive
entries, ensuring that the stationary distribution is uniform which is an unbiased prior for sampling.
The noising process for each step and the t-step marginal are formulated as:

q(xt|xt−1) = Cat(xt;p = xt−1Qt) and q(xt|x0) = Cat(xt;p = x0Qt) (13)

where Cat(x;p) is a categorical distribution over N one-hot variables and Qt = Q1Q2 · · ·Qt.

A.4.2 MODEL ARCHITECTURE

The MIS problem can be defined as G(V,E), where V ∈ {0, 1}N and E ∈ NN×2 denote the nodes
and edges, respectively. For the classic supervised learning, V is a fully one vector, while for SCL V
is an indicator zero-one vector derived from the ground truth with noise added at time step t. E is the
edge index, which contains all pairs of connected nodes.

Input Embedding Layer. For node vector x ∈ {0, 1}N , each node will be mapped to a feature vector
x̃ of dimension H . For the time step t, it is embedded through the sinusoidal position embedding.

t̃ = concat

(
sin

t

T
0
d

, cos
t

T
0
d

, sin
t

T
2
d

, cos
t

T
2
d

, . . . , sin
t

T
d
d

, cos
t

T
d
d

)
(14)

where d is the embedding dimension, T is a large number (usually selected as 10000), concat(·)
denotes concatenation.

Next, we compute the input features of the graph convolution layer:
x0
i = W1x̃i (15)

t0 = W3(ReLU(W2t̃)) (16)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where t0 ∈ Rdt , dt is the time feature embedding dimension. Moreover, we initialize edge feature e0
to a zero matrix 0E×d.

Graph Convolution Layer. Following Joshi et al. (2019), the cross-layer convolution operation is
formulated as:

xl+1
i = xl

i +ReLU(BN(W l
1x

l
i +

∑
j∼i

ηlij ⊙W l
2x

l
j)) (17)

el+1
ij = eli +ReLU(BN(W l

3e
l
ij +W l

4x
l
i +W l

5x
l
j)) (18)

ηl
ij =

σ(elij)∑
j′∼i σ(e

l
ij′) + ϵ

(19)

where xl
i and elij denote the node feature vector and edge feature vector at layer l, W1, · · · ,W5 ∈

Rh×h denote the model weights, ηlij denotes the dense attention map. The convolution operation
integrates the edge feature to accommodate the significance of edges in routing problems.

we aggregate the timestep feature with the node convolutional feature and reformulate the update for
node features as follows:

xl+1
i = xl

i +ReLU(BN(W l
1x

l
i +

∑
j∼i

ηl
ij ⊙W l

2x
l
j)) +W l

6(ReLU(t0)) (20)

Output Layer. The prediction of the node heatmap in MIS is as follows:

xi = Softmax(norm(ReLU(Wnx
L
i))) (21)

where L is the number of GCN layers and norm is layer normalization.

A.5 EXPERIMENTAL DETAILS FOR NEXT-TOKEN PREDICTION

A.5.1 MODEL DESIGN

In our approach, we adopt the LLaMA2-7B model as the backbone, preserving the structure of the
embedding and decoder layers. However, we modify the prediction mechanism for the next token
using the hidden states. In a conventional decoder-only language model (LLM), the prediction of the
next token y is achieved by leveraging the preceding context, encoded in a high-dimensional hidden
state h. This hidden state h is then passed through a linear layer, typically referred to as the language
modeling head (lm head) or unembedding layer, to yield the probability distribution P (y) over the
next token.

In contrast, our model introduces a noise injection mechanism to perturb the token embeddings,
aiming to enhance robustness and generalization.

Training Phase. During the training phase, when the model obtains the last hidden states for each
token, instead of directly passing them through the lm head to generate logits and compute the cross-
entropy loss with the ground truth labels ŷ, we transform these labels back into its corresponding
embedding yemb. Then add Gaussian noise ϵ ∼ N (0, σ2) to yemb, resulting in a perturbed embedding:

ynoisy
t = ᾱty

emb + β̄tϵ. (22)

To inform the model of the noise magnitude, we also perturb the time step t, obtaining a corresponding
time embedding temb. The noisy token embedding ynoisy

t is combined with temb to form a new noisy
information vector,

hnoisy
t = ynoisy

t + temb. (23)

This noisy information is concatenated with the hidden state h, resulting in the augmented vector

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

haug
t = [h;hnoisy

t]. (24)

Finally, haug is passed through a multi-layer perceptron (MLP) and a new classification head to
generate the probability distribution for the next token:

p(y | haug
t) = softmax(LM HEAD((MLP(haug))). (25)

It is worth noting that for each batch, In addition to aligning p(y | haug
t) with the next token ground

truth by minimizing the cross-entropy loss, we randomly generate two time steps, t1 and t2, and
obtain logits logits(y | haug

t1) and logits(y | haug
t2). We then minimize the mean squared error (MSE)

loss between them to ensure as much consistency as possible.

Generation Phase Now we describe the generation process. After the input passes through the
decoder layers and obtains the last hidden states, we encounter a challenge during the inference
phase since the next token ŷ is unknown. To address this, we input a complete Gaussian noise vector
hnoisy
1000(i.e. ϵ), which is denoised by model to generate the next token y1. This process is then iterated,

with y1 serving as ŷ for the subsequent iteration. Following the steps outlined in Eq. 22, 23, 24, and
25, we generate y2, and so on, iteratively.

The noise addition time step for each iteration is predetermined as a hyperparameter. In our experi-
ments, we employ a linearly decreasing schedule for the time steps. For instance, with a maximum
noise step of 1000 and 5 iterations, the time steps t are set as [1000, 800, 600, 400, 200], ensuring a
gradual reduction of noise over the course of iterations.

A.5.2 EVALUATION METRICS

The evaluation of large language model performance in this paper includes benchmarks:

• MMLU (Hendrycks et al., 2020): This benchmark assesses models’ world knowledge and rea-
soning abilities across 57 academic disciplines, including STEM, humanities, and social sciences.
Questions range in difficulty from elementary to advanced professional levels, presented in a
multiple-choice format. The evaluation primarily uses few-shot settings to test the models’ gen-
eralization capabilities. In our experiments, a 5-shot direct prompting is utilized to evaluate the
model’s comprehensive performance across various dimensions.

• BBH (Srivastava et al., 2022): It is a subset of 23 challenging tasks from the BIG-Bench benchmark.
It evaluates the ability of models to handle challenging reasoning and problem-solving tasks that go
beyond simple language understanding. It includes complex scenarios such as navigation, logical
deduction, and fallacy detection. For this work, we apply 0-shot direct prompting to measure the
model’s capability in dealing with unseen questions without additional contextual examples.

• CRASS (Frohberg & Binder, 2022): This benchmark is designed to evaluate the model’s ability
to handle complex relational reasoning tasks, specifically in the context of causal structures and
relationships. It includes a variety of problems that test how well the model understands and
predicts causal relationships between different entities or events. For this evaluation, we use 3-shot
direct prompting to assess model reasoning.

B SUPPLEMENTARY EXPERIMENTAL RESULTS

For semantic segmentation, to vividly illustrate the effects of SCL, we present a comparison of
the Intersection over Union (IoU) metrics for all three models across the ADE20K dataset’s 150
categories in Table 7. The results indicate that MobileNetV2dilated, ResNet50dilated, and HRNetV2
have achieved advantages in IoU on 70.00%, 58.67%, and 64.67% of the categories respectively after
using SCL.

Fig. 6 illustrates the differences in predicting semantic segmentation maps among various models
and training methods, visually reflecting the performance differences between the models as outlined
in Table 1.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 7: Comparison of Intersection over Union (IoU) for classic supervised learning (SL) versus
the proposed supervised consistency learning (SCL) in semantic segmentation across various neural
backbones. Bold indicates better performance in that category. MoibleNet: MobileNetV2dilated,
ResNet50: ResNet50dilated. Order: Ranked from top to bottom based on the probability of each
category in the ADE20K dataset

Object MobileNet ResNet50 HRNetV2 Object MobileNet ResNet50 HRNetV2
SL SCL SL SCL SL SCL SL SCL SL SCL SL SCL

wall 55.17 52.67 71.98 72.80 73.95 71.89 building 60.33 65.75 80.03 80.19 79.61 80.82
sky 79.30 87.51 93.24 93.10 93.31 93.81 floor 54.27 58.03 76.31 76.73 77.55 78.81
tree 50.65 58.62 69.36 71.51 70.95 72.35 ceiling 58.45 71.21 78.46 80.11 81.31 81.71
road 34.60 66.73 79.53 79.54 80.43 80.90 bed 28.84 31.57 82.95 83.52 85.49 86.75
window 42.03 46.20 56.26 56.57 58.96 58.09 grass 16.51 12.29 64.23 67.29 64.20 65.97
cabinet 20.82 27.94 54.28 54.48 56.17 59.32 sidewalk 38.18 31.78 60.81 58.59 63.67 64.15
person 51.72 57.58 74.25 70.87 77.81 77.85 earth 16.74 20.66 30.05 34.30 31.14 30.08
door 18.40 24.87 34.94 41.76 44.42 43.97 table 31.27 33.32 50.23 53.99 55.03 57.98
mount 9.72 13.55 53.75 55.40 53.10 57.95 plant 28.90 32.02 43.80 46.78 49.04 49.07
curtain 41.14 39.88 64.09 66.14 67.57 68.59 chair 33.72 37.83 51.92 51.91 53.37 55.18
car 68.78 71.61 79.95 79.97 80.24 81.10 water 23.51 21.73 51.42 56.13 46.04 52.65
picture 51.24 51.66 62.99 68.86 66.10 68.41 sofa 38.90 35.38 55.97 58.36 65.39 64.57
shelf 21.15 23.20 37.45 42.28 36.91 32.79 house 0.66 0.26 53.76 47.20 40.27 45.35
sea 4.21 13.54 54.66 39.60 50.72 38.60 mirror 16.26 21.99 48.81 58.45 57.74 57.76
rug 28.43 28.09 50.92 56.00 50.72 57.74 field 13.88 19.86 21.73 21.02 30.34 30.11
armchair 19.71 31.42 36.04 41.07 41.94 46.86 seat 7.84 17.84 47.73 54.29 49.31 50.30
fence 13.16 21.20 29.07 28.81 32.07 34.36 desk 16.55 17.81 42.92 45.37 42.54 49.21
rock 14.56 8.42 35.75 43.65 40.28 43.53 press 13.25 14.50 41.17 45.74 42.14 47.93
lamp 40.87 42.23 56.26 57.37 61.33 60.19 bath 30.84 35.84 67.65 66.95 70.14 70.34
railing 8.62 12.23 31.97 34.03 24.83 23.84 cushion 29.01 29.01 45.97 45.37 51.44 52.76
base 4.38 0.66 24.39 25.46 17.36 29.95 box 5.19 8.89 14.65 17.20 15.75 17.49
column 20.77 20.55 39.33 47.18 44.92 48.44 signboard 22.52 25.51 29.49 23.82 33.32 28.03
chest 21.75 32.50 32.36 34.30 38.58 37.99 counter 4.35 9.60 18.40 44.91 18.65 31.87
sand 3.82 0.53 29.26 40.35 25.49 34.61 sink 28.45 39.79 64.95 64.96 62.80 68.05
skyscraper 20.65 12.74 48.96 53.04 31.32 40.56 hearth 37.53 54.30 55.77 59.66 66.93 68.47
refrigerator 17.92 41.57 66.13 60.50 57.07 56.39 grandstand 21.20 26.21 38.36 41.64 39.68 48.53
path 6.39 15.45 18.51 22.61 20.92 23.19 stairs 13.02 22.45 17.93 41.29 25.29 37.92
runway 24.24 30.83 57.01 47.99 69.66 63.95 case 18.17 17.95 42.02 49.53 33.40 51.27
pool table 69.94 85.99 89.27 87.82 90.97 91.95 pillow 20.01 28.61 43.04 45.81 49.79 55.60
screen door 2.26 0.00 57.19 61.30 62.64 67.65 stairway 8.87 16.92 15.61 17.07 19.60 18.40
river 6.08 2.75 10.58 15.01 10.39 11.18 bridge 11.26 10.04 51.08 55.82 50.82 48.94
bookcase 0.38 6.81 36.90 40.99 37.45 40.35 blind 8.16 14.51 36.17 48.03 30.68 41.88
coffee table 31.60 36.12 48.86 49.64 55.00 56.51 toilet 37.47 60.28 83.18 83.18 82.60 83.54
flower 11.66 27.67 30.84 30.62 33.09 28.74 book 2.27 12.11 39.20 41.51 44.86 39.72
hill 2.86 4.43 4.72 13.30 5.26 9.36 bench 12.83 20.20 36.10 33.18 38.11 38.58
countertop 13.96 10.53 47.49 47.28 48.32 47.91 stove 25.40 49.79 67.87 46.98 62.05 64.29
palm 19.33 17.12 45.77 43.52 49.66 50.78 kitchen island 6.66 15.62 33.46 13.36 25.16 26.50
computer 31.65 30.84 51.94 54.03 54.27 55.70 swivel chair 18.94 19.04 51.25 27.42 42.83 34.40
boat 9.29 7.08 49.44 51.81 36.32 63.33 bar 6.19 15.51 16.96 45.78 28.46 36.18
arcade machine 3.71 9.95 38.70 3.79 25.19 23.22 hovel 1.55 0.50 9.10 28.57 13.78 29.86
bus 25.60 17.04 75.65 72.93 81.86 81.73 towel 15.58 6.55 51.74 50.39 48.06 49.66
light 29.91 26.28 47.97 36.87 51.36 42.78 truck 1.04 4.17 14.06 11.60 13.25 15.08
tower 13.24 1.01 35.98 0.06 29.73 21.27 chandelier 37.23 46.96 60.83 58.58 65.80 64.43
awning 4.74 5.26 19.51 12.40 19.56 10.91 streetlight 4.26 4.74 25.25 17.23 27.41 16.96
booth 10.46 24.09 38.24 40.57 45.94 51.60 tv set 33.50 37.66 56.26 60.61 52.94 57.63
airplane 22.25 32.62 49.22 34.95 49.59 52.51 dirt track 4.14 0.00 6.30 0.00 7.04 9.60
apparel 10.07 22.31 27.23 33.09 26.55 29.69 pole 9.08 10.10 17.04 6.61 20.83 14.53
land 0.27 0.30 0.50 0.37 5.37 0.53 bannister 1.23 0.32 10.81 6.69 8.69 12.03
escalator 1.11 0.00 16.69 5.82 13.74 17.55 ottoman 9.98 24.71 36.78 46.73 30.40 32.51
bottle 2.33 1.89 33.48 14.25 25.57 15.74 buffet 13.08 34.27 34.20 8.13 24.84 31.98
poster 8.78 2.90 14.71 10.07 20.31 24.07 stage 2.56 3.56 3.92 8.10 9.77 13.98
van 21.37 39.01 43.27 39.23 39.35 42.44 ship 1.22 0.00 16.89 0.00 14.58 11.73
fountain 1.04 0.62 6.85 64.03 4.19 57.98 conveyor 19.62 31.73 37.20 23.91 48.30 51.15
canopy 2.47 6.64 13.97 12.56 15.29 18.08 washer 34.79 17.57 58.88 52.47 68.04 64.49
plaything 3.97 6.40 15.94 19.29 9.85 12.22 natatorium 18.05 41.07 27.20 0.28 37.30 35.04
stool 15.65 27.78 28.11 29.88 35.75 36.69 barrel 0.00 0.00 14.37 0.00 8.06 10.63
basket 9.14 12.13 24.75 23.71 22.46 23.42 waterfall 12.33 5.92 46.36 13.38 49.73 38.72
tent 6.92 10.27 70.53 86.04 83.03 82.68 bag 1.18 2.40 6.32 12.33 3.91 7.21
minibike 27.88 30.32 44.75 61.82 43.75 63.65 cradle 29.83 33.51 75.56 77.68 76.12 72.63
oven 14.56 30.68 27.24 40.18 43.96 52.18 ball 25.16 21.53 26.40 30.73 25.50 33.23
food 19.20 20.55 43.99 34.42 47.36 50.25 step 3.02 0.10 1.18 0.75 11.75 4.44
tank 0.00 9.53 20.04 42.80 20.91 47.38 brand 14.60 22.55 22.16 25.29 19.88 28.83
microwave 11.87 15.51 32.47 35.50 36.97 37.15 pot 20.34 26.40 34.15 34.99 39.20 34.24
animal 19.14 30.30 48.58 52.32 52.12 49.17 bicycle 34.86 33.71 46.94 45.47 41.60 45.71
lake 0.14 0.00 37.96 0.00 27.51 5.27 dishwasher 11.56 40.37 55.70 56.69 60.57 58.20
screen 26.05 42.53 60.32 65.38 64.16 64.48 blanket 5.27 2.55 6.07 18.39 8.25 19.16
sculpture 2.80 2.14 13.78 4.03 25.08 19.24 hood 5.68 20.41 40.03 36.07 49.03 48.95
sconce 9.51 21.67 34.37 36.90 39.11 39.53 vase 11.92 14.10 32.35 35.54 29.51 28.97
stoplight 3.68 0.79 29.06 22.45 27.53 24.33 tray 0.66 7.20 5.23 0.84 7.16 3.78
ashcan 11.77 28.05 38.41 41.58 38.46 36.84 fan 29.23 34.55 50.62 39.84 56.09 50.77
pier 0.87 6.88 39.02 29.96 20.96 38.67 crt screen 3.50 5.05 1.84 5.49 8.34 9.01
plate 14.07 24.38 36.25 36.12 34.82 31.07 monitor 4.47 21.44 2.09 46.57 16.12 23.76
notice board 18.78 3.77 30.75 41.06 31.50 29.33 shower 0.00 0.00 0.17 0.00 0.17 0.00
radiator 13.50 19.97 39.72 43.61 40.29 42.46 glass 0.59 5.68 11.82 9.47 11.16 10.19
clock 3.96 8.35 26.99 20.58 19.74 15.70 flag 3.91 15.81 19.59 20.53 26.78 29.24

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 6: Comparison of classic supervised learning (SL) and the proposed supervised consistency
learning (SCL) on semantic segmentation across different neural backbones.

20

	Introduction
	Related Work and Preliminaries
	Supervised Learning Tasks with Complex Labels
	The Supervised Consistency Learning Framework
	Diffusion Trajectories for Labels
	Supervised Consistency Training Scheme
	Multistep Inference with Consistency Mappings

	Experiments
	Semantic Segmentation
	N-body Simulation
	Combinatorial Optimization
	Next-token Prediction

	Conclusion and Future Work
	Experiment Details
	Computational Resources.
	Experimental Details for Semantic Segmentation
	Dataset
	Context and Time Step

	Experimental Details for N-body Simulation
	Noising Process
	Model Architecture

	Experimental Details for Combinatorial Optimization
	Label Encoding and Noising Process
	Model Architecture

	Experimental Details for Next-token Prediction
	Model Design
	Evaluation Metrics

	Supplementary Experimental Results

