Under review as a conference paper at ICLR 2026

PRIMAL-DUAL POLICY OPTIMIZATION FOR
ADVERSARIAL LINEAR CMDPs

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing work on linear constrained Markov decision processes (CMDPs) has pri-
marily focused on stochastic settings, where the losses and costs are either fixed
or drawn from fixed distributions. However, such formulations are inherently
vulnerable to adversarially changing environments. To overcome this limitation,
we propose a primal-dual policy optimization algorithm for online finite-horizon
adversarial linear CMDPs, where the losses are adversarially chosen under full-
information feedback and the costs are stochastic under bandit feedback. Our
algorithm is the first to achieve sublinear regret and constraint violation bounds in

this setting, both bounded by O(K?>/4), where K denotes the number of episodes.
The algorithm introduces and runs with a new class of policies, which we call
weighted LogSumExp softmax policies, designed to adapt to adversarially chosen
loss functions. Our main result stems from the following key contributions: (i)
a new covering number argument for the weighted LogSumExp softmax policies,
and (ii) two novel algorithmic components—periodic policy mixing and a regular-
ized dual update—which allow us to effectively control both the covering number
and the dual variable. We also report numerical results that validate our theoretical
findings on the performance of the algorithm.

1 INTRODUCTION

Safe reinforcement learning (RL) studies sequential decision-making under safety constraints
through interaction with an unknown environment. Many real-world applications have been
explored under the safe RL framework, including autonomous driving (Isele et al., 2018),
robotics (Achiam et al., 2017), and healthcare (Coronato et al., 2020). A common modeling frame-
work for safe RL is the online constrained Markov decision process (CMDP) formulation, where
the agent seeks a policy that minimizes (or maximizes) cumulative expected loss (or reward), while
ensuring that the expected cumulative cost does not exceed a given budget (Altman, 2021).

To better capture realistic scenarios, it is often necessary to model adversarial environments, where
different components of the environment may vary arbitrarily over time. For instance, in autonomous
driving, the loss may reflect safety risks such as sudden braking events, but it can also increase
drastically due to unexpected traffic conditions or hazardous weather. In service robotics, the loss
may correspond to task failures or user dissatisfaction, which can fluctuate depending on human
preferences or rapidly changing tasks. In such applications, assuming a fixed loss signal is overly
restrictive. Therefore, to model these practical scenarios, it is essential to consider a class of CMDPs
under adversarial settings.

Online adversarial CMDPs assume that the loss or cost functions can change arbitrarily across
episodes, rather than being drawn from fixed stochastic distributions. Recently, adversarial CMDPs
have been investigated under the tabular setting (Qiu et al., 2020; Stradi et al., 2024; 2025a;c; Zhu
et al., 2025). Although these works achieved sublinear regret and constraint violation bounds, they
focused only on environments where the state space is finite and relatively small. As a result, their
algorithmic guarantees may not extend to settings with large state spaces. Such algorithms are often
unsatisfactory in real-world applications, where the number of states is typically extremely large.

To capture settings with a large state space, safe RL with linear function approximation has been
studied. Ding et al. (2021) proposed a primal-dual policy optimization algorithm for linear mixture
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CMDPs, where the dynamics are expressed as a mixture of a finite set of basis kernels. For linear
CMDPs, assuming linear structure in the loss and cost functions as well as in the dynamics, Ghosh
et al. (2022; 2024) designed a primal-dual-type optimistic value iteration algorithm with a softmax
policy. For the same setting, Kitamura et al. (2025) developed an algorithm achieving zero constraint
violation under the assumption of a known safe policy. Although these algorithms can handle large
state spaces, they considered only stochastic settings, where the loss and cost functions are fixed or
drawn from underlying distributions. That said, they fail to capture the aforementioned applications,
where taking into account adversarial environments is essential when modeling safe RL algorithms.

To overcome these limitations, this paper proposes an algorithm for adversarial linear CMDPs. To
handle adversarial losses with constraints, as online primal-dual mirror descent type algorithms be-
come a standard choice, it is natural to consider primal-dual policy optimization for our setting (Chen
et al., 2021; Ding et al., 2021). However, when applying primal-dual policy optimization to adver-
sarial linear CMDPs, additional challenges arise—most notably in bounding the covering number
of the value function class (Jin et al., 2020).

To elaborate on this challenge, primal-dual policy optimization induces a more intricate policy class,
necessitating a new covering number argument. In particular, slightly perturbing the primal variable
before optimizing it—namely, the policy in our case—is commonly used in various settings (Wei
et al., 2020; Qiu et al., 2020; Ding et al., 2021; Stradi et al., 2025¢). The purpose of this step is to
derive a compact dual variable bound, which is essential for regret and violation analyses. However,
this step breaks the recursive structure of policy optimization, so the resulting policy cannot be
represented as a typical softmax policy. As a consequence, the covering number argument becomes
non-trivial. In other words, while policy mixing is simple and common, it poses a critical issue
for covering number arguments in linear CMDPs. Despite these challenges, we aim to answer the
following question:

Can we design a primal-dual policy optimization algorithm for adversarial linear CMDPs that
ensures sublinear regret and violation bounds?

Main Contributions We answer the question affirmatively with Algorithm 1, designed for finite-
horizon adversarial linear CMDPs, where the losses are adversarially chosen under full-information
feedback, and the costs are stochastic under bandit feedback. We summarize our main contributions.

* We present a primal-dual policy optimization algorithm (Algorithm 1) for adversarial lin-

ear CMDPs that achieves regret and constraint violation upper bounds of O(K?3/4), where
K is the number of episodes. Our algorithm is the first algorithm that achieves sublinear
regret and violation in the adversarial linear CMDP setting. Moreover, the algorithm devel-
ops a new class of policies, which we refer to as weighted LogSumExp softmax policies,
designed to adapt to adversarially chosen loss functions.

* We establish a covering number argument for the novel class of weighted LogSumExp soft-
max policies, induced by primal-dual policy optimization algorithms. The main technical
difficulty arises from the fact that the weight parameters across policies may differ, prevent-
ing direct application of standard properties of the LogSumExp function. Nevertheless, our

analysis shows that the covering number under this policy class is bounded by (5(n2d2),
where n is the maximum number of mixing steps, and d is the feature dimension of the
linear CMDP.

* Another challenge in designing a sublinear algorithm for adversarial linear CMDPs lies
in the need to simultaneously control both the covering number and the dual variable. To
address this, our algorithm incorporates two novel components: (i) periodic policy mixing
and (ii) regularized dual updates. Since the covering number grows with the number of
mixing steps, the purpose of periodic policy mixing is to regulate the frequency of mixing
steps by applying it once in every specified mixing period, rather than in every episode.
To incorporate periodic policy mixing, our dual update has to introduce an additional reg-
ularization term in order to obtain a compact bound on the dual variable. Together, these
algorithmic components allow us to effectively control both the covering number and the
dual variable, establishing a sublinear algorithm.

A more detailed review of related work is deferred to the appendix.
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2 PROBLEM SETTING

Finite-Horizon Adversarial CMDP A finite-horizon adversarial CMDP is defined by the tuple
M = (H,S, AP {f*YE | {g"}E |, 51,b), where H is the finite-horizon, S is the finite
state space!, and A is the finite action space. {P}/L_, is a collection of transition kernels for each
step h € [H], where P, (s’ | s,a) denotes the probability of transitioning from state s to state s’
when action a is taken at step h. { f*}5_| and {g¥}£_| are the sequences of loss and cost functions
over episodes k € [K], where f¥ = {fF}/L and ¢* = {gF}/L, satisfy fF,gF : S x A — [0,1].
s1 € S is the fixed initial state, and b € [0, H] is the cost budget.

We consider a setting where the loss functions are adversarial, while the cost functions are stochastic.
Specifically, at the beginning of each episode k& € [K], an adversary chooses the loss function f*,
which can be selected arbitrarily (i.e., not drawn from a distribution). In contrast, the cost function
g" is sampled i.i.d. from a fixed distribution G, satisfying E[g¥(s,a) | s, a] = gn(s,a).

The interaction between the agent and the environment proceeds as follows. At the beginning of
each episode k € [K], f* is adversarially chosen, which is not revealed to the agent. Next, the agent
selects a collection of policies {m; }1_,, where 7, (a | s) denotes the probability of taking action a
given state s at step h. Once the episode begins, at each step h € [H], the agent samples an action
ap ~ (- | s). Upon taking ay,, the agent observes fr and gF(sp, as), which are full-information
feedback for the adversarial loss and bandit feedback for the stochastic cost, respectively. Lastly, the
next state is sampled as spy1 ~ Pp(- | s, an).

We define the value function and the Q-function. Let V7, (s) denote the value function at state s
and step h with respect to a function ¢ = {¢,}L and policy 7, which is written as Vi (s) =
E]p’ﬂ[Zf:h i(sj,a;) | sn = s]. Similarly, the Q-function Q7 (s, a) is defined as Q7 ;,(s,a) =
Epx[S50 4i(55a5) | sn = s,a = a],

We define the performance metrics—regret and constraint violation—as follows. Given a se-

quence of policies 7',..., 7% generated by the agent, the regret and constraint violation for
K episodes are defined as Regret(K) = Zszl( Jf,:l(sl) - VJZT,:’l(sl)) and Violation(K) =

[ZkK:l(Vg”f (s1) —b)| , where []4+ denotes max{-,0}. Here, 7* is an optimal policy, de-
’ +

fined as a solution to the following optimization problem over the set of all policies II: 7* €
. K
argmin e > pq Vﬁ’l(sl) s.t. ngl(sl) <b.

Linear CMDP We consider a class of CMDP instances with an underlying linear structure, re-
ferred to as linear CMDP (Ghosh et al., 2022). Let ¢ : S x A — R? denote the known feature
mapping. With the feature ¢, the transition kernel is defined as Py, (s’ | s,a) = ¢(s,a) (s
where vy, (s’) € R? is an unknown signed measure. Similarly, the loss and cost functions are as-
sumed to be linear in ¢ and are defined as [} (s,a) = ¢(s,a) 05, and gn(s,a) = ¢(s,a) Oy,
where 0’]3} no0gn € R? are unknown parameters. Moreover, we further assume that the parame-
ters for linear CMDPs are all bounded as follows. For all (s,a,h,k) € S x A x [H| x [K], we
have [[¢(s, a) o< 1 and max{ |3 csl¢nl(")]l2. 0% 12, 10,012} < Vd. where [3](s") denotes
(@ (Dl 1@ szl - [(@n(s)al) T € RY

Next, we introduce the Slater condition, which is a mild assumption commonly made in the CMDP
literature (Efroni et al., 2020; Liu et al., 2021; Ding et al., 2021; Ghosh et al., 2022).

Assumption 1 (Slater Condition). We assume that there exists a Slater policy ® € 11 such that
1(s1) +v < bfor some Slater constant v > 0.

'For simplicity, we assume that the state space is finite. However, the state space may be arbitrarily large,
as discussed in Cassel et al. (2024), since the computational complexity of our algorithm—as well as the regret
and constraint violation—does not scale with |S|, which will be presented in the following sections.



Under review as a conference paper at ICLR 2026

3 CHALLENGES AND NOVEL TECHNIQUES

Novelty 1: Analysis for Weighted LogSumExp Softmax We construct a covering number ar-
gument with a new policy structure—weighted LogSumExp softmax policies—which arises from
combining policy optimization with policy mixing. This policy is given by the weighted sum of
exponentials of sums of QQ-function estimates®: given a step size o, weight parameters (;, and Q-
function estimates ()7,

k k-1
%kcngexp -« Z Q. (1)
i=1 j=k—i

Let us explain how (1) arises in primal—dual policy optimization. Perturbing the primal variable be-
fore optimizing it is a simple yet effective technique for controlling the scale of the dual variable (Wei
et al., 2020; Qiu et al., 2020). In the context of policy optimization, this technique translates into the
following update: given a uniform policy 7yni over A and a mixing parameter 6,

Al (1— 07 4+ Omune andthen  7° o 7 Lexp(—aQF ).

Policy Mixing Policy Optimization

Here, the additive relation (Policy Mixing) breaks the recursion in the proportional relation (Policy
Optimization). As a consequence, the resulting policy takes the form of the weighted LogSumExp

softmax. In particular, (1) may assign different weights (; to partial sums Z?;éf ; Q’ fori € [k].

This yields a more expressive policy compared to the case without policy mixing, where the update
. . ~k k—1 X4
simplifies to 7 oc exp(—a Y Q7).

Our first contribution is to provide a new covering number argument for the value function class,
where the policy is given by (1). For comparison, Jin et al. (2020) studied the greedy policy, where
the policy is defined as arg max, ¢ 4 @k Then the covering number can be analyzed since the max
operation is a contraction mapping. Moreover, the simple softmax policy has been studied in several
works, e.g., Ghosh et al. (2022). In that case, leveraging well-established Lipschitz properties of the
softmax function is sufficient to analyze the covering number.

We note that constructing a covering number argument for (1) is non-trivial. The main difficulty
is that the weight parameters {¢;}*_; depend not only on the mixing parameter ¢ but also on Q-
function estimates. This means that different policies can have different weight parameters {(; }¥_;,
and thus, well-known properties of LogSumExp cannot be applied. Despite these challenges, our
analysis shows that the logarithm of the covering number under (1), denoted by log N, grows
quadratically with n, where n is the maximum number of mixing steps during the learning process:

log N, = O(n?d?). (2)

Novelty 2: Periodic Policy Mixing However, deriving an upper bound on the covering number
alone is not sufficient to guarantee sublinear regret and violation. In particular, if mixing is applied

in every episode, then log \V, grows to the order of O(K?2d?), which is too large to yield a sublinear
guarantee. On the other hand, if mixing is performed insufficiently, then the dual variable cannot be
bounded, which is critical for violation analysis. These observations highlight an inherent trade-off
between the covering number and the size of dual variables, both of which heavily depend on the
frequency of mixing. This necessitates a new algorithmic component to balance the two.

The aforementioned trade-off motivates our second contribution—periodic policy mixing—which
applies the policy mixing every K Z episodes®, where B is a period parameter between 0 and 1.
The purpose of the periodic policy mixing is to balance the covering number and the size of dual
variables. The covering number can be easily observed from (2), since the number of mixing steps
is at most K'~7 (i.e., the number of episodes divided by the mixing period). However, it remains
unclear whether periodic policy mixing is effective in controlling the dual variable. To address this,
in the next paragraph, we show that the dual variable can indeed be bounded when periodic policy
mixing is combined with a new dual update rule.

2We call this formulation the weighted LogSumExp softmax, as it is equivalent to 7 o

exp(log (>, Giexp(—a ), Q’)))—a softmax of weighted LogSumExp with respect to —a > Q.
3For simplicity, we assume that K2, K' =5 are integers to avoid additional notation such as LK B J .



Under review as a conference paper at ICLR 2026

Novelty 3: Regularized Dual Update Our third contribution is another algorithmic component—
a new dual update rule with additional regularization. When combined with periodic policy mixing,
the dual variable Y}, is bounded by O(nK?), where 7 is the step size and K is the mixing period.
For clarity, this bound omits the dependence on v, H to highlight the impact of the mixing period.

To elaborate on our dual update method, it takes the following form: given regularization parameters
c1,co > 0 and the cost value function estimate Vg’fl,

Yirr < Vi +n(VFi(s1) = b) + (a1 Vi — e2))5-
—_——
Regularization

For interpretation, Yy, + 7(V,7, (s1) — b) corresponds to the standard online gradient ascent step for
dual updates in primal-dual algorithms, while the regularization term (—c; Y3 — ¢2) pulls the dual
variable towards 0, keeping it compact. The regularization parameters c;, co will be specified in the
following paragraph, along with the intuition for our design.

The intuition behind our regularization is that it serves as a crucial ingredient for a drift-based anal-
ysis, a well-known method for bounding dual variables (see, e.g., Yu et al. (2017); Wei et al. (2020)
in constrained online convex optimization). To enable drift analysis, these works typically incorpo-
rate an inner product term in the dual update, determined by the decision variables and the gradient,
ie., (xyy1 — @, V). In primal-dual policy optimization, we realize that this translates to a term

involving the transition kernel, i.e., Ep[(7F+1 — 7% QF)]. However, since the transition kernel is
unknown, this term cannot be directly incorporated into our algorithm. Instead, we take a lower
bound on this term, which becomes our regularizing component with the choice of ¢; = 4anH?
and co = 4anH3 + 40nH?. In this way, our dual update can be viewed as a key adaptation that
enables drift analysis in primal-dual policy optimization for adversarial linear CMDPs.

4 ALGORITHM

We present Primal-Dual Policy Optimization for Adversarial Linear CMDPs (Algorithm 1). The al-
gorithm consists of four main components: epoch initialization (lines 2-7), policy execution and
estimation (lines 8-19), policy optimization with periodic policy mixing (lines 20-26), and updating
the dual variable (line 27).

In lines 2-7, the algorithm initializes a new epoch when the determinant of the design matrix A¥,

decreases by a multiplicative factor compared to that of A% for some h’. Once the initialization
procedure begins, the algorithm sets the policy to the uniform policy and initializes the dual variable
to 0. Furthermore, it defines a contracted feature Q_SZG by shrinking the original feature ¢. The multi-
plicative contraction factor is determined by o(— B, ||¢(-, )|, Abey-1+log K ), where o denotes the

sigmoid function, and ||¢(-, )| (Akey-1 quantifies the current uncertainty of least-squares estimators.
h
This contracted feature is then used in the estimation of ()-functions.

Remark 1. The feature contraction—originally proposed by Cassel & Rosenberg (2024) for ad-
versarial linear (unconstrained) MDPs—is necessary for the following reason. Specifically, it pro-
vides a simpler expression for the policy, which is useful in covering number arguments, via a low-
dimensional representation of the sum of ()-function estimates. For this, they omitted a clipping
operation in the definition of ()-function estimates, so the sum collapses into a simple inner prod-
uct with an optimistic bonus. Instead of clipping, they properly contracted the feature to prevent
@-function estimates from expanding uncontrollably. This technique can be replaced with other ap-
proaches with the same purpose, such as Sherman et al. (2024), but it may lead to higher dependence
on d, H in regret and violation bounds.

In lines 8-10, the algorithm takes action af ~ 7F(-|sF) for each step h € [H] and observes

0% 1 gk (sk,af), and sy ~ Py (|sf, af). In lines 11-14, the design matrix Aj*" is updated, and
the parameters for the loss and cost functions are estimated, denoted by é}ﬁ’h and @;}h, respectively.
Based on these, in lines 15-19, for each ¢ = f, g, it computes the Q-function estimates @? n(s,a)
using the contracted feature and the value function estimates ‘A/Z’fh (s), which are defined by the inner
product of 77 (+|s) and @’Zh(s, -) for each s € S.
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Algorithm 1 Primal-Dual Policy Optimization for Adversarial Linear CMDPs

Input: 6 € (0,1),8, = 2/2dlog(6KH/5) + 50(K'/* + 1)dH\/log(5H2K2[A]/5), B =

4By log K,oo = H 'K =3/4 n=H 2K 3/ g=K~!

Initialization: Y7 < 0, e < 0, A} + I, WfHH(s) — 0 VY(h,k,s,0) e [H x[K]xSx{f, g}
1. fork=1,..., K do

2 if k = 1 or 31’ € [H] such that det(A},) > 2det(A}s) then
3 e<—e+land k. < k
4: 7re (-] 8) 4 Tunie(- | 8) Vh € [H]
5: Y, <0
6 Fe () = () - o (=Bulle( -)||(A;ce)71+10g K) Vh € [H] b Feature Contraction
7. endif L
8: forh=1,...,H do
9: Take af ~ 77 (- | s¥), and observe 9’;},1, gr(sy,af), s o ~Pp(-| sk af)
10: end for
11: forh=H,...,1do
12: AT+ > e @k, af)o(sh, ap)’
13: @Cf,h — 91;,h
14: 0F < (MD)™U S i) @57, aR)ar (T, af)
15: for . € {f,g} do
16: wﬁ‘/e]?h-u = (Alfi)_l Z‘re[k—l] B(shs ag)vél,ch+1(8;+1)
17: Q?,h('a ) — (z’]fcl(, ')T [@Zh + ¢1’§V£l,€h+1} - ﬁbebiE(', ')H(N;e)—l
18: Vin() = Xaea®ila] QLA a)
19: end for
20: if k — k. =0 mod K3 then > Periodic Policy Mixing
21: TR 8) «— (1 =0)7F( | 5) + Omunie (- | 5)
22: else
23: T 1s) < 7R | 9)
24: end if
25: TR | 8) o< Th(- | ) exp (—a(Q}]‘{h(s, )+ Yk-Q’;,h(s7 ))) > Policy Optimization
26: end for R
27 Y1 & [(1 — danH Yy + 1 (vg’fl(sl) —b— 4aH? - 49H2>} > Dual Update
, +
28: end for

In lines 20-24, the algorithm applies the policy mixing every K3/ episodes. Here, the mixed policy
is obtained by taking a convex combination of 7?}"; and 7r,;¢ With coefficients 1—6 and 6, respectively.
After this, the algorithm performs policy optimization—equivalently, an online mirror descent step
with Kullback-Leibler (KL) divergence over the policy space.

In line 27, the algorithm updates the dual variable, Yj. First, it scales down the dual variable by a

factor of 1 — 4anH?3, and then adds n(‘A/g’fl (s1) —b—4aH? — 40H?). Finally, it takes [-] . to ensure
that the dual variable remains nonnegative.

The computational complexity of Algorithm 1 is O(d*HK + d?|A|H K?), which is independent
of |S|. Specifically, in lines 2-7, computing determinants simply takes O(d* HK) and contracting
features takes O(d?K - |A|-HK), since the inverse of the design matrices can be computed in
O(d?K), applying the Sherman-Morrison formula. In lines 8-29, the dominant step is function
estimation: lines 16-18 take O(d?|A|H K?).

4.1 COMPARISON OF DUAL UPDATES

Since our algorithm is designed for adversarial linear CMDPs, it is worth comparing our dual update
with that of algorithms for (i) stochastic linear CMDPs (Ghosh et al., 2022) and (ii) tabular CMDPs
with adversarial losses (Qiu et al., 2020).
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First, we compare with Ghosh et al. (2022), which focused on stochastic linear CMDPs. The key
difference comes from the way the dual variable is regularized. Specifically, while both approaches
adopt the standard online gradient ascent procedure, their update rule truncates the dual variable at
2H /v to ensure that it never exceeds this threshold. In contrast, our update incorporates an extra
regularization term to keep the dual variable compact. Although their update is simple and effective
in the stochastic setting, it cannot be extended to the adversarial setting, since their analysis relies
on the fact that the loss and cost functions are fixed over episodes. This justifies the need for our
design of dual update steps in handling adversarial losses.

Second, we compare with Qiu et al. (2020), which proposed an occupancy measure-based algorithm
for adversarial tabular CMDPs. The main difference in the dual updates arises from the choice
of primal variable: policy-based mirror descent versus occupancy measure-based mirror descent.
Before elaborating on this, we recall a dual update from the constrained online convex optimization
literature, proposed by Wei et al. (2020) with minor modifications: given a convex cost function
¢ : R? — R and primal variables z*, z*+1 ¢ R9,

Yip1 < [V 47 (6a®) = b+ (Ve@h), 2" — b))

Based on this update, let us show how the dual update for occupancy measure-based algorithms can
be derived. Since the occupancy measure serves as the primal variable, we take 2* < ¢*, where ¢*
denotes an occupancy measure in episode k. Furthermore, in CMDPs, note that the expected cost is
given by (g, ¢*)*, where g € RISIXIAIXH denotes a vector representation of the cost function. Then
we can take £(2%) + (g,¢*) and V{(x*) < g. This leads to Y41 < [Yi +n({g,¢**!) — b)]4,
which is the key intuition behind the dual update in Qiu et al. (2020).

However, this argument does not apply to policy-based mirror descent. This is because even if we
take 2F « 7%, the expected cost is not linear in 7% unlike in the occupancy measure case. That
said, the dual updates for occupancy measure-based algorithms can be extended from the online
convex optimization literature, whereas extending this to policy-based algorithms is non-trivial. This
highlights the significance of our proposed design.

4.2 MAIN RESULT

Finally, we present upper bounds on regret and constraint violation under Algorithm 1.
Theorem 1. Let H? < K and Assumption 1 hold. Suppose that we run Algorithm 1. Given § > 0,
with probability at least 1 — 26, then we have
%) 4773/4 371-3/4 3rrd 1-1/2 H° 1/4 dH®
Regret(K) = O ( VA3H*K** +dH°K*" + d°H " K"/" + — K'/" + —— |,
v gl

~ (dH?
Violation(K) = O (dK3/4 +VABHAKS d3H4K1/2>
Y
where O (+) hides polynomial factors in log(dH K|Al|/(67)).

5 ANALYSIS

In this section, we present the proof outline of Theorem 1, where the details of the proofs can be
found in the appendix. As a first step, we introduce two key ingredients: (i) a high-probability
good event and (ii) bounding the dual variable. We note that our covering number argument plays a
central role in showing that the good event holds with high probability. Furthermore, to bound the
dual variable, the key part is to consider periodic policy mixing and the regularized dual update.

Good Event  We first introduce a high-probability event, denoted by E,, whose formal definition
is provided in the appendix. Basically, the event captures estimation errors for the loss, the cost, and
the transition kernel. In addition, it guarantees the boundedness of -function estimates, reflecting
the usefulness of the feature contraction. The following lemma shows that £, holds with high
probability.

*For simplicity, we assume the case where g is deterministic and known, and ¢” is the occupancy measure
induced by the true transition kernel.
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Lemma 1. Let 3,, < K. Then for any 6 € (0,1), Pr[Eyj] > 1 — 0.

In the proof of Lemma 1, the main distinction from previous works arises in our covering number
argument. Specifically, our case incorporates weighted LogSumExp softmax policies, induced by
mixing the policy. Then we have to derive a Lipschitz property of the policies that have been mixed
n times, as the number of mixing steps is a key factor in determining the policy structure. Note that
the Lipschitzness of policies is fundamentally required in most covering number arguments.

To attain this property, we prove the following recursion in n, presented here in simplified form:
77 = w5 < el 7" = i +HIPE =Pl

where 77", 75 denote the policies that have been mixed n times, PJ*, P3 denote the subsets of the
corresponding parameters, and c is a constant. By applying this recursion repeatedly, we can bound
the difference between policies using the sum of differences in their parameters, establishing the

Lipschitzness. Based on this, we can show that the covering number is bounded as 5(n2d2).

Dual Variable Bound Under the good event E,;, we can establish another ingredient of our
analysis—a drift analysis for bounding the dual variable.

Lemma 2. Assume that the good event E4 holds. Let H 2 < K. LetY}, be the dual variable
generated by Algorithm 1 for each k € [K|. Forany 6 € (0,1) and k € [K], with probability at
least 1 — &, we have Yy, = O(H? /7).

Let us briefly explain our proof strategy for Lemma 2. Although the regularization in our dual update
enables drift analysis, we cannot directly apply the previous proofs proposed by Wei et al. (2020);
Qiu et al. (2020). This is because their analyses rely on applying policy mixing in every episode,
whereas our algorithm applies it only sparsely. To exploit this sparse structure, we instead consider
a subsequence of dual variables corresponding to the mixing episodes, denoted by {Z,, },>1 where
Zyn = Yy, 4nip for each epoch e. We first bound Z,, for all n, and consequently extend the result
to derive a bound on Y}, for all k.

Next, we introduce decompositions of both Regret(K') and Violation(K). Let E be the set of all
epochs, and let K. be the set of episodes in epoch e € E. We have

K

K
Regret(K) < (VfT;:l(Sl) - ‘7;?1(81)) + Z Yi (b - ‘79]6,1(51))
k=1 k=1

@D (I

K
juz(vfls1 )+ Y3V (s )—Vﬁ_yl—Yngﬂ(sl)),
k=1

3)

(11D

Violation() < 3 (Viho0) = Ty ) 4 3 (P (o) =)

k=1 k=1

Iv) V)
Terms (I), (IV) arise from the difference between the true value function and its optimistic estimates,
which are closely related to the optimistic bonus — || @5 (-, -) || (Ake)- . Since our parameter for op-

timistic bonus is set as 3, = O(K/*dH), where K'/* comes from the covering number argument,
these terms are bounded by O(K 3/4), as stated in the following lemma.

Lemma 3. Let H? < K. Suppose that E, holds. For all { € {f, g},
K
Z(ng (s1) = Vl(s1) = O (,/dsHﬁKs/zx n d3H4K1/2) .
k=1

Term (IT) arises from the dual update in the sense that if the dual variable is not updated (i.e., Y, = 0
for all k), then this term vanishes. It can be bounded using the following lemma.
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Lemma 4. Let H? < K. Suppose that E, and the statement of Lemma 2 hold. Then we have

K

. ~ dH®
> V(b= V(1) =0 (K1/4 + 72> .
k=1

To bound term (III), we further decompose it into two parts—optimism terms and an online mirror
descent term—and then bound each individually. This leads to the following lemma.

Lemma 5. Let H2 < K. Suppose that E, and the statement of Lemma 2 hold. Then we have

K

7k 7k " " %] 371-3/4 H° 1/4 dH®
Z (Vf,1(31) + YV (s1) = (Vi + YV (31))) =0 (dH’K"" + ?K + - )
k=1

Finally, term (V) can be bounded via the dual variable bound. This is because n(ffg’fl(sl) —b)
accumulates in the dual variable, as it is repeatedly added in the dual update. Based on this idea, we
show the following lemma, which bounds term (V).

Lemma 6. Let H*> < K. Suppose that E, and the statement of Lemma 2 hold. Then we have

K R . \

Z(Vkl(sl) — b) =0 <MK3/4 + HK1/4> .
v g

6 NUMERICAL EXPERIMENT

We evaluate Algorithm 1 on a job-scheduling CMDP (Ghosh et al., 2022), modified to incorporate
adversarial losses. We conduct 10 simulations with different random seeds, each running for K =
10° episodes. Additional details about the experimental setup are deferred to the appendix.
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Figure 1: Plots of regret and constraint violation for K = 100,000 episodes. Each plot represents
the average over 10 trials with random seeds, and shaded regions indicate 95% confidence intervals.

Figure 1 summarizes the results. As shown in Figure la, the regret grows sublinearly in K, and
Figure 1b shows that while the constraint violation grows rapidly in the early phase, it eventually
converges to 0. These results support our theoretical claims.

7 CONCLUSION

This paper studies adversarial linear CMDPs, where the losses are adversarially chosen under full-
information feedback and the costs are stochastic under bandit feedback. We propose a primal-dual
policy optimization algorithm—the first provably efficient algorithm for safe RL with linear function
approximation in adversarial settings. We establish a new covering number argument for weighted
LogSumExp softmax policies, along with novel algorithmic components that jointly control the
covering number and the dual variable. Building on these, we show that the proposed algorithm
achieves O(K 3/ 4) regret and violation bounds. Moreover, our numerical experiments support this.
As directions for future work, it remains open to investigate the following challenges: (i) whether
O(\/? ) regret and violation bounds can be achieved in our setting, and (ii) whether a sample-
efficient algorithm can be designed for linear CMDPs with adversarial losses under bandit feedback.
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A NOTATION

Table 1: Summary of notation

NOTATION DEFINITION
H,S, A, K  The finite-horizon, the state and action spaces, and the number of episodes
d The feature dimension
P The transition kernel
f,a The loss and the cost functions
b The budget
E The set of epochs
ke The first episode of epoch e € E
10) The feature
ﬁﬂ The contracted feature at step h in epoch e
05, The estimate of §; ,
A¥ The design matrix at step h in episode k
1ﬁhV Yees¥n(s)V(s) forV:S =R
0% The estimate of o,V at step h in episode k
[n] The set {1,2,...,n} for a positive integer n
y/m The set {0,1,2,...}
R, Theset {z € R: z > 0}
Il The ¢5-norm for vectors and the operator norm for matrices
Il o The /-norm
Il The Frobenius norm
Illa |z]]a= VaTAz for A = 0
A(A) The probability simplex over A
I The d x d identity matrix
D(-||") Kullback-Leibler divergence
o The sigmoid function
v, T The Slater constant and the Slater policy
Q7 (s,a)  The Q-function
Qf’ n(s,a)  The Q-function estimate
Vi (s) The value function
Vi (s) the value function estimate
Vi (s5p) The value function with respect to a p-contracted MDP
s The policy at step h in episode k
Tunif Tunit(a | 8) = 1/]A| forall (s,a) € S x A
Y The dual variable in episode k
KB The mixing period, K3/4
0 The mixing parameter, § = K !
a The step size for the mirror descent, « = H 1K —3/4
n The step size for the dual update, n = H 2K ~3/4
Br 2y/2d1og(6 K H/J)
By 50(KY* 4+ 1)dH +/log(5H2K2]A|/6)
Bb ﬁr + Bp
B 4B log K
BaQ.n 2(H—-h+1) R
Nc(V) The e-covering number of 1V with respect to the £,-norm

B LIMITATIONS OF PRIOR WORK AND NAIVE EXTENSION

In this section, we clarify why previous works—and their naive extensions—fail in our setting,
where the losses are adversarially chosen in each episode. In particular, we address the following
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two questions: (i) why the algorithm of Ghosh et al. (2022) fails in the adversarial setting; and (ii)
why simply adapting a mirror-descent update is insufficient for adversarial linear CMDPs.

Limitation of Prior Work While Ghosh et al. (2022) proposed a primal-dual algorithm for linear
CMDPs, their analysis is limited to the setting with stochastic losses and constraints. The funda-
mental reason is that their algorithm is value-based, whose policy is determined solely by the current
Q-function estimates in each episode; that is 7% (- | s) o exp(—aQ*~1). Such a policy cannot adapt
to time-varying environments, and in particular, cannot handle adversarially chosen losses.

Another limitation is that the dual update of Ghosh et al. (2022) fails to handle adversarial envi-
ronments. Their key technique is a dual clipping technique—cutting off the dual variable when it
exceeds 2H /y—which enables them to leverage the strong duality of CMDPs. Moreover, to lever-
age strong duality in their analysis, they reformulate the weighted sum of regret and violation into a
simple Lagrangian form (e.g., Appendix D of Ghosh et al. (2022)), i.e., there exists a policy 7’ such
that
) 1 K k K k
(R = Vi +Y YV =) = (V= VED + Y (V7 —b).
k=1 k=1
In our case, when losses are adversarially chosen in each episode, reformulating the sum into a
simple Lagrangian form is not allowed, i.e.,

K K
1 ﬁk‘ T* ﬁk — x* -
}(Z(Vﬂal — VR Y D (Vi - b)) # (Vi = Vi) +Y (Vg —b).
k=1 k=1

In turn, leveraging strong duality in our setting is non-trivial.

Naive Extension To overcome the limitations of value-based algorithms in adversarial settings, a
natural approach is to adopt a mirror-descent update, whose regularizer is given by a KL divergence.
In our case, this corresponds to a policy optimization, i.e.,

~ . P 1 ko b~k P
78 = argmin (7, Q" 1) + =D(x||7*1) = A7 lexp (—an 1) .
mell «

Due to its recursive formulation, we can see that the resulting policy depends on the sum of all pre-
vious Q-function estimates, namely 7% o exp(—a 25;11 Q7). This is the key difference compared
with value-based algorithms.

More technically, let us attempt to adapt the algorithm of Wei et al. (2020) to the linear CMDP set-
ting. Their method is a mirror-descent type algorithm—in our case, policy optimization—designed
for constrained online convex optimization with adversarial losses and stochastic constraints. Be-
yond policy optimization, there are two additional distinctions compared with Ghosh et al. (2022):

* (Drift Analysis) As previously mentioned, since strong duality is difficult to use in the
adversarial setting, the dual clipping technique may not works in the adversarial setting.
To address this, Wei et al. (2020) came up with a dual update that admits a Lyapunov drift
analysis. In particular, Lyapunov drift analysis is a standard tool for bounding the dual
variable. For this, we first derive an upper bound on the Lyapunov drift term defined as
A(k) := (Y2, — Y}?)/2, and then utilize it to bound Y},. The key point is to make A (k)
small enough so that Y}, stays stable, as A(k) captures the difference between successive
dual variables.

* (Policy Mixing) Another key technique of Wei et al. (2020) is policy mixing—perturbing
the policy before applying the policy optimization update. The motivation behind this tech-
nique is to make A (k) small. In particular, a typical bound on A(k) in policy optimization
involves KL divergence terms as follows:

A(k) < —e1Yy + ca + D(n||7f) — D(x|[73 ")

The key issue is that D(r||7F) can become arbitrarily large when 7f (a) =~ 0 for some a €
A, because the KL divergence is unbounded near the simplex boundary. In contrast, when a
mixing step is applied, we ensure that 75 (a) > 6/|.A| for all a, where 6 denotes the level of
mixing. In this case, we can easily show that D(r||75) < log(|.A|/6) (Lemma 26). Hence,
the mixing step guarantees that the KL term remains bounded, which in turn prevents the
dual variable from blowing up.
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Insufficiency of Naive Extension While policy mixing is essential to keep the dual variable stable,
it becomes problematic in the linear CMDP setting, where the main difficulty arises in the covering
number argument. In particular, as described in Section 3, we have to derive an upper bound on
the covering number of the weighted LogSumExp softmax policy. Establishing such a bound is
one of our key challenges and is highly non-trivial. Thus, although adapting Wei et al. (2020) to
the framework of Ghosh et al. (2022) is a natural step toward handling adversarial losses, obtaining
sublinear regret and constraint violation bounds becomes unclear.

C ADDITIONAL DISCUSSIONS

Intuition on Covering Number We provide an intuition on why the weighted LogSumExp soft-
max policy yields O(n?d?), where n denotes the number of mixing steps, while the covering number

under greedy or softmax policies is just O(d?). Before explaining this, we note that the covering
number of a function class depends on (i) how many parameters are required and (ii) how close
these parameters must be for the functions to be sufficiently similar. Based on this high-level idea,
the number of parameters needed to determine a weighted LogSumExp softmax policy is O(nd?),

as each ) j @j requires O(d?) parameters once the feature contraction is applied. Furthermore, we
observe that the impact of parameters decreases exponentially as mixing continues, meaning that
the parameters must be chosen increasingly close (see the proof of Lemma 11). This leads to an
additional multiplicative factor n, resulting in O(n2d?).

Choice of Mixing Period To justify the choice of K%/4, we first clarify how Regret(K) and
Violation(K) depend on the mixing period K Z. Note that the covering number is closely related to
terms (I) and (IV) of the decompositions in (3), and the dual variable directly affects term (V). This
yields the following simplified regret and constraint violation bounds.

Regret(K) = O(y/KlogN,), Violation(K) = O(\/K log N, + Y3 /n).

We emphasize that Violation(K) can be bounded by O(v K325 4 KB). This is because the log

covering number is bounded by O(K2~2842), and the dual variable is bounded by O (1K ). Thus,
to minimize the dependency on K, we set B = 3/4.

Discussion on Lower Bound We note that the regret lower bound of Q(v H3d? K) also applies to
our setting, which is for stochastic linear unconstrained MDPs (Zhou et al., 2021; He et al., 2022).
This is because by taking the loss to be fixed across episodes and using a trivial constraint (i.e., taking
b = H), our problem reduces to a stochastic linear unconstrained MDP. Therefore, we conjecture

that there remains room for improving our regret bound by a factor of O (K1/%).

Additionally, we outline a promising direction toward achieving O(+/K) regret and violation in our
setting. The main challenge is analyzing the constraint violation without relying on mixing steps. In
our current analysis, the mixing step is inevitable to mitigate KL divergence terms in the drift upper
bound (Lemma 17); these KL divergence terms arise from mirror-descent type updates to control
adversarial losses. However, mixing becomes problematic for linear CMDPs because it enlarges the
covering number. If one can design an approach that controls the dual variable without mixing, then
achieving optimal bounds may become possible.

D RELATED WORK

Online Tabular CMDP Starting from the seminal work of Efroni et al. (2020), minimizing regret
and constraint violation in online tabular CMDPs has been studied under various settings. Several
works (Liu et al., 2021; Bura et al., 2022; Yu et al., 2025) considered the case of zero constraint
violation under the assumption of a known safe policy. Under the same assumption, Miiller et al.
(2023) studied hard constraint violation—the sum of only positive constraint violations. Without this
assumption, the hard constraint violation was studied by Miiller et al. (2024); Stradi et al. (2025b).
Moreover, Wei et al. (2022b) proposed a model-free algorithm for finite-horizon CMDPs, and Wei
et al. (2022a); Chen et al. (2022) proposed algorithms for infinite-horizon average-reward CMDPs.
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However, these works assume stationary environments. To relax this assumption, Qiu et al. (2020)
studied adversarial losses under full-information feedback. For both adversarial losses and costs,
Stradi et al. (2024; 2025¢) considered full-information feedback and bandit feedback, respectively.
More recently, several papers proposed algorithms for adversarial CMDPs with hard constraint vio-
lation guarantees. Stradi et al. (2025a) proposed an algorithm for adversarial losses and stochastic
costs under bandit feedback, and Zhu et al. (2025) studied stochastic losses and adversarial costs
under full-information feedback.

Online Linear CMDP For finite-horizon linear CMDPs, Ghosh et al. (2022; 2024) studied cumu-
lative and hard constraint violations, respectively. Similarly, Ghosh et al. (2023) developed several
algorithms for the infinite-horizon average-reward setting. Kitamura et al. (2025) studied achiev-
ing zero constraint violation under the assumption of a known safe policy, and Liu et al. (2025)
studied sample complexity under the assumption of a generative model. Wei et al. (2023) studied
non-stationary CMDPs, where components of the environment may change subject to bounded total
variation. However, this setting differs from adversarial settings, in which the variation of functions
is not assumed to be bounded by some factor. Amani et al. (2021); Wei et al. (2024); Roknilamouki
et al. (2025) investigated hard instantaneous constraints, where unsafe actions must not be taken in
each step. We also note additional works that are not linear CMDPs but incorporate linear function
approximation. There are several works for linear mixture CMDPs with various settings (Ding et al.,
2021; Ding & Lavaei, 2023; Shi et al., 2023). More generally, the ¢.-realizable setting was studied
by Tian et al. (2024), which only assumes that value functions can be represented as an inner product
of a given feature. However, adversarial environments have not been considered in these settings.

Online Adversarial Linear MDP Online adversarial linear MDPs have been studied under full-
information feedback (Zhong & Zhang, 2023; Sherman et al., 2024; Cassel & Rosenberg, 2024) and
bandit feedback (Neu & Olkhovskaya, 2021; Luo et al., 2021; Dai et al., 2023; Sherman et al., 2023;
Kong et al., 2024; Liu et al., 2024). Specifically, in the full-information feedback setting, Zhong &
Zhang (2023) proposed a multi-batched policy optimization algorithm, achieving a O(K 3/ 1) regret
bound. Sherman et al. (2024) achieved a O(\/? ) regret bound, adopting a warm-up phase to obtain
a simple expression for policies. In addition, Cassel & Rosenberg (2024) proposed a warm-up free
policy optimization algorithm with an improved regret bound. In the bandit feedback setting, Luo
et al. (2021) introduced the notion of dilated bonus, and Liu et al. (2024) proposed two algorithms:

one achieved a (5(\/? ) regret bound but was computationally inefficient, and the other achieved
O(K?/*) and was computationally efficient.

E CONTRACTED MDP

In this section, we explain the notion of a contracted MDP (Cassel & Rosenberg, 2024), which
is essential for deriving our main results. A contracted MDP is defined by the tuple M =
(H, S, A {Pp YL, {0y} s1,p). Here, p : S x A x [H] — [0,1] specifies the level of con-
traction. In particular, the loss function and transition kernel are defined as

ln(s,a) = p(s,a,h)ly(s,a),

P(s' | s,a) = p(s,a, h)Py(s" | s,a).
Since p(s,a,h) € [0,1], it follows that ¢ (s,a) € [0, 1], meaning that the contraction preserves
the boundedness of the original loss function. On the other hand, } s Pr(s" | 5,a) < 1, which
implies that [P defines a sub-probability measure. Although this does not satisfy the definition of
a probability measure, it is sufficient for our purposes, as the contracted transition kernel is only
used in the analysis. Furthermore, it is often called a sub-MDP because its transition kernel is a
sub-probability measure.
Accordingly, \7;7,1 (s; p) denotes the p-contracted value function with respect to a policy 7 and a
contracted MDP M. Given V7, (s;p) = O for all s € S, V7, (s; p) is defined recursively as

Vin(sip) = Ep 1 Z (55:0)|sn = 5| = Bann(ls) [Ia(s,0) + D Puls’ [ 5,0)Vippi(s'5p)
j=h s'eS

“4)
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We next introduce a lemma that highlights a key property of contracted MDPs, which states a p-
contracted value function is less than or equal to its original value function.

Lemma 7 (Lemma 2 of Cassel & Rosenberg (2024)). Forany p : S x A x [H] — [0,1], = € II,
he[H],s€S andl:S x Ax [H] —[0,1], we have V][, (s; p) < V{7, (8).

Since PP is a sub- probablhty, we note that Ep . applied to a constant ¢ > 0 could be less than c
itself. Although this is trivial, we state it formally below for completeness, as this relation is used
frequently in our analysis.

Ep  lc|s1 =35 <Eprlc|s1=s5]=c VseS Q)

Proof of (5). First, we prove Ep .[3 -, ¢z Cn(s,a)[s1 = 8| < Epx[> e im1 ln(s, a)lsy = s for
any s € S and {{;}L, where ¢, : S x A — R, using induction on h. For the base case,

h = H, Ep [l (su,an)lsu] = Epx[lu(su,an)lsu] = Eaymn( sy €r (s, an)]. Assuming
the statement is true for i + 1, we have

H H

B | Y 4i(s5a5)lsn = | =Eann(is) [n(snan) + Y Buls [ snan)Bo | D €(s;,a5)|s

j=h s'eS j=h+1

< Eanr(ls) [Cn(Sh;an) + Z Pr(s" | sn,an)Ep x Z li(s5,a5)|s
s’eS j=h+1

H
=Bex | Y Li(sj a5)lsn =s

j=h
This completes the induction. Furthermore, by taking ¢, (s, a) = ¢/H forall (s,a, h) € Sx Ax[H],

we have >, g n(s,a) = c, and thus Ep  [c[s] < Epr[c[s] for any s € S. Since P is not
contracted, we know that Ep -[c|s] = c. This completes the proof. O

The following lemma is an extension of a well-known value difference lemma to incorporate con-
tracted MDPs.

Lemma 8 (Lemma 1 of Shani et al. (2020) and Lemma 14 of Cassel & Rosenberg (2024)). Let 7w, 7
be two policies, and let M = (H,S, A, {Pp}2_,, {¢,}L |, 51) be a (possibly sub) MDP. For all

h € [H], let Qé,h : S8 X A — R be an arbitrary function, and let IA/gﬁ(s) = <Q\g7h(8, D7 | s)>
forall s € S. Then,

H

> (Qenlsn, ), mul- | sn) = 7l | 1)) 51]
r H

Zﬁh(sm ap) + Ph‘A/e,h+1(Sh, ap) — @e,h(sh, ap)
h=1

V&(Sl) Vel 81 E]P’ﬂ'

+ EP,‘N

Sl] )

where V[, is the value function of m, and Py Vinsi(s, a) = Yoes Pals’ | s, a)f/\'g,hﬂ(s’).

Since we assume that the initial state s; is fixed, we omit it when clear from the context for simplic-
ity.

F PARAMETERIZATIONS AND FUNCTION CLASSES

In this section, we introduce the parameterizations of @ and 7. Following this, we define the function
classes to which the value function estimates and policies belong.
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Parameterization For the parameterization of ), given 8 € R,w € R%, A € R4, we define
Q('7 ) Ba w, A) as

@('a ) ﬁ7 w, A) = (¢(7 ')Tw - 5||¢(7 )HA) . O—(_ﬁwH(b('a )||A+ log K) (6)
Next, we consider the parameterization of 7. Let n € Z. denote the number of mixing steps.

For the parameterization of 7, given n, {3;, w; }I", A and a mixing parameter § € (0, 1), we first

generate policies {7, }7') recursively, and define the final policy as 7(-|-; { 3, wi }1_ o, A):

Generate T; : To(- | 8) = munit (- | 9),
(- 18)=Q—-0)7m(- | s) + Omunie(- | 8) i=0,...,n,
Tir1(- | 8) x (- | s)exp (@(S, -;5i7wi7A)> i=0,...,n,
Define :  7( | s;{Bi, wi}i—gs A) = Tng1(- | ).
We keep the policy parameterization in its recursive form for the following reason. Although we can
easily show that 7(-[-; {8;, wi }]_, A) follows the weighted LSE softmax, i.e., >, Giexp(3_; @;),
the weight parameters ¢; depend on {;, w;}!_, and A, which makes analyzing this form difficult.

Thus, obtaining the closed form of 7(-|; {8, w;}i_,A) is intractable, as specifying exact (; is
difficult.

)

Since 7,41 (- | s) induces a probability distribution over A for each s € S, (7) indeed defines a valid
policy. Furthermore, the following lemma shows that ()-function estimates and policies generated
by Algorithm 1 can be parameterized using (6), (7).

Lemma 9. For any e € E, consider k € K,. For somen > 0, let k. + nKB be the last
index that the mixing is applied before episode k, i.e., n = max{0, |(k—1—k.)/K®|}. Let

7Th, {Q Fho }’€ ! be the policy and Q-function estimates generated by Algorithm 1, respec-
tively. Let S; be the lndex set defined as

S‘_{{k€+z’KB,...,ke+(i+1)KB—1} fori=0,...,n—1,

{ke +nKB, ... k—1} Sfori=n. ®

Then there exists {w;’h, w;,h . k , A such that for j = ke, ... k—1,

]‘)'”,h('f) :Q('W;Bb)w?th)a ;’h('a') :Q(? 7ﬁbv gh’ )
Furthermore, we have
Th(1) =7 |5 {Biwil oo, A)
where Bi = —afy Y e (1+Y),wi = —a g, (wjfyh —|—Yjw§7h)f0ri =0,...,n, and Y] is the

dual variable in episode j.

Proof. Note that for any j, by algorithm

G = (06T B+ OV ] = BulloC Ml ey 1 ) (= Bull b, )l b 1+ 10g ).
Then we can take w; = 5; nt w’,jV]?hH and A = (A’ff)*l. Here, it is clear that (2K)~'I <
(Aff)*l =< I. Also, we can apply the same argument to CA); ,- Then the first statement is proved.

Let us prove the second statement. By the definition of n, the mixing is not applied from episode
ke + nKB + 1to k — 1. Then we have

(| 8) 7 s)exp [ —a Y (@ )+ Y@ 4 (s,))
JESH

Furthermore, since (k. + nK?) — k. = 0 mod K%, we know that 7, «+nK” i mixed. Then we
have

AR () s) = (L= 0P| 8) 4 Onie (- | 5).
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Similarly, we can deduce 77’“ etnk”

(n—1)K"B toke+nKBfl

using the fact that the mixing is not applied from episode k. +

-~ nKE ~ke+(n—1)KE ~ ~
At T s) o TR syexp [ —a Y (@4(5.) + Y@ 1 (5.0))

JE€ESn-1

We repeatedly apply these steps until episode k.. Then we have fori =0,...,n — 1,

~ KB —~ KB
T T s) = (L= 0)Fp (| 8) + Omunie (- | 9),

~ke+(i B i
Rpe PR ) o mE T sy exp | —a S0 (@4 (s0) + Y500 ,(5,)
JES:

Note that %Zﬂ = Tunif. Then we have %,’j = a1, Where 7,11 is recursively defined as

%0(' | S) = 7Tunif(' | 5)
(-] 8) = (1 =0)Ti(- | ) + Omunie(- [ 5) Vi=0,...,n

Fipa (-] ) T [ s)exp [ —a D (Qh,(s,) +Y;Q0 (s,)) | Vi=0,...,n.
JES;:

Note that
—a ) (Qhu(s.0) + Y@, (5,0)
JES:

=—a> (0(s,0) (W], + Yiw) ) — o1+ Y5605, 0)lla ) o(=Bullé(s, a) [a-+ log K)

JES;
= (¢(s,a) "w; — Bil|d(s,a)||a)o(—Bul|d(s, a)| s+ log K)
= Q(s,a; Bi, wi, A)

where 8; = —aBy 3 cs, (1 +Y)), wi = —a s, (ch,h + Yjw;h) This completes the proof for
the second statement. O

Function Class Now, we define the function classes as follows. Given some boundedness con-
stants C'g, Cy,, Cg > 0,

Unlike @, the class of policies has to be defined based on the number of mixing steps, since the

formulation is determined by this number. Let ﬁn denote the set of policies that involve exactly n
mixing operations. Furthermore, we consider a boundedness constant Cy to incorporate the scale
of the dual variable. Given n € Z and some boundedness constants C'z, Cy,, Cg, Cy > 0,

11, (Cy, C, Co, Cy)

18i]< (1 + Cy)Cp, [lwil|2< (1+cy)c ,
(‘S{BzawzzmA): 1 ~ 1=0,...,np.

Similar to ﬁn, since V is defined by @ and 7, we define the function class of V for each n.

- PP I Q € O(Cp,Cu, Cq).
Vu(Cs,Cw,Co,Cy) =< V() : V() = NQ(+, a), N .
(Cp 0, Cy) { (): V() a;ww Qoa), (KCg7KCw,KCQ,CY)}

Note that if we apply the policy mixing every K2 episodes then the number of mixing steps is at
most K'=B = K, where L =1 — B. Thus, we define V(CB,Cw,CQ,C’y) (C’B,C’w,C’Q, Cy)
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as the unions over n = 0, ..., K as follows.
KL
V(Cs,Cw,Cq.Cy) = | Va(Cs,Cu,Cq, Cy),
n=0
A~ KL A~
I(Cp, Cu, Cq, Cy) = | Tn(Cp, Cu, Cq, Cy).
n=0

G COVERING NUMBER

In this section, we show an upper bound on the covering number of ]A/(Cg, Cw,Cgq, Cy), which

is crucial to analyze linear CMDPs. As a first step, we show that any Q € @(CB, Cuw,Cq) is
Lipschitz, i.e., the £,,-norm between QQ-function estimates is bounded by the />-norm between their
parameters. We closely follow the proof of Lemma 10 of Cassel & Rosenberg (2024).

Lemma 10 (Lipschitz @). Let1 < B,,Cy,Cgs. For any @(, 5 B wl, AL, @(, 5 B2, w?, A?) €

~

Q(Cs,Cyw, Cq), we have
Q6,8 wh A = Q.+ 82w, A%)|| < AVE By max{Cu, Ca} [|(B8Y w!, AY) = (82, w2, A2)
where H(ﬂl, wt, AY) — (8%, w?, A2)||2 is defined in (9).

Proof. Consider
|C§(s7 a; B wh, AY) — @(s, a; B2, w?, A?)|
< [Q(s,a; 8, w!, A) = Q(s,a; 82, w', A+ |Q(s, a; 82, w', AY) = Q(s, a; 8%, w?, A)]
M an
+1Q(s, a; B2, w2, AY) — Q(s, a; B2, w?, A?)].
(I

We bound each term individually. Note that (2K)~1I < A! < I. For (I), since ||¢(s,a)|[x1 <
JADY2 o5, a)J2< 1 and |o(2)] < 1 for any = € R,

M) = |8" = B2 lé(s, @) 1o (—Bu l6(s, a)l|xi+log K)
<|p' -5
For (I1), by the Cauchy-Schwarz inequality,
(D) = [¢(s,a) T (w' — w?)|o(=Bull¢(s, a)l|a1+log K)

< Jlw' = w?|l

For (I1I), by the triangle inequality,
(D) = [Q(s, a3 8%, w?, AY) — Q(s,a; 8%, w?, A%)]
< [¢(s,a) "w?| [o(=Bullé(s, a)||ar+1og K) — o(—Bul|d(s, a)|| x2+ log K)|
+ B2 [16(s, @) a1 =165, @) | a2] - o (= Bullb(s, a)l| a1+ log K)

+ B2lle(s, )| a2+ [o(=Bu | 6(s, a)llar+log K) — o(=Bullé(s, a)||a2+1log K] .
Note that the sigmoid function is 1-Lipschitz on R, and the triangle inequality implies that
[|o(s,a)|[ar—||p(s,a)||az| < ||[(AV)'/2 — (A2)1/2||5. Then we can deduce that

1Q(s,a: 8%, w? A1) = Q(s,a; 8%, w?, A%)]
< CuBull(A)2 = (A%)2]]5 + Cal| (A1)1/2 = (%) 2124+ CaBul| ()2 = (A1),
< 3maX{Cwﬁwa C,BWCBBUI}H(Al)l/Z - (A2)1/2||2

1
2V/1/(2K)

< (3/V2)VKB, max{C,, Cg}|A* — A*||

< 3max{CyBu,Cs,CsPBw} - HAl — A2||2
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where the third inequality is due to Lemma 32, and the last inequality is because we assumed that
Bw > 1. Note that we know ||A! — A2||2< |[[AY — A?||r where ||| denotes the Frobenius norm.
Finally, we show that for any (s,a) € S X A,

|Q\(Saa;ﬁlawlaA1) - @(57a;527w27A2)|

< [lw' — w?2+[B" — B2|+(3/V2)VK By max{Cs, Cs}|A' — A?||p

< \/3 (le — w2|3+|8Y — B22+((3/V2)VE By max{Cly, C})2|| AL — AQII%)
< AVEB, max{Cy,Ca} [|(B', w', A') — (5%, w?, A?)]],

where the second inequality follows from the Cauchy-Schwarz inequality, and the last inequal-

ity is due to 1 < (3/\/5)\/7(6“, max{C,, Cs}, as we assumed that 1 < f,,C,,Cs. Here,
(B, wh, AY) — (62,1112,/\2)H2 denotes

(8w, AY) = (87, w?, A%)||, = \/\51 = B2 P+ lw! — w?[FH[AT = A2[F. ©)

O

Now, we have to show that the policy parameterization given in (7) satisfies a Lipschitz property,
i.e., /1-norm between any two policies is bounded by the ¢5-norm between their parameters.

Lemma 11 (Lipschitz 7). Let 1 < f,,Cy,Cs and 0 < Cy. Suppose that two policies
7172 e 11, (Cg,Cy, Cq, Cy) are parameterized by {8}, wi}? o, A' and {82, w}l o, A
spectlvely Then the following holds for any s € S.

7 1s) =72(- | 5)lh
<32v/(n+1)Kp,(1 4+ Cy)max{C,,,Cs} <8A|> Z” wh AY) — (B2, w2, A?)|)3.

Proof. Fixs € S. Let (FH 7S {72, 72} ) be the sequences of policies recursively generated

by (7) to define 7!, 72 respectlvely Then it follows that
A 8) = o (| 8) < Th (- | 8) exp(Qs, s B, wh, AY)),
A2 8) = Fnp (- | 8) < Fn (- | 8) exp(Qs, s B, wh, A%)).

| s

| s
Note that 7} (a | s) 2(a | 8) > 0 forall a € A, since they are perturbed. Then we can define
log 7l (a | ) log 72 (a | s), and it leads to

Faia(-| ) o exp (10g7h(- | 5) + Qs, s B, wh, A1) )

(10)
A2l | ) o< exp (log 72 (- | )+ Qls, 5 82, wd, A% ).

By Lemma 24,
[Tpgr 1 8) =Ta i (| 9)lh
<8H10g77 \s)—i—Q( s, B wh AY) —log T2 (- | s) — Q( s, B2, w2, A?) H

<8 [log (- | 5) ~ log 72(- | )], + 8| Qls, s L wh, AT) = Qs 52, w2, A2)

o0

Note that 7, (a | s),72(a | s) > 6/|A| for all a € A due to the definition. Then we can utilize the
Lipschitzness of log function in [0/|.A], oo)| | Thus, by Lemma 21,

~ Al i~ ~
llog#a(- | ) —log (| 8)], < (1 9) =72 9)ln
A ~
Mo pmcrg-meion o an
Al ~
<Hlac 9220190
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where the equality is due to 7L (- | 8) = (1 =)7L (- | 8) +Omunie(- | s) and 72 (- | 8) = (1 —0)72(- |
8) + Omunie (- | s). Plugging (11) into (10), we have a recursive relation, and it leads to

7 sa (- 18) = Foia (| 8)lh

AR 1)~ 720 ), + 8] e, 88,0k, AT) - s, 482, 42
8lAN? - ~
< (B s 1) -#c 1 0

+sz(8““') |@Cs. <81 wh s A = Qs B2 42|

IN

o0

o0

n+1
<(B) IRc 19 - w191,

+8Z<8A|> @G5+ 3 whss AY) = Qs 2wl A2)|

o0

sz<8““'> [@s. 8w AY) = Qs 2wl A2

where the equality is due to 7 (- | s) = T2(- | 8) = Tunit(+ | $). Furthermore, by the Cauchy-
Schwarz inequality,

||%rlz+1(' | s) — %ZH(' | s)[l1

T S —

i=0 o

gs% 1) (8'““) Ji” 5Bl AL) = Qs 62,02, 42)||

Note that Q(s, -; 81, w}, A1), Q(s, -; B2, w2, A2) € O((1 4+ Cy)Cs, (1 + Cy)Ch, (1 4+ Cy)Co).
By the Lipschitzness of ) (Lemma 10),

[T iaC 8) = Fnia (1 8)lh

oo

oo

=0

2n n 2
<8\/< +y (24 JZ(wmwuwy)max{cw,cﬁ}) 181wl AY) — (82,02, A%)

=32v/(n+ 1)K By (1 + Cy) max{C,, Cg} (8A|> \IZH 1 JAL) —( f,w?,Az)Hg
as desired. O

Based on the Lipschitz properties that we have shown, we show a Lipschitz property of V, and it
leads to an upper bound on the covering number of V,,(Cs, Cy,, Cq, Cy).

Lemma 12. Let 1 < Bw,C’g,C’w,C’Q and 0 < Cy. Given e > 0, letN( n(Cg, Cw, Co, Cy))
denote the e-covering number of Vn (Cg, Cy, Cq, Cy ) with respect to the {-norm. Then we have
log./\/( n(Cg, Cuw, Co,Cy)) <3(n+ 2)2d? log((8].A|/0) (1 + 2C1Cy /€))

where
Ci =91/ (n+ 1) K38, max{C,,,Cs}Cq(1 + Cy),

Cy=(n+2)(1+Cy)K(Cs + Cy) + (n+2)Vd. (12
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Proof. Recall that V € 17n(Cg, Cy,Cg,Cy) can be expressed as V() = Yoacatla] ) (-,a),
where Q € @(Cg,C’w,CQ), T € ﬁn(KC'g,KCw,KCQ,Cy). Then consider Vi, Vs €
V,(Cs,Cy, Cq, Cy) such that V() = 3, 7l(a | )Q'(-a) and V2(-) = ¥, ,72(a |
-)@2(-, a). Suppose that each of those are parameterized as follows.

=R B0 Wl i, AT € T (K Cg, KCy, KCq, Cy),

~2

72 = 7(| {8 wl Y, A™?) € L, (KCg, KCy, KCo, Cy),
Q' = QB Wt A% € O(Cy, Cu, Cg),
Q%= Q2% w2 A??) € Q(C5,Cy, Cg).

Then for any s € S,

V() = 72(s)

S 70| 9)Q (s.0) — 3 #(a | $)Q%(s, a)

acA acA
<D 7 a|9)Q (s,a) = D 7l a | )Q(s,0)| + | Y Fa] 5)Q(s,a) = Y 7 (a] 5)Q(s,a)
acA acA acA acA

< IR C 1R (s, ) = Qs Moo IR (- 1 8) = 72 | 8)11[1Q (s, )| oo
= Q" (s.) = Q°(s. Moot IF (- | 8) = 72 | )1 1Q% (5. )l

where the first inequality is due to the triangle inequality, and the second inequality is due to Holder’s
inequality. By Lemma 10,

Hél(‘s’ D - @2(3, Mlso< 4@510 max{Cl, CB} H(ﬁQ,l’wQ,l’AQ,l) . (BQ’Z,wQ’Q,AQ’Q)HQ.

Furthermore, for the second term,

71 8) =72 1 ) l1Q3 (s, )lloo
< Col 7' (-1 5) =7*(- | 9)lx

<CQ 32\/ n+ ,BU, +Cy maX{KCw,KCB} (8|A|>

\IZII Dhwlt AT = (BT W], AT2)|3

where the first inequality is due to ||Q2[|so< Cgq for any Q? e @(C’g, Cw,Cg), and the second
inequality is due to Lemma 11. Then we deduce that

i1 12
glea‘é(“/ (s)=V (s)‘

< 4VEK By max{Cy, Cp} || (8%, wP!, A1) — (892, w2, A2?)],

+3200+/(n + 1) wa1+cy)max{cw,cﬁ}(8|“4|> JZ| Bt wlt ATL) — (72w P, AT2)|I3

< \/(4\/Eﬁw max{Cy,C3})? + (32Co+v/ (n + 1) K35, (1 + Cy) max{C,,, C5}(8|.A|/0)")?

n
x| 1(BDL, w1, AQ-1) — (ﬂQ,27wQ727AQ72)||§ + le(ﬂf,l’w?,17Aﬂ,1) _ (»3;’2,11}?’2,1\”’2)”%
i=0

<33y (n+1)K3,(1 + Cy) max{C,, Cs}Cq (8|A|)

n
2 1 )1 2 )2
><J|(BQﬁl,wQ*l,AQ’l)—(5Q727w972,AQ*2)||2+ZII(5Z’ sw T AT — (877w, Am2) |3

%
=0
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where the second inequality is due to the Cauchy-Schwarz inequality, and the last inequality is due
to the assumption that 1 < Cg and 0 € (0, 1).

Note that

F+ Y (BT W] o+ A p)
=0

< Cp+Cy+Vd+ (n+1)(1+Cy)K(Cs + Cy) + (n+1)Vd

< (n+2)(14 Cy)K(Cs + Cy) + (n+ 2)Vd.

Note that (891, w1 AL {85 w™ A™1}" ) can be viewed as a (n + 2)(1 4+ d + d?)-
dimensional vector. Since 1 + d + d? < 3d?, by Lemma 27,

Log N (Va(C, Cus Cag. Cy)) < 3(n + 2)d? log (1 + 2(8[.A|/6)"C1.Ca fe)

1891w, AR {57 Wt ATz < (89 [ w4+ ]9

where

C) =33/ (n + 1)K3B,Cq(1 + Cy) max{Cy, C3},
Cy = (n+2)(1+ Cy)K(Cs + Cy) + (n +2)Vd.
Furthermore, the log term contains an exponential term in n, we further deduce as follows.
log (1 + 2(8].A|/0)"C1Cy/€) < nlog(8|.A|/0) + log(1l 4+ 2C1Cs/€)
< (n+1)log((8|-A]/0)(1 + 2C1Cs/¢)).

Finally, we have

10g No(Vo(Cg, Cu, Cop, Cy)) < 3(n 4 2)2d? log((8|.A]/0) (1 + 2C1 Cy /€)).

Finally, we show an upper bound on the covering number of ]7(05, Cy,Co,Cy).

o~

Lemma 13. Let 1 < f3,,,C3,Cy,Cq and 0 < Cy. Given ¢ > 0, let N.(V(Cs,Cy,Cq,Cy))
denote the e-covering number of V(Cg,Cy,Cq,Cy) with respect to the (o.-norm, where

~ KL/\

V(Cs,Cu,Co,Cy) =U,_o Vn(Cs,Cw, Cq, Cy). Then we have

n=

-~ 2
log N.(V(Cj, Cuy, Cop, Cy)) < 3(K* +2)%d? log ((KL + 1)%(1 + 0202))
where C, Cy are defined in (12) withn = K*.
Proof. For each n = 0,...,KF let C, C ﬁn(Cg,Cw,CQ,C’y) be an e-cover of

o~

Vi (Cs, Cy, Cq, Cy) with respect to the £,-norm. By Lemma 12, suppose that the covers satisfy
log|C,|< 3(n + 2)%d? log((8|A]/0)(1 + 2C1Cy/€)) Vn=0,..., K-
where C}, Cs are defined in (12) with n = K“. Furthermore, let

KL
c=Jcn

n=0

Then we claim that C is an e-cover of )7(C’g, Cy,Cgq,Cy). For any Ve 17(6’5, Cw,Cg, Cy), since
V(Cg,Cy, Cg, Cy ) is defined as the union, there exists m € {0, ..., KX} such that

V € Vu(Cj,Cuy, Co, Cy).
Since C,,, is an e-cover of ]A}m(C'g, Cw,Cg, Cy), there exists YA/m € C,, C C such that

IV = Vinlloe< €.
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This implies that C is an e-cover of 17(6’5, Cyw,Cq, Cy) with respect to the {,-norm. Furthermore,
we have

N.(V(Cs,Cu,Cq,Cy)) < |CI< Z|c | < (KL +1)

n=0

g L+ —)

>3(KL+2)2d2

<8|A| 20,C, )3(KL+2)2d2

2C,Cy

€

((KL + 1)8|54| (1+ )

where the second inequality is true because z < z¥ for any z,y > 1. Finally, by taking log on both
sides, we have

8| A|
0
as desired. ]

(1+

o8 NL(D(C). Cu Ca. C3) < 3K+ 27 o ( (7 + 1) Tt + 202 )
H GooD EVENT

In this section, we introduce a high probability good event, denoted by F, which simplifies our
analysis. We begin by presenting the formal definition of E,;. We define E; as

E, = Ey N EyN Es. (13)
FE4, Fs, F5 are defined as
By = {v(k,n) € (K]  [H]: 165, = 8% allag < Brs 100 — O nllag< B} (14)
By = {¥(k,1,0) € [K] % [H] x {£,9} + @ — D) Vs g < By, Qo< By Ve < 11nHPK },
(15)
) 6K
By=1{ > Epa[Wi] <2 ) Wi +4H (38 +8606;)log — o (16)
ke[K] ke[K]

where

B, = 2+/2dlog(6 K H/6),

By = 50(K'/* + 1)dH \/log (5H* K| A[/3),

Bqo = 2H,

517 = Br + ﬁpv

ﬂw = 46b IOg Ka

W= " (38ull6(s}, k)l agy-1 88082 6 (sk, ab) 20, ) -

he[H]

We note that one of the key differences from Cassel & Rosenberg (2024) is that £ involves an upper
bound of Yj. This is because a (possibly polynomial in d, H, K) upper bound of Y}, is required to

prove that E; holds with high probability. In contrast, since we do not truncate Q 9,1 1ts trivial upper

bound cannot be obtained. Thus, to avoid circular logic, we include it in E», and use induction to
show (Step 3-2 of Lemma 16).

However, since directly proving £y holds with high probability is difficult, we instead consider a
proxy good event and then show that it implies £;. Here, we define the proxy good event E; as

E, = Ey N EyN B, (17)

where F, is defined as

Ey = {v(k,h,f/) € [K] x [H] x V(By,2K B, B, 1InH*K) : |[(¥n — V)V |[ar < @,} :

Based on the upper bound of the covering number of ]7(05, Cyw,Cq, Cy), we prove that £, holds
with high probability.
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Lemma 14 (Proxy Good Event, E,). Let 1 < (3, < K, and let n, o < 1. Then Pr[E,] > 1 — § for
any 6 € (0,1).

Proof. We prove the statement by showing Pr[E] > 1 — §/3, Pr[Ey] > 1 — §/3, and Pr[E3] >
1 — /3. For £y, by Lemma 30, we have for all h € [H], k > 1 with probability at least 1 — §/3,

1051 — 0% 1l ax < 20/2d10g (6K H/3) = f,.

Furthermore, it is clear that Hﬁljﬁ’h - é?,h”A’;;: 0 < B, because we take @J‘é,h = H?h. Then for any
h,k,¢ € {f, g}, E1 holds with probability at least 1 — §/3.

Now we consider E5. By Lemma 31, for all Ve ]7(61,, 2K Bq, o, 11nH3K), with probability at
least 1 — 4/3,

160 — D)V llag < ABquny/dlog(K + 1) + 2log(3H2/8) + 210g N, (V(By, 2K B B, 1InHIK)).
(18)

The parameters in Algorithm 1 satisfy 1 < 3y, 2K 3q, 8. Then Lemma 13 can be applied to deduce
the covering number. It follows that

log N (V(Bs, 2K B, Bo, 1InHK)) < 3(K" + 2)%d? log ((KL + 1)%(1 + 20202)> )

Since we assume 1 < 3, < K, Bg < 2H, n,a <1, and KL < K, we have the following bounds
on Cq, Cy withn = KL,

C1 = 33y/(K" + 1) K38, max{2K g, B} f(1 + 11 H°K)
< 4481H° K,
Co = (KV +2)(1 + 1InH3K)K (B, + 2K Bo) + (KL +2)Vd
< 242VdH'K*.
By Lemma 31, we can take € = v/d/(2K), and thus the covering number is bounded as
log N (V(8y, 2K Bq. Bo, 11nH?K)) < 36(K™ + 2)2d® log(5H K| A|/6).
Applying this to (18), since § = K 1,

1(n — D)V [[ax < SH\/d log(K + 1) + 2log(3H2/8) + 36(KL + 2)2d2 log(5H K |.A| /6)
< 50(KE +1)dH+\/log(5H2K2|A|/5)
= .
Thus, we showed that Pr[E>] > 1 — §/3 holds. For 3, note that for any (s,a) € S x A,

Y 38ull6(s, )l (at) 1 +880 80 16(s, @) IFar)-1 < H (365 +86a5%) -

he[H]

Furthermore, slfb, a’,j are generated under P, #%. Then, by Lemma 29 with probability at least 1 —§/3,

6K
> Bpac[Wi] <23 Wi +4H(3B, + 880%) log =
kE[K] ke[K]

Consequently, by union bound, we have Pr[E,] > 1 — 4. O

Before proving that F, holds with high probability, we show the following lemma, which is a
modification of Lemma 12 of Cassel & Rosenberg (2024) to our CMDP setting. This lemma plays
a crucial role in establishing the connection between E, and E,.
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Lemma 15. Suppose that E, holds. Given k € [K), if & € ﬁ(Kﬁb, 2K%Bq, KBg.n, 11nH3K)
f/'(\)l’ all h € [H]’ then Qlfc,hn S,h € Q(ﬁba 2K6Q76Q,h)’ and ka,hv ‘/gk,h €
V(ﬁb, 2K/8Q76Q,ha 1117H3K)f0r allh € [H + 1]

Proof. To show the statement, we apply induction on h for fixed k. For the base case, consider

h = H + 1. As we initialize as QfH_H(s a) = QI;H_H(S a) = VfH+1( s) = VgH_H( s) =0

for all (s,a), it is clear that QfH+1ng,H+1 € Q(ﬁb,QKﬂQ,ﬁQ,HH) and VNLI+17 Vg,H+1 €
(ﬁb,QKﬂQ Bo, Ht1 11nH3K). Next, we assume that the statement is true for h + 1,

Qf h+1> Qg h41 € Q(ﬁb, QKBQ BQ h-‘rl) Vf h+1° ngh+l € V(ﬁb’ 2K6Q BQ h+1, 1177H3K)
follows that for any £ € {f, g},

Qb5 a)l = |6k (s )" (O + kT ) = B |9 (5.0

(Aﬁe)—l

< |3k (5,007 (0kn + 0V )|
! (5”“9% O] A';,e> 75l e
< |éh (s,0) (86 + whw,hﬂ)i

Nk k ike
(e - ) el

where the first inequality is due to the triangle inequality and the Cauchy-Schwarz inequality, and
the second inequality is due to the fact that AZﬁ =< Ak,

. +H Ur - wh)véh—i-l‘

R [CHEt) 7o
h

We bound each term individually. For the first term, for all £ € {f, g},
‘(Z)ZE (Sa a)T (ef,h + wh"/}’fh-&-l) ’ =0 (_ﬁw ||¢)(57 a’)H(AZe)_l + log K) ’¢(Sa a)T(QZh + wh‘/}é]fh-i-l)

< ‘¢(3= G)T(eéf,h + ¢h‘7£’fh+1)‘

= |[th(s.a)+ > Pu(s' | s,a) V(5
s’eS

<1+ ||Vzl,€h+1||oo

where the first and second equality are due to the definition of q@ff and linear MDPs, respectively.
Next, we can bound the second term, since the proxy good event F is assumed.

<5b + Hé\Zh - 95,h’

e 1k = vV AZ) [k . )] s, -, < B8+ 8 08 5.0

(A:,e)_l :

Recall that ||q3fl“(s,a)||(Aﬁe),1= 16(5, @)l (yrey-10(=Bulld(s, @) pre)-1+1log K) < maxy>oy -
o(—pwy + log K). It follows that

Qhin(,0)| < 14 [Vl (B + 50+ B) |6 (5,0
h
<1t [Vielloot (B + B+ By) max [y - o (= Buy + log K]
2log K
<1+ ([Visalloot—2— 5, Brt Bt )
=2+ | Vsl
<2+ Bgn+1
= Ban

where the third inequality follows from Lemma 28, the equality is due to 3, = 2(8, + 8, +
By) log K, and the last inequality holds because of the induction hypothesis.

28



Under review as a conference paper at ICLR 2026

So far, we have shown that [|Q} , |lo< Bo.n. To show QF, € Q(By, 2K Bq, Bo.n). it remains to
show that the corresponding parameters are upper bounded. Recall that @’g 5, 1s defined as

Qbnts.) = 3 (s.) ks = 3o [ o)
h

where wéf’)h = @Zh + w’h“VZ’th. Note that

10 slla< (AR D7 ok ap)lshan)|l < AR, || Do élshiai)b(shiah)| < K.

T€[k—1] TE[k—1]

2 2

Furthermore, the induction hypothesis implies that

|08 VEa |, = |0 2 oshan) V(i) < Bania K.
TEk—1] 9
It follows that

Ik ull2= 105 la+ |5V [, < 280K
Furthermore, we have (2K)~11 < (AZC)_1 =< I. Thus, we have

QF € O(By, 2K Bq, Ba.n)-

By definition, since we have ‘A/Zkh(s) = > peami(a | s)@’jyh(s,a) and the assumption 7F €

(K By, 2K2B0, K Bo.n, 11nH3K), it follows that

VE, € V(By, 2K Ba, Ba.n, 1InHPK).

This completes the proof. O

Finally, we prove that E; holds with high probability. The proof closely follows Lemma 6 of Cassel
& Rosenberg (2024), with modifications for the CMDP setting.

Lemma 16 (Restatement of Lemma 1). Let 1 < 8, < K, let n,a < 1 and 4anH 3 < 1. Then
Pr[Ey] > 1 — 6 forany 6 € (0,1).

Proof. We assume E’g, which holds with probability at least 1 — § by Lemma 14. Next, under E’g,
we focus on showing F>. As a first step, we show that %,’j € (K By, 2K?Bg, KBo.n, 11nH3K)

and Y}, € [0, 11nH?3k] for all k, h using induction on k € K, for each epoch e € E. Finally, based
on this induction, we prove that E5 holds.

Step 1: Base Case First, let us fix e € E. For the base case, consider & = k.. Since %ﬁe = Tunif

for all h, it follows that 7?’;6 e TI(KpBy, 2K%Bq, KBq.n, 11nH3K), as Tuni¢ can be viewed as
m(a | s;0,0,I) with n = 0. Furthermore, we initialize Y3, = 0. Thus, the base case holds.

Step 2:  Induction Hypothesis For k& € K, we assume that 7% €
(K By, 2K?Bg, KBo.n, 11nH3K) and Yy € [0,11nH3K'] for all h and k. < K < k.
Then, by Lemma 15, it follows that for all (h, k', ¢) € [H] X {ke,...,k —1} x {f, g},

Q\IZ/}L S @(ﬁbaQKﬁQvﬁQ,h)a ‘//\vflj)f/L € ﬁ(5b72KﬁQvﬁQ,hal]—nH3K) (19)
Furthermore, let 5y, wf’,h, A denote the parameters that specify @?:h, ie, forall h, k' < k.0 €

{f7g}7 @?:h('7 ) = @(7 3 /Bba wZ/th)-
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Step 3-1: Induction Step (7%) Next, we show that 7% € TI(K 8y, 2K280, K fo.n, 11nH3K) for
all h. By Lemma 9,

() =7 |5 {8 witig, A)
where w; = —a ) g (w}h + Yjw;,h), Bi = —afy )y jcs, (1 +Y;). Note that j € 5; satisfies

j < k for each i, thus we can use (19) to bound the parameters. For wj,

lwilla < Y w}, + Yiwl
JES;

< Dl pllz Yl
J€S; (20)

< N+ 1HK)2K g
JES:
< (14 11nH*K)2K?Bqg

where the first inequality is due to |«|< 1, and the third inequality is due to the induction hypothesis
(Yir < 11nH®K forall k' < k) and that (19) implies [|w} ,||2< 2K 8. Similarly,

1Bil< (1 + 11nH3K)K . (1)

Again, by (19), we have ”@;h”wv ||@;h||00§ Bo. Then, for any (s,a) € S x Aandi =0,...,n,

—a > (@ (s,0) +Y;Q) 4 (5,0))| < (1+ 1nHPK)K fgp. 22)
JES;

Note that n = max{0, [(k—1—k.)/K?|} < |K/KP®| < K'"B = K!. Furthermore, its
parameters are bounded by (20), (21), and (22), and the same argument can be applied for all h €
[H]. Thus, for all h € [H],

7F e (K By, 2K B0, K fo.n, 1InH?K).
Step 3-2: Induction Step (Y;,) To bound Yy,
Y, = [(1 —AanHY_y 41 (f/g’fl—l(sl) —b—daH® — 49H2)}

: +
< ‘(1 —deanHYi_1 + 1) (179";;1(51) ~b—daH® 40H2) ’
< (1 — 4anH®)| Yo |[+0|VET (51) — b — daH® — 49H?|
< Yo |[+0|VET (51) — b — daH® — 49H?|
< 1nH3(k — 1) + 11nH?
< 11nH3k

where the first inequality is due to the fact that max{0, z} < |z| for all z € R, the second and third
inequality follows from the triangle inequality and 0 < 1 — 4anH? < 1, and the fourth inequality

is due the induction hypothesis, i.e., Y3 < 11nH>k’ and ||IA/g’fl’1||oo§ 2H forall &' < k.
These complete the induction, i.e., 75 € (K By, 2K?Bg, KBqg.n, 11nH3*K ) and Yy, € [0, 11nH3k]

for all (h,k) € [H] x K,. Furthermore, we can apply the same argument for all e € E. Thus, it
holds for all (h, k) € [H] x [K].

Step 4: Showing £/, By Lemma 15, we have for all 1, k,
@];’ha Alg’h S @(ﬂlﬁ 2K5Q7 ﬁQ,h)u ‘7fkjh7 f/\vg]fh S i}(ﬁlh 2KﬁQ7 5Q7ha llanK)

As aresult, since F is assumed, we have ||(¢/y, —12};;)‘7@%4-1 [[x < Bp. Thus, E holds. Furthermore,
E4, F5 hold by Eg. This completes the proof. O
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I LYAPUNOV DRIFT ANALYSIS

In this section, we upper bound the dual variable based on a Lyapunov drift analysis. As a first step,
we bound the Lyapunov drift (Y2, — Y,2)/2.

Lemma 17. Assume that the good event Eg4 holds. For all e € E and k,k + 1 € K., the Lyapunov
drift is bounded as

Y2
<-mYe+ Eweﬁ > D@ErClsw)l[FEClsn) = D(@n(-[sn) |75 (|sn)
he(H]

n(2aH? +4H?0 + 4H?) + 2n*(9H? + 160° H® 4 19360 > H? K? 4 160> H*).

2
Yk+1

2

Proof. Recall that the dual variable follows Y; 1 = [(1 — 4anH?3)Y) + n(V 1(s1) —b—4aH? —
40 H?)], . It can be rewritten as

Vi1 = [Yk—i—n(v (51) — b — daH3 1+ Y) — 49H2)L.

Note that max{0, 2}2 < 22 for any z € R. Then, if we square both sides, we have
~ 2
Y2, < YZ+ 2V (v (s1) — b— 4aHP(1+ Vi) — 49H2) + 2 (Vg’fl(sl) —b—daH3(1+Y) — 49H2)

It can be rewritten as
Y192+1 B YkZ
2
2
< Yin (V (s1) = b—daH3(1+ Vi) — 49H2) % (V ' (s1) — b— daH3(1 + Y3,) — 49H2)

) (n
(23)

(IT) can be bounded as follows.
D < — - 4((VF (s1) = b)? + (4aH?)? + (4aH?Y})? + (40H?)?)

< — - 4(9H? 4+ 160 HS + 160> H°YZ + 1602 H*)

2| o[ |,

< = -4(9H? +16*H® + 19360 > HY2 K? + 160° H*)

where the first inequality follows from the Cauchy-Schwarz inequality, the second and third inequal-
ities follow from that £, implies [V, (s1)|< 2H and 0 <Y}, < 11nH?k for all k.

Next, we bound (I). To obtain a negative drift, we first deduce a bound on Yk @l sn) —

%}k{(~|sh), @’;’h(sh, -)). Since we assumed k, k + 1 € K, 7rk+1 2 Tunif- Then 7 7Th ! satisfies

~ . ~ ~ 1 L
7r,]§+1(~ | ) = argmin (m, Q’fc’h + Yleg‘,ﬁ + —D(ﬂ'HﬂfL).
w(-|s)EA(A) «Q

Applying Lemma 23 and letting z = 7}, we have for any s;, € S,

(R Clsn), @l ) + Vi@ (sn)) + = DS Clsn) 17 Clsn)

< (TClsn), @5 (o, ) + ik u(sn, ) + = D Clam[FEClsn)) — =Dl I7E Clsw))
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where 7 is the Slater policy satisfying V;fl (s1) < b—~ for some v > 0. Next, summing over h and
rearranging terms yield

Vi > G Clsn) — FEClsn), QF (sn. )

he[ ]
1
< - Z D(#@n(-|sn)| |75 (sn)) — > > D@ Cls)lIFRT (lsn))
he[H] he[H]
R 1 , 24)

30 (FhClsn) = R Clsn), @ alons ) = = > DEEClsn) 175 Clsn)

he[H] he[H]
+ Z n(-|sn) —Wh('|3h)7@];,h(5h,')> + Yk Z (Tn(-Isn) —%ﬁ('\sh)7@§,h(3h7')>~

he[H] he[H]

Now, we take Epx. -, which is taken over {s;, }£__, under P*< 7 for a fixed s1. Note that since P*e
is a transition kernel of a contracted MDP, it could be _, P*<(s'|s,a) < 1. However, taking Epx.

,TT
can be viewed as a linear combination, where its coefficients is in the form of a sub-probability
measure defined as Pr[s; = s,...,sy = &' | s1,P* 7] € [0,1]. This implies that taking Ex.

guarantees monotonicity, i.e.,

ViBgre » | D @ (lsn) — 7K (lsn), QF 4 (sn, )
he[H]

< lEPke,T’r > DEClsn)lIFRClsn)) — DEa(Clsn)lIFRT (Isn))
| hE[H]

+Boee x| Y @FhClsn) — 7R (lsn), Qf p(sns ) — lD(A"“( [si)l[7 (-1sn))
L hE[H]

(I (25)

+Bpeen | D (Fnllsn) = 7 Clsn), Qf (sn,-)

| helH]

av)y

+ Vil 5 | Y (Fn(lsn) — 7R Clsn), QF 4 (sn. )

he[H]

V)
We bound (III). By the third statement of Lemma 22, for any s;, € S, we have
1 ~
(®RClsn) = 70 Clsn), @ (sn, ) — ED(W'Z“(-ISh)HW’Z(-ISh)) < 2aH” + 4H9.
Thus, summing over / € [H] and taking Eg. -, we have
() < Egk, ; [20H® + 4H?6] < 20H® + 4H*0
where the second inequality is due to (5). To bound (IV),

V) < B 2 | D 170 Clsn) = 7R Clsn) Q% 1 (sns oo

he[H]
< Egr. 7 [4H?]
< 4H?

where the first inequality is due to Holder’s inequality, and the last inequality is due to (5).
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To bound (V), we observe the following. Let V;fl (s) denote the p-contracted value function, where
p(s,a,h) = o(—LBuld(s, a)||(Ake),1+ log K). By Lemmas 7 and 8, we have
h

_ ~

VI (s1) = VEL(s1) = VI (s1) = Vi (s1)

9, 9,

+Boee x| Y Gnlsmian) + Y Pe(s" | snyan) Vi (s) = QF 1 (sn, an)
he[H] ses

To bound the latter term, we have for any (s, an) € S X A,

gn(snyan) + > Pu(s’ | sn,an)Vy 1 (s)) — QF 1 (sn, an)
s'eS

= G (snyan) Oy + B3 (sny an) T OnVihen — G (snyan) T |0 5 + wﬁVq'th} + Boll o (shs an)ll ykey -

Ik Tke kT Tke ke
> *Hgg,h - ag,h”[\’;ﬁ ||¢h (Sh,ah)H(A’;c)fl*”(wh - w;’i)‘/}fthllA;e ||¢h (Sha ah)”(A’;e)—lJFBbHQbh (sh, ah)”(A’Zc)fl
k Tke TkNT 7 Tke Tke
> _||99,h - ag,h”Aﬁ H¢h (Shs ah)”(,\’;e)—l_H(wh - 7/’11§)Vglfh+1HA§||¢h (Shvah)”(A”ie)—l‘Fﬁb”QSh (sn, ah)”(,\ﬁe)—l
>

_Br”&;ﬁle (Sh; ah)H(Ai’e)_l_ﬁpHQEZE (S}“ ah)”(AZe)_l‘i‘/BbH(EZE (Sh, azh)”(A;Cle)—l
=0

where the first equality is due to the definition of contracted MDP, the first inequality is due to the

Cauchy-Schwarz inequality, the second inequality is due to Afl“ = AZ, the third inequality is due to
E,, and the last equality is due to 5, = 3, + B,. This implies that the latter term is nonnegative, as
Ept. .[0] = 0. Thus, it follows that

V) = YiBse. = | O (Fa( [ sn) = FEC | 50), Q5 (- | sn))

where the last inequality is due to the Slater condition and Y > 0. Finally, plugging the bounds on
(III),(IV), and (V) into (25), we have

ViBpre z | D @ Clsn) = 7 (-Isn), Qb 1 (sn.-)
he[H]

< éE N D@@nClsi)l[@EClsn)) = D@ Clsu)l [ (lsn))
he[H]

+ 20 H? + AH? + 4H? + Vi (b — v — VE (s1)).
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Then we can bound (I) as follows.

M = Yiny (17;1(51) —b— 4aH3(1+ V) — 49H2)

<Yin [ VE(s1) = b+ Bane 2 | D @ Clsn) = 7 Clsn), QF 4 (sn, )
he[H]

<Yin(Via(s0) =)+ “Epe x| 3 D@nllsn)l[FCLsn)) = D(EnClon) 75 (Lsn)
he[H]

+ (20 H? + 4H?0 + 4H?) + nY5(b— v — VE (51))

n _ ~ _ ~
=—mYe+ _Epec 5 > D@ERClsmIFRClsn)) = D@ Clsn)| 7R (lsn))
he[H]

+n(2aH? + 4H?0 + 4H?).

Here, the first inequality is true as follows. For any sq,...,sy € S,

S (FE Clsn) = FEClsn), @b (s D] < S0 @R Clsn) = FEClon), Qom0

he[H] he[H]
< Y (4aH*(1+Y}) + 46H)
he[H]
=4aH*(1 +Y3) +460H?

where the first inequality is due to the triangle inequality, and the second inequality is due to the
second statement of Lemma 22. Note that the second inequality holds regardless of whether %,’j is

perturbed, because when 7~r,’j is not perturbed, it can be viewed as § = 0. It follows that

Epcer | D (7 Clsn) = FhClsn)s Qpn(sns ) | = —Eane z[4aHP(1+ ;) + 40H)
he[H]
> —(4aH*(1+Yy) +40H?)
where the second inequality is due to (5).
Consequently, plugging the bounds on (I) and (II) into (23), the Lyapunov drift is bounded as
Vi -V

5 < Y+ B s | > D(EClsn)[FEClsn)) = Dl lsn)lIFE (lsn)

he[H]
+n(2aH? + 4H?0 + 4H?) + 2n*(9H? + 1602 H® + 19360°n* H'2K? + 160 H*).
O

Lemma 18 (Restatement of Lemma 2). Assume that the good event Eg holds. Let H 2 < K. For
any 6 € (0,1) and k € [K], with probability at least 1 — 0, we have

20, B 8K Bs2 3202
Vi < 2 4 2K B6ax + max ] 0% max
nk By my ()20

where Oy and Cy are given in (26) and (32), respectively. Furthermore, under the parameter
choice of Algorithm 1, we have

Vi = O(H?/9).

Proof. For ease of notation, let N, = max{n € Z, : k. + nK?B e K.}, and let

Zn - Yke+7LKB'
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To show the lemma, we apply Lemma 25 to {Z,,}¢,. Let & = 0, and let &, be the set of all
random variables until episode k. + nK B_1,ie.,

§n = {(S;’az’e;:h’gh(s;’aﬁ))}he[H],-re[ke+nKB—l] .

Let F,, denote the o-algebra generated by &, forn =0, ..., N,. Then {F,} 2/;0 forms a filtration.
Note that Zy = Y}, = 0 and thus Zj is Fp-measurable. Furthermore, Z,, = Y}, ., x5 is determined
by information up to episode k. + nK® — 1, which implies that Z,, is J,,-measurable. Hence,
{Z, )< is adapted to {F, } Ve .

Note that |max{z1,0} — 22|< |21 — 22| for any z; € R and z2 € R, . Then it follows that

Yier — Yi| < [~4anH?Yy + 9(VE (s1) — b — daH® — 40H?)
< AnaH3(1nH3K) + 3nH + AnaH? + An0 H? (26)

= Omax-

where the second inequality is due to the triangle inequality and the fact that Y;, < 11nH?3K and
Vi1 lloo< 2H under E,. Thus, by the triangle inequality,

ke—i-(n—i-l)KB—l

|Zn+1 - Zn|: Z (YT+1 - YT) < KB(sma)v (27)
T=ke.+nKB

By Lemma 17, we deduce the Lyapunov drift of Z,, as

ket+(n+1)KE -1
Znir — 2 — Z Y2, -V
2 T=ke+nKB 2
ket+(n+1)KB -1
T=ke+nKB
@
ked(n+1)KP -1 .
+ > ~Epke = > D@ (Clsw)l[F5Clsn) — D(@a(-lsn)|[757 (lsn)
T=ke+nKE he[H)

Q1)
+ KB,
(28)

where

Cs = n(2aH? + 4H?0 + 4H?) + 2n*(9H? + 160 H® + 19360n* H2 K? + 160> H*)  (29)
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To bound (1),
ket(n+1)KB -1
@ = > —Y-
T=ko+nKB
ket+(n+1)KB -1 1
= Z -y Yke—i-nKB + Z (Y7/+1 — Y.,-/)
T=ke+nKEB T'=ke+nKB
ke+(n+1)KEB -1 —1
< —MEPY ety D R
T=ke+nKB 1/'=k.4+nKB (30)
ke+(n+1) KB -1 r—1
< =Ky uxs v Y > Gmax
T=ke+nKB 1/=k.+nKB
ke+(n+1)KE -1
=K e Ay D, (7= ke = nK P )dmax
T=ke+nKEB
KB(KB -1
= _nryKBYke-‘rnKB + U’Y(Smax %
where the second inequality due to the fact that z < |z| for any z € R and the triangle inequality, the
second inequality follows from (26), and the last equality is because the sum of 0, ...,z — 1 equals
z(z—1)/2forany z € Z..
To bound (I1),

ket+(n+1)KE -1

n o =T T
In = Z Epke 7 > D(#@n(-sn)l|77, ([sn)) = D@ (-lsn) 7 (-Isn))
hE [H] T=kc+nKB
n ~ko _ ~ke+(n+1)KE
= L3 o x [DGCIs)IF T Clsn)) = DEClsn) [y (fs))]
hE [H]
7 ket+(n+1)KE -1
TN Boen | D D@ECls)IFClsn) = D(EnClsn)l[7 (lsn)
he[H] T=ke+nKB+1
n _ ~kodn _ ~ke KB
= L3 Boe o [DGCIs)IF Clsn)) = D Clsn) [y (s
he [H]
<13 Ep. z [log(lA1/0)
he[H]
<

% H log(|A1/0)

where the last equality is because 7] = 77 for all 7 such that 7 — k. Z 0 mod KB by algorithm.
The first inequality is because the KL divergence is nonnegative, and we apply Lemma 26, as we

know 7rk etnk? =(1- 9)%56+”KB + 07 unie by algorithm. The last inequality is due to (5). Thus,
pluggmg the bounds on (I) and (II) into (28),
Z:,, - 72 KB(KB -1
It ZI0 KB 2t i D og( A 0) + PO, D)
For ease of notation, let C4 denote
KB(KB -1
O = 1 =D M 10g(4)/0) + KBy, (32)
Consider Z,, > 2C,;/(nKB~). Then (31) becomes
2 2
7Z’n+12 Z < 047
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which implies that Z,, ;1 < Z,,. In this case, it follows that

Z2. = 7?2 Z2,, - 72
n+1 n n+1 n
— 2 |F,| <E|—/——=|F,
Zosi 2 ]— [ 2z, }

1 Z2,., =72
- —FE n+1 n "
2B

E[Zns1 — Zu|Fn] =E {

< B [-mK"Z, + CilF)]

-y KBZ, +C,
Zn
CunKBr
20y

IN

—nKBy +
Ky
2

where the first inequality is due to Z,, 11 < Z,, the second inequality is due to (31), and the last
inequality is because we consider Z,, > 2C/(nKP+~). The first and second equalities are because
Zn 18 F,-measurable. As a result, we have

|Zn+1 - Zn|§ KB5maX7

KPS 2, < b

E[Zn+1 - Zn|]:n] < B 775(6' v
nK”~ ; 4

—1EY i 2, >

nK >y

Note that Zy = 0 and @ < KB§,0x. Thus, by Lemma 25 with ng = 1, with probability at least
1—9¢,foralln=0,..., N,

2C, B 4K?Bs§2 - 8K?Bg§?
Yke-i-nKB = Zn < KB’}/ +K 5max + KB~ & log KB~ ;5 .
U = (=)

Furthermore, for any k € {k. + nK?Z, ... k. + (n + 1)KZ — 1}, we have Y}, < Y ynis +
le;ilce+n1<3 |YVri1— Y < Yi inie + KPOmax. Finally, it implies that for any k € [K],

20, B 8KB§2, 3242
Y, < + 2K B + max | 0% max
nK By my (17)20

This completes the first statement. Next, we carefully plug our parameter choice into the upper
bound on Y. Recall that the definitions of C3, Cy, d;ax, and our parameter choice such that
3

B= 7= H?2K B a=H'K B o=KL

Omax 1S bounded as
Smax = dnaH3(1InH*K) + 3nH + dnaH?® + 4no H?

= 44n?aHSK + 3nH + 4naH? + 4n0H?

—44HK 3B L 3H VKB 4K 2B 4K —1-8

0 (Iﬂrf’/‘1 + H*lK*i”/‘*)
Since we assumed H? < K, it follows that HK ~/2 < 1. Then we have

bmax = O (K73/1)
(5 is bounded as
C3 = n(2aH? + 4H?0 + AH?) + 20*(9H? + 16* H® +19360°n* H* K? + 160> H*)
=2K 2B 44K 4K +18H 2K 2P 4+ 32K 18 4 3872 H?K* 6P + 32K 2725,
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2C,/(nKB~) is bounded as
20y 2H log(].A|/0) n 205
nKBy KBya ny
—4AHK 2Bt 4 3H "V 4 4K~ B 4 4K !

g (SmaxKB +

2
+ ;Hz log(|A|K)
2
+=(2H?’K P +4H?K ' + 4H* + 18K P + 32H*K 3P + 3872 H* K*°5 4 32H* K %7 F)
gl
= O (H2/y+ HK /).

Since we assumed H2 < K, we have H*K~"/4 < H2. Then we can drop O(H*K~"/4/~).
2K B 5, ax is bounded as
2K P max = 88HK ?PT 4+ 6H ™' + 8K 2P + 8K ™!
—0(HK 1)

(8K P62, /(117)) 1og (3262, (n*1%3)) is bounded as

8K B §2 3262 ~
max IOg max __ O H2 y
my (n7)2é (H7/)
Finally, Y} is bounded as
Vi =0 (H?/9).

J DETAILED PROOFS FOR THE ANALYSIS

In this section, we first introduce lemmas, which bound an online mirror descent term and optimism
terms, and these are useful to prove Lemma 5. Then we present the proofs of Lemmas 3, 4, 5, 6.
Then we conclude the section by providing the proof of Theorem 1.

The following lemma is to bound the regret due to online mirror descent. Here, the main difference
with the standard online mirror descent lemma (e.g., Hazan et al. (2016); Lattimore & Szepesvari
(2020)) comes from the periodic policy mixing, which requires a modified analysis.

Lemma 19. Let H? < K. Suppose that E, and the statement of Lemma 18 hold. Then we have

ST Baee e | D AQY 1(sny ) + YeQE (s, ) 7RG | 5n) — (- | sn))

e€E keK, he[H]
6 5
=0 (dH3K3/4 + H gy dH) .
72 gl

Proof. Considere € E. Forany s € S and k € K, such that %ﬁ*l # Tunif (€, kK = Key oo ker1—
2), we have

~ . ~ ~ 1 ~k
T (1 s) = argmin (QF,(s,7) + YaQg p(s,), (- | 8)) + =D(x(- | $)|[F5(- | 5))-
m(:|s)EA(A) o
For ease of notation, we omit (s, -) and (- | s). By Lemma 23, for any policy T,

1
2 DR,
— (7 |7%)

N SO 1 1 _
(@b + YeQb 7 = ) <~ D7) — —Dixl[7E*) -
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By adding (Q% , + YiQ" ., 7 — 7+L) on both sides, we have for k = k., ..., kes1 — 2,

<Qlff,h + YkQZ,ha %2 — )

1 1 1
< —D(7|[7F) — =D(x||7k+1) —
< - D(allmy) — ~ Dlxllm, ™)

ED(%QHH%IC) <Qf nt Yng B Th — %Z+1>

1 ~ 1 ~k L~k ~ Ak ~k
SED(WHW ) =~ D(nllx R 2 — 7 = FEIHIQY  + YiQE bl 7R — 7E Ty
1 ~py 1 ~k k ~ Ak ~k ~
< aD(WHWh)—aD(WHWhH) *| o FRBHNQE , + YaQE Ll IFF Y — 7E

+ ||Q,?,h + YkQ;h Tn — 7kl

1 1 g 1 1 ~
= ED(WIIW'E) - ED(WIIW'E) + ED(WIIW'E) - *D(WHWEH)

1. _ . R .
- %H”ZH _7Th||§+||Q’;,h +YkQ ool P — ZHI‘H‘Q?,h +YkQ h||oo||7Th =7l
(33)

where the second inequality follows from Pinsker’s inequality and Holder’s inequality, and the last
inequality is due to the triangle inequality. By taking }_, - ., on both sides, we have

Z <Qlff,h + Yleg,hv 7wy —m)

kEK.
1 ket1—2 1 ket1-2
<Y (D) - DIRD) + = > (DlllFh) — DiliFh™)
k=ke k=k.
(0] an
ket1-2 1 ket1-2 N
+ (—ml?ff«f“ — FRNFHIQE 5 + Vi@ ol 7T — ﬁlll) + 30 Qs + Y@ sl 7 — 7
k=k. k=k.
(i av)
et1—1 e 1 ~ke 1
QT QT m T ).
Note that (Qf”l "1y, Q Fet1— 1, %,’j"‘“ o ) is added, as (33) does not holds for k.41 — 1, i.e.,

the last episode in epoch e. Furthermore this term can be bounded by 2||Q fe“ 't YkQ Fet1— 1 Hoo
using Holder’s inequality.

To bound (I), we observe the following. If k — k. # 0 mod KB, then 7% = 7F. Thus, D(r||7}) —
D(nl||7 ) = (0. Otherwise, since 77,’2 =(1- 9)7rh + Omynir, we can apply Lemma 26, and thus
D(7r\|7~r,’j) — D(x||7F) < flog| Al ie.,

- N 0log|A| ifk—k.=0 mod K7,
D(ﬁHwﬁ) B D(ﬂ-”ﬂ]ﬁ) = {0 . otherwise.

It follows that

[a—y

0| K. |log|A| 0Olog|A
D<= > 0 log|A|< |a|K§| |+ i' |

k€Ko:k—ke=0modK B
where the second inequality is due to [{k € K. : k — k. = 0 mod KP}|< [|K.|/KP] <
|K.|/K?® + 1. Furthermore, since (II) is in the form of a telescoping sum and 7?’;6 = Tunif, We have
log|A|

[e%

Q

1 ~
(I < = D(x|[7}e) <
a
To bound (II), since —ax? + bx < b?/(4a) for a, b, x > 0, we have

a|K.|C?
nm < —=2,
In < 5

39



Under review as a conference paper at ICLR 2026

where Cs is a constant such that H@’} nt Yk@’;,h\\oog Cj for all h, k. Again, by definition of 7},
we have

av) = > 1Q% 1 + YaQp i llool7 — 711
k€Kq:k—k.=0modK B
= Z HQI;h + YkQS,h”OOGHWunif - %5”1
k€EKe:k—ke=0 modK B
20| K.|C:
< BIE|Cs 20Cs.

KB
Finally, we have for any policy 7 and s € S,

D (@5 (s, + Ye@h (5,7, 7R (- | 8) — (- | 5))

keK.

0| K.|log|A 14 6)log|A alK.|C2  20|K.|C
_ OloglAl , (1+0)logl] | alFlCR | 201KeICs
aK « 2 aK

Let us take 7 = 7} for each h € [H]. Then, by taking Zhe[m and Epr., .-, it follows that

+20C5 + 2C5.

Eﬁ’ke,ﬂ'* Z Z <@I;,h(5ha ) + Yk@g,h(sha )a%f( | Sh) - W;;( | Sh)>

he[H] k€K,

oK.l 1+0)1 K.C2  20|K.
< Epro pe [H< | a;’g'““' L0 Logw + o 2|C5 |KB|C5 42600 +2C5>}
O Jloghd]  (1+0)logld] _ alK.|C2  20|K.IC5
< .
H< oK T + o + B + KB +20C5 + 2C5

Finally, by E, and Lemma 18, we have C5 = 6(H 3 /7). Furthermore, by Lemma 34, the number
of epochs is at most O(dH ). Then, by taking » |, to the above inequality, it follows that

YD Baneme | 2 (Qfnlsn )+ YeQb h(sns ) R | s) = wi(- | 5n))

ecE keK, he[H]

~ HS dH>
_ 37-3/4 1/4
—O(dHK +72K +7)'

O

The next lemma claims that the regret terms associated with optimism are nonpositive, highlighting

the effectiveness of our bonus terms. We closely follow the proof of Lemma 4 of Cassel & Rosenberg
(2024).

Lemma 20. Let H> < K. Suppose that E, and the statement of Lemma 18 hold. For all
(5,0, .k, £) € 8 x A [H] x [K] x {f. g},

Qfn(s,0) = &y (s,0) (01 + ¥nViin) <0
Proof. By definition, we have
@]Z,h(sa a) — e (s,a) T (05, + ¢h‘7elfh+1)
= G (5,0) T (BF 1 — 0 0) + 63 (5,0) T (O = ¥n)Viar — Bollohe (5,) | (e
< 11981, = 08l ke 165 (5, @)l ey 2+ 1D = n)Viaa Ul 657 (5, @)l ey = Boll B (5, @) ey
< 1851 = 0F nllag 05 (s, @)l ey +10F = ) Vi lag 165 (5, @)l yrey 2 =Boll B (5, @)l e

< /BTHQBZE (s,a)”(Ar;g),l—Fﬁpng;Ze (Sa a)H(AZe)—l_Bb”éze (Sa a)H(/\Zc)A

=0
where the first inequality is due to the Cauchy-Schwarz inequality, the second inequality follows
from Afj = AZ, and the last equality is because 8, = 3, + ;. [
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Proof of Lemma 3 By Lemma 8§,

7Tk T7 A
Vm (51) — Vg’ﬂ(&) = Ep 7« Z o( Sha ah 9@ nt the h+1) Q?,h(sfu aﬁ)
he[H

k Sk Ak ok ok
= Ep 7+ E oy (sy.af) T 05+ Vi) — QF sy, ar)
| he[H]

@

+Epar | Y (S(sh,ak) — dp (sh,ap) T OF  +¥n Vi)

he[H]

D
To bound (I), we have
ope(sh, ap) (07, +1/’hVE Foi1) — Qi n(sh,ar)
= % (sprap)’ (9511 - 9/ n) + ¢h (srap) " (¥n — wh)vﬁ ht1 +5b\|¢h (shap) (Ake)—1

< Bullgye (sh» ary) H(Ag)—l‘f'ﬁbﬂ%c(shvah)”(A;je)—l

where the inequality is due to the Cauchy-Schwarz inequality. Furthermore, since k € K., it must
hold det(AF) < 2det(AZ€), otherwise k& would belong to epoch e + 1. As it is obvious that
(A= < (AZS)’l, we can apply Lemma 35 for nonzero &Zﬂ (sk,ar) as follows.

||$ZE(SZ’G’Z)H?AZ€)*1 < det((Ah )—1) <o
O G ab) Py, de((A)T)

This implies that 5y |¢}* (s¥, af)|| (Akey1 < < 2By |5 (sk, al) || (Aky-1 for nonzero oy (sk,ak). If
qSh (sk,af) = 0, then the inequality is trivial. Then it follows that

D) < Epz» Z 35b||<5’;26(5];§7a]z§,)||(/v;)71 < Ep 7 Z 3ﬂb\\¢(52aa§)||mg)fl

he[H] he[H]

where the second inequality is due to ||F< (s¥, ag;)ll ary-1 < [lo(st, ap)ll ax)-1- To bound (ID), by
Lemma 33, we have

(¢(sh,ar) — ¢h (skap)’ (9e ht thz h+1)
< (4312u||¢(5h7 ah)II%AZ)_l—F?K )|¢(Shvah) (94 nt ¢hV£ h+1)|
< 16HB2|6(sf af) [Py +SHE !

where the second inequality follows from the fact that for any ¢ € {f, g},

d(st,ap) " (0 h‘H/’hVe Fri1) = Li(sh, ar) +Z Py(s" | Shvah)VZ i1 (s) STV o< 4H.
s'eS

This implies that (IN< 16H B2 ||¢(sF, af) ||?Ak),1 +8H K. Finally, we have
h

. . . _
Vi (s1) = VE (s1) S Bpan | > 3Bullé(sh, ap)||(agy-1 +16HBG |6 (st aﬁ)H?A;ﬁ)_l +8H?K L
he[H]
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Taking 3"+, on both sides,
K

K
>V (s1) - V(1)) Z par | D 3Bulld(sk, af)ll(ar)-1+16HBY, ||¢(shvah)||2Ak +8H?
k=1 k=1 he(H]

K

Z (68016 sk, k) agy-1 +32H B 65k, af) Py )
he[H]

6K
+ 8H (3B, + 16 HB2 ) log — + SH?

0
where the second inequality follows from E,. By Lemma 36, we have
det AK +
3 st bl 2logd((A1)> < 2dlog(K + 1)

ke[K]
where the second inequality follows from |[AF+1||y= ||T + 2relk] B(s7,a7)p(sh,al) T [2< 1+
k, and thus det(Af+!) < (K + 1)%. Furthermore, the Cauchy-Schwarz inequality implies that

Srerryllo(sk af)llak)-1 < /2dK log(K + 1). Then we deduce that
K
VL (s1) — VE(s1)) < 68y H \/2dK log(K + 1) + 64dH2A2 log(K + 1
0, l, w

k=1
2 6K 2
+8H(30, + 16H ) log ~ + 8H
= O (VPHK 4 d*H'K'?)
where the last equality follows from 8, 8, = O (K'/4dH) . O
Proof of Lemma 4 Given e € E, for any k € K., the dual variable Y}, is updated as
0 ifk+1=k,
Yirr = [(1 — 4amH?)Y) + 1 (V 1(s1) = b—4aH? — 40H2)} otherwise.
+
Then it follows that
0<YZ,,
ke+172
= > (Wn-Y)
k=k,
ke+172 2
-y ([(1 — danH3) Yy + 1 (v L(s1) — b — 4aH® — 49H2)] - Y,f)
k=k, *
ke

- ;51;2([Yk+77(v 1(51) = b—4aH® — 49H2—4aH3Yk)K_Yk2>

=ke

kot1—2 2
< ¥ (mn (V (s1) — b— daH? — 40H? — 4aH3Yk> + 2 (Vg’fl(sl) —b— 4aH® — 40H? — 4aH3Yk> )
k=ke

where the first equality is due to Y3, = 0, and the last inequality is due to the fact that max{0, 2}? <
2?2 for any z € R. This can be rewritten as

keq1—2

Z Yi(b—VE (51))

kc+172 kety1—2 9
< Yi(—4aH® — 40H? — 4aH?Y;) + 1 (17’?1(31) —b—daH® — 40H? - 4aH3Yk) .
k=ke 2 k=ke
(34)
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Note that the first term is nonpositive. Furthermore, the second term can be bounded as

VE (s1) — b — 4aH® — 40H? — 4aH?Y;| < [VF (s1) — b|+4aH? + 40H? + 4aH?Y;,
< 3H +4H?K—3/* L 4H? K~ + 4H?*K ~3/y;,
< 3H +4HY? + 4+ 4H?*K /%Y,
< 11H + 4H?*K /%y,

where the second inequality follows from E,, the third inequality is because we assumed that H? <
K. Thus, (34) is bounded as

key1—2 N ket1—2 9
3 Yalb— Vi (s1) gg (11H+4H2K_3/4Yk)
k=k. k=k.

Kep1—2
< g 2(121H? + 16 H K ~*/2Y2)
k=Fk.

where the second inequality is due to the Cauchy-Schwarz inequality. Then we have

ke+172
SV -VE(s)) = D> Yilb— V(1) + Ve, 10— Vi 7 (s1))
keK. k=ke
ke+172
n —
<3 2(121H% + 16H K 3/2Y2) + 3HY},, 1
k=ke
kle+172
< 121H?| K |+16nH* K% >~ Y2+ 3HY;, 1.
k=ke

By Lemma 18, we have Y}, = O(H?2 /) for all k € [K]. Furthermore, by Lemma 34, the number
of epochs is at most O(dH ). By taking ) -, it follows that

ST -VEG)) =Y D Yo -V (s1)

ke[K] ecE keK.

:5(K1/4+dH26).
v

Proof of Lemma 5 Note that

NE

(‘7f s1) + YV (s1) = Vi 1 (s1) = YV (81))

b
Il

1

IN

(VF1(s0) + ViVl (1) = V74 (1) = ViV (o))
ecE keK,
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where Vf’fl, Vg’fI are the value functions with respect to a contracted MDP. Furthermore, by
Lemma 8, it follows that

>3 (Vhilsn) +YiVfa(s) = VA (1) = ViV (s1))

ecE keK,

=D Eanme | D D (QFn(shia) + YiQh (s, a)Fh(a | sf) — mi(a ] sf)

ecE keK, he[H]aeA
ke
+ Z Z Epre - Z th Shva’h fh(shvah Z P s | 3h7ah)vf 1 (s)
ecE keEK. | hE[H] s'eS
ke
+ Z Z E]I’”"e,fr* Z Yy < g,h Sh7ah) gh Shvah Z IP) s' | S}Nah) h+1( ))
e€E keEK, | hE[H] s'eS

Note that by the definition of the contracted MDP, we have ff(s,a) = ¢} (s,a) 0% ,, gn(s,a) =
oFe(s,a) "0, h, and PRe(s' | 5,a) = ¢ (s,a) T n(s"). Then it follows that

fu(sr,af) + Z ED’Ze (s'| sy, alﬁ)vflfhﬂ(s/) = (EZ(SE, aﬁ)T(elf,h + ¢th]fh+1),
s'eS

gh(sfu aﬁ) + Z P;CLE (S/ | SZ7GZ>VgI€7h+1(S/) = (E;CLE (S]I;? aﬁ)—r(eg,h + ’(/}hvgk,thl)'
s'eS

We deduce that
K

> (VFals0) + YV (s1) = Vi (s1) = YV (1)

k=1

<0 D (Vhals) +¥aVa(on) = Vi (1) = ViV (1)
ecE keK,

=D D B | D D (QFalsh @) + YiQl u(sh @) @h(a | sf) — mila| sh))

ecE k€K, he[H]acA

@

+ Z Z Epre Z Qj h Sh»ah d)h ( Spya IZ)T(GI}JL +whvf]'€,h+1)

ecE keK,

an

+Z Z Efre 7 Z Yi (Ag,h(sﬁﬂlﬁ) — o (skaf) T (Ogn +UnY, h+1)>

ecEkeK, | he[H]

(I
By Lemma 19,

HS H5
@) = (dH3K3/4 — K'Y+ d) )
aé vy
Note that Y3, > 0 for all k. Then, by Lemma 20, for any (s, a, h, k) € S x A x [H| x [K], we have
Qf (s.a) — 35 (5,0) T (05, + Yn Vi) <O,

Vi (Qh(s,a) = 65 (5,0) T O + 00V 10) ) < 0.
This implies that

(ID), (III) < 0.
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Finally, we have

K . . . . HS dH®
3 (Vf’fl(sl) YV (1) = Vi L (s1) = ViV (51)) -0 (dH3K3/4 n ?Kl/‘* n 7) .
k=1

Proof of Lemma 6 Note that the dual update is

0 ifk+1 =k,
Yiy1 = [(1 — danH3)Y; + 1 (?g’fl(sl) —b—4aH? — 49H2>} otherwise.

+
Then it follows that for any e € F,

Yeo o1 = [(1 — 4o HY; 2+ 1 (v 120y b daH® — 40H2)}

+
> (1 —4anH?)Yy, - 2—|—77<V 172 (g 1)_b—4aH3_40H2)

= Yeono2 41 (V357 (1) = b= 4aH (1 + Vi, 2) — 40H2)

ke+1 2
> Yy, +1 Z ( (51) — b— daH* (14 Y;) — 49H2).

Note that Y3, = 0. Then we have

kc+171 kc+172
(Vas(s) = b) = (Vs =) + (V5 (1) — )
k=ke k=ke
Y kc+1 2
< ’“j?l el 1NN (4aH3 (14 Yy + 40H?) + 3H.
k=ke

By Lemma 18, we have Y}, = O(H?2/~) for all k € [K]. Then it follows that

; ~ (H*
4aH?(1+Y3) +40H? = 4aH?K3/*(1+Y},) +4H?K~ ' = O <K3/4 + H2K1) .
Y

Furthermore, by Lemma 34, the number of epochs is at most O(dH ). By taking } °__ ., it follows

that
4
ZZ( (s1) )O(dle‘M HK1/4)_

ecFE keK, v

O

Proof of Theorem 1 If K < (3, we cannot use Lemma 16. Nevertheless, in this case, we have
the following upper bounds for regret and violation.

Regret(K) < HEK < Hf, = O (dH2K1/4) ,
Violation(K) < HK < Hf, = O (dH2K1/4) .

Otherwise, it is trivial that the conditions of Lemma 16 hold, i.e., E; holds with probability at least
1 — 4. Furthermore, under E,, we have the upper bound on Y}, as in Lemma 18 with probability at

least1 — 4, i.e., ,
~ (H

Y., =0 () (35)
Y
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Thus, with probability at least 1 — 20, E, and (35) hold, which can be shown by union bound.

Now, we begin with the proof of the regret upper bound. Note that an optimal policy 7* satisfies
VQTI (s1) <b. Since Yy, > 0 for all k, it follows that

Regret(K)

(kaﬁl(ﬁ) + YRV (s1) = Vi, (s1) — ka)

(‘7f’f1(81) +VVE(51) = V1 (s1) = YV, (51))

@ an (I1II)

By Lemma 3,
OH=0 (\/d3H4K3/4 + d3H4K1/2) .
By Lemma 4,
6
an = <K1/4 dH) )
72
By Lemma 5,
HS dH®
) =0 (dH3K3/* + — KV* 4+ —— ).
72 ¥

Thus, we have the following regret upper bound.

~ 6 6
Regret(K) = O (\/d3H4K3/4 +dHP K + dPHUKY? + H—2K1/4 + dh;) :
v v

Next, we show the violation upper bound. If constraint violation is 0, the statement is trivial. Other-
wise, we decompose it as

)+ 3 (Tt =),

k=1 k=1

M=
—~
3

Violation(K) <

avy V)

By Lemma 3,
vy =0 (\/d3H4K3/4 + d3H4K1/2) .
By Lemma 6,

4
(V) <dH K3/4 H K1/4> .
Y Y

Thus, we have the following violation upper bound.

dH®
Violation(K) = O ( K3* £ VB HAKS* 4 d3H4K1/2>
Y

K AUXILIARY LEMMAS

Lemma 21. Let ¢ > 0. For x € [¢,00)%, letlogz = (logxy,...,logxzg)". Forany x,y € [c,00),

we have

1
[log 2 — log /|0 < ;Hw =yl
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Proof. Fix 2,y € [c,00)% and i € {1,...,d}. Consider the scalar function p; : [0, 1] — R defined
as

pi(t) :=log(y: + t(w; — ys)).

Since [c,00)? is convex, we have y; + t(z; — y;) > min{z;,y;} > cforallt € [0,1], so p; is
continuously differentiable and

/ Ty — Yi
Pi(t) = T N
yi + (i —yi)

Hence, for all ¢ € [0, 1],

/ |$i—yi| \Iz‘—yz‘|
pi(l)| = < :
Ipi()] yi +t(zi — i) c

By the fundamental theorem of calculus,

1 1
Ti —Yi
fogns —logil = (V) -n(O) = | [ sl < [ pola < B
0 0

Taking the maximum over 7 and using ||z« < ||2||1 for all z € R? yields

1 1 1
log z —log ylloo= max [logz; —logy;|< — max z; —yi[< D e —yil= ~ Mz =yl

i<i<

O
Lemma 22. Let 7t : S —> A(A) be any policies. For 6 € [0,1], let 7F(+|s) = (1 — 0)75(-|s) +
O unit (+|$). For th, :Sx A= [-2H,2H), Yy € Ry, and a > 0, let TFF1(- | s) oc 7F(- |

s) exp(—a(Q% 1, (s, )+Yng7h,( s,-)). Forany s € S, we have
Lomtt 1 s) =G | 9)]hi< 2aH(1 + Ya),
2. |@EFCs) = REC]5), QF 4 (s, )| < daH2(1+ Yy) + 40H.
3. (@h(ls) = T (1), Qf 1 (s,)) = g D@ CIs)IIFE(]s)) < 20H? + 4HO.

Proof. (Proof of the first statement) We show the first statement. Given s € S, we omit (- | $) in
notation for simplicity. Note that %EH can be viewed as an optimal solution for min, (7, Q’Ji n T+

Yk@’;,ﬁ + (1/a)D(x||7¥). Due to the pushback lemma (Lemma 23), by taking z = 7*,

~ ~ ~ 1 . ~ k||~ ki~
(®h s Qfn + YiQgn) + —D(@H[FR) < (7, Q51+ YeQ5 ) + D( rlIER) — *D( AIER .
Note that D(7F||7%) = 0. This can be rewritten as

*D( n IR + D(~k|\%k“) <@ -7 Qhn + VaQk ).
To lower bound the left-hand side, Pinsker’s inequality implies that

1, - ~ ~ 1. ~

SIFR T = mIR< DER,  SIm - FRIR< D@EIF.

2 T,
To upper bound the right-hand side, Holder’s inequality implies that

~k _ ~k ~k
(T _7Th+17th +Yng n < |75 _7Th+1|| ||th +Yng nlloo-

As a result, we deduce that

L ~F
a| = mII< 17 — 7 ||th+YkQ oo
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If |75 T — 7|1 = 0, then the statement is trivial. Otherwise, it follows that

7R =7l < allQf s + YiQb alloo:
Since ||@’}h\|oo, ||@’;7h||oo§ 2H and Y}, > 0, we have

7R — 7|1 < 20H (1 + Yy,).

(Proof of the second statement) Now, we show the second statement. By Holder’s inequality and
the triangle inequality,

@ =7 Qe | S IRV = R Q alloo< IFEY = FRILIQS 4

By the first statement,

so TN — 711 ||Qg nlloo-

175 = Tl < all @ uls, )+ Yi@f (s, oo

Furthermore, we have
178 = Fhll= (1 = O)7F; + Omunic — Th 1= 0l|=7% + Tunie 1 < 20

Finally, we have
(@ =7, Qg >‘ < al| @5 4(s,) + YiQE (5, ) oo | QF 1 lloo+20/1 @5 4lloc-
Since ||Q\’}h”ooa ||Q§,h||oo§ 2H and Y, > 0,

’ﬁ,’f“ — 7,08 )| < daH?(1+ Vi) + 40H.

(Proof of the third statement) Note that

1

~k _ ~k A~k ~k ~k ~k

(@ -7, Q5 ) - ED(ﬂh“H?T ) < @t =7 I\thlloo—*\l R [
<2H|[7 " =74 —*IIA”“+1 Tt
< 2H| 7t - mll—*llA’“+1 Thlli+2H |7 — 75

< 2aH? +2H |7k — 7|

where the first inequality is due to Holder’s inequality and Pinsker’s inequality, the third inequality is
due to the triangle inequality, and the last inequality follows from the fact that —ax? + bz < b%/(4a)
fora,b,x > 0,ie,a=1/(2a), b=2H, x = |7} — 7F1. The following is true.

75 = Thlli< 0175 — Tunie [l < O TR 1+l maniel1) < 26.

Finally, we have
~ ~ 1 ~
@R — 7+t Q? ) — —D@EITY|FE) < 2aH? + 4HO
’ «

as desired. O

Lemma 23 (Lemma 1 of Wei et al. (2020), Lemma C.3 of Qiu et al. (2020) ). Ler A, int(A) be
the probability simplex and its interior, respectively, and let f : C — R be a convex function. Fix
a >0, y € int(A). Suppose z* € argmin,ca f(z) + (1/a)D(z||ly) and x* € int(A), then, for
any z € A,

F@) + D@ ly) < f()+ ~D(ly) ~ ~Dlla”).
Lemma 24 (Lemma 33 of Kitamura et al. (2025)). Let Q1,Q2 : A — R be two functions. For
a >0, let m; x exp(aQq), o x exp(aQ)s). Then we have

|1 — w21 < 8a||Q1 — Q2]/sc-
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Lemma 25 (Lemma 5 of Yu et al. (2017)). Let {Z,},>0 be a discrete time stochastic process
adapted to a filtration { F,, } >0 with Zy = 0 and Fo = {0, 2}. Suppose that there exists an integer
ng > 0, real constants p > 0, dpax > 0, and 0 < ¢ < dypax such that

|Zn+1 - Zn|§ 5maxa

noémaxv len <p
Pt = I | 7] {—noC, if Zn>p

hold for all n € {1,2,...}. Then the following holds:

462 852
E[Z.] < p+ no0max + no% log $7 Yn € {1,2,...}.
Moreover, with probability at least 1 — 6,
462 862 462 1
Zn < p~+ nodmax + Mo Z}ax log C";ax + ng z“‘x logg vn e {1,2,...}.

Lemma 26 (Lemma 31 of Wei et al. (2020)). Let 71, w2 be two probability distributions in A(A).
Let 13 = (1 — 0)ma + 0/|A| where 6 € (0,1). Then,

D(m[|T2) — D(m[m2) < 0loglAl,  D(m|7r2) < log(|A[/6).

Lemma 27 (Lemma 24 of Cassel & Rosenberg (2024)). Let V = {V (-;6) : ||0]|< W} denote a
class of functions V. : § — R. Suppose that any V' € V is L-Lipschitz with respect to 6 and the
supremum distance, i.e.,

[V(601) = V(:02)[[c< L[61 — 021, |01]l2, [[02]2< W.
Let N, be the e-covering number of V with respect to the supremum distance. Then
log N, < dlog(1 + 2WL/e).
Lemma 28 (Lemma 18 of Cassel & Rosenberg (2024)). For any K > 1, 8 > 0, we have that

2log K
5

Lemma 29 (Lemma D.4 of Rosenberg et al. (2020)). Let {X;}>1 be a sequence of random vari-
ables with expectation adapted to a filtration F;. Suppose that 0 < X, < C almost surely. Then
with probability at least 1 — 6,

max [y - o(— By + log K)] <
y=>0

T T o7
S E[X; | Fioa] £2) ) Xi+4Clog =
§
t=1 t=1
Lemma 30 (Lemma 21 of Cassel & Rosenberg (2024)). Let @;7 i, be as in line 14 of Algorithm 1.
With probability at least 1 — 6, for all k > 1, h € [H],

16 — B 1l ar < 21/2d log (2K H/6).

Lemma 31 (Lemma 22 of Cassel & Rosenberg (2024)). Let @Z : RISl — R? be the linear operator
defined in line 16 of Algorithm 1. For all h € [H), let V), C RIS! be a set of mappings V : S — R

such that | V|| oo < Bo and g > 1. With probability at least 1 — §, for all h € [H], V €V, and
kE>1,

| (n — BV [l s < 4B/ dlog(K + 1) + 2log(HN./3),

where € < 8Vd/(2K), N. = > helH N.(Vy,), and N.(Vy) is the e-covering number of Vy, with
respect to the {.-norm.

Lemma 32 (Lemma 17 of Cassel & Rosenberg (2024)). For any A > 0 and matrices A, A’ € R4*4
satisfying A, ' = \I, we have that

1
A2 = (8)!20% —=flA = Al

49



Under review as a conference paper at ICLR 2026

Lemma 33 (Lemma 3 of Cassel & Rosenberg (2024)). For any e € [E] and v € RY, we have that

(6tsn, @) — o)) v < (452160, an) gy +2K ) [6(sn,an) o]

Lemma 34 (Lemma 8 of Cassel & Rosenberg (2024)). The number of epochs |E| is bounded by
(3/2)dH log(2K).
Lemma 35 (Lemma 12 of Abbasi-Yadkori et al. (2011)). Let A, B,C be positive semi-definite
matrices such that A = B + C. Then, we have that

rT Az det(A)

<
ii% zT Bz — det(B

~

Lemma 36 (Lemma D.2 of Jin et al. (2020)). Let {¢:}+>0 be a bounded sequence in R? satisfying
sup;soll¢¢]|< 1. Let Ag € R be a positive definite matrix. For any t > 0, define

t
A =Ag+ Z(Zsjd);r

Jj=1

Then, if the smallest eigenvalue of Ag satisfies Amin(Ao) > 1, we have

] <o 85

L NUMERICAL EXPERIMENT

We evaluate Algorithm 1 on a finite-horizon job-scheduling CMDP closely following the setup of
Ghosh et al. (2022) with modifications to incorporate adversarial losses. The number of episodes
and the horizon are set to X = 100,000 and H = 10, respectively, and the state space is S =
{0,1,...,9}. Atstep h, sp denotes the number of remaining jobs in the stack, and each episode
begins with the initial state s; = 9. The agent chooses a;, € A = {0, 1}, where a;, = 1 corresponds
to processing the current job and a, = 0 corresponds to idling. Specifically, if a,, = 1, then
Sh+1 = max{sp — 2,0} with probability 0.8, s,+1 = max{s, — 1,0} with probability 0.1, and
Sp+1 = Sp, otherwise. If aj, = 0, then s, 41 = sp,.

The loss and cost functions are defined as follows. To simulate an adversarial setting, in each episode
k, the loss is chosen between two functions, f(*) and £(2), with probabilities 0.9 — (k — 1) /(K — 1)
and 0.1 + (k — 1)/(K — 1), respectively. These functions are defined as

1 ap = 0, 1 ap = 0,
Ffap) =055 a,=1andh e {3,4,5,6}, fP(an)={06 a,=1andhe {4,5,6},
02 ap=1andh ¢ {3,4,5,6}, 0.2 ap=1andh ¢ {4,5,6}.

The cost is defined as g (sn, an, Sh+1) = 1 — (s — Sp+1)/2 for all h, and the cost budget is set to
b=5.6.

Figure 1 summarizes the results of running Algorithm 1 for K = 100,000 episodes. To promote
learning, we set the parameters as o = 0.1, 8, = K/* and 3, = B log K, while keeping the
other parameters same as in the setup of Algorithm 1. As shown in Figure 1a, the regret grows sub-
linearly in K, despite the fact that the losses are not sampled from a fixed distribution. Furthermore,
Figure 1b shows that while the constraint violation grows rapidly in the early phase, it eventually
converges to 0 approximately after episode 45,000. These results support our main claim that both
regret and constraint violation are bounded by sublinear terms.

M THE USE OF LARGE LANGUAGE MODELS

Portions of the text were polished using ChatGPT-5, which was employed for grammar checking
and sentence refinement.
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