

000 001 002 003 004 005 PRIMAL-DUAL POLICY OPTIMIZATION FOR 006 ADVERSARIAL LINEAR CMDPS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 Existing work on linear constrained Markov decision processes (CMDPs) has pri-
028 marily focused on stochastic settings, where the losses and costs are either fixed
029 or drawn from fixed distributions. However, such formulations are inherently
030 vulnerable to adversarially changing environments. To overcome this limitation,
031 we propose a primal-dual policy optimization algorithm for online finite-horizon
032 adversarial linear CMDPs, where the losses are adversarially chosen under full-
033 information feedback and the costs are stochastic under bandit feedback. Our
034 algorithm is the *first* to achieve sublinear regret and constraint violation bounds in
035 this setting, both bounded by $\tilde{\mathcal{O}}(K^{3/4})$, where K denotes the number of episodes.
036 The algorithm introduces and runs with a new class of policies, which we call
037 weighted LogSumExp softmax policies, designed to adapt to adversarially chosen
038 loss functions. Our main result stems from the following key contributions: (i)
039 a new covering number argument for the weighted LogSumExp softmax policies,
040 and (ii) two novel algorithmic components—periodic policy mixing and a regular-
041 ized dual update—which allow us to effectively control both the covering number
042 and the dual variable. We also report numerical results that validate our theoretical
043 findings on the performance of the algorithm.
044

1 INTRODUCTION

045 Safe reinforcement learning (RL) studies sequential decision-making under safety constraints
046 through interaction with an unknown environment. Many real-world applications have been
047 explored under the safe RL framework, including autonomous driving (Isele et al., 2018),
048 robotics (Achiam et al., 2017), and healthcare (Coronato et al., 2020). A common modeling frame-
049 work for safe RL is the online constrained Markov decision process (CMDP) formulation, where
050 the agent seeks a policy that minimizes (or maximizes) cumulative expected loss (or reward), while
051 ensuring that the expected cumulative cost does not exceed a given budget (Altman, 2021).
052

053 To better capture realistic scenarios, it is often necessary to model adversarial environments, where
054 different components of the environment may vary arbitrarily over time. For instance, in autonomous
055 driving, the loss may reflect safety risks such as sudden braking events, but it can also increase
056 drastically due to unexpected traffic conditions or hazardous weather. In service robotics, the loss
057 may correspond to task failures or user dissatisfaction, which can fluctuate depending on human
058 preferences or rapidly changing tasks. In such applications, assuming a fixed loss signal is overly
059 restrictive. Therefore, to model these practical scenarios, it is essential to consider a class of CMDPs
060 under adversarial settings.
061

062 Online adversarial CMDPs assume that the loss or cost functions can change arbitrarily across
063 episodes, rather than being drawn from fixed stochastic distributions. Recently, adversarial CMDPs
064 have been investigated under the tabular setting (Qiu et al., 2020; Stradi et al., 2024; 2025a;c; Zhu
065 et al., 2025). Although these works achieved sublinear regret and constraint violation bounds, they
066 focused only on environments where the state space is finite and relatively small. As a result, their
067 algorithmic guarantees may not extend to settings with large state spaces. Such algorithms are often
068 unsatisfactory in real-world applications, where the number of states is typically extremely large.
069

070 To capture settings with a large state space, safe RL with linear function approximation has been
071 studied. Ding et al. (2021) proposed a primal-dual policy optimization algorithm for linear mixture
072

054 CMDPs, where the dynamics are expressed as a mixture of a finite set of basis kernels. For linear
 055 CMDPs, assuming linear structure in the loss and cost functions as well as in the dynamics, [Ghosh et al. \(2022; 2024\)](#) designed a primal-dual-type optimistic value iteration algorithm with a softmax
 056 policy. For the same setting, [Kitamura et al. \(2025\)](#) developed an algorithm achieving zero constraint
 057 violation under the assumption of a known safe policy. Although these algorithms can handle large
 058 state spaces, they considered only stochastic settings, where the loss and cost functions are fixed or
 059 drawn from underlying distributions. That said, they fail to capture the aforementioned applications,
 060 where taking into account adversarial environments is essential when modeling safe RL algorithms.
 061

062 To overcome these limitations, this paper proposes an algorithm for adversarial linear CMDPs. To
 063 handle adversarial losses with constraints, as online primal-dual mirror descent type algorithms be-
 064 come a standard choice, it is natural to consider primal-dual policy optimization for our setting ([Chen et al., 2021; Ding et al., 2021](#)). However, when applying primal-dual policy optimization to ad-
 065 versarial linear CMDPs, additional challenges arise—most notably in bounding the covering number
 066 of the value function class ([Jin et al., 2020](#)).
 067

068 To elaborate on this challenge, primal-dual policy optimization induces a more intricate policy class,
 069 necessitating a new covering number argument. In particular, slightly perturbing the primal variable
 070 before optimizing it—namely, the policy in our case—is commonly used in various settings ([Wei et al., 2020; Qiu et al., 2020; Ding et al., 2021; Stradi et al., 2025c](#)). The purpose of this step is to
 071 derive a compact dual variable bound, which is essential for regret and violation analyses. However,
 072 this step breaks the recursive structure of policy optimization, so the resulting policy cannot be
 073 represented as a typical softmax policy. As a consequence, the covering number argument becomes
 074 non-trivial. In other words, while policy mixing is simple and common, it poses a critical issue
 075 for covering number arguments in linear CMDPs. Despite these challenges, we aim to answer the
 076 following question:
 077

078 *Can we design a primal-dual policy optimization algorithm for adversarial linear CMDPs that
 079 ensures sublinear regret and violation bounds?*
 080

081 **Main Contributions** We answer the question affirmatively with Algorithm 1, designed for finite-
 082 horizon adversarial linear CMDPs, where the losses are adversarially chosen under full-information
 083 feedback, and the costs are stochastic under bandit feedback. We summarize our main contributions.
 084

- 085 • We present a primal-dual policy optimization algorithm (Algorithm 1) for adversarial lin-
 086 ear CMDPs that achieves regret and constraint violation upper bounds of $\tilde{\mathcal{O}}(K^{3/4})$, where
 087 K is the number of episodes. Our algorithm is the *first* algorithm that achieves sublinear
 088 regret and violation in the adversarial linear CMDP setting. Moreover, the algorithm devel-
 089 ops a new class of policies, which we refer to as weighted LogSumExp softmax policies,
 090 designed to adapt to adversarially chosen loss functions.
- 091 • We establish a covering number argument for the novel class of weighted LogSumExp soft-
 092 max policies, induced by primal-dual policy optimization algorithms. The main technical
 093 difficulty arises from the fact that the weight parameters across policies may differ, prevent-
 094 ing direct application of standard properties of the LogSumExp function. Nevertheless, our
 095 analysis shows that the covering number under this policy class is bounded by $\tilde{\mathcal{O}}(n^2 d^2)$,
 096 where n is the maximum number of mixing steps, and d is the feature dimension of the
 097 linear CMDP.
- 098 • Another challenge in designing a sublinear algorithm for adversarial linear CMDPs lies
 099 in the need to simultaneously control both the covering number and the dual variable. To
 100 address this, our algorithm incorporates two novel components: (i) periodic policy mixing
 101 and (ii) regularized dual updates. Since the covering number grows with the number of
 102 mixing steps, the purpose of periodic policy mixing is to regulate the frequency of mixing
 103 steps by applying it once in every specified mixing period, rather than in every episode.
 104 To incorporate periodic policy mixing, our dual update has to introduce an additional reg-
 105 ularization term in order to obtain a compact bound on the dual variable. Together, these
 106 algorithmic components allow us to effectively control both the covering number and the
 107 dual variable, establishing a sublinear algorithm.

108 A more detailed review of related work is deferred to the appendix.

108
109
110
2 PROBLEM SETTING

111 **Finite-Horizon Adversarial CMDP** A finite-horizon adversarial CMDP is defined by the tuple
 112 $\mathcal{M} = (H, \mathcal{S}, \mathcal{A}, \{\mathbb{P}_h\}_{h=1}^H, \{f^k\}_{k=1}^K, \{g^k\}_{k=1}^K, s_1, b)$, where H is the finite-horizon, \mathcal{S} is the finite
 113 state space¹, and \mathcal{A} is the finite action space. $\{\mathbb{P}_h\}_{h=1}^H$ is a collection of transition kernels for each
 114 step $h \in [H]$, where $\mathbb{P}_h(s' | s, a)$ denotes the probability of transitioning from state s to state s'
 115 when action a is taken at step h . $\{f^k\}_{k=1}^K$ and $\{g^k\}_{k=1}^K$ are the sequences of loss and cost functions
 116 over episodes $k \in [K]$, where $f^k = \{f_h^k\}_{h=1}^H$ and $g^k = \{g_h^k\}_{h=1}^H$ satisfy $f_h^k, g_h^k : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$.
 117 $s_1 \in \mathcal{S}$ is the fixed initial state, and $b \in [0, H]$ is the cost budget.

118 We consider a setting where the loss functions are adversarial, while the cost functions are stochastic.
 119 Specifically, at the beginning of each episode $k \in [K]$, an adversary chooses the loss function f^k ,
 120 which can be selected arbitrarily (i.e., not drawn from a distribution). In contrast, the cost function
 121 g^k is sampled i.i.d. from a fixed distribution G , satisfying $\mathbb{E}[g_h^k(s, a) | s, a] = g_h(s, a)$.

122 The interaction between the agent and the environment proceeds as follows. At the beginning of
 123 each episode $k \in [K]$, f^k is adversarially chosen, which is not revealed to the agent. Next, the agent
 124 selects a collection of policies $\{\pi_h\}_{h=1}^H$, where $\pi_h(a | s)$ denotes the probability of taking action a
 125 given state s at step h . Once the episode begins, at each step $h \in [H]$, the agent samples an action
 126 $a_h \sim \pi(\cdot | s_h)$. Upon taking a_h , the agent observes f_h^k and $g_h^k(s_h, a_h)$, which are full-information
 127 feedback for the adversarial loss and bandit feedback for the stochastic cost, respectively. Lastly, the
 128 next state is sampled as $s_{h+1} \sim \mathbb{P}_h(\cdot | s_h, a_h)$.

129 We define the value function and the Q -function. Let $V_{\ell, h}^{\pi}(s)$ denote the value function at state s
 130 and step h with respect to a function $\ell = \{\ell_h\}_{h=1}^H$ and policy π , which is written as $V_{\ell, h}^{\pi}(s) =$
 131 $\mathbb{E}_{\mathbb{P}, \pi}[\sum_{j=h}^H \ell_j(s_j, a_j) | s_h = s]$. Similarly, the Q -function $Q_{\ell, h}^{\pi}(s, a)$ is defined as $Q_{\ell, h}^{\pi}(s, a) =$
 132 $\mathbb{E}_{\mathbb{P}, \pi}[\sum_{j=h}^H \ell_j(s_j, a_j) | s_h = s, a_h = a]$.

133 We define the performance metrics—regret and constraint violation—as follows. Given a sequence of policies π^1, \dots, π^K generated by the agent, the regret and constraint violation for K episodes are defined as $\text{Regret}(K) = \sum_{k=1}^K (V_{f^k, 1}^{\pi^k}(s_1) - V_{f^k, 1}^{\pi^*}(s_1))$ and $\text{Violation}(K) = \left[\sum_{k=1}^K (V_{g, 1}^{\pi^k}(s_1) - b) \right]_+$, where $[\cdot]_+$ denotes $\max\{\cdot, 0\}$. Here, π^* is an optimal policy, defined as a solution to the following optimization problem over the set of all policies Π : $\pi^* \in \arg \min_{\pi \in \Pi} \sum_{k=1}^K V_{f^k, 1}^{\pi}(s_1)$ s.t. $V_{g, 1}^{\pi}(s_1) \leq b$.

142
143 **Linear CMDP** We consider a class of CMDP instances with an underlying linear structure, referred to as linear CMDP (Ghosh et al., 2022). Let $\phi : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^d$ denote the known feature
 144 mapping. With the feature ϕ , the transition kernel is defined as $\mathbb{P}_h(s' | s, a) = \phi(s, a)^\top \psi_h(s')$ where $\psi_h(s') \in \mathbb{R}^d$ is an unknown signed measure. Similarly, the loss and cost functions are assumed to be linear in ϕ and are defined as $f_h^k(s, a) = \phi(s, a)^\top \theta_{f, h}^k$ and $g_h(s, a) = \phi(s, a)^\top \theta_{g, h}$, where $\theta_{f, h}^k, \theta_{g, h} \in \mathbb{R}^d$ are unknown parameters. Moreover, we further assume that the parameters for linear CMDPs are all bounded as follows. For all $(s, a, h, k) \in \mathcal{S} \times \mathcal{A} \times [H] \times [K]$, we have $\|\phi(s, a)\|_2 \leq 1$ and $\max\{\|\sum_{s' \in \mathcal{S}} |\psi_h|(s')\|_2, \|\theta_{f, h}^k\|_2, \|\theta_{g, h}\|_2\} \leq \sqrt{d}$, where $|\psi_h|(s')$ denotes $(|\psi_h(s')_1|, |\psi_h(s')_2|, \dots, |\psi_h(s')_d|)^\top \in \mathbb{R}^d$.

153 Next, we introduce the Slater condition, which is a mild assumption commonly made in the CMDP
 154 literature (Efroni et al., 2020; Liu et al., 2021; Ding et al., 2021; Ghosh et al., 2022).

155 **Assumption 1** (Slater Condition). *We assume that there exists a Slater policy $\bar{\pi} \in \Pi$ such that
 156 $V_{g, 1}^{\bar{\pi}}(s_1) + \gamma \leq b$ for some Slater constant $\gamma > 0$.*

160 ¹For simplicity, we assume that the state space is finite. However, the state space may be arbitrarily large,
 161 as discussed in Cassel et al. (2024), since the computational complexity of our algorithm—as well as the regret
 and constraint violation—does not scale with $|\mathcal{S}|$, which will be presented in the following sections.

162 3 CHALLENGES AND NOVEL TECHNIQUES

164 **Novelty 1: Analysis for Weighted LogSumExp Softmax** We construct a covering number argument
 165 with a new policy structure—weighted LogSumExp softmax policies—which arises from
 166 combining policy optimization with policy mixing. This policy is given by the weighted sum of
 167 exponentials of sums of Q -function estimates²: given a step size α , weight parameters ζ_i , and Q -
 168 function estimates \widehat{Q}^j ,

$$169 \quad \widehat{\pi}^k \propto \sum_{i=1}^k \zeta_i \exp \left(-\alpha \sum_{j=k-i}^{k-1} \widehat{Q}^j \right). \quad (1)$$

173 Let us explain how (1) arises in primal–dual policy optimization. Perturbing the primal variable before
 174 optimizing it is a simple yet effective technique for controlling the scale of the dual variable (Wei
 175 et al., 2020; Qiu et al., 2020). In the context of policy optimization, this technique translates into the
 176 following update: given a uniform policy π_{unif} over \mathcal{A} and a mixing parameter θ ,

$$177 \quad \underbrace{\widehat{\pi}^{k-1} \leftarrow (1 - \theta) \widehat{\pi}^{k-1} + \theta \pi_{\text{unif}}}_{\text{Policy Mixing}} \quad \text{and then} \quad \underbrace{\widehat{\pi}^k \propto \widehat{\pi}^{k-1} \exp(-\alpha \widehat{Q}^{k-1})}_{\text{Policy Optimization}}.$$

179 Here, the additive relation (Policy Mixing) breaks the recursion in the proportional relation (Policy
 180 Optimization). As a consequence, the resulting policy takes the form of the weighted LogSumExp
 181 softmax. In particular, (1) may assign different weights ζ_i to partial sums $\sum_{j=k-i}^{k-1} \widehat{Q}^j$ for $i \in [k]$.
 182 This yields a more expressive policy compared to the case without policy mixing, where the update
 183 simplifies to $\widehat{\pi}^k \propto \exp(-\alpha \sum_{j=0}^{k-1} \widehat{Q}^j)$.
 184

185 Our first contribution is to provide a new covering number argument for the value function class,
 186 where the policy is given by (1). For comparison, Jin et al. (2020) studied the greedy policy, where
 187 the policy is defined as $\arg \max_{a \in \mathcal{A}} \widehat{Q}^k$. Then the covering number can be analyzed since the max
 188 operation is a contraction mapping. Moreover, the simple softmax policy has been studied in several
 189 works, e.g., Ghosh et al. (2022). In that case, leveraging well-established Lipschitz properties of the
 190 softmax function is sufficient to analyze the covering number.

191 We note that constructing a covering number argument for (1) is non-trivial. The main difficulty
 192 is that the weight parameters $\{\zeta_i\}_{i=1}^k$ depend not only on the mixing parameter θ but also on Q -
 193 function estimates. This means that different policies can have different weight parameters $\{\zeta_i\}_{i=1}^k$,
 194 and thus, well-known properties of LogSumExp cannot be applied. Despite these challenges, our
 195 analysis shows that the logarithm of the covering number under (1), denoted by $\log \mathcal{N}_\epsilon$, grows
 196 quadratically with n , where n is the maximum number of mixing steps during the learning process:

$$197 \quad \log \mathcal{N}_\epsilon = \widetilde{\mathcal{O}}(n^2 d^2). \quad (2)$$

199 **Novelty 2: Periodic Policy Mixing** However, deriving an upper bound on the covering number
 200 alone is not sufficient to guarantee sublinear regret and violation. In particular, if mixing is applied
 201 in every episode, then $\log \mathcal{N}_\epsilon$ grows to the order of $\widetilde{\mathcal{O}}(K^2 d^2)$, which is too large to yield a sublinear
 202 guarantee. On the other hand, if mixing is performed insufficiently, then the dual variable cannot be
 203 bounded, which is critical for violation analysis. These observations highlight an inherent trade-off
 204 between the covering number and the size of dual variables, both of which heavily depend on the
 205 frequency of mixing. This necessitates a new algorithmic component to balance the two.

206 The aforementioned trade-off motivates our second contribution—periodic policy mixing—which
 207 applies the policy mixing every K^B episodes³, where B is a period parameter between 0 and 1.
 208 The purpose of the periodic policy mixing is to balance the covering number and the size of dual
 209 variables. The covering number can be easily observed from (2), since the number of mixing steps
 210 is at most K^{1-B} (i.e., the number of episodes divided by the mixing period). However, it remains
 211 unclear whether periodic policy mixing is effective in controlling the dual variable. To address this,
 212 in the next paragraph, we show that the dual variable can indeed be bounded when periodic policy
 213 mixing is combined with a new dual update rule.

214 ²We call this formulation the weighted LogSumExp softmax, as it is equivalent to $\widehat{\pi}^k \propto \exp(\log(\sum_i \zeta_i \exp(-\alpha \sum_j \widehat{Q}^j)))$ —a softmax of weighted LogSumExp with respect to $-\alpha \sum_j \widehat{Q}^j$.

215 ³For simplicity, we assume that K^B, K^{1-B} are integers to avoid additional notation such as $\lfloor K^B \rfloor$.

216 **Novelty 3: Regularized Dual Update** Our third contribution is another algorithmic component—
 217 a new dual update rule with additional regularization. When combined with periodic policy mixing,
 218 the dual variable Y_k is bounded by $\tilde{\mathcal{O}}(\eta K^B)$, where η is the step size and K^B is the mixing period.
 219 For clarity, this bound omits the dependence on γ, H to highlight the impact of the mixing period.
 220

221 To elaborate on our dual update method, it takes the following form: given regularization parameters
 222 $c_1, c_2 > 0$ and the cost value function estimate $\hat{V}_{g,1}^k$,

$$223 \quad Y_{k+1} \leftarrow [Y_k + \eta(\hat{V}_{g,1}^k(s_1) - b) + \underbrace{(-c_1 Y_k - c_2)}_{\text{Regularization}}]_+.$$

226 For interpretation, $Y_k + \eta(\hat{V}_{g,1}^k(s_1) - b)$ corresponds to the standard online gradient ascent step for
 227 dual updates in primal-dual algorithms, while the regularization term $(-c_1 Y_k - c_2)$ pulls the dual
 228 variable towards 0, keeping it compact. The regularization parameters c_1, c_2 will be specified in the
 229 following paragraph, along with the intuition for our design.

230 The intuition behind our regularization is that it serves as a crucial ingredient for a drift-based analysis,
 231 a well-known method for bounding dual variables (see, e.g., [Yu et al. \(2017\)](#); [Wei et al. \(2020\)](#)
 232 in constrained online convex optimization). To enable drift analysis, these works typically incorporate
 233 an inner product term in the dual update, determined by the decision variables and the gradient,
 234 i.e., $\langle x_{t+1} - x_t, \nabla_t \rangle$. In primal-dual policy optimization, we realize that this translates to a term
 235 involving the transition kernel, i.e., $\mathbb{E}_{\mathbb{P}}[\langle \hat{\pi}^{k+1} - \hat{\pi}^k, \hat{Q}^k \rangle]$. However, since the transition kernel is
 236 unknown, this term cannot be directly incorporated into our algorithm. Instead, we take a lower
 237 bound on this term, which becomes our regularizing component with the choice of $c_1 = 4\alpha\eta H^3$
 238 and $c_2 = 4\alpha\eta H^3 + 4\theta\eta H^2$. In this way, our dual update can be viewed as a key adaptation that
 239 enables drift analysis in primal-dual policy optimization for adversarial linear CMDPs.

241 4 ALGORITHM

243 We present Primal-Dual Policy Optimization for Adversarial Linear CMDPs (Algorithm 1). The al-
 244 gorithm consists of four main components: epoch initialization (lines 2-7), policy execution and
 245 estimation (lines 8-19), policy optimization with periodic policy mixing (lines 20-26), and updating
 246 the dual variable (line 27).

247 In lines 2-7, the algorithm initializes a new epoch when the determinant of the design matrix Λ_h^k ,
 248 decreases by a multiplicative factor compared to that of $\Lambda_{h'}^{k_e}$ for some h' . Once the initialization
 249 procedure begins, the algorithm sets the policy to the uniform policy and initializes the dual variable
 250 to 0. Furthermore, it defines a contracted feature $\bar{\phi}_h^{k_e}$ by shrinking the original feature ϕ . The multi-
 251 plicative contraction factor is determined by $\sigma(-\beta_w \|\phi(\cdot, \cdot)\|_{(\Lambda_h^{k_e})^{-1}} + \log K)$, where σ denotes the
 252 sigmoid function, and $\|\phi(\cdot, \cdot)\|_{(\Lambda_h^{k_e})^{-1}}$ quantifies the current uncertainty of least-squares estimators.
 253 This contracted feature is then used in the estimation of Q -functions.

254 **Remark 1.** The feature contraction—originally proposed by [Cassel & Rosenberg \(2024\)](#) for ad-
 255 versarial linear (unconstrained) MDPs—is necessary for the following reason. Specifically, it pro-
 256 vides a simpler expression for the policy, which is useful in covering number arguments, via a low-
 257 dimensional representation of the sum of Q -function estimates. For this, they omitted a clipping
 258 operation in the definition of Q -function estimates, so the sum collapses into a simple inner prod-
 259 uct with an optimistic bonus. Instead of clipping, they properly contracted the feature to prevent
 260 Q -function estimates from expanding uncontrollably. This technique can be replaced with other ap-
 261 proaches with the same purpose, such as [Sherman et al. \(2024\)](#), but it may lead to higher dependence
 262 on d, H in regret and violation bounds.

263 In lines 8-10, the algorithm takes action $a_h^k \sim \hat{\pi}_h^k(\cdot | s_h^k)$ for each step $h \in [H]$ and observes
 264 $\theta_{f,h}^k, g_h^k(s_h^k, a_h^k)$, and $s_{h+1}^k \sim \mathbb{P}_h(\cdot | s_h^k, a_h^k)$. In lines 11-14, the design matrix Λ_h^{k+1} is updated, and
 265 the parameters for the loss and cost functions are estimated, denoted by $\hat{\theta}_{f,h}^k$ and $\hat{\theta}_{g,h}^k$, respectively.
 266 Based on these, in lines 15-19, for each $\ell = f, g$, it computes the Q -function estimates $\hat{Q}_{\ell,h}^k(s, a)$
 267 using the contracted feature and the value function estimates $\hat{V}_{\ell,h}^k(s)$, which are defined by the inner
 268 product of $\hat{\pi}_h^k(\cdot | s)$ and $\hat{Q}_{\ell,h}^k(s, \cdot)$ for each $s \in \mathcal{S}$.

270 **Algorithm 1** Primal-Dual Policy Optimization for Adversarial Linear CMDPs

271 **Input:** $\delta \in (0, 1)$, $\beta_b = 2\sqrt{2d\log(6KH/\delta)} + 50(K^{1/4} + 1)dH\sqrt{\log(5H^2K^2|\mathcal{A}|/\delta)}$, $\beta_w =$
272 $4\beta_b\log K$, $\alpha = H^{-1}K^{-3/4}$, $\eta = H^{-2}K^{-3/4}$, $\theta = K^{-1}$
273 **Initialization:** $Y_1 \leftarrow 0$, $e \leftarrow 0$, $\Lambda_h^1 \leftarrow I$, $\widehat{V}_{\ell, H+1}^k(s) \leftarrow 0 \quad \forall (h, k, s, \ell) \in [H] \times [K] \times \mathcal{S} \times \{f, g\}$

274

275 1: **for** $k = 1, \dots, K$ **do**

276 2: **if** $k = 1$ or $\exists h' \in [H]$ such that $\det(\Lambda_{h'}^k) \geq 2\det(\Lambda_{h'}^{k_e})$ **then**

277 3: $e \leftarrow e + 1$ and $k_e \leftarrow k$

278 4: $\widehat{\pi}_h^{k_e}(\cdot | s) \leftarrow \pi_{\text{unif}}(\cdot | s) \quad \forall h \in [H]$

279 5: $Y_{k_e} \leftarrow 0$

280 6: $\bar{\phi}_h^{k_e}(\cdot, \cdot) = \phi(\cdot, \cdot) \cdot \sigma(-\beta_w \|\phi(\cdot, \cdot)\|_{(\Lambda_{h'}^{k_e})^{-1}} + \log K) \quad \forall h \in [H]$ \triangleright Feature Contraction

281 7: **end if**

282 8: **for** $h = 1, \dots, H$ **do**

283 9: Take $a_h^k \sim \widehat{\pi}_h^k(\cdot | s_h^k)$, and observe $\theta_{f,h}^k$, $g_h^k(s_h^k, a_h^k)$, $s_{h+1}^k \sim \mathbb{P}_h(\cdot | s_h^k, a_h^k)$

284 10: **end for**

285 11: **for** $h = H, \dots, 1$ **do**

286 12: $\Lambda_h^{k+1} \leftarrow I + \sum_{\tau \in [k]} \phi(s_h^\tau, a_h^\tau) \phi(s_h^\tau, a_h^\tau)^\top$

287 13: $\widehat{\theta}_{f,h}^k \leftarrow \theta_{f,h}^k$

288 14: $\widehat{\theta}_{g,h}^k \leftarrow (\Lambda_h^k)^{-1} \sum_{\tau \in [k-1]} \phi(s_h^\tau, a_h^\tau) g_h^\tau(s_h^\tau, a_h^\tau)$

289 15: **for** $\ell \in \{f, g\}$ **do**

290 16: $\widehat{\psi}_h^k \widehat{V}_{\ell, h+1}^k = (\Lambda_h^k)^{-1} \sum_{\tau \in [k-1]} \phi(s_h^\tau, a_h^\tau) \widehat{V}_{\ell, h+1}^k(s_{h+1}^\tau)$

291 17: $\widehat{Q}_{\ell, h}^k(\cdot, \cdot) \leftarrow \bar{\phi}_h^{k_e}(\cdot, \cdot)^\top \left[\widehat{\theta}_{\ell, h}^k + \widehat{\psi}_h^k \widehat{V}_{\ell, h+1}^k \right] - \beta_b \|\bar{\phi}_h^{k_e}(\cdot, \cdot)\|_{(\Lambda_h^{k_e})^{-1}}$

292 18: $\widehat{V}_{\ell, h}^k(\cdot) \leftarrow \sum_{a \in \mathcal{A}} \widehat{\pi}_h^k(a | \cdot) \widehat{Q}_{\ell, h}^k(\cdot, a)$

293 19: **end for**

294 20: **if** $k - k_e \equiv 0 \pmod{K^{3/4}}$ **then** \triangleright Periodic Policy Mixing

295 21: $\widetilde{\pi}_h^k(\cdot | s) \leftarrow (1 - \theta) \widehat{\pi}_h^k(\cdot | s) + \theta \pi_{\text{unif}}(\cdot | s)$

296 22: **else**

297 23: $\widetilde{\pi}_h^k(\cdot | s) \leftarrow \widehat{\pi}_h^k(\cdot | s)$

298 24: **end if**

299 25: $\widehat{\pi}_h^{k+1}(\cdot | s) \propto \widetilde{\pi}_h^k(\cdot | s) \exp \left(-\alpha (\widehat{Q}_{f,h}^k(s, \cdot) + Y_k \widehat{Q}_{g,h}^k(s, \cdot)) \right)$ \triangleright Policy Optimization

300 26: **end for**

301 27: $Y_{k+1} \leftarrow \left[(1 - 4\alpha\eta H^3) Y_k + \eta \left(\widehat{V}_{g,1}^k(s_1) - b - 4\alpha H^3 - 4\theta H^2 \right) \right]_+$ \triangleright Dual Update

302 28: **end for**

303

304

306 In lines 20-24, the algorithm applies the policy mixing every $K^{3/4}$ episodes. Here, the mixed policy
307 is obtained by taking a convex combination of $\widehat{\pi}_h^k$ and π_{unif} with coefficients $1 - \theta$ and θ , respectively.
308 After this, the algorithm performs policy optimization—equivalently, an online mirror descent step
309 with Kullback-Leibler (KL) divergence over the policy space.

310 In line 27, the algorithm updates the dual variable, Y_k . First, it scales down the dual variable by a
311 factor of $1 - 4\alpha\eta H^3$, and then adds $\eta(\widehat{V}_{g,1}^k(s_1) - b - 4\alpha H^3 - 4\theta H^2)$. Finally, it takes $[\cdot]_+$ to ensure
312 that the dual variable remains nonnegative.

313 The computational complexity of Algorithm 1 is $\mathcal{O}(d^3HK + d^2|\mathcal{A}|HK^2)$, which is independent
314 of $|\mathcal{S}|$. Specifically, in lines 2-7, computing determinants simply takes $\mathcal{O}(d^3HK)$ and contracting
315 features takes $\mathcal{O}(d^2K \cdot |\mathcal{A}| \cdot HK)$, since the inverse of the design matrices can be computed in
316 $\mathcal{O}(d^2K)$, applying the Sherman-Morrison formula. In lines 8-29, the dominant step is function
317 estimation: lines 16-18 take $\mathcal{O}(d^2|\mathcal{A}|HK^2)$.

319 4.1 COMPARISON OF DUAL UPDATES

320 Since our algorithm is designed for adversarial linear CMDPs, it is worth comparing our dual update
321 with that of algorithms for (i) stochastic linear CMDPs (Ghosh et al., 2022) and (ii) tabular CMDPs
322 with adversarial losses (Qiu et al., 2020).

First, we compare with Ghosh et al. (2022), which focused on stochastic linear CMDPs. The key difference comes from the way the dual variable is regularized. Specifically, while both approaches adopt the standard online gradient ascent procedure, their update rule truncates the dual variable at $2H/\gamma$ to ensure that it never exceeds this threshold. In contrast, our update incorporates an extra regularization term to keep the dual variable compact. Although their update is simple and effective in the stochastic setting, it cannot be extended to the adversarial setting, since their analysis relies on the fact that the loss and cost functions are fixed over episodes. This justifies the need for our design of dual update steps in handling adversarial losses.

Second, we compare with Qiu et al. (2020), which proposed an occupancy measure-based algorithm for adversarial tabular CMDPs. The main difference in the dual updates arises from the choice of primal variable: policy-based mirror descent versus occupancy measure-based mirror descent. Before elaborating on this, we recall a dual update from the constrained online convex optimization literature, proposed by Wei et al. (2020) with minor modifications: given a convex cost function $\ell : \mathbb{R}^d \rightarrow \mathbb{R}$ and primal variables $x^k, x^{k+1} \in \mathbb{R}^d$,

$$Y_{k+1} \leftarrow [Y_k + \eta(\ell(x^k) - b + \langle \nabla \ell(x^k), x^{k+1} - x^k \rangle)]_+.$$

Based on this update, let us show how the dual update for occupancy measure-based algorithms can be derived. Since the occupancy measure serves as the primal variable, we take $x^k \leftarrow q^k$, where q^k denotes an occupancy measure in episode k . Furthermore, in CMDPs, note that the expected cost is given by $\langle g, q^k \rangle$ ⁴, where $g \in \mathbb{R}^{|S| \times |\mathcal{A}| \times H}$ denotes a vector representation of the cost function. Then we can take $\ell(x^k) \leftarrow \langle g, q^k \rangle$ and $\nabla \ell(x^k) \leftarrow g$. This leads to $Y_{k+1} \leftarrow [Y_k + \eta(\langle g, q^{k+1} \rangle - b)]_+$, which is the key intuition behind the dual update in Qiu et al. (2020).

However, this argument does not apply to policy-based mirror descent. This is because even if we take $x^k \leftarrow \pi^k$, the expected cost is not linear in π^k , unlike in the occupancy measure case. That said, the dual updates for occupancy measure-based algorithms can be extended from the online convex optimization literature, whereas extending this to policy-based algorithms is non-trivial. This highlights the significance of our proposed design.

4.2 MAIN RESULT

Finally, we present upper bounds on regret and constraint violation under Algorithm 1.

Theorem 1. *Let $H^2 \leq K$ and Assumption 1 hold. Suppose that we run Algorithm 1. Given $\delta > 0$, with probability at least $1 - 2\delta$, then we have*

$$\begin{aligned} \text{Regret}(K) &= \tilde{\mathcal{O}} \left(\sqrt{d^3 H^4} K^{3/4} + dH^3 K^{3/4} + d^3 H^4 K^{1/2} + \frac{H^6}{\gamma^2} K^{1/4} + \frac{dH^6}{\gamma^2} \right), \\ \text{Violation}(K) &= \tilde{\mathcal{O}} \left(\frac{dH^5}{\gamma} K^{3/4} + \sqrt{d^3 H^4} K^{3/4} + d^3 H^4 K^{1/2} \right) \end{aligned}$$

where $\tilde{\mathcal{O}}(\cdot)$ hides polynomial factors in $\log(dHK|\mathcal{A}|/(\delta\gamma))$.

5 ANALYSIS

In this section, we present the proof outline of Theorem 1, where the details of the proofs can be found in the appendix. As a first step, we introduce two key ingredients: (i) a high-probability good event and (ii) bounding the dual variable. We note that our covering number argument plays a central role in showing that the good event holds with high probability. Furthermore, to bound the dual variable, the key part is to consider periodic policy mixing and the regularized dual update.

Good Event We first introduce a high-probability event, denoted by E_g , whose formal definition is provided in the appendix. Basically, the event captures estimation errors for the loss, the cost, and the transition kernel. In addition, it guarantees the boundedness of Q -function estimates, reflecting the usefulness of the feature contraction. The following lemma shows that E_g holds with high probability.

⁴For simplicity, we assume the case where g is deterministic and known, and q^k is the occupancy measure induced by the true transition kernel.

378 **Lemma 1.** Let $\beta_w \leq K$. Then for any $\delta \in (0, 1)$, $\Pr[E_g] \geq 1 - \delta$.
 379

380 In the proof of Lemma 1, the main distinction from previous works arises in our covering number
 381 argument. Specifically, our case incorporates weighted LogSumExp softmax policies, induced by
 382 mixing the policy. Then we have to derive a Lipschitz property of the policies that have been mixed
 383 n times, as the number of mixing steps is a key factor in determining the policy structure. Note that
 384 the Lipschitzness of policies is fundamentally required in most covering number arguments.

385 To attain this property, we prove the following recursion in n , presented here in simplified form:
 386

$$387 \|\hat{\pi}_1^n - \hat{\pi}_2^n\|_1 \leq c \|\hat{\pi}_1^{n-1} - \hat{\pi}_2^{n-1}\|_1 + \|\mathcal{P}_1^n - \mathcal{P}_2^n\|_2$$

388 where $\hat{\pi}_1^n, \hat{\pi}_2^n$ denote the policies that have been mixed n times, $\mathcal{P}_1^n, \mathcal{P}_2^n$ denote the subsets of the
 389 corresponding parameters, and c is a constant. By applying this recursion repeatedly, we can bound
 390 the difference between policies using the sum of differences in their parameters, establishing the
 391 Lipschitzness. Based on this, we can show that the covering number is bounded as $\tilde{\mathcal{O}}(n^2 d^2)$.
 392

393 **Dual Variable Bound** Under the good event E_g , we can establish another ingredient of our
 394 analysis—a drift analysis for bounding the dual variable.

395 **Lemma 2.** Assume that the good event E_g holds. Let $H^2 \leq K$. Let Y_k be the dual variable
 396 generated by Algorithm 1 for each $k \in [K]$. For any $\delta \in (0, 1)$ and $k \in [K]$, with probability at
 397 least $1 - \delta$, we have $Y_k = \tilde{\mathcal{O}}(H^2/\gamma)$.

398 Let us briefly explain our proof strategy for Lemma 2. Although the regularization in our dual update
 399 enables drift analysis, we cannot directly apply the previous proofs proposed by Wei et al. (2020);
 400 Qiu et al. (2020). This is because their analyses rely on applying policy mixing in every episode,
 401 whereas our algorithm applies it only sparsely. To exploit this sparse structure, we instead consider
 402 a subsequence of dual variables corresponding to the mixing episodes, denoted by $\{Z_n\}_{n \geq 1}$ where
 403 $Z_n = Y_{k_e + nK^B}$ for each epoch e . We first bound Z_n for all n , and consequently extend the result
 404 to derive a bound on Y_k for all k .
 405

406 Next, we introduce decompositions of both $\text{Regret}(K)$ and $\text{Violation}(K)$. Let E be the set of all
 407 epochs, and let K_e be the set of episodes in epoch $e \in E$. We have

$$408 \text{Regret}(K) \leq \underbrace{\sum_{k=1}^K \left(V_{f,1}^{\pi^k}(s_1) - \hat{V}_{f,1}^k(s_1) \right)}_{(I)} + \underbrace{\sum_{k=1}^K Y_k \left(b - \hat{V}_{g,1}^k(s_1) \right)}_{(II)} \\ 409 + \underbrace{\sum_{k=1}^K \left(\hat{V}_{f,1}^k(s_1) + Y_k \hat{V}_{g,1}^k(s_1) - V_{f,1}^{\pi^*} - Y_k V_{g,1}^{\pi^*}(s_1) \right)}_{(III)}, \quad (3) \\ 410 \\ 411 \text{Violation}(K) \leq \underbrace{\sum_{k=1}^K \left(V_{g,1}^{\pi^k}(s_1) - \hat{V}_{g,1}^k(s_1) \right)}_{(IV)} + \underbrace{\sum_{k=1}^K \left(\hat{V}_{g,1}^k(s_1) - b \right)}_{(V)}.$$

412 Terms (I), (IV) arise from the difference between the true value function and its optimistic estimates,
 413 which are closely related to the optimistic bonus $-\beta_b \|\bar{\phi}_h^{k_e}(\cdot, \cdot)\|_{(\Lambda_h^{k_e})^{-1}}$. Since our parameter for op-
 414 timistic bonus is set as $\beta_b = \tilde{\mathcal{O}}(K^{1/4} d H)$, where $K^{1/4}$ comes from the covering number argument,
 415 these terms are bounded by $\tilde{\mathcal{O}}(K^{3/4})$, as stated in the following lemma.

416 **Lemma 3.** Let $H^2 \leq K$. Suppose that E_g holds. For all $\ell \in \{f, g\}$,

$$417 \sum_{k=1}^K (V_{\ell,1}^{\pi^k}(s_1) - \hat{V}_{\ell,1}^k(s_1)) = \tilde{\mathcal{O}} \left(\sqrt{d^3 H^4} K^{3/4} + d^3 H^4 K^{1/2} \right).$$

418 Term (II) arises from the dual update in the sense that if the dual variable is not updated (i.e., $Y_k = 0$
 419 for all k), then this term vanishes. It can be bounded using the following lemma.

432 **Lemma 4.** Let $H^2 \leq K$. Suppose that E_g and the statement of Lemma 2 hold. Then we have

$$434 \quad 435 \quad \sum_{k=1}^K Y_k(b - \widehat{V}_{g,1}^k(s_1)) = \tilde{\mathcal{O}}\left(K^{1/4} + \frac{dH^6}{\gamma^2}\right).$$

437 To bound term (III), we further decompose it into two parts—optimism terms and an online mirror
438 descent term—and then bound each individually. This leads to the following lemma.

439 **Lemma 5.** Let $H^2 \leq K$. Suppose that E_g and the statement of Lemma 2 hold. Then we have

$$441 \quad 442 \quad \sum_{k=1}^K \left(\widehat{V}_{f,1}^k(s_1) + Y_k \widehat{V}_{g,1}^k(s_1) - (V_{f,1}^{\pi^*} + Y_k V_{g,1}^{\pi^*}(s_1)) \right) = \tilde{\mathcal{O}}\left(dH^3 K^{3/4} + \frac{H^6}{\gamma^2} K^{1/4} + \frac{dH^5}{\gamma}\right).$$

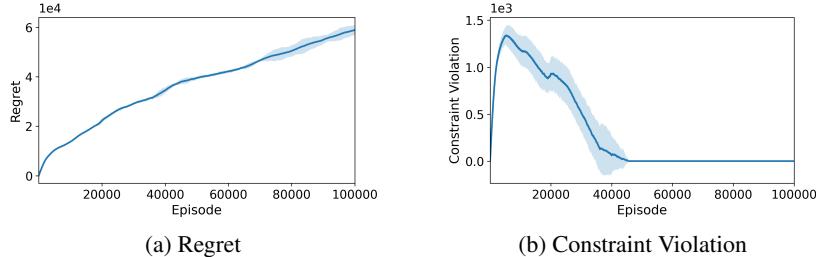
444 Finally, term (V) can be bounded via the dual variable bound. This is because $\eta(\widehat{V}_{g,1}^k(s_1) - b)$
445 accumulates in the dual variable, as it is repeatedly added in the dual update. Based on this idea, we
446 show the following lemma, which bounds term (V).

447 **Lemma 6.** Let $H^2 \leq K$. Suppose that E_g and the statement of Lemma 2 hold. Then we have

$$449 \quad 450 \quad \sum_{k=1}^K (\widehat{V}_{g,1}^k(s_1) - b) = \tilde{\mathcal{O}}\left(\frac{dH^5}{\gamma} K^{3/4} + \frac{H^4}{\gamma} K^{1/4}\right).$$

452 6 NUMERICAL EXPERIMENT

455 We evaluate Algorithm 1 on a job-scheduling CMDP (Ghosh et al., 2022), modified to incorporate
456 adversarial losses. We conduct 10 simulations with different random seeds, each running for $K =$
457 10^5 episodes. Additional details about the experimental setup are deferred to the appendix.



467 Figure 1: Plots of regret and constraint violation for $K = 100,000$ episodes. Each plot represents
468 the average over 10 trials with random seeds, and shaded regions indicate 95% confidence intervals.

471 Figure 1 summarizes the results. As shown in Figure 1a, the regret grows sublinearly in K , and
472 Figure 1b shows that while the constraint violation grows rapidly in the early phase, it eventually
473 converges to 0. These results support our theoretical claims.

475 7 CONCLUSION

477 This paper studies adversarial linear CMDPs, where the losses are adversarially chosen under full-
478 information feedback and the costs are stochastic under bandit feedback. We propose a primal-dual
479 policy optimization algorithm—the first provably efficient algorithm for safe RL with linear function
480 approximation in adversarial settings. We establish a new covering number argument for weighted
481 LogSumExp softmax policies, along with novel algorithmic components that jointly control the
482 covering number and the dual variable. Building on these, we show that the proposed algorithm
483 achieves $\tilde{\mathcal{O}}(K^{3/4})$ regret and violation bounds. Moreover, our numerical experiments support this.
484 As directions for future work, it remains open to investigate the following challenges: (i) whether
485 $\tilde{\mathcal{O}}(\sqrt{K})$ regret and violation bounds can be achieved in our setting, and (ii) whether a sample-
efficiency algorithm can be designed for linear CMDPs with adversarial losses under bandit feedback.

486 REFERENCES
487

488 Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
489 bandits. *Advances in neural information processing systems*, 24, 2011.

490 Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
491 *International conference on machine learning*, pp. 22–31. PMLR, 2017.

492

493 Eitan Altman. *Constrained Markov decision processes*. Routledge, 2021.

494 Sanae Amani, Christos Thrampoulidis, and Lin Yang. Safe reinforcement learning with linear func-
495 tion approximation. In *International Conference on Machine Learning*, pp. 243–253. PMLR,
496 2021.

497

498 Archana Bura, Aria HasanzadeZonuzy, Dileep Kalathil, Srinivas Shakkottai, and Jean-Francois
499 Chamberland. Dope: Doubly optimistic and pessimistic exploration for safe reinforcement learn-
500 ing. *Advances in neural information processing systems*, 35:1047–1059, 2022.

501 Asaf Cassel and Aviv Rosenberg. Warm-up free policy optimization: Improved regret in linear
502 markov decision processes. *Advances in Neural Information Processing Systems*, 37:3275–3303,
503 2024.

504

505 Asaf Cassel, Haipeng Luo, Aviv Rosenberg, and Dmitry Sotnikov. Near-optimal regret in linear
506 mdps with aggregate bandit feedback. In *International Conference on Machine Learning*, pp.
507 5757–5791. PMLR, 2024.

508

509 Liyu Chen, Rahul Jain, and Haipeng Luo. Learning infinite-horizon average-reward markov decision
510 process with constraints. In *International Conference on Machine Learning*, pp. 3246–3270.
PMLR, 2022.

511

512 Yi Chen, Jing Dong, and Zhaoran Wang. A primal-dual approach to constrained markov decision
513 processes. *arXiv preprint arXiv:2101.10895*, 2021.

514

515 Antonio Coronato, Muddasar Naeem, Giuseppe De Pietro, and Giovanni Paragliola. Reinforcement
516 learning for intelligent healthcare applications: A survey. *Artificial intelligence in medicine*, 109:
101964, 2020.

517

518 Yan Dai, Haipeng Luo, Chen-Yu Wei, and Julian Zimmert. Refined regret for adversarial mdps with
519 linear function approximation. In *International Conference on Machine Learning*, pp. 6726–6759.
PMLR, 2023.

520

521 Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, and Mihailo Jovanovic. Provably
522 efficient safe exploration via primal-dual policy optimization. In *International conference on
523 artificial intelligence and statistics*, pp. 3304–3312. PMLR, 2021.

524

525 Yuhao Ding and Javad Lavaei. Provably efficient primal-dual reinforcement learning for cmdps with
526 non-stationary objectives and constraints. In *Proceedings of the AAAI Conference on Artificial
527 Intelligence*, volume 37, pp. 7396–7404, 2023.

528

529 Yonathan Efroni, Shie Mannor, and Matteo Pirotta. Exploration-exploitation in constrained mdps.
arXiv preprint arXiv:2003.02189, 2020.

530

531 Arnob Ghosh, Xingyu Zhou, and Ness Shroff. Provably efficient model-free constrained rl with
532 linear function approximation. *Advances in Neural Information Processing Systems*, 35:13303–
13315, 2022.

533

534 Arnob Ghosh, Xingyu Zhou, and Ness Shroff. Achieving sub-linear regret in infinite horizon aver-
535 age reward constrained MDP with linear function approximation. In *The Eleventh International
536 Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=zZhX4eYNeeh>.

537

538 Arnob Ghosh, Xingyu Zhou, and Ness Shroff. Towards achieving sub-linear regret and hard con-
539 straint violation in model-free rl. In *International Conference on Artificial Intelligence and Statis-
tics*, pp. 1054–1062. PMLR, 2024.

540 Elad Hazan et al. Introduction to online convex optimization. *Foundations and Trends® in Optimization*, 2(3-4):157–325, 2016.
 541
 542

543 Jiafan He, Dongruo Zhou, and Quanquan Gu. Near-optimal policy optimization algorithms for
 544 learning adversarial linear mixture mdps. In *International Conference on Artificial Intelligence
 545 and Statistics*, pp. 4259–4280. PMLR, 2022.

546 David Isele, Alireza Nakhaei, and Kikuo Fujimura. Safe reinforcement learning on autonomous
 547 vehicles. In *2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*,
 548 pp. 1–6. IEEE, 2018.

549 Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
 550 learning with linear function approximation. In *Conference on learning theory*, pp. 2137–2143.
 551 PMLR, 2020.

552 Toshinori Kitamura, Arnob Ghosh, Tadashi Kozuno, Wataru Kumagai, Kazumi Kasaura, Kenta
 553 Hoshino, Yohei Hosoe, and Yutaka Matsuo. Provably efficient rl under episode-wise safety in
 554 constrained mdps with linear function approximation. *arXiv preprint arXiv:2502.10138*, 2025.

555 Fang Kong, XiangCheng Zhang, Baoxiang Wang, and Shuai Li. Improved regret bounds for linear
 556 adversarial MDPs via linear optimization. *Transactions on Machine Learning Research*, 2024.
 557 ISSN 2835-8856. URL <https://openreview.net/forum?id=KcmWZSk53y>.

558
 559 Tor Lattimore and Csaba Szepesvári. *Bandit algorithms*. Cambridge University Press, 2020.

560 Haolin Liu, Chen-Yu Wei, and Julian Zimmert. Towards optimal regret in adversarial linear MDPs
 561 with bandit feedback. In *The Twelfth International Conference on Learning Representations*,
 562 2024. URL <https://openreview.net/forum?id=6yv8UHVJn4>.

563
 564 Tao Liu, Ruida Zhou, Dileep Kalathil, Panganamala Kumar, and Chao Tian. Learning policies
 565 with zero or bounded constraint violation for constrained mdps. *Advances in Neural Information
 566 Processing Systems*, 34:17183–17193, 2021.

567
 568 Xingtu Liu, Lin F Yang, and Sharan Vaswani. Sample complexity bounds for linear constrained
 569 mdps with a generative model. *arXiv preprint arXiv:2507.02089*, 2025.

570
 571 Haipeng Luo, Chen-Yu Wei, and Chung-Wei Lee. Policy optimization in adversarial mdps: Im-
 572 proved exploration via dilated bonuses. *Advances in Neural Information Processing Systems*, 34:
 573 22931–22942, 2021.

574 Adrian Müller, Pragnya Alatur, Giorgia Ramponi, and Niao He. Cancellation-free regret
 575 bounds for lagrangian approaches in constrained markov decision processes. *arXiv preprint
 576 arXiv:2306.07001*, 2023.

577
 578 Adrian Müller, Pragnya Alatur, Volkan Cevher, Giorgia Ramponi, and Niao He. Truly no-regret
 579 learning in constrained mdps. In *International Conference on Machine Learning*, pp. 36605–
 580 36653. PMLR, 2024.

581
 582 Gergely Neu and Julia Olkhovskaya. Online learning in mdps with linear function approximation
 583 and bandit feedback. *Advances in Neural Information Processing Systems*, 34:10407–10417,
 2021.

584
 585 Shuang Qiu, Xiaohan Wei, Zhuoran Yang, Jieping Ye, and Zhaoran Wang. Upper confidence primal-
 586 dual reinforcement learning for cmdp with adversarial loss. *Advances in Neural Information
 587 Processing Systems*, 33:15277–15287, 2020.

588
 589 Amirkhossein Roknilamouki, Arnob Ghosh, Ming Shi, Fatemeh Nourzad, Eylem Ekici, and Ness
 590 Shroff. Provably efficient RL for linear MDPs under instantaneous safety constraints in non-
 591 convex feature spaces. In *Forty-second International Conference on Machine Learning*, 2025.
 592 URL <https://openreview.net/forum?id=sElAqKsJrQ>.

593
 594 Aviv Rosenberg, Alon Cohen, Yishay Mansour, and Haim Kaplan. Near-optimal regret bounds
 595 for stochastic shortest path. In *International Conference on Machine Learning*, pp. 8210–8219.
 596 PMLR, 2020.

594 Lior Shani, Yonathan Efroni, Aviv Rosenberg, and Shie Mannor. Optimistic policy optimization
 595 with bandit feedback. In *International Conference on Machine Learning*, pp. 8604–8613. PMLR,
 596 2020.

597 Uri Sherman, Tomer Koren, and Yishay Mansour. Improved regret for efficient online reinforcement
 598 learning with linear function approximation. In *International Conference on Machine Learning*,
 599 pp. 31117–31150. PMLR, 2023.

601 Uri Sherman, Alon Cohen, Tomer Koren, and Yishay Mansour. Rate-optimal policy optimization
 602 for linear markov decision processes. In *International Conference on Machine Learning*, pp.
 603 44815–44837. PMLR, 2024.

604 Ming Shi, Yingbin Liang, and Ness Shroff. A near-optimal algorithm for safe reinforcement learning
 605 under instantaneous hard constraints. In *International Conference on Machine Learning*, pp.
 606 31243–31268. PMLR, 2023.

608 Francesco Emanuele Stradi, Jacopo Germano, Gianmarco Genalti, Matteo Castiglioni, Alberto
 609 Marchesi, and Nicola Gatti. Online learning in cmdps: Handling stochastic and adversarial con-
 610 straints. In *Forty-first International Conference on Machine Learning*, 2024.

611 Francesco Emanuele Stradi, Matteo Castiglioni, Alberto Marchesi, and Nicola Gatti. Learning ad-
 612 versarial MDPs with stochastic hard constraints. In *Forty-second International Conference on*
 613 *Machine Learning*, 2025a. URL <https://openreview.net/forum?id=s0AwKb1dAW>.

615 Francesco Emanuele Stradi, Matteo Castiglioni, Alberto Marchesi, and Nicola Gatti. Optimal strong
 616 regret and violation in constrained MDPs via policy optimization. In *The Thirteenth Interna-
 617 tional Conference on Learning Representations*, 2025b. URL [m?id=8eNLKk5by4](https://openreview.net/foru

 618 m?id=8eNLKk5by4).

619 Francesco Emanuele Stradi, Anna Lunghi, Matteo Castiglioni, Alberto Marchesi, and Nicola Gatti.
 620 Policy optimization for cmdps with bandit feedback: Learning stochastic and adversarial con-
 621 straints. In *Forty-second International Conference on Machine Learning*, 2025c.

623 Tian Tian, Lin Yang, and Csaba Szepesvári. Confident natural policy gradient for local planning in
 624 q_π -realizable constrained mdps. *Advances in Neural Information Processing Systems*, 37:76139–
 625 76176, 2024.

626 Honghao Wei, Xin Liu, and Lei Ying. A provably-efficient model-free algorithm for infinite-horizon
 627 average-reward constrained markov decision processes. In *Proceedings of the AAAI Conference*
 628 *on Artificial Intelligence*, volume 36, pp. 3868–3876, 2022a.

630 Honghao Wei, Xin Liu, and Lei Ying. Triple-q: A model-free algorithm for constrained reinforce-
 631 ment learning with sublinear regret and zero constraint violation. In *International Conference on*
 632 *Artificial Intelligence and Statistics*, pp. 3274–3307. PMLR, 2022b.

633 Honghao Wei, Arnob Ghosh, Ness Shroff, Lei Ying, and Xingyu Zhou. Provably efficient model-
 634 free algorithms for non-stationary cmdps. In *International Conference on Artificial Intelligence*
 635 *and Statistics*, pp. 6527–6570. PMLR, 2023.

636 Honghao Wei, Xin Liu, and Lei Ying. Safe reinforcement learning with instantaneous constraints:
 637 the role of aggressive exploration. In *Proceedings of the AAAI Conference on Artificial Intelli-
 638 gence*, volume 38, pp. 21708–21716, 2024.

640 Xiaohan Wei, Hao Yu, and Michael J Neely. Online primal-dual mirror descent under stochastic
 641 constraints. *Proceedings of the ACM on Measurement and Analysis of Computing Systems*, 4(2):
 642 1–36, 2020.

643 Hao Yu, Michael Neely, and Xiaohan Wei. Online convex optimization with stochastic constraints.
 644 *Advances in Neural Information Processing Systems*, 30, 2017.

645 Kihyun Yu, Duksang Lee, William Overman, and Dabeen Lee. Improved regret bound for safe
 646 reinforcement learning via tighter cost pessimism and reward optimism. *Reinforcement Learning*
 647 *Journal*, 2025.

648 Han Zhong and Tong Zhang. A theoretical analysis of optimistic proximal policy optimization
649 in linear markov decision processes. *Advances in Neural Information Processing Systems*, 36:
650 73666–73690, 2023.

651

652 Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari. Nearly minimax optimal reinforcement learning
653 for linear mixture markov decision processes. In *Conference on Learning Theory*, pp. 4532–
654 4576. PMLR, 2021.

655 Jiahui Zhu, Kihyun Yu, Dabeen Lee, Xin Liu, and Honghao Wei. An optimistic algorithm for
656 online CMDPS with anytime adversarial constraints. In *Forty-second International Conference on*
657 *Machine Learning*, 2025. URL <https://openreview.net/forum?id=fFgiXamW8E>.

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

A NOTATION

Table 1: Summary of notation

NOTATION	DEFINITION
$H, \mathcal{S}, \mathcal{A}, K$	The finite-horizon, the state and action spaces, and the number of episodes
d	The feature dimension
\mathbb{P}	The transition kernel
f, g	The loss and the cost functions
b	The budget
E	The set of epochs
k_e	The first episode of epoch $e \in E$
ϕ	The feature
$\bar{\phi}_h^{k_e}$	The contracted feature at step h in epoch e
$\widehat{\theta}_{\ell, h}^k$	The estimate of $\theta_{\ell, h}^k$
Λ_h^k	The design matrix at step h in episode k
$\psi_h V$	$\sum_{s' \in \mathcal{S}} \psi_h(s') V(s')$ for $V: \mathcal{S} \rightarrow \mathbb{R}$
$\widehat{\psi}_h^k V$	The estimate of $\psi_h V$ at step h in episode k
$[n]$	The set $\{1, 2, \dots, n\}$ for a positive integer n
\mathbb{Z}_+	The set $\{0, 1, 2, \dots\}$
\mathbb{R}_+	The set $\{z \in \mathbb{R} : z \geq 0\}$
$\ \cdot\ _2$	The ℓ_2 -norm for vectors and the operator norm for matrices
$\ \cdot\ _\infty$	The ℓ_∞ -norm
$\ \cdot\ _F$	The Frobenius norm
$\ \cdot\ _\Lambda$	$\ x\ _\Lambda = \sqrt{x^\top \Lambda x}$ for $\Lambda \succ 0$
$\Delta(\mathcal{A})$	The probability simplex over \mathcal{A}
I	The $d \times d$ identity matrix
$D(\cdot \cdot)$	Kullback-Leibler divergence
σ	The sigmoid function
$\gamma, \bar{\pi}$	The Slater constant and the Slater policy
$Q_{\ell, h}^\pi(s, a)$	The Q -function
$\widehat{Q}_{\ell, h}^k(s, a)$	The Q -function estimate
$V_{\ell, h}^\pi(s)$	The value function
$\widehat{V}_{\ell, h}^k(s)$	The value function estimate
$\bar{V}_{\ell, h}^\pi(s; \rho)$	The value function with respect to a ρ -contracted MDP
$\widehat{\pi}_h^k$	The policy at step h in episode k
π_{unif}	$\pi_{\text{unif}}(a s) = 1/ \mathcal{A} $ for all $(s, a) \in \mathcal{S} \times \mathcal{A}$
Y_k	The dual variable in episode k
K^B	The mixing period, $K^{3/4}$
θ	The mixing parameter, $\theta = K^{-1}$
α	The step size for the mirror descent, $\alpha = H^{-1} K^{-3/4}$
η	The step size for the dual update, $\eta = H^{-2} K^{-3/4}$
β_r	$2\sqrt{2d \log(6KH/\delta)}$
β_p	$50(K^{1/4} + 1)dH\sqrt{\log(5H^2K^2 \mathcal{A} /\delta)}$
β_b	$\beta_r + \beta_p$
β_w	$4\beta_b \log K$
$\beta_{Q, h}$	$2(H - h + 1)$
$\mathcal{N}_\epsilon(\widehat{\mathcal{V}})$	The ϵ -covering number of $\widehat{\mathcal{V}}$ with respect to the ℓ_∞ -norm

B LIMITATIONS OF PRIOR WORK AND NAÏVE EXTENSION

In this section, we clarify why previous works—and their naïve extensions—fail in our setting, where the losses are adversarially chosen in each episode. In particular, we address the following

756 two questions: (i) why the algorithm of Ghosh et al. (2022) fails in the adversarial setting; and (ii)
 757 why simply adapting a mirror-descent update is insufficient for adversarial linear CMDPs.
 758

759 **Limitation of Prior Work** While Ghosh et al. (2022) proposed a primal-dual algorithm for linear
 760 CMDPs, their analysis is limited to the setting with stochastic losses and constraints. The fundamental
 761 reason is that their algorithm is value-based, whose policy is determined solely by the current
 762 Q -function estimates in each episode; that is $\hat{\pi}^k(\cdot | s) \propto \exp(-\alpha \hat{Q}^{k-1})$. Such a policy cannot adapt
 763 to time-varying environments, and in particular, cannot handle adversarially chosen losses.

764 Another limitation is that the dual update of Ghosh et al. (2022) fails to handle adversarial environments.
 765 Their key technique is a dual clipping technique—cutting off the dual variable when it exceeds $2H/\gamma$ —which enables them to leverage the strong duality of CMDPs. Moreover, to leverage
 766 strong duality in their analysis, they reformulate the weighted sum of regret and violation into a simple
 767 Lagrangian form (e.g., Appendix D of Ghosh et al. (2022)), i.e., there exists a policy π' such that
 768

$$770 \quad \frac{1}{K} \left(\sum_{k=1}^K (V_{f,1}^{\hat{\pi}^k} - V_{f,1}^{\pi^*}) + Y \sum_{k=1}^K (V_{g,1}^{\hat{\pi}^k} - b) \right) = (V_{f,1}^{\pi'} - V_{f,1}^{\pi^*}) + Y(V_{g,1}^{\pi'} - b).$$

772 In our case, when losses are adversarially chosen in each episode, reformulating the sum into a simple
 773 Lagrangian form is not allowed, i.e.,

$$775 \quad \frac{1}{K} \left(\sum_{k=1}^K (V_{f^k,1}^{\hat{\pi}^k} - V_{f^k,1}^{\pi^*}) + Y \sum_{k=1}^K (V_{g,1}^{\hat{\pi}^k} - b) \right) \neq (V_{f',1}^{\pi'} - V_{f',1}^{\pi^*}) + Y(V_{g,1}^{\pi'} - b).$$

777 In turn, leveraging strong duality in our setting is non-trivial.
 778

779 **Naïve Extension** To overcome the limitations of value-based algorithms in adversarial settings, a
 780 natural approach is to adopt a mirror-descent update, whose regularizer is given by a KL divergence.
 781 In our case, this corresponds to a policy optimization, i.e.,

$$782 \quad \hat{\pi}^k = \arg \min_{\pi \in \Pi} \langle \pi, \hat{Q}^{k-1} \rangle + \frac{1}{\alpha} D(\pi || \hat{\pi}^{k-1}) \quad \Rightarrow \quad \hat{\pi}^k \propto \hat{\pi}^{k-1} \exp(-\alpha \hat{Q}^{k-1}).$$

784 Due to its recursive formulation, we can see that the resulting policy depends on the sum of all previous
 785 Q -function estimates, namely $\hat{\pi}^k \propto \exp(-\alpha \sum_{j=1}^{k-1} \hat{Q}^j)$. This is the key difference compared
 786 with value-based algorithms.
 787

788 More technically, let us attempt to adapt the algorithm of Wei et al. (2020) to the linear CDP setting.
 789 Their method is a mirror-descent type algorithm—in our case, policy optimization—designed
 790 for constrained online convex optimization with adversarial losses and stochastic constraints.
 791 Beyond policy optimization, there are two additional distinctions compared with Ghosh et al. (2022):

- 792 • (Drift Analysis) As previously mentioned, since strong duality is difficult to use in the
 793 adversarial setting, the dual clipping technique may not work in the adversarial setting.
 794 To address this, Wei et al. (2020) came up with a dual update that admits a *Lyapunov drift*
 795 *analysis*. In particular, Lyapunov drift analysis is a standard tool for bounding the dual
 796 variable. For this, we first derive an upper bound on the Lyapunov drift term defined as
 797 $\Delta(k) := (Y_{k+1}^2 - Y_k^2)/2$, and then utilize it to bound Y_k . The key point is to make $\Delta(k)$
 798 small enough so that Y_k stays stable, as $\Delta(k)$ captures the difference between successive
 799 dual variables.
- 800 • (Policy Mixing) Another key technique of Wei et al. (2020) is *policy mixing*—perturbing
 801 the policy before applying the policy optimization update. The motivation behind this
 802 technique is to make $\Delta(k)$ small. In particular, a typical bound on $\Delta(k)$ in policy optimization
 803 involves KL divergence terms as follows:

$$804 \quad \Delta(k) \leq -c_1 Y_k + c_2 + D(\pi || \tilde{\pi}_h^k) - D(\pi || \hat{\pi}_h^{k+1})$$

805 The key issue is that $D(\pi || \tilde{\pi}_h^k)$ can become arbitrarily large when $\tilde{\pi}_h^k(a) \approx 0$ for some $a \in$
 806 \mathcal{A} , because the KL divergence is unbounded near the simplex boundary. In contrast, when a
 807 mixing step is applied, we ensure that $\tilde{\pi}_h^k(a) \geq \theta/|\mathcal{A}|$ for all a , where θ denotes the level of
 808 mixing. In this case, we can easily show that $D(\pi || \tilde{\pi}_h^k) \leq \log(|\mathcal{A}|/\theta)$ (Lemma 26). Hence,
 809 the mixing step guarantees that the KL term remains bounded, which in turn prevents the dual
 810 variable from blowing up.

810 **Insufficiency of Naïve Extension** While policy mixing is essential to keep the dual variable stable,
 811 it becomes problematic in the linear CMDP setting, where the main difficulty arises in the covering
 812 number argument. In particular, as described in Section 3, we have to derive an upper bound on
 813 the covering number of the weighted LogSumExp softmax policy. Establishing such a bound is
 814 one of our key challenges and is highly non-trivial. Thus, although adapting Wei et al. (2020) to
 815 the framework of Ghosh et al. (2022) is a natural step toward handling adversarial losses, obtaining
 816 sublinear regret and constraint violation bounds becomes unclear.

818 C ADDITIONAL DISCUSSIONS

820 **Intuition on Covering Number** We provide an intuition on why the weighted LogSumExp soft-
 821 max policy yields $\tilde{\mathcal{O}}(n^2 d^2)$, where n denotes the number of mixing steps, while the covering number
 822 under greedy or softmax policies is just $\tilde{\mathcal{O}}(d^2)$. Before explaining this, we note that the covering
 823 number of a function class depends on (i) how many parameters are required and (ii) how close
 824 these parameters must be for the functions to be sufficiently similar. Based on this high-level idea,
 825 the number of parameters needed to determine a weighted LogSumExp softmax policy is $\mathcal{O}(nd^2)$,
 826 as each $\sum_j \hat{Q}^j$ requires $\mathcal{O}(d^2)$ parameters once the feature contraction is applied. Furthermore, we
 827 observe that the impact of parameters decreases exponentially as mixing continues, meaning that
 828 the parameters must be chosen increasingly close (see the proof of Lemma 11). This leads to an
 829 additional multiplicative factor n , resulting in $\tilde{\mathcal{O}}(n^2 d^2)$.

830 **Choice of Mixing Period** To justify the choice of $K^{3/4}$, we first clarify how $\text{Regret}(K)$ and
 831 $\text{Violation}(K)$ depend on the mixing period K^B . Note that the covering number is closely related to
 832 terms (I) and (IV) of the decompositions in (3), and the dual variable directly affects term (V). This
 833 yields the following simplified regret and constraint violation bounds.

$$834 \quad \text{Regret}(K) = \tilde{\mathcal{O}}(\sqrt{K \log \mathcal{N}_\epsilon}), \quad \text{Violation}(K) = \tilde{\mathcal{O}}(\sqrt{K \log \mathcal{N}_\epsilon} + Y_k/\eta).$$

835 We emphasize that $\text{Violation}(K)$ can be bounded by $\tilde{\mathcal{O}}(\sqrt{K^{3-2B}} + K^B)$. This is because the log
 836 covering number is bounded by $\tilde{\mathcal{O}}(K^{2-2B} d^2)$, and the dual variable is bounded by $\tilde{\mathcal{O}}(\eta K^B)$. Thus,
 837 to minimize the dependency on K , we set $B = 3/4$.

838 **Discussion on Lower Bound** We note that the regret lower bound of $\Omega(\sqrt{H^3 d^2 K})$ also applies to
 839 our setting, which is for stochastic linear unconstrained MDPs (Zhou et al., 2021; He et al., 2022).
 840 This is because by taking the loss to be fixed across episodes and using a trivial constraint (i.e., taking
 841 $b = H$), our problem reduces to a stochastic linear unconstrained MDP. Therefore, we conjecture
 842 that there remains room for improving our regret bound by a factor of $\tilde{\mathcal{O}}(K^{1/4})$.

843 Additionally, we outline a promising direction toward achieving $\tilde{\mathcal{O}}(\sqrt{K})$ regret and violation in our
 844 setting. The main challenge is analyzing the constraint violation without relying on mixing steps. In
 845 our current analysis, the mixing step is inevitable to mitigate KL divergence terms in the drift upper
 846 bound (Lemma 17); these KL divergence terms arise from mirror-descent type updates to control
 847 adversarial losses. However, mixing becomes problematic for linear CMDPs because it enlarges the
 848 covering number. If one can design an approach that controls the dual variable without mixing, then
 849 achieving optimal bounds may become possible.

850 D RELATED WORK

851 **Online Tabular CMDP** Starting from the seminal work of Efroni et al. (2020), minimizing regret
 852 and constraint violation in online tabular CMDPs has been studied under various settings. Several
 853 works (Liu et al., 2021; Bura et al., 2022; Yu et al., 2025) considered the case of zero constraint
 854 violation under the assumption of a known safe policy. Under the same assumption, Müller et al.
 855 (2023) studied hard constraint violation—the sum of only positive constraint violations. Without this
 856 assumption, the hard constraint violation was studied by Müller et al. (2024); Stradi et al. (2025b).
 857 Moreover, Wei et al. (2022b) proposed a model-free algorithm for finite-horizon CMDPs, and Wei
 858 et al. (2022a); Chen et al. (2022) proposed algorithms for infinite-horizon average-reward CMDPs.

864 However, these works assume stationary environments. To relax this assumption, [Qiu et al. \(2020\)](#)
 865 studied adversarial losses under full-information feedback. For both adversarial losses and costs,
 866 [Stradi et al. \(2024; 2025c\)](#) considered full-information feedback and bandit feedback, respectively.
 867 More recently, several papers proposed algorithms for adversarial CMDPs with hard constraint
 868 violation guarantees. [Stradi et al. \(2025a\)](#) proposed an algorithm for adversarial losses and stochastic
 869 costs under bandit feedback, and [Zhu et al. \(2025\)](#) studied stochastic losses and adversarial costs
 870 under full-information feedback.

871 **Online Linear CMDP** For finite-horizon linear CMDPs, [Ghosh et al. \(2022; 2024\)](#) studied cumulative
 872 and hard constraint violations, respectively. Similarly, [Ghosh et al. \(2023\)](#) developed several
 873 algorithms for the infinite-horizon average-reward setting. [Kitamura et al. \(2025\)](#) studied achieving
 874 zero constraint violation under the assumption of a known safe policy, and [Liu et al. \(2025\)](#)
 875 studied sample complexity under the assumption of a generative model. [Wei et al. \(2023\)](#) studied
 876 non-stationary CMDPs, where components of the environment may change subject to bounded total
 877 variation. However, this setting differs from adversarial settings, in which the variation of functions
 878 is not assumed to be bounded by some factor. [Amani et al. \(2021\); Wei et al. \(2024\); Roknilamouki
 879 et al. \(2025\)](#) investigated hard instantaneous constraints, where unsafe actions must not be taken in
 880 each step. We also note additional works that are not linear CMDPs but incorporate linear function
 881 approximation. There are several works for linear mixture CMDPs with various settings ([Ding et al.,
 882 2021; Ding & Lavaei, 2023; Shi et al., 2023](#)). More generally, the q_π -realizable setting was studied
 883 by [Tian et al. \(2024\)](#), which only assumes that value functions can be represented as an inner product
 884 of a given feature. However, adversarial environments have not been considered in these settings.

885 **Online Adversarial Linear MDP** Online adversarial linear MDPs have been studied under full-
 886 information feedback ([Zhong & Zhang, 2023; Sherman et al., 2024; Cassel & Rosenberg, 2024](#)) and
 887 bandit feedback ([Neu & Olkhovskaya, 2021; Luo et al., 2021; Dai et al., 2023; Sherman et al., 2023;
 888 Kong et al., 2024; Liu et al., 2024](#)). Specifically, in the full-information feedback setting, [Zhong &
 889 Zhang \(2023\)](#) proposed a multi-batched policy optimization algorithm, achieving a $\tilde{\mathcal{O}}(K^{3/4})$ regret
 890 bound. [Sherman et al. \(2024\)](#) achieved a $\tilde{\mathcal{O}}(\sqrt{K})$ regret bound, adopting a warm-up phase to obtain
 891 a simple expression for policies. In addition, [Cassel & Rosenberg \(2024\)](#) proposed a warm-up free
 892 policy optimization algorithm with an improved regret bound. In the bandit feedback setting, [Luo
 893 et al. \(2021\)](#) introduced the notion of dilated bonus, and [Liu et al. \(2024\)](#) proposed two algorithms:
 894 one achieved a $\tilde{\mathcal{O}}(\sqrt{K})$ regret bound but was computationally inefficient, and the other achieved
 895 $\tilde{\mathcal{O}}(K^{3/4})$ and was computationally efficient.

897 E CONTRACTED MDP

898 In this section, we explain the notion of a contracted MDP ([Cassel & Rosenberg, 2024](#)), which
 899 is essential for deriving our main results. A contracted MDP is defined by the tuple $\mathcal{M} =$
 900 $(H, \mathcal{S}, \mathcal{A}, \{\bar{\mathbb{P}}_h\}_{h=1}^H, \{\bar{\ell}_h\}_{h=1}^H, s_1, \rho)$. Here, $\rho : \mathcal{S} \times \mathcal{A} \times [H] \rightarrow [0, 1]$ specifies the level of
 901 contraction. In particular, the loss function and transition kernel are defined as

$$902 \bar{\ell}_h(s, a) = \rho(s, a, h)\ell_h(s, a), \\ 903 \bar{\mathbb{P}}_h(s' | s, a) = \rho(s, a, h)\mathbb{P}_h(s' | s, a).$$

904 Since $\rho(s, a, h) \in [0, 1]$, it follows that $\bar{\ell}_h(s, a) \in [0, 1]$, meaning that the contraction preserves
 905 the boundedness of the original loss function. On the other hand, $\sum_{s' \in \mathcal{S}} \bar{\mathbb{P}}_h(s' | s, a) \leq 1$, which
 906 implies that $\bar{\mathbb{P}}$ defines a sub-probability measure. Although this does not satisfy the definition of
 907 a probability measure, it is sufficient for our purposes, as the contracted transition kernel is only
 908 used in the analysis. Furthermore, it is often called a sub-MDP because its transition kernel is a
 909 sub-probability measure.

910 Accordingly, $\bar{V}_{\ell, h}^\pi(s; \rho)$ denotes the ρ -contracted value function with respect to a policy π and a
 911 contracted MDP $\bar{\mathcal{M}}$. Given $\bar{V}_{\ell, H+1}^\pi(s; \rho) = 0$ for all $s \in \mathcal{S}$, $\bar{V}_{\ell, h}^\pi(s; \rho)$ is defined recursively as

$$912 \bar{V}_{\ell, h}^\pi(s; \rho) = \mathbb{E}_{\bar{\mathbb{P}}, \pi} \left[\sum_{j=h}^H \bar{\ell}_j(s_j, a_j) | s_h = s \right] = \mathbb{E}_{a \sim \pi(\cdot | s)} \left[\bar{\ell}_h(s, a) + \sum_{s' \in \mathcal{S}} \bar{\mathbb{P}}_h(s' | s, a) \bar{V}_{\ell, h+1}^\pi(s'; \rho) \right]. \\ 913 \quad (4)$$

We next introduce a lemma that highlights a key property of contracted MDPs, which states a ρ -contracted value function is less than or equal to its original value function.

Lemma 7 (Lemma 2 of [Cassel & Rosenberg \(2024\)](#)). *For any $\rho : \mathcal{S} \times \mathcal{A} \times [H] \rightarrow [0, 1]$, $\pi \in \Pi$, $h \in [H]$, $s \in \mathcal{S}$, and $\ell : \mathcal{S} \times \mathcal{A} \times [H] \rightarrow [0, 1]$, we have $\bar{V}_{\ell,h}^{\pi}(s; \rho) \leq V_{\ell,h}^{\pi}(s)$.*

Since $\bar{\mathbb{P}}$ is a sub-probability, we note that $\mathbb{E}_{\bar{\mathbb{P}}, \pi}$ applied to a constant $c \geq 0$ could be less than c itself. Although this is trivial, we state it formally below for completeness, as this relation is used frequently in our analysis.

$$\mathbb{E}_{\bar{\mathbb{P}}, \pi}[c \mid s_1 = s] \leq \mathbb{E}_{\mathbb{P}, \pi}[c \mid s_1 = s] = c \quad \forall s \in \mathcal{S} \quad (5)$$

Proof of (5). First, we prove $\mathbb{E}_{\bar{\mathbb{P}}, \pi}[\sum_{h \in [H]} \ell_h(s, a) \mid s_1 = s] \leq \mathbb{E}_{\mathbb{P}, \pi}[\sum_{h \in [H]} \ell_h(s, a) \mid s_1 = s]$ for any $s \in \mathcal{S}$ and $\{\ell_h\}_{h=1}^H$ where $\ell_h : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}_+$, using induction on h . For the base case, $h = H$, $\mathbb{E}_{\bar{\mathbb{P}}, \pi}[\ell_H(s_H, a_H) \mid s_H] = \mathbb{E}_{\mathbb{P}, \pi}[\ell_H(s_H, a_H) \mid s_H] = \mathbb{E}_{a_H \sim \pi(\cdot \mid s_H)}[\ell_H(s_H, a_H)]$. Assuming the statement is true for $h + 1$, we have

$$\begin{aligned} \mathbb{E}_{\bar{\mathbb{P}}, \pi} \left[\sum_{j=h}^H \ell_j(s_j, a_j) \mid s_h = s \right] &= \mathbb{E}_{a \sim \pi(\cdot \mid s)} \left[\ell_h(s_h, a_h) + \sum_{s' \in \mathcal{S}} \bar{\mathbb{P}}_h(s' \mid s_h, a_h) \mathbb{E}_{\bar{\mathbb{P}}, \pi} \left[\sum_{j=h+1}^H \ell_j(s_j, a_j) \mid s' \right] \right] \\ &\leq \mathbb{E}_{a \sim \pi(\cdot \mid s)} \left[\ell_h(s_h, a_h) + \sum_{s' \in \mathcal{S}} \mathbb{P}_h(s' \mid s_h, a_h) \mathbb{E}_{\mathbb{P}, \pi} \left[\sum_{j=h+1}^H \ell_j(s_j, a_j) \mid s' \right] \right] \\ &= \mathbb{E}_{\mathbb{P}, \pi} \left[\sum_{j=h}^H \ell_j(s_j, a_j) \mid s_h = s \right]. \end{aligned}$$

This completes the induction. Furthermore, by taking $\ell_h(s, a) = c/H$ for all $(s, a, h) \in \mathcal{S} \times \mathcal{A} \times [H]$, we have $\sum_{h \in [H]} \ell_h(s, a) = c$, and thus $\mathbb{E}_{\bar{\mathbb{P}}, \pi}[c \mid s] \leq \mathbb{E}_{\mathbb{P}, \pi}[c \mid s]$ for any $s \in \mathcal{S}$. Since \mathbb{P} is not contracted, we know that $\mathbb{E}_{\mathbb{P}, \pi}[c \mid s] = c$. This completes the proof. \square

The following lemma is an extension of a well-known value difference lemma to incorporate contracted MDPs.

Lemma 8 (Lemma 1 of [Shani et al. \(2020\)](#) and Lemma 14 of [Cassel & Rosenberg \(2024\)](#)). *Let $\pi, \hat{\pi}$ be two policies, and let $\mathcal{M} = (H, \mathcal{S}, \mathcal{A}, \{\mathbb{P}_h\}_{h=1}^H, \{\ell_h\}_{h=1}^H, s_1)$ be a (possibly sub) MDP. For all $h \in [H]$, let $\hat{Q}_{\ell,h} : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ be an arbitrary function, and let $\hat{V}_{\ell,h}(s) = \langle \hat{Q}_{\ell,h}(s, \cdot), \hat{\pi}_h(\cdot \mid s) \rangle$ for all $s \in \mathcal{S}$. Then,*

$$\begin{aligned} V_{\ell,1}^{\pi}(s_1) - \hat{V}_{\ell,1}(s_1) &= \mathbb{E}_{\mathbb{P}, \pi} \left[\sum_{h=1}^H \langle \hat{Q}_{\ell,h}(s_h, \cdot), \pi_h(\cdot \mid s_h) - \hat{\pi}_h(\cdot \mid s_h) \rangle \mid s_1 \right] \\ &\quad + \mathbb{E}_{\mathbb{P}, \pi} \left[\sum_{h=1}^H \ell_h(s_h, a_h) + \mathbb{P}_h \hat{V}_{\ell,h+1}(s_h, a_h) - \hat{Q}_{\ell,h}(s_h, a_h) \mid s_1 \right], \end{aligned}$$

where $V_{\ell,1}^{\pi}$ is the value function of π , and $\mathbb{P}_h \hat{V}_{\ell,h+1}(s, a) = \sum_{s' \in \mathcal{S}} \mathbb{P}_h(s' \mid s, a) \hat{V}_{\ell,h+1}(s')$.

Since we assume that the initial state s_1 is fixed, we omit it when clear from the context for simplicity.

F PARAMETERIZATIONS AND FUNCTION CLASSES

In this section, we introduce the parameterizations of \hat{Q} and $\hat{\pi}$. Following this, we define the function classes to which the value function estimates and policies belong.

972 **Parameterization** For the parameterization of \widehat{Q} , given $\beta \in \mathbb{R}, w \in \mathbb{R}^d, \Lambda \in \mathbb{R}^{d \times d}$, we define
 973 $\widehat{Q}(\cdot, \cdot; \beta, w, \Lambda)$ as
 974

$$975 \quad \widehat{Q}(\cdot, \cdot; \beta, w, \Lambda) = (\phi(\cdot, \cdot)^\top w - \beta \|\phi(\cdot, \cdot)\|_\Lambda) \cdot \sigma(-\beta_w \|\phi(\cdot, \cdot)\|_\Lambda + \log K). \quad (6)$$

976 Next, we consider the parameterization of $\widehat{\pi}$. Let $n \in \mathbb{Z}_+$ denote the number of mixing steps.
 977

978 For the parameterization of $\widehat{\pi}$, given $n, \{\beta_i, w_i\}_{i=0}^n, \Lambda$ and a mixing parameter $\theta \in (0, 1)$, we first
 979 generate policies $\{\widehat{\pi}_i\}_{i=0}^{n+1}$ recursively, and define the final policy as $\widehat{\pi}(\cdot | \cdot; \{\beta_i, w_i\}_{i=0}^n, \Lambda)$:

$$980 \quad \text{Generate } \widehat{\pi}_i : \quad \begin{aligned} \widehat{\pi}_0(\cdot | s) &= \pi_{\text{unif}}(\cdot | s), \\ 981 \quad \widehat{\pi}_i(\cdot | s) &= (1 - \theta)\widehat{\pi}_i(\cdot | s) + \theta\pi_{\text{unif}}(\cdot | s) \quad i = 0, \dots, n, \\ 982 \quad \widehat{\pi}_{i+1}(\cdot | s) &\propto \widetilde{\pi}_i(\cdot | s) \exp\left(\widehat{Q}(s, \cdot; \beta_i, w_i, \Lambda)\right) \quad i = 0, \dots, n, \end{aligned} \quad (7)$$

$$983 \quad \text{Define : } \widehat{\pi}(\cdot | s; \{\beta_i, w_i\}_{i=0}^n, \Lambda) = \widehat{\pi}_{n+1}(\cdot | s).$$

984 We keep the policy parameterization in its recursive form for the following reason. Although we can
 985 easily show that $\widehat{\pi}(\cdot | \cdot; \{\beta_i, w_i\}_{i=0}^n, \Lambda)$ follows the weighted LSE softmax, i.e., $\sum_i \zeta_i \exp(\sum_j \widehat{Q}_j)$,
 986 the weight parameters ζ_i depend on $\{\beta_i, w_i\}_{i=0}^n$ and Λ , which makes analyzing this form difficult.
 987 Thus, obtaining the closed form of $\widehat{\pi}(\cdot | \cdot; \{\beta_i, w_i\}_{i=0}^n, \Lambda)$ is intractable, as specifying exact ζ_i is
 988 difficult.

989 Since $\widehat{\pi}_{n+1}(\cdot | s)$ induces a probability distribution over \mathcal{A} for each $s \in \mathcal{S}$, (7) indeed defines a valid
 990 policy. Furthermore, the following lemma shows that Q -function estimates and policies generated by
 991 Algorithm 1 can be parameterized using (6), (7).

992 **Lemma 9.** *For any $e \in E$, consider $k \in K_e$. For some $n \geq 0$, let $k_e + nK^B$ be the last
 993 index that the mixing is applied before episode k , i.e., $n = \max\{0, \lfloor (k - 1 - k_e)/K^B \rfloor\}$. Let
 994 $\widehat{\pi}_h^k, \{\widehat{Q}_{f,h}^j, \widehat{Q}_{g,h}^j\}_{j=k_e}^{k-1}$ be the policy and Q -function estimates generated by Algorithm 1, respec-
 995 tively. Let S_i be the index set defined as*

$$996 \quad S_i = \begin{cases} \{k_e + iK^B, \dots, k_e + (i+1)K^B - 1\} & \text{for } i = 0, \dots, n-1, \\ \{k_e + nK^B, \dots, k-1\} & \text{for } i = n. \end{cases} \quad (8)$$

997 Then there exists $\{w_{f,h}^j, w_{g,h}^j\}_{j=k_e}^{k-1}, \Lambda$ such that for $j = k_e, \dots, k-1$,

$$998 \quad \widehat{Q}_{f,h}^j(\cdot, \cdot) = \widehat{Q}(\cdot, \cdot; \beta_b, w_{f,h}^j, \Lambda), \quad \widehat{Q}_{g,h}^j(\cdot, \cdot) = \widehat{Q}(\cdot, \cdot; \beta_b, w_{g,h}^j, \Lambda).$$

999 Furthermore, we have

$$1000 \quad \widehat{\pi}_h^k(\cdot | \cdot) = \widehat{\pi}(\cdot | \cdot; \{\beta_i, w_i\}_{i=0}^n, \Lambda)$$

1001 where $\beta_i = -\alpha \beta_b \sum_{j \in S_i} (1 + Y_j)$, $w_i = -\alpha \sum_{j \in S_i} (w_{f,h}^j + Y_j w_{g,h}^j)$ for $i = 0, \dots, n$, and Y_j is the
 1002 dual variable in episode j .

1003 *Proof.* Note that for any j , by algorithm

$$1004 \quad \widehat{Q}_{f,h}^j(\cdot, \cdot) = \left(\phi(\cdot, \cdot)^\top \left[\widehat{\theta}_{f,h}^j + \widehat{\psi}_h^k \widehat{V}_{f,h+1}^j \right] - \beta_b \|\phi(\cdot, \cdot)\|_{(\Lambda_h^{k_e})^{-1}} \right) \sigma(-\beta_w \|\phi(\cdot, \cdot)\|_{(\Lambda_h^{k_e})^{-1}} + \log K).$$

1005 Then we can take $w_{f,h}^j = \widehat{\theta}_{f,h}^j + \widehat{\psi}_h^k \widehat{V}_{f,h+1}^j$ and $\Lambda = (\Lambda_h^{k_e})^{-1}$. Here, it is clear that $(2K)^{-1}I \preceq$
 1006 $(\Lambda_h^{k_e})^{-1} \preceq I$. Also, we can apply the same argument to $\widehat{Q}_{g,h}^j$. Then the first statement is proved.

1007 Let us prove the second statement. By the definition of n , the mixing is not applied from episode
 1008 $k_e + nK^B + 1$ to $k-1$. Then we have

$$1009 \quad \widehat{\pi}_h^k(\cdot | s) \propto \widetilde{\pi}_h^{k_e+nK^B}(\cdot | s) \exp \left(-\alpha \sum_{j \in S_n} (\widehat{Q}_{f,h}^j(s, \cdot) + Y_j \widehat{Q}_{g,h}^j(s, \cdot)) \right).$$

1010 Furthermore, since $(k_e + nK^B) - k_e \equiv 0 \pmod{K^B}$, we know that $\widetilde{\pi}_h^{k_e+nK^B}$ is mixed. Then we
 1011 have

$$1012 \quad \widetilde{\pi}_h^{k_e+nK^B}(\cdot | s) = (1 - \theta)\widehat{\pi}_h^{k_e+nK^B}(\cdot | s) + \theta\pi_{\text{unif}}(\cdot | s).$$

1026 Similarly, we can deduce $\widehat{\pi}_h^{k_e+nK^B}$ using the fact that the mixing is not applied from episode $k_e +$
 1027 $(n-1)K^B$ to $k_e + nK^B - 1$.
 1028

$$1029 \widehat{\pi}_h^{k_e+nK^B}(\cdot | s) \propto \widehat{\pi}_h^{k_e+(n-1)K^B}(\cdot | s) \exp \left(-\alpha \sum_{j \in S_{n-1}} (\widehat{Q}_{f,h}^j(s, \cdot) + Y_j \widehat{Q}_{g,h}^j(s, \cdot)) \right).$$

1032 We repeatedly apply these steps until episode k_e . Then we have for $i = 0, \dots, n-1$,
 1033

$$1034 \widehat{\pi}_h^{k_e+iK^B}(\cdot | s) = (1-\theta) \widehat{\pi}_h^{k_e+iK^B}(\cdot | s) + \theta \pi_{\text{unif}}(\cdot | s),$$

$$1036 \widehat{\pi}_h^{k_e+(i+1)K^B}(\cdot | s) \propto \widehat{\pi}_h^{k_e+iK^B}(\cdot | s) \exp \left(-\alpha \sum_{j \in S_i} (\widehat{Q}_{f,h}^j(s, \cdot) + Y_j \widehat{Q}_{g,h}^j(s, \cdot)) \right).$$

1039 Note that $\widehat{\pi}_h^{k_e} = \pi_{\text{unif}}$. Then we have $\widehat{\pi}_h^k = \widehat{\pi}_{n+1}$, where $\widehat{\pi}_{n+1}$ is recursively defined as
 1040

$$1041 \widehat{\pi}_0(\cdot | s) = \pi_{\text{unif}}(\cdot | s)$$

$$1042 \widehat{\pi}_i(\cdot | s) = (1-\theta) \widehat{\pi}_i(\cdot | s) + \theta \pi_{\text{unif}}(\cdot | s) \quad \forall i = 0, \dots, n$$

$$1044 \widehat{\pi}_{i+1}(\cdot | s) \propto \widehat{\pi}_i(\cdot | s) \exp \left(-\alpha \sum_{j \in S_i} (\widehat{Q}_{f,h}^j(s, \cdot) + Y_j \widehat{Q}_{g,h}^j(s, \cdot)) \right) \quad \forall i = 0, \dots, n.$$

1047 Note that

$$1048 -\alpha \sum_{j \in S_i} (\widehat{Q}_{f,h}^j(s, a) + Y_j \widehat{Q}_{g,h}^j(s, a))$$

$$1050 = -\alpha \sum_{j \in S_i} \left(\phi(s, a)^\top (w_{f,h}^j + Y_j w_{g,h}^j) - \beta_b (1 + Y_j) \|\phi(s, a)\|_\Lambda \right) \sigma(-\beta_w \|\phi(s, a)\|_\Lambda + \log K)$$

$$1052 = (\phi(s, a)^\top w_i - \beta_i \|\phi(s, a)\|_\Lambda) \sigma(-\beta_w \|\phi(s, a)\|_\Lambda + \log K)$$

$$1054 = \widehat{Q}(s, a; \beta_i, w_i, \Lambda)$$

1056 where $\beta_i = -\alpha \beta_b \sum_{j \in S_i} (1 + Y_j)$, $w_i = -\alpha \sum_{j \in S_i} (w_{f,h}^j + Y_j w_{g,h}^j)$. This completes the proof for
 1057 the second statement. \square
 1058

1059 **Function Class** Now, we define the function classes as follows. Given some boundedness con-
 1060 stants $C_\beta, C_w, C_Q \geq 0$,
 1061

$$1062 \widehat{\mathcal{Q}}(C_\beta, C_w, C_Q) = \left\{ \widehat{Q}(\cdot, \cdot; \beta, w, \Lambda) : |\beta| \leq C_\beta, \|w\|_2 \leq C_w, (2K)^{-1}I \preceq \Lambda \preceq I, \|\widehat{Q}(\cdot, \cdot; \beta, w, \Lambda)\|_\infty \leq C_Q \right\}.$$

1064 Unlike $\widehat{\mathcal{Q}}$, the class of policies has to be defined based on the number of mixing steps, since the
 1065 formulation is determined by this number. Let $\widehat{\Pi}_n$ denote the set of policies that involve exactly n
 1066 mixing operations. Furthermore, we consider a boundedness constant C_Y to incorporate the scale
 1067 of the dual variable. Given $n \in \mathbb{Z}_+$ and some boundedness constants $C_\beta, C_w, C_Q, C_Y \geq 0$,
 1068

$$1069 \widehat{\Pi}_n(C_\beta, C_w, C_Q, C_Y)$$

$$1071 = \left\{ \widehat{\pi}(\cdot | s; \{\beta_i, w_i\}_{i=0}^n, \Lambda) : \begin{array}{l} |\beta_i| \leq (1 + C_Y)C_\beta, \|w_i\|_2 \leq (1 + C_Y)C_w, \\ (2K)^{-1}I \preceq \Lambda \preceq I, \|\widehat{Q}(\cdot, \cdot; \beta_i, w_i, \Lambda)\|_\infty \leq (1 + C_Y)C_Q, \end{array} i = 0, \dots, n \right\}.$$

1073 Similar to $\widehat{\Pi}_n$, since \widehat{V} is defined by \widehat{Q} and $\widehat{\pi}$, we define the function class of \widehat{V} for each n .
 1074

$$1075 \widehat{\mathcal{V}}_n(C_\beta, C_w, C_Q, C_Y) = \left\{ \widehat{V}(\cdot) : \widehat{V}(\cdot) = \sum_{a \in \mathcal{A}} \widehat{\pi}(a | \cdot) \widehat{Q}(\cdot, a), \begin{array}{l} \widehat{Q} \in \widehat{\mathcal{Q}}(C_\beta, C_w, C_Q), \\ \widehat{\pi} \in \widehat{\Pi}_n(KC_\beta, KC_w, KC_Q, C_Y) \end{array} \right\}.$$

1078 Note that if we apply the policy mixing every K^B episodes, then the number of mixing steps is at
 1079 most $K^{1-B} = K^L$, where $L = 1 - B$. Thus, we define $\widehat{\mathcal{V}}(C_\beta, C_w, C_Q, C_Y), \widehat{\Pi}(C_\beta, C_w, C_Q, C_Y)$

1080 as the unions over $n = 0, \dots, K^L$ as follows.
 1081

$$\begin{aligned} \widehat{\mathcal{V}}(C_\beta, C_w, C_Q, C_Y) &= \bigcup_{n=0}^{K^L} \widehat{\mathcal{V}}_n(C_\beta, C_w, C_Q, C_Y), \\ \widehat{\Pi}(C_\beta, C_w, C_Q, C_Y) &= \bigcup_{n=0}^{K^L} \widehat{\Pi}_n(C_\beta, C_w, C_Q, C_Y). \end{aligned}$$

1088 G COVERING NUMBER 1089

1090 In this section, we show an upper bound on the covering number of $\widehat{\mathcal{V}}(C_\beta, C_w, C_Q, C_Y)$, which
 1091 is crucial to analyze linear CMDPs. As a first step, we show that any $\widehat{Q} \in \widehat{\mathcal{Q}}(C_\beta, C_w, C_Q)$ is
 1092 Lipschitz, i.e., the ℓ_∞ -norm between Q -function estimates is bounded by the ℓ_2 -norm between their
 1093 parameters. We closely follow the proof of Lemma 10 of Cassel & Rosenberg (2024).

1094 **Lemma 10** (Lipschitz \widehat{Q}). *Let $1 \leq \beta_w, C_w, C_\beta$. For any $\widehat{Q}(\cdot, \cdot; \beta^1, w^1, \Lambda^1), \widehat{Q}(\cdot, \cdot; \beta^2, w^2, \Lambda^2) \in \widehat{\mathcal{Q}}(C_\beta, C_w, C_Q)$, we have*

$$\left\| \widehat{Q}(\cdot, \cdot; \beta^1, w^1, \Lambda^1) - \widehat{Q}(\cdot, \cdot; \beta^2, w^2, \Lambda^2) \right\|_\infty \leq 4\sqrt{K}\beta_w \max\{C_w, C_\beta\} \|(\beta^1, w^1, \Lambda^1) - (\beta^2, w^2, \Lambda^2)\|_2$$

1099 where $\|(\beta^1, w^1, \Lambda^1) - (\beta^2, w^2, \Lambda^2)\|_2$ is defined in (9).

1100 *Proof.* Consider

$$\begin{aligned} & |\widehat{Q}(s, a; \beta^1, w^1, \Lambda^1) - \widehat{Q}(s, a; \beta^2, w^2, \Lambda^2)| \\ & \leq \underbrace{|\widehat{Q}(s, a; \beta^1, w^1, \Lambda^1) - \widehat{Q}(s, a; \beta^2, w^1, \Lambda^1)|}_{(I)} + \underbrace{|\widehat{Q}(s, a; \beta^2, w^1, \Lambda^1) - \widehat{Q}(s, a; \beta^2, w^2, \Lambda^1)|}_{(II)} \\ & \quad + \underbrace{|\widehat{Q}(s, a; \beta^2, w^2, \Lambda^1) - \widehat{Q}(s, a; \beta^2, w^2, \Lambda^2)|}_{(III)}. \end{aligned}$$

1109 We bound each term individually. Note that $(2K)^{-1}I \preceq \Lambda^1 \preceq I$. For (I), since $\|\phi(s, a)\|_{\Lambda^1} \leq$
 1110 $\|(\Lambda^1)^{1/2}\|_2 \|\phi(s, a)\|_2 \leq 1$ and $|\sigma(z)| \leq 1$ for any $z \in \mathbb{R}$,

$$\begin{aligned} (I) &= |\beta^1 - \beta^2| \cdot \|\phi(s, a)\|_{\Lambda^1} \sigma(-\beta_w \|\phi(s, a)\|_{\Lambda^1} + \log K) \\ &\leq |\beta^1 - \beta^2|. \end{aligned}$$

1114 For (II), by the Cauchy-Schwarz inequality,

$$\begin{aligned} (II) &= |\phi(s, a)^\top (w^1 - w^2)| \sigma(-\beta_w \|\phi(s, a)\|_{\Lambda^1} + \log K) \\ &\leq \|w^1 - w^2\|_2 \end{aligned}$$

1118 For (III), by the triangle inequality,

$$\begin{aligned} (III) &= |\widehat{Q}(s, a; \beta^2, w^2, \Lambda^1) - \widehat{Q}(s, a; \beta^2, w^2, \Lambda^2)| \\ &\leq |\phi(s, a)^\top w^2| \cdot |\sigma(-\beta_w \|\phi(s, a)\|_{\Lambda^1} + \log K) - \sigma(-\beta_w \|\phi(s, a)\|_{\Lambda^2} + \log K)| \\ &\quad + \beta^2 \|\phi(s, a)\|_{\Lambda^1} - \|\phi(s, a)\|_{\Lambda^2} \cdot \sigma(-\beta_w \|\phi(s, a)\|_{\Lambda^1} + \log K) \\ &\quad + \beta^2 \|\phi(s, a)\|_{\Lambda^2} \cdot |\sigma(-\beta_w \|\phi(s, a)\|_{\Lambda^1} + \log K) - \sigma(-\beta_w \|\phi(s, a)\|_{\Lambda^2} + \log K)|. \end{aligned}$$

1124 Note that the sigmoid function is 1-Lipschitz on \mathbb{R} , and the triangle inequality implies that
 1125 $|\|\phi(s, a)\|_{\Lambda^1} - \|\phi(s, a)\|_{\Lambda^2}| \leq \|(\Lambda^1)^{1/2} - (\Lambda^2)^{1/2}\|_2$. Then we can deduce that

$$\begin{aligned} & |\widehat{Q}(s, a; \beta^2, w^2, \Lambda^1) - \widehat{Q}(s, a; \beta^2, w^2, \Lambda^2)| \\ &\leq C_w \beta_w \|(\Lambda^1)^{1/2} - (\Lambda^2)^{1/2}\|_2 + C_\beta \|(\Lambda^1)^{1/2} - (\Lambda^2)^{1/2}\|_2 + C_\beta \beta_w \|(\Lambda^1)^{1/2} - (\Lambda^2)^{1/2}\|_2 \\ &\leq 3 \max\{C_w \beta_w, C_\beta, C_\beta \beta_w\} \|(\Lambda^1)^{1/2} - (\Lambda^2)^{1/2}\|_2 \\ &\leq 3 \max\{C_w \beta_w, C_\beta, C_\beta \beta_w\} \cdot \frac{1}{2\sqrt{1/(2K)}} \|\Lambda^1 - \Lambda^2\|_2 \\ &\leq (3/\sqrt{2}) \sqrt{K} \beta_w \max\{C_w, C_\beta\} \|\Lambda^1 - \Lambda^2\|_2 \end{aligned}$$

1134 where the third inequality is due to Lemma 32, and the last inequality is because we assumed that
 1135 $\beta_w \geq 1$. Note that we know $\|\Lambda^1 - \Lambda^2\|_2 \leq \|\Lambda^1 - \Lambda^2\|_F$ where $\|\cdot\|_F$ denotes the Frobenius norm.
 1136 Finally, we show that for any $(s, a) \in \mathcal{S} \times \mathcal{A}$,

$$\begin{aligned} & |\widehat{Q}(s, a; \beta^1, w^1, \Lambda^1) - \widehat{Q}(s, a; \beta^2, w^2, \Lambda^2)| \\ & \leq \|w^1 - w^2\|_2 + |\beta^1 - \beta^2| + (3/\sqrt{2})\sqrt{K}\beta_w \max\{C_\beta, C_\beta\} \|\Lambda^1 - \Lambda^2\|_F \\ & \leq \sqrt{3 \left(\|w^1 - w^2\|_2^2 + |\beta^1 - \beta^2|^2 + ((3/\sqrt{2})\sqrt{K}\beta_w \max\{C_w, C_\beta\})^2 \|\Lambda^1 - \Lambda^2\|_F^2 \right)} \\ & \leq 4\sqrt{K}\beta_w \max\{C_w, C_\beta\} \|(\beta^1, w^1, \Lambda^1) - (\beta^2, w^2, \Lambda^2)\|_2 \end{aligned}$$

1144 where the second inequality follows from the Cauchy-Schwarz inequality, and the last inequality
 1145 is due to $1 \leq (3/\sqrt{2})\sqrt{K}\beta_w \max\{C_w, C_\beta\}$, as we assumed that $1 \leq \beta_w, C_w, C_\beta$. Here,
 1146 $\|(\beta^1, w^1, \Lambda^1) - (\beta^2, w^2, \Lambda^2)\|_2$ denotes
 1147

$$\|(\beta^1, w^1, \Lambda^1) - (\beta^2, w^2, \Lambda^2)\|_2 = \sqrt{|\beta^1 - \beta^2|^2 + \|w^1 - w^2\|_2^2 + \|\Lambda^1 - \Lambda^2\|_F^2}. \quad (9)$$

□

1151 Now, we have to show that the policy parameterization given in (7) satisfies a Lipschitz property,
 1152 i.e., ℓ_1 -norm between any two policies is bounded by the ℓ_2 -norm between their parameters.
 1153

1154 **Lemma 11** (Lipschitz $\widehat{\pi}$). *Let $1 \leq \beta_w, C_w, C_\beta$ and $0 \leq C_Y$. Suppose that two policies
 1155 $\widehat{\pi}^1, \widehat{\pi}^2 \in \widehat{\Pi}_n(C_\beta, C_w, C_Q, C_Y)$ are parameterized by $\{\beta_i^1, w_i^1\}_{i=0}^n, \Lambda^1$ and $\{\beta_i^2, w_i^2\}_{i=0}^n, \Lambda^2$, re-
 1156 spectively. Then the following holds for any $s \in \mathcal{S}$.*

$$\begin{aligned} & \|\widehat{\pi}^1(\cdot | s) - \widehat{\pi}^2(\cdot | s)\|_1 \\ & \leq 32\sqrt{(n+1)K}\beta_w(1+C_Y) \max\{C_w, C_\beta\} \left(\frac{8|\mathcal{A}|}{\theta}\right)^n \sqrt{\sum_{i=0}^n \|(\beta_i^1, w_i^1, \Lambda^1) - (\beta_i^2, w_i^2, \Lambda^2)\|_2^2}. \end{aligned}$$

1162 *Proof.* Fix $s \in \mathcal{S}$. Let $\{\widehat{\pi}_i^1, \widetilde{\pi}_i^1\}_{i=0}^{n+1}, \{\widehat{\pi}_i^2, \widetilde{\pi}_i^2\}_{i=0}^{n+1}$ be the sequences of policies recursively generated
 1163 by (7) to define $\widehat{\pi}^1, \widehat{\pi}^2$, respectively. Then it follows that

$$\begin{aligned} \widehat{\pi}^1(\cdot | s) &= \widehat{\pi}_{n+1}^1(\cdot | s) \propto \widetilde{\pi}_n^1(\cdot | s) \exp(\widehat{Q}(s, \cdot; \beta_n^1, w_n^1, \Lambda^1)), \\ \widehat{\pi}^2(\cdot | s) &= \widehat{\pi}_{n+1}^2(\cdot | s) \propto \widetilde{\pi}_n^2(\cdot | s) \exp(\widehat{Q}(s, \cdot; \beta_n^2, w_n^2, \Lambda^2)). \end{aligned}$$

1164 Note that $\widetilde{\pi}_n^1(a | s), \widetilde{\pi}_n^2(a | s) > 0$ for all $a \in \mathcal{A}$, since they are perturbed. Then we can define
 1165 $\log \widetilde{\pi}_n^1(a | s), \log \widetilde{\pi}_n^2(a | s)$, and it leads to

$$\begin{aligned} \widehat{\pi}_{n+1}^1(\cdot | s) &\propto \exp\left(\log \widetilde{\pi}_n^1(\cdot | s) + \widehat{Q}(s, \cdot; \beta_n^1, w_n^1, \Lambda^1)\right), \\ \widehat{\pi}_{n+1}^2(\cdot | s) &\propto \exp\left(\log \widetilde{\pi}_n^2(\cdot | s) + \widehat{Q}(s, \cdot; \beta_n^2, w_n^2, \Lambda^2)\right). \end{aligned} \quad (10)$$

1173 By Lemma 24,

$$\begin{aligned} & \|\widehat{\pi}_{n+1}^1(\cdot | s) - \widehat{\pi}_{n+1}^2(\cdot | s)\|_1 \\ & \leq 8 \left\| \log \widetilde{\pi}_n^1(\cdot | s) + \widehat{Q}(s, \cdot; \beta_n^1, w_n^1, \Lambda^1) - \log \widetilde{\pi}_n^2(\cdot | s) - \widehat{Q}(s, \cdot; \beta_n^2, w_n^2, \Lambda^2) \right\|_\infty \\ & \leq 8 \left\| \log \widetilde{\pi}_n^1(\cdot | s) - \log \widetilde{\pi}_n^2(\cdot | s) \right\|_\infty + 8 \left\| \widehat{Q}(s, \cdot; \beta_n^1, w_n^1, \Lambda^1) - \widehat{Q}(s, \cdot; \beta_n^2, w_n^2, \Lambda^2) \right\|_\infty. \end{aligned}$$

1180 Note that $\widetilde{\pi}_n^1(a | s), \widetilde{\pi}_n^2(a | s) \geq \theta/|\mathcal{A}|$ for all $a \in \mathcal{A}$ due to the definition. Then we can utilize the
 1181 Lipschitzness of log function in $[\theta/|\mathcal{A}|, \infty)^{|\mathcal{A}|}$. Thus, by Lemma 21,

$$\begin{aligned} \left\| \log \widetilde{\pi}_n^1(\cdot | s) - \log \widetilde{\pi}_n^2(\cdot | s) \right\|_\infty &\leq \frac{|\mathcal{A}|}{\theta} \|\widetilde{\pi}_n^1(\cdot | s) - \widetilde{\pi}_n^2(\cdot | s)\|_1 \\ &= \frac{|\mathcal{A}|}{\theta} (1-\theta) \|\widehat{\pi}_n^1(\cdot | s) - \widehat{\pi}_n^2(\cdot | s)\|_1 \\ &\leq \frac{|\mathcal{A}|}{\theta} \|\widehat{\pi}_n^1(\cdot | s) - \widehat{\pi}_n^2(\cdot | s)\|_1 \end{aligned} \quad (11)$$

1188 where the equality is due to $\tilde{\pi}_n^1(\cdot | s) = (1-\theta)\hat{\pi}_n^1(\cdot | s) + \theta\pi_{\text{unif}}(\cdot | s)$ and $\tilde{\pi}_n^2(\cdot | s) = (1-\theta)\hat{\pi}_n^2(\cdot | s) + \theta\pi_{\text{unif}}(\cdot | s)$. Plugging (11) into (10), we have a recursive relation, and it leads to
1189
1190

$$\begin{aligned}
& \|\hat{\pi}_{n+1}^1(\cdot | s) - \hat{\pi}_{n+1}^2(\cdot | s)\|_1 \\
& \leq \frac{8|\mathcal{A}|}{\theta} \|\hat{\pi}_n^1(\cdot | s) - \hat{\pi}_n^2(\cdot | s)\|_1 + 8 \left\| \hat{Q}(s, \cdot; \beta_n^1, w_n^1, \Lambda^1) - \hat{Q}(s, \cdot; \beta_n^2, w_n^2, \Lambda^2) \right\|_\infty \\
& \leq \left(\frac{8|\mathcal{A}|}{\theta} \right)^2 \|\hat{\pi}_{n-1}^1(\cdot | s) - \hat{\pi}_{n-1}^2(\cdot | s)\|_1 \\
& \quad + 8 \sum_{i=0}^1 \left(\frac{8|\mathcal{A}|}{\theta} \right)^i \left\| \hat{Q}(s, \cdot; \beta_{n-i}^1, w_{n-i}^1, \Lambda^1) - \hat{Q}(s, \cdot; \beta_{n-i}^2, w_{n-i}^2, \Lambda^2) \right\|_\infty \\
& \quad \vdots \\
& \leq \left(\frac{8|\mathcal{A}|}{\theta} \right)^{n+1} \|\hat{\pi}_0^1(\cdot | s) - \hat{\pi}_0^2(\cdot | s)\|_1 \\
& \quad + 8 \sum_{i=0}^n \left(\frac{8|\mathcal{A}|}{\theta} \right)^i \left\| \hat{Q}(s, \cdot; \beta_{n-i}^1, w_{n-i}^1, \Lambda^1) - \hat{Q}(s, \cdot; \beta_{n-i}^2, w_{n-i}^2, \Lambda^2) \right\|_\infty \\
& = 8 \sum_{i=0}^n \left(\frac{8|\mathcal{A}|}{\theta} \right)^i \left\| \hat{Q}(s, \cdot; \beta_{n-i}^1, w_{n-i}^1, \Lambda^1) - \hat{Q}(s, \cdot; \beta_{n-i}^2, w_{n-i}^2, \Lambda^2) \right\|_\infty
\end{aligned}$$

1209 where the equality is due to $\hat{\pi}_0^1(\cdot | s) = \hat{\pi}_0^2(\cdot | s) = \pi_{\text{unif}}(\cdot | s)$. Furthermore, by the Cauchy-
1210 Schwarz inequality,
1211

$$\begin{aligned}
& \|\hat{\pi}_{n+1}^1(\cdot | s) - \hat{\pi}_{n+1}^2(\cdot | s)\|_1 \\
& \leq 8 \sqrt{\sum_{i=0}^n \left(\frac{8|\mathcal{A}|}{\theta} \right)^{2i} \left\| \hat{Q}(s, \cdot; \beta_i^1, w_i^1, \Lambda^1) - \hat{Q}(s, \cdot; \beta_i^2, w_i^2, \Lambda^2) \right\|_\infty^2} \\
& \leq 8 \sqrt{(n+1) \left(\frac{8|\mathcal{A}|}{\theta} \right)^{2n} \left\| \hat{Q}(s, \cdot; \beta_0^1, w_0^1, \Lambda^1) - \hat{Q}(s, \cdot; \beta_0^2, w_0^2, \Lambda^2) \right\|_\infty^2}.
\end{aligned}$$

1220 Note that $\hat{Q}(s, \cdot; \beta_i^1, w_i^1, \Lambda^1), \hat{Q}(s, \cdot; \beta_i^2, w_i^2, \Lambda^2) \in \hat{\mathcal{Q}}((1+C_Y)C_\beta, (1+C_Y)C_w, (1+C_Y)C_Q)$.
1221 By the Lipschitzness of \hat{Q} (Lemma 10),

$$\begin{aligned}
& \|\hat{\pi}_{n+1}^1(\cdot | s) - \hat{\pi}_{n+1}^2(\cdot | s)\|_1 \\
& \leq 8 \sqrt{(n+1) \left(\frac{8|\mathcal{A}|}{\theta} \right)^{2n} \left\| \sum_{i=0}^n \left(4\sqrt{K}\beta_w(1+C_Y) \max\{C_w, C_\beta\} \right)^2 \|(\beta_i^1, w_i^1, \Lambda^1) - (\beta_i^2, w_i^2, \Lambda^2)\|_2^2 \right\|} \\
& = 32\sqrt{(n+1)K}\beta_w(1+C_Y) \max\{C_w, C_\beta\} \left(\frac{8|\mathcal{A}|}{\theta} \right)^n \sqrt{\sum_{i=0}^n \|(\beta_i^1, w_i^1, \Lambda^1) - (\beta_i^2, w_i^2, \Lambda^2)\|_2^2}
\end{aligned}$$

1230 as desired. \square
1231

1232 Based on the Lipschitz properties that we have shown, we show a Lipschitz property of \hat{V} , and it
1233 leads to an upper bound on the covering number of $\hat{\mathcal{V}}_n(C_\beta, C_w, C_Q, C_Y)$.
1234

1235 **Lemma 12.** *Let $1 \leq \beta_w, C_\beta, C_w, C_Q$ and $0 \leq C_Y$. Given $\epsilon > 0$, let $\mathcal{N}_\epsilon(\hat{\mathcal{V}}_n(C_\beta, C_w, C_Q, C_Y))$
1236 denote the ϵ -covering number of $\hat{\mathcal{V}}_n(C_\beta, C_w, C_Q, C_Y)$ with respect to the ℓ_∞ -norm. Then we have*
1237

$$\log \mathcal{N}_\epsilon(\hat{\mathcal{V}}_n(C_\beta, C_w, C_Q, C_Y)) \leq 3(n+2)^2 d^2 \log((8|\mathcal{A}|/\theta)(1+2C_1C_2/\epsilon))$$

1238 where
1239

$$\begin{aligned}
C_1 &= 91\sqrt{(n+1)K^3}\beta_w \max\{C_w, C_\beta\}C_Q(1+C_Y), \\
C_2 &= (n+2)(1+C_Y)K(C_\beta + C_w) + (n+2)\sqrt{d}.
\end{aligned} \tag{12}$$

1242 *Proof.* Recall that $\widehat{V} \in \widehat{\mathcal{V}}_n(C_\beta, C_w, C_Q, C_Y)$ can be expressed as $\widehat{V}(\cdot) = \sum_{a \in \mathcal{A}} \widehat{\pi}(a \mid \cdot) \widehat{Q}(\cdot, a)$,
 1243 where $\widehat{Q} \in \widehat{\mathcal{Q}}(C_\beta, C_w, C_Q)$, $\widehat{\pi} \in \widehat{\Pi}_n(KC_\beta, KC_w, KC_Q, CY)$. Then consider $\widehat{V}_1, \widehat{V}_2 \in$
 1244 $\widehat{\mathcal{V}}_n(C_\beta, C_w, C_Q, C_Y)$ such that $\widehat{V}^1(\cdot) = \sum_{a \in \mathcal{A}} \widehat{\pi}^1(a \mid \cdot) \widehat{Q}^1(\cdot, a)$ and $\widehat{V}^2(\cdot) = \sum_{a \in \mathcal{A}} \widehat{\pi}^2(a \mid$
 1245 $\cdot) \widehat{Q}^2(\cdot, a)$. Suppose that each of those are parameterized as follows.
 1246

$$\begin{aligned} \widehat{\pi}^1 &= \widehat{\pi}(\cdot \mid \cdot; \{\beta_i^{\pi,1}, w_i^{\pi,1}\}_{i=0}^n, \Lambda^{\pi,1}) \in \widehat{\Pi}_n(KC_\beta, KC_w, KC_Q, CY), \\ \widehat{\pi}^2 &= \widehat{\pi}(\cdot \mid \cdot; \{\beta_i^{\pi,2}, w_i^{\pi,2}\}_{i=0}^n, \Lambda^{\pi,2}) \in \widehat{\Pi}_n(KC_\beta, KC_w, KC_Q, CY), \\ \widehat{Q}^1 &= \widehat{Q}(\cdot, \cdot; \beta^{Q,1}, w^{Q,1}, \Lambda^{Q,1}) \in \widehat{\mathcal{Q}}(C_\beta, C_w, C_Q), \\ \widehat{Q}^2 &= \widehat{Q}(\cdot, \cdot; \beta^{Q,2}, w^{Q,2}, \Lambda^{Q,2}) \in \widehat{\mathcal{Q}}(C_\beta, C_w, C_Q). \end{aligned}$$

1252 Then for any $s \in \mathcal{S}$,

$$\begin{aligned} 1254 & \left| \widehat{V}^1(s) - \widehat{V}^2(s) \right| \\ 1255 &= \left| \sum_{a \in \mathcal{A}} \widehat{\pi}^1(a \mid s) \widehat{Q}^1(s, a) - \sum_{a \in \mathcal{A}} \widehat{\pi}^2(a \mid s) \widehat{Q}^2(s, a) \right| \\ 1256 &\leq \left| \sum_{a \in \mathcal{A}} \widehat{\pi}^1(a \mid s) \widehat{Q}^1(s, a) - \sum_{a \in \mathcal{A}} \widehat{\pi}^1(a \mid s) \widehat{Q}^2(s, a) \right| + \left| \sum_{a \in \mathcal{A}} \widehat{\pi}^1(a \mid s) \widehat{Q}^2(s, a) - \sum_{a \in \mathcal{A}} \widehat{\pi}^2(a \mid s) \widehat{Q}^2(s, a) \right| \\ 1259 &\leq \|\widehat{\pi}^1(\cdot \mid s)\|_1 \|\widehat{Q}^1(s, \cdot) - \widehat{Q}^2(s, \cdot)\|_\infty + \|\widehat{\pi}^1(\cdot \mid s) - \widehat{\pi}^2(\cdot \mid s)\|_1 \|\widehat{Q}^2(s, \cdot)\|_\infty \\ 1262 &= \|\widehat{Q}^1(s, \cdot) - \widehat{Q}^2(s, \cdot)\|_\infty + \|\widehat{\pi}^1(\cdot \mid s) - \widehat{\pi}^2(\cdot \mid s)\|_1 \|\widehat{Q}^2(s, \cdot)\|_\infty \end{aligned}$$

1264 where the first inequality is due to the triangle inequality, and the second inequality is due to Hölder's
 1265 inequality. By Lemma 10,

$$1266 \|\widehat{Q}^1(s, \cdot) - \widehat{Q}^2(s, \cdot)\|_\infty \leq 4\sqrt{K}\beta_w \max\{C_w, C_\beta\} \|(\beta^{Q,1}, w^{Q,1}, \Lambda^{Q,1}) - (\beta^{Q,2}, w^{Q,2}, \Lambda^{Q,2})\|_2.$$

1267 Furthermore, for the second term,

$$\begin{aligned} 1269 & \|\widehat{\pi}^1(\cdot \mid s) - \widehat{\pi}^2(\cdot \mid s)\|_1 \|\widehat{Q}^2(s, \cdot)\|_\infty \\ 1270 &\leq C_Q \|\widehat{\pi}^1(\cdot \mid s) - \widehat{\pi}^2(\cdot \mid s)\|_1 \\ 1271 &\leq C_Q \cdot 32\sqrt{(n+1)K}\beta_w (1 + C_Y) \max\{KC_w, KC_\beta\} \left(\frac{8|\mathcal{A}|}{\theta}\right)^n \\ 1274 &\quad \times \sqrt{\sum_{i=0}^n \|(\beta_i^{\pi,1}, w_i^{\pi,1}, \Lambda^{\pi,1}) - (\beta_i^{\pi,2}, w_i^{\pi,2}, \Lambda^{\pi,2})\|_2^2} \end{aligned}$$

1277 where the first inequality is due to $\|\widehat{Q}^2\|_\infty \leq C_Q$ for any $\widehat{Q}^2 \in \widehat{\mathcal{Q}}(C_\beta, C_w, C_Q)$, and the second
 1278 inequality is due to Lemma 11. Then we deduce that

$$\begin{aligned} 1279 & \max_{s \in \mathcal{S}} |\widehat{V}^1(s) - \widehat{V}^2(s)| \\ 1281 &\leq 4\sqrt{K}\beta_w \max\{C_w, C_\beta\} \|(\beta^{Q,1}, w^{Q,1}, \Lambda^{Q,1}) - (\beta^{Q,2}, w^{Q,2}, \Lambda^{Q,2})\|_2 \\ 1283 &\quad + 32C_Q \sqrt{(n+1)K^3}\beta_w (1 + C_Y) \max\{C_w, C_\beta\} \left(\frac{8|\mathcal{A}|}{\theta}\right)^n \sqrt{\sum_{i=0}^n \|(\beta_i^{\pi,1}, w_i^{\pi,1}, \Lambda^{\pi,1}) - (\beta_i^{\pi,2}, w_i^{\pi,2}, \Lambda^{\pi,2})\|_2^2} \\ 1286 &\leq \sqrt{(4\sqrt{K}\beta_w \max\{C_w, C_\beta\})^2 + (32C_Q \sqrt{(n+1)K^3}\beta_w (1 + C_Y) \max\{C_w, C_\beta\}(8|\mathcal{A}|/\theta)^n)^2} \\ 1288 &\quad \times \sqrt{\|(\beta^{Q,1}, w^{Q,1}, \Lambda^{Q,1}) - (\beta^{Q,2}, w^{Q,2}, \Lambda^{Q,2})\|_2^2 + \sum_{i=0}^n \|(\beta_i^{\pi,1}, w_i^{\pi,1}, \Lambda^{\pi,1}) - (\beta_i^{\pi,2}, w_i^{\pi,2}, \Lambda^{\pi,2})\|_2^2} \\ 1291 &\leq 33\sqrt{(n+1)K^3}\beta_w (1 + C_Y) \max\{C_w, C_\beta\} C_Q \left(\frac{8|\mathcal{A}|}{\theta}\right)^n \\ 1294 &\quad \times \sqrt{\|(\beta^{Q,1}, w^{Q,1}, \Lambda^{Q,1}) - (\beta^{Q,2}, w^{Q,2}, \Lambda^{Q,2})\|_2^2 + \sum_{i=0}^n \|(\beta_i^{\pi,1}, w_i^{\pi,1}, \Lambda^{\pi,1}) - (\beta_i^{\pi,2}, w_i^{\pi,2}, \Lambda^{\pi,2})\|_2^2} \end{aligned}$$

1296 where the second inequality is due to the Cauchy-Schwarz inequality, and the last inequality is due
 1297 to the assumption that $1 \leq C_Q$ and $\theta \in (0, 1)$.
 1298

1299 Note that

$$\begin{aligned} 1300 \|\beta^{Q,1}, w^{Q,1}, \Lambda^{Q,1}, \{\beta_i^{\pi,1}, w_i^{\pi,1}, \Lambda^{\pi,1}\}_{i=0}^n\|_2 &\leq \|\beta^{Q,1}\| + \|w^{Q,1}\|_2 + \|\Lambda^{Q,1}\|_F + \sum_{i=0}^n (\|\beta_i^{\pi,1}\| + \|w_i^{\pi,1}\|_2 + \|\Lambda^{\pi,1}\|_F) \\ 1301 &\leq C_\beta + C_w + \sqrt{d} + (n+1)(1+C_Y)K(C_\beta + C_w) + (n+1)\sqrt{d} \\ 1302 &\leq (n+2)(1+C_Y)K(C_\beta + C_w) + (n+2)\sqrt{d}. \end{aligned}$$

1306 Note that $(\beta^{Q,1}, w^{Q,1}, \Lambda^{Q,1}, \{\beta_i^{\pi,1}, w_i^{\pi,1}, \Lambda^{\pi,1}\}_{i=0}^n)$ can be viewed as a $(n+2)(1+d+d^2)$ -
 1307 dimensional vector. Since $1+d+d^2 \leq 3d^2$, by Lemma 27,

$$1308 \log \mathcal{N}_\epsilon(\widehat{\mathcal{V}}_n(C_\beta, C_w, C_Q, C_Y)) \leq 3(n+2)d^2 \log(1+2(8|\mathcal{A}|/\theta)^n C_1 C_2 / \epsilon)$$

1310 where

$$\begin{aligned} 1311 C_1 &= 33\sqrt{(n+1)K^3} \beta_w C_Q (1+C_Y) \max\{C_w, C_\beta\}, \\ 1312 C_2 &= (n+2)(1+C_Y)K(C_\beta + C_w) + (n+2)\sqrt{d}. \end{aligned}$$

1314 Furthermore, the log term contains an exponential term in n , we further deduce as follows.
 1315

$$\begin{aligned} 1316 \log(1+2(8|\mathcal{A}|/\theta)^n C_1 C_2 / \epsilon) &\leq n \log(8|\mathcal{A}|/\theta) + \log(1+2C_1 C_2 / \epsilon) \\ 1317 &\leq (n+1) \log((8|\mathcal{A}|/\theta)(1+2C_1 C_2 / \epsilon)). \end{aligned}$$

1318 Finally, we have

$$1320 \log \mathcal{N}_\epsilon(\widehat{\mathcal{V}}_n(C_\beta, C_w, C_Q, C_Y)) \leq 3(n+2)^2 d^2 \log((8|\mathcal{A}|/\theta)(1+2C_1 C_2 / \epsilon)).$$

1321 \square

1323 Finally, we show an upper bound on the covering number of $\widehat{\mathcal{V}}(C_\beta, C_w, C_Q, C_Y)$.
 1324

1325 **Lemma 13.** Let $1 \leq \beta_w, C_\beta, C_w, C_Q$ and $0 \leq C_Y$. Given $\epsilon > 0$, let $\mathcal{N}_\epsilon(\widehat{\mathcal{V}}(C_\beta, C_w, C_Q, C_Y))$
 1326 denote the ϵ -covering number of $\widehat{\mathcal{V}}(C_\beta, C_w, C_Q, C_Y)$ with respect to the ℓ_∞ -norm, where
 1327 $\widehat{\mathcal{V}}(C_\beta, C_w, C_Q, C_Y) = \bigcup_{n=0}^{K^L} \widehat{\mathcal{V}}_n(C_\beta, C_w, C_Q, C_Y)$. Then we have
 1328

$$1329 \log \mathcal{N}_\epsilon(\widehat{\mathcal{V}}(C_\beta, C_w, C_Q, C_Y)) \leq 3(K^L + 2)^2 d^2 \log \left((K^L + 1) \frac{8|\mathcal{A}|}{\theta} \left(1 + \frac{2C_1 C_2}{\epsilon} \right) \right)$$

1332 where C_1, C_2 are defined in (12) with $n = K^L$.
 1333

1334 *Proof.* For each $n = 0, \dots, K^L$, let $\mathcal{C}_n \subseteq \widehat{\mathcal{V}}_n(C_\beta, C_w, C_Q, C_Y)$ be an ϵ -cover of
 1335 $\widehat{\mathcal{V}}_n(C_\beta, C_w, C_Q, C_Y)$ with respect to the ℓ_∞ -norm. By Lemma 12, suppose that the covers satisfy
 1336

$$1337 \log |\mathcal{C}_n| \leq 3(n+2)^2 d^2 \log((8|\mathcal{A}|/\theta)(1+2C_1 C_2 / \epsilon)) \quad \forall n = 0, \dots, K^L$$

1338 where C_1, C_2 are defined in (12) with $n = K^L$. Furthermore, let
 1339

$$\mathcal{C} = \bigcup_{n=0}^{K^L} \mathcal{C}_n.$$

1343 Then we claim that \mathcal{C} is an ϵ -cover of $\widehat{\mathcal{V}}(C_\beta, C_w, C_Q, C_Y)$. For any $\widehat{V} \in \widehat{\mathcal{V}}(C_\beta, C_w, C_Q, C_Y)$, since
 1344 $\widehat{\mathcal{V}}(C_\beta, C_w, C_Q, C_Y)$ is defined as the union, there exists $m \in \{0, \dots, K^L\}$ such that
 1345

$$1346 \widehat{V} \in \widehat{\mathcal{V}}_m(C_\beta, C_w, C_Q, C_Y).$$

1347 Since \mathcal{C}_m is an ϵ -cover of $\widehat{\mathcal{V}}_m(C_\beta, C_w, C_Q, C_Y)$, there exists $\widehat{V}_m \in \mathcal{C}_m \subseteq \mathcal{C}$ such that
 1348

$$1349 \|\widehat{V} - \widehat{V}_m\|_\infty \leq \epsilon.$$

1350 This implies that \mathcal{C} is an ϵ -cover of $\widehat{\mathcal{V}}(C_\beta, C_w, C_Q, C_Y)$ with respect to the ℓ_∞ -norm. Furthermore,
 1351 we have

$$\begin{aligned} 1353 \mathcal{N}_\epsilon(\widehat{\mathcal{V}}(C_\beta, C_w, C_Q, C_Y)) &\leq |\mathcal{C}| \leq \sum_{n=0}^{K^L} |\mathcal{C}_n| \leq (K^L + 1) \left(\frac{8|\mathcal{A}|}{\theta} \left(1 + \frac{2C_1C_2}{\epsilon}\right) \right)^{3(K^L+2)^2d^2} \\ 1354 &\leq \left((K^L + 1) \frac{8|\mathcal{A}|}{\theta} \left(1 + \frac{2C_1C_2}{\epsilon}\right) \right)^{3(K^L+2)^2d^2} \end{aligned}$$

1355 where the second inequality is true because $z \leq z^y$ for any $z, y \geq 1$. Finally, by taking log on both
 1356 sides, we have

$$1361 \log \mathcal{N}_\epsilon(\widehat{\mathcal{V}}(C_\beta, C_w, C_Q, C_Y)) \leq 3(K^L + 2)^2d^2 \log \left((K^L + 1) \frac{8|\mathcal{A}|}{\theta} \left(1 + \frac{2C_1C_2}{\epsilon}\right) \right)$$

1362 as desired. \square

H GOOD EVENT

1367 In this section, we introduce a high probability good event, denoted by E_g , which simplifies our
 1368 analysis. We begin by presenting the formal definition of E_g . We define E_g as

$$1369 E_g = E_1 \cap E_2 \cap E_3. \quad (13)$$

1370 E_1, E_2, E_3 are defined as

$$1372 E_1 = \left\{ \forall (k, h) \in [K] \times [H] : \|\theta_{f,h}^k - \widehat{\theta}_{f,h}^k\|_{\Lambda_h^k} \leq \beta_r, \|\theta_{g,h} - \widehat{\theta}_{g,h}^k\|_{\Lambda_h^k} \leq \beta_r \right\}, \quad (14)$$

$$1374 E_2 = \left\{ \forall (k, h, \ell) \in [K] \times [H] \times \{f, g\} : \|(\psi_h - \widehat{\psi}_h^k) \widehat{V}_{\ell,h+1}^k\|_{\Lambda_h^k} \leq \beta_p, \|\widehat{Q}_{\ell,h}^k\|_\infty \leq \beta_Q, Y_k \leq 11\eta H^3 K \right\}, \quad (15)$$

$$1377 E_3 = \left\{ \sum_{k \in [K]} \mathbb{E}_{\mathbb{P}, \widehat{\pi}^k} [W_k] \leq 2 \sum_{k \in [K]} W_k + 4H(3\beta_b + 8\beta_Q\beta_w^2) \log \frac{6K}{\delta} \right\}, \quad (16)$$

1380 where

$$1381 \beta_r = 2\sqrt{2d \log(6KH/\delta)},$$

$$1382 \beta_p = 50(K^{1/4} + 1)dH\sqrt{\log(5H^2K^2|\mathcal{A}|/\delta)},$$

$$1384 \beta_Q = 2H,$$

$$1385 \beta_b = \beta_r + \beta_p,$$

$$1386 \beta_w = 4\beta_b \log K,$$

$$1387 W_k = \sum_{h \in [H]} \left(3\beta_b \|\phi(s_h^k, a_h^k)\|_{(\Lambda_h^k)^{-1}} + 8\beta_Q\beta_w^2 \|\phi(s_h^k, a_h^k)\|_{(\Lambda_h^k)^{-1}}^2 \right).$$

1390 We note that one of the key differences from [Cassel & Rosenberg \(2024\)](#) is that E_2 involves an upper
 1391 bound of Y_k . This is because a (possibly polynomial in d, H, K) upper bound of Y_k is required to
 1392 prove that E_g holds with high probability. In contrast, since we do not truncate $\widehat{Q}_{g,h}^k$, its trivial upper
 1393 bound cannot be obtained. Thus, to avoid circular logic, we include it in E_2 , and use induction to
 1394 show (Step 3-2 of Lemma 16).

1395 However, since directly proving E_g holds with high probability is difficult, we instead consider a
 1396 proxy good event and then show that it implies E_g . Here, we define the proxy good event \bar{E}_g as

$$1397 \bar{E}_g = E_1 \cap \bar{E}_2 \cap E_3, \quad (17)$$

1399 where \bar{E}_2 is defined as

$$1400 \bar{E}_2 = \left\{ \forall (k, h, \widehat{V}) \in [K] \times [H] \times \widehat{\mathcal{V}}(\beta_b, 2K\beta_Q, \beta_Q, 11\eta H^3 K) : \|(\psi_h - \widehat{\psi}_h^k) \widehat{V}\|_{\Lambda_h^k} \leq \beta_p \right\}.$$

1402 Based on the upper bound of the covering number of $\widehat{\mathcal{V}}(C_\beta, C_w, C_Q, C_Y)$, we prove that \bar{E}_g holds
 1403 with high probability.

1404 **Lemma 14** (Proxy Good Event, \bar{E}_g). *Let $1 \leq \beta_w \leq K$, and let $\eta, \alpha \leq 1$. Then $\Pr[\bar{E}_g] \geq 1 - \delta$ for*
 1405 *any $\delta \in (0, 1)$.*

1407 *Proof.* We prove the statement by showing $\Pr[E_1] \geq 1 - \delta/3$, $\Pr[\bar{E}_2] \geq 1 - \delta/3$, and $\Pr[E_3] \geq$
 1408 $1 - \delta/3$. For E_1 , by Lemma 30, we have for all $h \in [H]$, $k \geq 1$ with probability at least $1 - \delta/3$,

$$1410 \|\theta_{g,h} - \hat{\theta}_{g,h}^k\|_{\Lambda_h^k} \leq 2\sqrt{2d \log(6KH/\delta)} := \beta_r.$$

1412 Furthermore, it is clear that $\|\theta_{f,h}^k - \hat{\theta}_{f,h}^k\|_{\Lambda_h^k} = 0 \leq \beta_r$ because we take $\hat{\theta}_{f,h}^k = \theta_{f,h}^k$. Then for any
 1413 $h, k, \ell \in \{f, g\}$, E_1 holds with probability at least $1 - \delta/3$.

1414 Now we consider \bar{E}_2 . By Lemma 31, for all $\hat{V} \in \hat{\mathcal{V}}(\beta_b, 2K\beta_Q, \beta_Q, 11\eta H^3 K)$, with probability at
 1415 least $1 - \delta/3$,

$$1417 \|\psi_h - \hat{\psi}_h^k\|_{\Lambda_h^k} \leq 4\beta_{Q,h} \sqrt{d \log(K+1) + 2 \log(3H^2/\delta) + 2 \log \mathcal{N}_\epsilon(\hat{\mathcal{V}}(\beta_b, 2K\beta_Q, \beta_Q, 11\eta H^3 K))}. \quad (18)$$

1420 The parameters in Algorithm 1 satisfy $1 \leq \beta_b, 2K\beta_Q, \beta_Q$. Then Lemma 13 can be applied to deduce
 1421 the covering number. It follows that

$$1423 \log \mathcal{N}_\epsilon(\hat{\mathcal{V}}(\beta_b, 2K\beta_Q, \beta_Q, 11\eta H^3 K)) \leq 3(K^L + 2)^2 d^2 \log \left((K^L + 1) \frac{8|\mathcal{A}|}{\theta} \left(1 + \frac{2C_1 C_2}{\epsilon} \right) \right).$$

1425 Since we assume $1 \leq \beta_w \leq K$, $\beta_Q \leq 2H$, $\eta, \alpha \leq 1$, and $K^L \leq K$, we have the following bounds
 1426 on C_1, C_2 with $n = K^L$.

$$1428 \begin{aligned} C_1 &= 33\sqrt{(K^L + 1)K^3} \beta_w \max\{2K\beta_Q, \beta_b\} \beta_Q (1 + 11\eta H^3 K) \\ 1429 &\leq 4481H^5 K^6, \\ 1430 C_2 &= (K^L + 2)(1 + 11\eta H^3 K)K(\beta_b + 2K\beta_Q) + (K^L + 2)\sqrt{d} \\ 1431 &\leq 242\sqrt{d}H^4 K^4. \end{aligned}$$

1434 By Lemma 31, we can take $\epsilon = \sqrt{d}/(2K)$, and thus the covering number is bounded as

$$1436 \log \mathcal{N}_\epsilon(\hat{\mathcal{V}}(\beta_b, 2K\beta_Q, \beta_Q, 11\eta H^3 K)) \leq 36(K^L + 2)^2 d^2 \log(5HK|\mathcal{A}|/\theta).$$

1438 Applying this to (18), since $\theta = K^{-1}$,

$$1440 \begin{aligned} \|\psi_h - \hat{\psi}_h^k\|_{\Lambda_h^k} &\leq 8H \sqrt{d \log(K+1) + 2 \log(3H^2/\delta) + 36(K^L + 2)^2 d^2 \log(5HK|\mathcal{A}|/\theta)} \\ 1441 &\leq 50(K^L + 1)dH \sqrt{\log(5H^2K^2|\mathcal{A}|/\delta)} \\ 1442 &:= \beta_p. \end{aligned}$$

1444 Thus, we showed that $\Pr[\bar{E}_2] \geq 1 - \delta/3$ holds. For E_3 , note that for any $(s, a) \in \mathcal{S} \times \mathcal{A}$,

$$1446 \sum_{h \in [H]} 3\beta_b \|\phi(s, a)\|_{(\Lambda_h^k)^{-1}} + 8\beta_Q \beta_w^2 \|\phi(s, a)\|_{(\Lambda_h^k)^{-1}}^2 \leq H(3\beta_b + 8\beta_Q \beta_w^2).$$

1449 Furthermore, s_h^k, a_h^k are generated under $\mathbb{P}, \hat{\pi}^k$. Then, by Lemma 29 with probability at least $1 - \delta/3$,

$$1451 \sum_{k \in [K]} \mathbb{E}_{\mathbb{P}, \hat{\pi}^k}[W_k] \leq 2 \sum_{k \in [K]} W_k + 4H(3\beta_b + 8\beta_Q \beta_w^2) \log \frac{6K}{\delta}.$$

1454 Consequently, by union bound, we have $\Pr[\bar{E}_g] \geq 1 - \delta$. \square

1455 Before proving that E_g holds with high probability, we show the following lemma, which is a
 1456 modification of Lemma 12 of Cassel & Rosenberg (2024) to our CMDP setting. This lemma plays
 1457 a crucial role in establishing the connection between \bar{E}_g and E_g .

1458 **Lemma 15.** Suppose that \bar{E}_g holds. Given $k \in [K]$, if $\hat{\pi}_h^k \in \hat{\Pi}(K\beta_b, 2K^2\beta_Q, K\beta_{Q,h}, 11\eta H^3 K)$
1459 for all $h \in [H]$, then $\hat{Q}_{f,h}^k, \hat{Q}_{g,h}^k \in \hat{\mathcal{Q}}(\beta_b, 2K\beta_Q, \beta_{Q,h})$, and $\hat{V}_{f,h}^k, \hat{V}_{g,h}^k \in$
1460 $\hat{\mathcal{V}}(\beta_b, 2K\beta_Q, \beta_{Q,h}, 11\eta H^3 K)$ for all $h \in [H+1]$.
1461

1462 *Proof.* To show the statement, we apply induction on h for fixed k . For the base case, consider
1463 $h = H+1$. As we initialize as $\hat{Q}_{f,H+1}^k(s, a) = \hat{Q}_{g,H+1}^k(s, a) = \hat{V}_{f,H+1}^k(s) = \hat{V}_{g,H+1}^k(s) = 0$
1464 for all (s, a) , it is clear that $\hat{Q}_{f,H+1}^k, \hat{Q}_{g,H+1}^k \in \hat{\mathcal{Q}}(\beta_b, 2K\beta_Q, \beta_{Q,H+1})$ and $\hat{V}_{f,H+1}^k, \hat{V}_{g,H+1}^k \in$
1465 $\hat{\mathcal{V}}(\beta_b, 2K\beta_Q, \beta_{Q,H+1}, 11\eta H^3 K)$. Next, we assume that the statement is true for $h+1$, i.e.,
1466 $\hat{Q}_{f,h+1}^k, \hat{Q}_{g,h+1}^k \in \hat{\mathcal{Q}}(\beta_b, 2K\beta_Q, \beta_{Q,h+1})$, $\hat{V}_{f,h+1}^k, \hat{V}_{g,h+1}^k \in \hat{\mathcal{V}}(\beta_b, 2K\beta_Q, \beta_{Q,h+1}, 11\eta H^3 K)$. It
1467 follows that for any $\ell \in \{f, g\}$,
1468

$$\begin{aligned} |\hat{Q}_{\ell,h}^k(s, a)| &= \left| \bar{\phi}_h^{k_e}(s, a)^\top \left(\hat{\theta}_{\ell,h}^k + \hat{\psi}_h^k \hat{V}_{\ell,h+1}^k \right) - \beta_b \left\| \bar{\phi}_h^{k_e}(s, a) \right\|_{(\Lambda_h^{k_e})^{-1}} \right| \\ &\leq \left| \bar{\phi}_h^{k_e}(s, a)^\top \left(\theta_{\ell,h}^k + \psi_h \hat{V}_{\ell,h+1}^k \right) \right| \\ &\quad + \left(\beta_b + \left\| \hat{\theta}_{\ell,h}^k - \theta_{\ell,h}^k \right\|_{\Lambda_h^{k_e}} + \left\| (\hat{\psi}_h^k - \psi_h) \hat{V}_{\ell,h+1}^k \right\|_{\Lambda_h^{k_e}} \right) \left\| \bar{\phi}_h^{k_e}(s, a) \right\|_{(\Lambda_h^{k_e})^{-1}} \\ &\leq \left| \bar{\phi}_h^{k_e}(s, a)^\top \left(\theta_{\ell,h}^k + \psi_h \hat{V}_{\ell,h+1}^k \right) \right| \\ &\quad + \left(\beta_b + \left\| \hat{\theta}_{\ell,h}^k - \theta_{\ell,h}^k \right\|_{\Lambda_h^k} + \left\| (\hat{\psi}_h^k - \psi_h) \hat{V}_{\ell,h+1}^k \right\|_{\Lambda_h^k} \right) \left\| \bar{\phi}_h^{k_e}(s, a) \right\|_{(\Lambda_h^k)^{-1}} \end{aligned}$$

1480 where the first inequality is due to the triangle inequality and the Cauchy-Schwarz inequality, and
1481 the second inequality is due to the fact that $\Lambda_h^{k_e} \preceq \Lambda_h^k$.
1482

1483 We bound each term individually. For the first term, for all $\ell \in \{f, g\}$,

$$\begin{aligned} \left| \bar{\phi}_h^{k_e}(s, a)^\top \left(\theta_{\ell,h}^k + \psi_h \hat{V}_{\ell,h+1}^k \right) \right| &= \sigma \left(-\beta_w \left\| \phi(s, a) \right\|_{(\Lambda_h^{k_e})^{-1}} + \log K \right) \left| \phi(s, a)^\top (\theta_{\ell,h}^k + \psi_h \hat{V}_{\ell,h+1}^k) \right| \\ &\leq \left| \phi(s, a)^\top (\theta_{\ell,h}^k + \psi_h \hat{V}_{\ell,h+1}^k) \right| \\ &= \left| \ell_h^k(s, a) + \sum_{s' \in \mathcal{S}} \mathbb{P}_h(s' \mid s, a) \hat{V}_{\ell,h+1}^k(s') \right| \\ &\leq 1 + \left\| \hat{V}_{\ell,h+1}^k \right\|_\infty \end{aligned}$$

1493 where the first and second equality are due to the definition of $\bar{\phi}_h^{k_e}$ and linear MDPs, respectively.
1494 Next, we can bound the second term, since the proxy good event \bar{E}_g is assumed.

$$\left(\beta_b + \left\| \hat{\theta}_{\ell,h}^k - \theta_{\ell,h}^k \right\|_{\Lambda_h^k} + \left\| (\hat{\psi}_h^k - \psi_h) \hat{V}_{\ell,h+1}^k \right\|_{\Lambda_h^k} \right) \left\| \bar{\phi}_h^{k_e}(s, a) \right\|_{(\Lambda_h^{k_e})^{-1}} \leq (\beta_b + \beta_r + \beta_p) \left\| \bar{\phi}_h^{k_e}(s, a) \right\|_{(\Lambda_h^{k_e})^{-1}}.$$

1498 Recall that $\left\| \bar{\phi}_h^{k_e}(s, a) \right\|_{(\Lambda_h^{k_e})^{-1}} = \left\| \phi(s, a) \right\|_{(\Lambda_h^{k_e})^{-1}} \sigma(-\beta_w \left\| \phi(s, a) \right\|_{(\Lambda_h^{k_e})^{-1}} + \log K) \leq \max_{y \geq 0} y \cdot \sigma(-\beta_w y + \log K)$. It follows that
1499

$$\begin{aligned} |\hat{Q}_{\ell,h}^k(s, a)| &\leq 1 + \left\| \hat{V}_{\ell,h+1}^k \right\|_\infty + (\beta_b + \beta_r + \beta_p) \left\| \bar{\phi}_h^{k_e}(s, a) \right\|_{(\Lambda_h^{k_e})^{-1}} \\ &\leq 1 + \left\| \hat{V}_{\ell,h+1}^k \right\|_\infty + (\beta_b + \beta_r + \beta_p) \max_{y \geq 0} [y \cdot \sigma(-\beta_w y + \log K)] \\ &\leq 1 + \left\| \hat{V}_{\ell,h+1}^k \right\|_\infty + \frac{2 \log K}{\beta_w} (\beta_r + \beta_p + \beta_b) \\ &= 2 + \left\| \hat{V}_{\ell,h+1}^k \right\|_\infty \\ &\leq 2 + \beta_{Q,h+1} \\ &= \beta_{Q,h} \end{aligned}$$

1511 where the third inequality follows from Lemma 28, the equality is due to $\beta_w = 2(\beta_r + \beta_p + \beta_b) \log K$, and the last inequality holds because of the induction hypothesis.

1512 So far, we have shown that $\|\widehat{Q}_{\ell,h}^k\|_\infty \leq \beta_{Q,h}$. To show $\widehat{Q}_{\ell,h}^k \in \widehat{\mathcal{Q}}(\beta_b, 2K\beta_Q, \beta_{Q,h})$, it remains to
 1513 show that the corresponding parameters are upper bounded. Recall that $\widehat{Q}_{\ell,h}^k$ is defined as
 1514

$$1515 \quad 1516 \quad \widehat{Q}_{\ell,h}^k(s, a) = \bar{\phi}_h^{k_e}(s, a)^\top w_{\ell,h}^k - \beta_b \left\| \bar{\phi}_h^{k_e}(s, a) \right\|_{(\Lambda_h^{k_e})^{-1}}$$

1517 where $w_{\ell,h}^k = \widehat{\theta}_{\ell,h}^k + \widehat{\psi}_h^k \widehat{V}_{\ell,h+1}^k$. Note that

$$1518 \quad \left\| \widehat{\theta}_{\ell,h}^k \right\|_2 \leq \left\| (\Lambda_h^k)^{-1} \sum_{\tau \in [k-1]} \phi(s_h^\tau, a_h^\tau) \ell_h^\tau(s_h^\tau, a_h^\tau) \right\|_2 \leq \left\| (\Lambda_h^k)^{-1} \right\|_2 \left\| \sum_{\tau \in [k-1]} \phi(s_h^\tau, a_h^\tau) \ell_h^\tau(s_h^\tau, a_h^\tau) \right\|_2 \leq K.$$

1519 Furthermore, the induction hypothesis implies that

$$1520 \quad 1521 \quad \left\| \widehat{\psi}_h^k \widehat{V}_{\ell,h+1}^k \right\|_2 = \left\| (\Lambda_h^k)^{-1} \sum_{\tau \in [k-1]} \phi(s_h^\tau, a_h^\tau) \widehat{V}_{\ell,h+1}^k(s_{h+1}^\tau) \right\|_2 \leq \beta_{Q,h+1} K.$$

1522 It follows that

$$1523 \quad \left\| w_{\ell,h}^k \right\|_2 \leq \left\| \widehat{\theta}_{\ell,h}^k \right\|_2 + \left\| \widehat{\psi}_h^k \widehat{V}_{\ell,h+1}^k \right\|_2 \leq 2\beta_Q K.$$

1524 Furthermore, we have $(2K)^{-1}I \preceq (\Lambda_h^{k_e})^{-1} \preceq I$. Thus, we have

$$1525 \quad \widehat{Q}_{\ell,h}^k \in \widehat{\mathcal{Q}}(\beta_b, 2K\beta_Q, \beta_{Q,h}).$$

1526 By definition, since we have $\widehat{V}_{\ell,h}^k(s) = \sum_{a \in \mathcal{A}} \widehat{\pi}_h^k(a \mid s) \widehat{Q}_{\ell,h}^k(s, a)$ and the assumption $\widehat{\pi}_h^k \in \widehat{\Pi}(K\beta_b, 2K^2\beta_Q, K\beta_{Q,h}, 11\eta H^3 K)$, it follows that

$$1527 \quad \widehat{V}_{\ell,h}^k \in \widehat{\mathcal{V}}(\beta_b, 2K\beta_Q, \beta_{Q,h}, 11\eta H^3 K).$$

1528 This completes the proof. \square

1529 Finally, we prove that E_g holds with high probability. The proof closely follows Lemma 6 of [Cassel & Rosenberg \(2024\)](#), with modifications for the CMDP setting.

1530 **Lemma 16** (Restatement of Lemma 1). *Let $1 \leq \beta_w \leq K$, let $\eta, \alpha \leq 1$ and $4\alpha\eta H^3 \leq 1$. Then $\Pr[E_g] \geq 1 - \delta$ for any $\delta \in (0, 1)$.*

1531 *Proof.* We assume \bar{E}_g , which holds with probability at least $1 - \delta$ by Lemma 14. Next, under \bar{E}_g ,
 1532 we focus on showing E_2 . As a first step, we show that $\widehat{\pi}_h^k \in \widehat{\Pi}(K\beta_b, 2K^2\beta_Q, K\beta_{Q,h}, 11\eta H^3 K)$
 1533 and $Y_k \in [0, 11\eta H^3 k]$ for all k, h using induction on $k \in K_e$ for each epoch $e \in E$. Finally, based
 1534 on this induction, we prove that E_2 holds.

1535 **Step 1: Base Case** First, let us fix $e \in E$. For the base case, consider $k = k_e$. Since $\widehat{\pi}_h^{k_e} = \pi_{\text{unif}}$
 1536 for all h , it follows that $\widehat{\pi}_h^{k_e} \in \widehat{\Pi}(K\beta_b, 2K^2\beta_Q, K\beta_{Q,h}, 11\eta H^3 K)$, as π_{unif} can be viewed as
 1537 $\pi(a \mid s; 0, 0, I)$ with $n = 0$. Furthermore, we initialize $Y_{k_e} = 0$. Thus, the base case holds.

1538 **Step 2: Induction Hypothesis** For $k \in K_e$, we assume that $\widehat{\pi}_h^{k'} \in \widehat{\Pi}(K\beta_b, 2K^2\beta_Q, K\beta_{Q,h}, 11\eta H^3 K)$ and $Y_{k'} \in [0, 11\eta H^3 k']$ for all h and $k_e \leq k' < k$.
 1539 Then, by Lemma 15, it follows that for all $(h, k', \ell) \in [H] \times \{k_e, \dots, k-1\} \times \{f, g\}$,

$$1540 \quad \widehat{Q}_{\ell,h}^{k'} \in \widehat{\mathcal{Q}}(\beta_b, 2K\beta_Q, \beta_{Q,h}), \quad \widehat{V}_{\ell,h}^{k'} \in \widehat{\mathcal{V}}(\beta_b, 2K\beta_Q, \beta_{Q,h}, 11\eta H^3 K). \quad (19)$$

1541 Furthermore, let $\beta_b, w_{\ell,h}^{k'}, \Lambda$ denote the parameters that specify $\widehat{Q}_{\ell,h}^{k'}$, i.e., for all $h, k' < k, \ell \in \{f, g\}$, $\widehat{Q}_{\ell,h}^{k'}(\cdot, \cdot) = \widehat{Q}(\cdot, \cdot; \beta_b, w_{\ell,h}^{k'}, \Lambda)$.

1566 **Step 3-1: Induction Step ($\widehat{\pi}_h^k$)** Next, we show that $\widehat{\pi}_h^k \in \widehat{\Pi}(K\beta_b, 2K^2\beta_Q, K\beta_{Q,h}, 11\eta H^3 K)$ for
 1567 all h . By Lemma 9,
 1568

$$1569 \widehat{\pi}_h^k(\cdot | \cdot) = \widehat{\pi}(\cdot | \cdot; \{\beta_i, w_i\}_{i=0}^n, \Lambda)$$

1570 where $w_i = -\alpha \sum_{j \in S_i} (w_{f,h}^j + Y_j w_{g,h}^j)$, $\beta_i = -\alpha \beta_b \sum_{j \in S_i} (1 + Y_j)$. Note that $j \in S_i$ satisfies
 1571 $j < k$ for each i , thus we can use (19) to bound the parameters. For w_i ,
 1572

$$\begin{aligned} 1573 \|w_i\|_2 &\leq \sum_{j \in S_i} \|w_{f,h}^j + Y_j w_{g,h}^j\|_2 \\ 1574 &\leq \sum_{j \in S_i} \|w_{f,h}^j\|_2 + Y_j \|w_{g,h}^j\|_2 \\ 1575 &\leq \sum_{j \in S_i} (1 + 11\eta H^3 K) 2K\beta_Q \\ 1576 &\leq (1 + 11\eta H^3 K) 2K^2\beta_Q \\ 1577 &\leq (1 + 11\eta H^3 K) 2K^2\beta_Q \\ 1578 &\leq (1 + 11\eta H^3 K) 2K^2\beta_Q \\ 1579 &\leq (1 + 11\eta H^3 K) 2K^2\beta_Q \\ 1580 &\leq (1 + 11\eta H^3 K) 2K^2\beta_Q \\ 1581 \end{aligned} \tag{20}$$

1582 where the first inequality is due to $|\alpha| \leq 1$, and the third inequality is due to the induction hypothesis
 1583 ($Y_{k'} < 11\eta H^3 k'$ for all $k' < k$) and that (19) implies $\|w_{\ell,h}^j\|_2 \leq 2K\beta_Q$. Similarly,

$$1584 |\beta_i| \leq (1 + 11\eta H^3 K) K\beta_b. \tag{21}$$

1585 Again, by (19), we have $\|\widehat{Q}_{f,h}^j\|_\infty, \|\widehat{Q}_{g,h}^j\|_\infty \leq \beta_Q$. Then, for any $(s, a) \in \mathcal{S} \times \mathcal{A}$ and $i = 0, \dots, n$,

$$\begin{aligned} 1586 \left| -\alpha \sum_{j \in S_i} (\widehat{Q}_{f,h}^j(s, a) + Y_j \widehat{Q}_{g,h}^j(s, a)) \right| &\leq (1 + 11\eta H^3 K) K\beta_{Q,h}. \\ 1587 &\leq (1 + 11\eta H^3 K) K\beta_{Q,h}. \\ 1588 &\leq (1 + 11\eta H^3 K) K\beta_{Q,h}. \\ 1589 &\leq (1 + 11\eta H^3 K) K\beta_{Q,h}. \\ 1590 &\leq (1 + 11\eta H^3 K) K\beta_{Q,h}. \end{aligned} \tag{22}$$

1591 Note that $n = \max\{0, \lfloor (k-1-k_e)/K^B \rfloor\} \leq \lfloor K/K^B \rfloor \leq K^{1-B} = K^L$. Furthermore, its
 1592 parameters are bounded by (20), (21), and (22), and the same argument can be applied for all $h \in [H]$. Thus, for all $h \in [H]$,

$$1593 \widehat{\pi}_h^k \in \widehat{\Pi}(K\beta_b, 2K^2\beta_Q, K\beta_{Q,h}, 11\eta H^3 K).$$

1594 **Step 3-2: Induction Step (Y_k)** To bound Y_k ,

$$\begin{aligned} 1595 Y_k &= \left[(1 - 4\alpha\eta H^3) Y_{k-1} + \eta \left(\widehat{V}_{g,1}^{k-1}(s_1) - b - 4\alpha H^3 - 4\theta H^2 \right) \right]_+ \\ 1596 &\leq \left| (1 - 4\alpha\eta H^3) Y_{k-1} + \eta \left(\widehat{V}_{g,1}^{k-1}(s_1) - b - 4\alpha H^3 - 4\theta H^2 \right) \right| \\ 1597 &\leq (1 - 4\alpha\eta H^3) |Y_{k-1}| + \eta |\widehat{V}_{g,1}^{k-1}(s_1) - b - 4\alpha H^3 - 4\theta H^2| \\ 1598 &\leq |Y_{k-1}| + \eta |\widehat{V}_{g,1}^{k-1}(s_1) - b - 4\alpha H^3 - 4\theta H^2| \\ 1599 &\leq 11\eta H^3 (k-1) + 11\eta H^3 \\ 1600 &\leq 11\eta H^3 k \end{aligned}$$

1601 where the first inequality is due to the fact that $\max\{0, z\} \leq |z|$ for all $z \in \mathbb{R}$, the second and third
 1602 inequality follows from the triangle inequality and $0 \leq 1 - 4\alpha\eta H^3 \leq 1$, and the fourth inequality
 1603 is due to the induction hypothesis, i.e., $Y_{k'} \leq 11\eta H^3 k'$ and $\|\widehat{V}_{g,1}^{k-1}\|_\infty \leq 2H$ for all $k' < k$.

1604 These complete the induction, i.e., $\widehat{\pi}_h^k \in \widehat{\Pi}(K\beta_b, 2K^2\beta_Q, K\beta_{Q,h}, 11\eta H^3 K)$ and $Y_k \in [0, 11\eta H^3 k]$
 1605 for all $(h, k) \in [H] \times K_e$. Furthermore, we can apply the same argument for all $e \in E$. Thus, it
 1606 holds for all $(h, k) \in [H] \times [K]$.

1607 **Step 4: Showing E_g** By Lemma 15, we have for all h, k ,

$$1608 \widehat{Q}_{f,h}^k, \widehat{Q}_{g,h}^k \in \widehat{\mathcal{Q}}(\beta_b, 2K\beta_Q, \beta_{Q,h}), \quad \widehat{V}_{f,h}^k, \widehat{V}_{g,h}^k \in \widehat{\mathcal{V}}(\beta_b, 2K\beta_Q, \beta_{Q,h}, 11\eta H^3 K).$$

1609 As a result, since \bar{E}_2 is assumed, we have $\|(\psi_h - \widehat{\psi}_h^k) \widehat{V}_{\ell,h+1}^k\|_{\Lambda_h^k} \leq \beta_p$. Thus, E_2 holds. Furthermore,
 1610 E_1, E_3 hold by \bar{E}_g . This completes the proof. \square

1620 I LYAPUNOV DRIFT ANALYSIS

1621
1622 In this section, we upper bound the dual variable based on a Lyapunov drift analysis. As a first step,
1623 we bound the Lyapunov drift $(Y_{k+1}^2 - Y_k^2)/2$.

1624 **Lemma 17.** *Assume that the good event E_g holds. For all $e \in E$ and $k, k+1 \in K_e$, the Lyapunov
1625 drift is bounded as*

$$1626 \frac{Y_{k+1}^2 - Y_k^2}{2} \leq -\eta\gamma Y_k + \frac{\eta}{\alpha} \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} \left[\sum_{h \in [H]} D(\bar{\pi}_h(\cdot|s_h) || \tilde{\pi}_h^k(\cdot|s_h)) - D(\bar{\pi}_h(\cdot|s_h) || \hat{\pi}_h^{k+1}(\cdot|s_h)) \right] \\ 1631 + \eta(2\alpha H^3 + 4H^2\theta + 4H^2) + 2\eta^2(9H^2 + 16\alpha^2 H^6 + 1936\alpha^2\eta^2 H^{12}K^2 + 16\theta^2 H^4).$$

1633 *Proof.* Recall that the dual variable follows $Y_{k+1} = [(1 - 4\alpha\eta H^3)Y_k + \eta(\hat{V}_{g,1}^k(s_1) - b - 4\alpha H^3 - 4\theta H^2)]_+$. It can be rewritten as

$$1637 Y_{k+1} = \left[Y_k + \eta \left(\hat{V}_{g,1}^k(s_1) - b - 4\alpha H^3(1 + Y_k) - 4\theta H^2 \right) \right]_+.$$

1639 Note that $\max\{0, z\}^2 \leq z^2$ for any $z \in \mathbb{R}$. Then, if we square both sides, we have

$$1641 Y_{k+1}^2 \leq Y_k^2 + 2Y_k\eta \left(\hat{V}_{g,1}^k(s_1) - b - 4\alpha H^3(1 + Y_k) - 4\theta H^2 \right) + \eta^2 \left(\hat{V}_{g,1}^k(s_1) - b - 4\alpha H^3(1 + Y_k) - 4\theta H^2 \right)^2.$$

1643 It can be rewritten as

$$1645 \frac{Y_{k+1}^2 - Y_k^2}{2} \\ 1646 \leq Y_k\eta \underbrace{\left(\hat{V}_{g,1}^k(s_1) - b - 4\alpha H^3(1 + Y_k) - 4\theta H^2 \right)}_{(I)} + \underbrace{\frac{\eta^2}{2} \left(\hat{V}_{g,1}^k(s_1) - b - 4\alpha H^3(1 + Y_k) - 4\theta H^2 \right)^2}_{(II)}. \quad (23)$$

1652 (II) can be bounded as follows.

$$1654 (II) \leq \frac{\eta^2}{2} \cdot 4((\hat{V}_{g,1}^k(s_1) - b)^2 + (4\alpha H^3)^2 + (4\alpha H^3 Y_k)^2 + (4\theta H^2)^2) \\ 1655 \leq \frac{\eta^2}{2} \cdot 4(9H^2 + 16\alpha^2 H^6 + 16\alpha^2 H^6 Y_k^2 + 16\theta^2 H^4) \\ 1656 \leq \frac{\eta^2}{2} \cdot 4(9H^2 + 16\alpha^2 H^6 + 1936\alpha^2\eta^2 H^{12}K^2 + 16\theta^2 H^4)$$

1660 where the first inequality follows from the Cauchy-Schwarz inequality, the second and third inequalities
1661 follow from that E_g implies $|\hat{V}_{g,1}^k(s_1)| \leq 2H$ and $0 \leq Y_k \leq 11\eta H^3 k$ for all k .

1663 Next, we bound (I). To obtain a negative drift, we first deduce a bound on $Y_k \langle \hat{\pi}_h^{k+1}(\cdot|s_h) - \hat{\pi}_h^k(\cdot|s_h), \hat{Q}_{f,h}^k(s_h, \cdot) \rangle$. Since we assumed $k, k+1 \in K_e$, $\hat{\pi}_h^{k+1} \neq \pi_{\text{unif}}$. Then $\hat{\pi}_h^{k+1}$ satisfies

$$1666 \hat{\pi}_h^{k+1}(\cdot|s) = \arg \min_{\pi(\cdot|s) \in \Delta(\mathcal{A})} \langle \pi, \hat{Q}_{f,h}^k + Y_k \hat{Q}_{g,h}^k \rangle + \frac{1}{\alpha} D(\pi || \tilde{\pi}_h^k).$$

1669 Applying Lemma 23 and letting $z = \bar{\pi}_h$, we have for any $s_h \in \mathcal{S}$,

$$1671 \langle \hat{\pi}_h^{k+1}(\cdot|s_h), \hat{Q}_{f,h}^k(s_h, \cdot) + Y_k \hat{Q}_{g,h}^k(s_h, \cdot) \rangle + \frac{1}{\alpha} D(\hat{\pi}_h^{k+1}(\cdot|s_h) || \tilde{\pi}_h^k(\cdot|s_h)) \\ 1672 \leq \langle \bar{\pi}_h(\cdot|s_h), \hat{Q}_{f,h}^k(s_h, \cdot) + Y_k \hat{Q}_{g,h}^k(s_h, \cdot) \rangle + \frac{1}{\alpha} D(\bar{\pi}_h(\cdot|s_h) || \tilde{\pi}_h^k(\cdot|s_h)) - \frac{1}{\alpha} D(\bar{\pi}_h(\cdot|s_h) || \hat{\pi}_h^{k+1}(\cdot|s_h))$$

where $\bar{\pi}$ is the Slater policy satisfying $V_{g,1}^{\bar{\pi}}(s_1) \leq b - \gamma$ for some $\gamma > 0$. Next, summing over h and rearranging terms yield

Now, we take $\mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}}$, which is taken over $\{s_h\}_{h=1}^H$ under $\bar{\mathbb{P}}^{k_e}$, $\bar{\pi}$ for a fixed s_1 . Note that since $\bar{\mathbb{P}}^{k_e}$ is a transition kernel of a contracted MDP, it could be $\sum_{s'} \bar{\mathbb{P}}^{k_e}(s'|s, a) \leq 1$. However, taking $\mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}}$ can be viewed as a linear combination, where its coefficients is in the form of a sub-probability measure defined as $\Pr[s_1 = s, \dots, s_H = s' \mid s_1, \bar{\mathbb{P}}^{k_e}, \bar{\pi}] \in [0, 1]$. This implies that taking $\mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}}$ guarantees monotonicity, i.e.,

$$\begin{aligned}
& Y_k \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} \left[\sum_{h \in [H]} \langle \hat{\pi}_h^{k+1}(\cdot | s_h) - \hat{\pi}_h^k(\cdot | s_h), \hat{Q}_{g,h}^k(s_h, \cdot) \rangle \right] \\
& \leq \frac{1}{\alpha} \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} \left[\sum_{h \in [H]} D(\bar{\pi}_h(\cdot | s_h) || \tilde{\pi}_h^k(\cdot | s_h)) - D(\bar{\pi}_h(\cdot | s_h) || \hat{\pi}_h^{k+1}(\cdot | s_h)) \right] \\
& + \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} \underbrace{\left[\sum_{h \in [H]} \langle \hat{\pi}_h^k(\cdot | s_h) - \hat{\pi}_h^{k+1}(\cdot | s_h), \hat{Q}_{f,h}^k(s_h, \cdot) \rangle - \frac{1}{\alpha} D(\hat{\pi}_h^{k+1}(\cdot | s_h) || \tilde{\pi}_h^k(\cdot | s_h)) \right]}_{(III)} \\
& + \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} \underbrace{\left[\sum_{h \in [H]} \langle \bar{\pi}_h(\cdot | s_h) - \hat{\pi}_h^k(\cdot | s_h), \hat{Q}_{f,h}^k(s_h, \cdot) \rangle \right]}_{(IV)} \\
& + Y_k \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} \underbrace{\left[\sum_{h \in [H]} \langle \bar{\pi}_h(\cdot | s_h) - \hat{\pi}_h^k(\cdot | s_h), \hat{Q}_{g,h}^k(s_h, \cdot) \rangle \right]}_{(V)}. \tag{25}
\end{aligned}$$

We bound (III). By the third statement of Lemma 22, for any $s_h \in \mathcal{S}$, we have

$$\langle \widehat{\pi}_h^k(\cdot|s_h) - \widehat{\pi}_h^{k+1}(\cdot|s_h), \widehat{Q}_{f,h}^k(s_h, \cdot) \rangle - \frac{1}{\alpha} D(\widehat{\pi}_h^{k+1}(\cdot|s_h) || \widetilde{\pi}_h^k(\cdot|s_h)) \leq 2\alpha H^2 + 4H\theta.$$

Thus, summing over $h \in [H]$ and taking $\mathbb{E}_{\bar{\mathbb{P}}^{k_e} \bar{\pi}}$, we have

$$(III) \leq \mathbb{E}_{\bar{\mathbb{P}}^{k_c}_{\bar{\pi}}} [2\alpha H^3 + 4H^2\theta] \leq 2\alpha H^3 + 4H^2\theta$$

where the second inequality is due to (5). To bound (IV),

$$\begin{aligned}
& \text{(IV)} \leq \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} \left[\sum_{h \in [H]} \|\bar{\pi}_h(\cdot | s_h) - \hat{\pi}_h^k(\cdot | s_h)\|_1 \|\hat{Q}_{f,h}^k(s_h, \cdot)\|_\infty \right] \\
& \leq \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} [4H^2] \\
& \leq 4H^2
\end{aligned}$$

where the first inequality is due to Hölder's inequality, and the last inequality is due to (5).

1728 To bound (V), we observe the following. Let $\bar{V}_{g,1}^{\pi}(s)$ denote the ρ -contracted value function, where
 1729 $\rho(s, a, h) = \sigma(-\beta_w \|\phi(s, a)\|_{(\Lambda_h^{k_e})^{-1}} + \log K)$. By Lemmas 7 and 8, we have
 1730

1731

$$\begin{aligned}
 1732 \quad V_{g,1}^{\bar{\pi}}(s_1) - \hat{V}_{g,1}^k(s_1) &\geq \bar{V}_{g,1}^{\bar{\pi}}(s_1) - \hat{V}_{g,1}^k(s_1) \\
 1733 \quad &= \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} \left[\sum_{h \in [H]} \langle \bar{\pi}_h(\cdot | s_h) - \hat{\pi}_h^k(\cdot | s_h), \hat{Q}_{g,h}^k(\cdot | s_h) \rangle \right] \\
 1734 \quad &\quad + \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} \left[\sum_{h \in [H]} \bar{g}_h(s_h, a_h) + \sum_{s' \in \mathcal{S}} \bar{\mathbb{P}}_h^{k_e}(s' | s_h, a_h) \hat{V}_{g,h+1}^k(s') - \hat{Q}_{g,h}^k(s_h, a_h) \right]. \\
 1735 \quad & \\
 1736 \quad & \\
 1737 \quad & \\
 1738 \quad & \\
 1739 \quad & \\
 1740 \quad & \\
 1741 \quad & \\
 1742 \quad \text{To bound the latter term, we have for any } (s_h, a_h) \in \mathcal{S} \times \mathcal{A}, \\
 1743 \quad & \\
 1744 \quad & \\
 1745 \quad \bar{g}_h(s_h, a_h) + \sum_{s' \in \mathcal{S}} \bar{\mathbb{P}}_h(s' | s_h, a_h) \hat{V}_{g,h+1}^k(s') - \hat{Q}_{g,h}^k(s_h, a_h) \\
 1746 \quad &= \bar{\phi}_h^{k_e}(s_h, a_h)^\top \theta_{g,h} + \bar{\phi}_h^{k_e}(s_h, a_h)^\top \psi_h \hat{V}_{g,h+1}^k - \bar{\phi}_h^{k_e}(s_h, a_h)^\top [\hat{\theta}_{g,h} + \hat{\psi}_h^k \hat{V}_{g,h+1}^k] + \beta_b \|\bar{\phi}_h^{k_e}(s_h, a_h)\|_{(\Lambda_h^{k_e})^{-1}} \\
 1747 \quad &\geq -\|\theta_{g,h} - \hat{\theta}_{g,h}^k\|_{\Lambda_h^{k_e}} \|\bar{\phi}_h^{k_e}(s_h, a_h)\|_{(\Lambda_h^{k_e})^{-1}} - \|(\psi_h - \hat{\psi}_h^k) \hat{V}_{g,h+1}^k\|_{\Lambda_h^{k_e}} \|\bar{\phi}_h^{k_e}(s_h, a_h)\|_{(\Lambda_h^{k_e})^{-1}} + \beta_b \|\bar{\phi}_h^{k_e}(s_h, a_h)\|_{(\Lambda_h^{k_e})^{-1}} \\
 1748 \quad &\geq -\|\theta_{g,h} - \hat{\theta}_{g,h}^k\|_{\Lambda_h^{k_e}} \|\bar{\phi}_h^{k_e}(s_h, a_h)\|_{(\Lambda_h^{k_e})^{-1}} - \|(\psi_h - \hat{\psi}_h^k) \hat{V}_{g,h+1}^k\|_{\Lambda_h^{k_e}} \|\bar{\phi}_h^{k_e}(s_h, a_h)\|_{(\Lambda_h^{k_e})^{-1}} + \beta_b \|\bar{\phi}_h^{k_e}(s_h, a_h)\|_{(\Lambda_h^{k_e})^{-1}} \\
 1749 \quad &\geq -\beta_r \|\bar{\phi}_h^{k_e}(s_h, a_h)\|_{(\Lambda_h^{k_e})^{-1}} - \beta_p \|\bar{\phi}_h^{k_e}(s_h, a_h)\|_{(\Lambda_h^{k_e})^{-1}} + \beta_b \|\bar{\phi}_h^{k_e}(s_h, a_h)\|_{(\Lambda_h^{k_e})^{-1}} \\
 1750 \quad &\geq 0
 \end{aligned}$$

$$\begin{aligned}
 1751 \quad & \\
 1752 \quad & \\
 1753 \quad & \\
 1754 \quad & \\
 1755 \quad & \\
 1756 \quad & \\
 1757 \quad \text{where the first equality is due to the definition of contracted MDP, the first inequality is due to the} \\
 1758 \quad \text{Cauchy-Schwarz inequality, the second inequality is due to } \Lambda_h^{k_e} \preceq \Lambda_h^k, \text{ the third inequality is due to} \\
 1759 \quad E_g, \text{ and the last equality is due to } \beta_b = \beta_r + \beta_p. \text{ This implies that the latter term is nonnegative, as} \\
 1760 \quad \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}}[0] = 0. \text{ Thus, it follows that} \\
 1761 \quad & \\
 1762 \quad & \\
 1763 \quad (V) = Y_k \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} \left[\sum_{h \in [H]} \langle \bar{\pi}_h(\cdot | s_h) - \hat{\pi}_h^k(\cdot | s_h), \hat{Q}_{g,h}^k(\cdot | s_h) \rangle \right] \\
 1764 \quad &\leq Y_k (V_{g,1}^{\bar{\pi}}(s_1) - \hat{V}_{g,1}^k(s_1)) \\
 1765 \quad &\leq Y_k (b - \gamma - \hat{V}_{g,1}^k(s_1))
 \end{aligned}$$

1770 where the last inequality is due to the Slater condition and $Y_k \geq 0$. Finally, plugging the bounds on
 1771 (III), (IV), and (V) into (25), we have
 1772

$$\begin{aligned}
 1773 \quad & \\
 1774 \quad & \\
 1775 \quad Y_k \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} \left[\sum_{h \in [H]} \langle \hat{\pi}_h^{k+1}(\cdot | s_h) - \hat{\pi}_h^k(\cdot | s_h), \hat{Q}_{g,h}^k(s_h, \cdot) \rangle \right] \\
 1776 \quad &\leq \frac{1}{\alpha} \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} \left[\sum_{h \in [H]} D(\bar{\pi}_h(\cdot | s_h) || \hat{\pi}_h^k(\cdot | s_h)) - D(\bar{\pi}_h(\cdot | s_h) || \hat{\pi}_h^{k+1}(\cdot | s_h)) \right] \\
 1777 \quad &\quad + 2\alpha H^3 + 4H^2\theta + 4H^2 + Y_k (b - \gamma - \hat{V}_{g,1}^k(s_1)).
 \end{aligned}$$

1782 Then we can bound (I) as follows.
 1783

$$\begin{aligned}
 \text{(I)} &= Y_k \eta \left(\widehat{V}_{g,1}^k(s_1) - b - 4\alpha H^3(1 + Y_k) - 4\theta H^2 \right) \\
 &\leq Y_k \eta \left(\widehat{V}_{g,1}^k(s_1) - b + \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} \left[\sum_{h \in [H]} \langle \widehat{\pi}_h^{k+1}(\cdot | s_h) - \widehat{\pi}_h^k(\cdot | s_h), \widehat{Q}_{g,h}^k(s_h, \cdot) \rangle \right] \right) \\
 &\leq Y_k \eta (\widehat{V}_{g,1}^k(s_1) - b) + \frac{\eta}{\alpha} \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} \left[\sum_{h \in [H]} D(\bar{\pi}_h(\cdot | s_h) || \widetilde{\pi}_h^k(\cdot | s_h)) - D(\bar{\pi}_h(\cdot | s_h) || \widehat{\pi}_h^{k+1}(\cdot | s_h)) \right] \\
 &\quad + \eta(2\alpha H^3 + 4H^2\theta + 4H^2) + \eta Y_k (b - \gamma - \widehat{V}_{g,1}^k(s_1)) \\
 &= -\eta\gamma Y_k + \frac{\eta}{\alpha} \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} \left[\sum_{h \in [H]} D(\bar{\pi}_h(\cdot | s_h) || \widetilde{\pi}_h^k(\cdot | s_h)) - D(\bar{\pi}_h(\cdot | s_h) || \widehat{\pi}_h^{k+1}(\cdot | s_h)) \right] \\
 &\quad + \eta(2\alpha H^3 + 4H^2\theta + 4H^2).
 \end{aligned}$$

1798 Here, the first inequality is true as follows. For any $s_1, \dots, s_H \in \mathcal{S}$,
 1799

$$\begin{aligned}
 \left| \sum_{h \in [H]} \langle \widehat{\pi}_h^{k+1}(\cdot | s_h) - \widehat{\pi}_h^k(\cdot | s_h), \widehat{Q}_{g,h}^k(s_h, \cdot) \rangle \right| &\leq \sum_{h \in [H]} \left| \langle \widehat{\pi}_h^{k+1}(\cdot | s_h) - \widehat{\pi}_h^k(\cdot | s_h), \widehat{Q}_{g,h}^k(s_h, \cdot) \rangle \right| \\
 &\leq \sum_{h \in [H]} (4\alpha H^2(1 + Y_k) + 4\theta H) \\
 &= 4\alpha H^3(1 + Y_k) + 4\theta H^2
 \end{aligned}$$

1800 where the first inequality is due to the triangle inequality, and the second inequality is due to the
 1801 second statement of Lemma 22. Note that the second inequality holds regardless of whether $\widetilde{\pi}_h^k$ is
 1802 perturbed, because when $\widetilde{\pi}_h^k$ is not perturbed, it can be viewed as $\theta = 0$. It follows that
 1803

$$\begin{aligned}
 \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} \left[\sum_{h \in [H]} \langle \widehat{\pi}_h^{k+1}(\cdot | s_h) - \widehat{\pi}_h^k(\cdot | s_h), \widehat{Q}_{g,h}^k(s_h, \cdot) \rangle \right] &\geq -\mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} [4\alpha H^3(1 + Y_k) + 4\theta H^2] \\
 &\geq -(4\alpha H^3(1 + Y_k) + 4\theta H^2)
 \end{aligned}$$

1814 where the second inequality is due to (5).
 1815

1816 Consequently, plugging the bounds on (I) and (II) into (23), the Lyapunov drift is bounded as
 1817

$$\begin{aligned}
 \frac{Y_{k+1}^2 - Y_k^2}{2} &\leq -\eta\gamma Y_k + \frac{\eta}{\alpha} \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} \left[\sum_{h \in [H]} D(\bar{\pi}_h(\cdot | s_h) || \widetilde{\pi}_h^k(\cdot | s_h)) - D(\bar{\pi}_h(\cdot | s_h) || \widehat{\pi}_h^{k+1}(\cdot | s_h)) \right] \\
 &\quad + \eta(2\alpha H^3 + 4H^2\theta + 4H^2) + 2\eta^2(9H^2 + 16\alpha^2 H^6 + 1936\alpha^2\eta^2 H^{12}K^2 + 16\theta^2 H^4).
 \end{aligned}$$

1823 \square

1824 **Lemma 18** (Restatement of Lemma 2). *Assume that the good event E_g holds. Let $H^2 \leq K$. For
 1825 any $\delta \in (0, 1)$ and $k \in [K]$, with probability at least $1 - \delta$, we have*

$$Y_k \leq \frac{2C_4}{\eta K^B \gamma} + 2K^B \delta_{\max} + \frac{8K^B \delta_{\max}^2}{\eta \gamma} \log \frac{32\delta_{\max}^2}{(\eta \gamma)^2 \delta}.$$

1827 where δ_{\max} and C_4 are given in (26) and (32), respectively. Furthermore, under the parameter
 1828 choice of Algorithm 1, we have

$$Y_k = \tilde{\mathcal{O}}(H^2/\gamma).$$

1832 *Proof.* For ease of notation, let $N_e = \max\{n \in \mathbb{Z}_+ : k_e + nK^B \in K_e\}$, and let
 1833

$$Z_n = Y_{k_e + nK^B}.$$

1836 To show the lemma, we apply Lemma 25 to $\{Z_n\}_{n=0}^{N_e}$. Let $\xi_0 = \emptyset$, and let ξ_n be the set of all
 1837 random variables until episode $k_e + nK^B - 1$, i.e.,
 1838

1839

1840
$$\xi_n = \{(s_h^\tau, a_h^\tau, \theta_{f,h}^\tau, g_h(s_h^\tau, a_h^\tau))\}_{h \in [H], \tau \in [k_e + nK^B - 1]}.$$

 1841

1842

1843

1844 Let \mathcal{F}_n denote the σ -algebra generated by ξ_n for $n = 0, \dots, N_e$. Then $\{\mathcal{F}_n\}_{n=0}^{N_e}$ forms a filtration.
 1845 Note that $Z_0 = Y_{k_e} = 0$ and thus Z_0 is \mathcal{F}_0 -measurable. Furthermore, $Z_n = Y_{k_e + nK^B}$ is determined
 1846 by information up to episode $k_e + nK^B - 1$, which implies that Z_n is \mathcal{F}_n -measurable. Hence,
 1847 $\{Z_n\}_{n=0}^{N_e}$ is adapted to $\{\mathcal{F}_n\}_{n=0}^{N_e}$.

1848 Note that $|\max\{z_1, 0\} - z_2| \leq |z_1 - z_2|$ for any $z_1 \in \mathbb{R}$ and $z_2 \in \mathbb{R}_+$. Then it follows that
 1849

1850

1851
$$\begin{aligned} 1852 |Y_{k+1} - Y_k| &\leq \left| -4\alpha\eta H^3 Y_k + \eta(\hat{V}_{g,1}^k(s_1) - b - 4\alpha H^3 - 4\theta H^2) \right| \\ 1853 &\leq 4\eta\alpha H^3(11\eta H^3 K) + 3\eta H + 4\eta\alpha H^3 + 4\eta\theta H^2 \\ 1854 &:= \delta_{\max}. \end{aligned} \tag{26}$$

 1855

1856

1857 where the second inequality is due to the triangle inequality and the fact that $Y_k \leq 11\eta H^3 K$ and
 1858 $\|\hat{V}_{g,1}^k\|_\infty \leq 2H$ under E_g . Thus, by the triangle inequality,
 1859

1860

1861

1862
$$|Z_{n+1} - Z_n| = \left| \sum_{\tau=k_e + nK^B}^{k_e + (n+1)K^B - 1} (Y_{\tau+1} - Y_\tau) \right| \leq K^B \delta_{\max}. \tag{27}$$

 1863

1864

1865

1866

1867 By Lemma 17, we deduce the Lyapunov drift of Z_n as
 1868

1869

1870
$$\begin{aligned} 1871 \frac{Z_{n+1}^2 - Z_n^2}{2} &= \sum_{\tau=k_e + nK^B}^{k_e + (n+1)K^B - 1} \frac{Y_{\tau+1}^2 - Y_\tau^2}{2} \\ 1872 &\leq \underbrace{\sum_{\tau=k_e + nK^B}^{k_e + (n+1)K^B - 1} -\eta\gamma Y_\tau}_{(I)} \\ 1873 &\quad + \underbrace{\sum_{\tau=k_e + nK^B}^{k_e + (n+1)K^B - 1} \frac{\eta}{\alpha} \mathbb{E}_{\mathbb{P}^{k_e}, \bar{\pi}} \left[\sum_{h \in [H]} D(\bar{\pi}_h(\cdot | s_h) || \tilde{\pi}_h^k(\cdot | s_h)) - D(\bar{\pi}_h(\cdot | s_h) || \tilde{\pi}_h^{k+1}(\cdot | s_h)) \right]}_{(II)} \\ 1874 &\quad + K^B C_3 \end{aligned} \tag{28}$$

 1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1886 where
 1887

1888
$$C_3 = \eta(2\alpha H^3 + 4H^2\theta + 4H^2) + 2\eta^2(9H^2 + 16\alpha^2 H^6 + 1936\alpha^2\eta^2 H^{12} K^2 + 16\theta^2 H^4) \tag{29}$$

1890 To bound (I),
 1891

$$\begin{aligned}
 \text{(I)} &= \sum_{\tau=k_e+nK^B}^{k_e+(n+1)K^B-1} -\eta\gamma Y_\tau \\
 &= \sum_{\tau=k_e+nK^B}^{k_e+(n+1)K^B-1} -\eta\gamma \left(Y_{k_e+nK^B} + \sum_{\tau'=k_e+nK^B}^{\tau-1} (Y_{\tau'+1} - Y_{\tau'}) \right) \\
 &\leq -\eta\gamma K^B Y_{k_e+nK^B} + \eta\gamma \sum_{\tau=k_e+nK^B}^{k_e+(n+1)K^B-1} \sum_{\tau'=k_e+nK^B}^{\tau-1} |Y_{\tau'+1} - Y_{\tau'}| \\
 &\leq -\eta\gamma K^B Y_{k_e+nK^B} + \eta\gamma \sum_{\tau=k_e+nK^B}^{k_e+(n+1)K^B-1} \sum_{\tau'=k_e+nK^B}^{\tau-1} \delta_{\max} \\
 &= -\eta\gamma K^B Y_{k_e+nK^B} + \eta\gamma \sum_{\tau=k_e+nK^B}^{k_e+(n+1)K^B-1} (\tau - k_e - nK^B) \delta_{\max} \\
 &= -\eta\gamma K^B Y_{k_e+nK^B} + \eta\gamma \delta_{\max} \frac{K^B(K^B-1)}{2}
 \end{aligned} \tag{30}$$

1910 where the second inequality due to the fact that $z \leq |z|$ for any $z \in \mathbb{R}$ and the triangle inequality, the
 1911 second inequality follows from (26), and the last equality is because the sum of $0, \dots, z-1$ equals
 1912 $z(z-1)/2$ for any $z \in \mathbb{Z}_+$.

1913 To bound (II),
 1914

$$\begin{aligned}
 \text{(II)} &= \frac{\eta}{\alpha} \sum_{h \in [H]} \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} \left[\sum_{\tau=k_e+nK^B}^{k_e+(n+1)K^B-1} D(\bar{\pi}_h(\cdot|s_h) \|\tilde{\pi}_h^\tau(\cdot|s_h)) - D(\bar{\pi}_h(\cdot|s_h) \|\hat{\pi}_h^{\tau+1}(\cdot|s_h)) \right] \\
 &= \frac{\eta}{\alpha} \sum_{h \in [H]} \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} \left[D(\bar{\pi}(\cdot|s_h) \|\tilde{\pi}_h^{k_e+nK^B}(\cdot|s_h)) - D(\bar{\pi}(\cdot|s_h) \|\hat{\pi}_h^{k_e+(n+1)K^B}(\cdot|s_h)) \right] \\
 &\quad + \frac{\eta}{\alpha} \sum_{h \in [H]} \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} \left[\sum_{\tau=k_e+nK^B+1}^{k_e+(n+1)K^B-1} D(\bar{\pi}_h(\cdot|s_h) \|\tilde{\pi}_h^\tau(\cdot|s_h)) - D(\bar{\pi}_h(\cdot|s_h) \|\hat{\pi}_h^\tau(\cdot|s_h)) \right] \\
 &= \frac{\eta}{\alpha} \sum_{h \in [H]} \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} \left[D(\bar{\pi}(\cdot|s_h) \|\tilde{\pi}_h^{k_e+nK^B}(\cdot|s_h)) - D(\bar{\pi}(\cdot|s_h) \|\hat{\pi}_h^{k_e+(n+1)K^B}(\cdot|s_h)) \right] \\
 &\leq \frac{\eta}{\alpha} \sum_{h \in [H]} \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \bar{\pi}} [\log(|\mathcal{A}|/\theta)] \\
 &\leq \frac{\eta}{\alpha} H \log(|\mathcal{A}|/\theta)
 \end{aligned}$$

1931 where the last equality is because $\tilde{\pi}_h^\tau = \hat{\pi}_h^\tau$ for all τ such that $\tau - k_e \not\equiv 0 \pmod{K^B}$ by algorithm.
 1932 The first inequality is because the KL divergence is nonnegative, and we apply Lemma 26, as we
 1933 know $\tilde{\pi}_h^{k_e+nK^B} = (1-\theta)\hat{\pi}_h^{k_e+nK^B} + \theta\pi_{\text{unif}}$ by algorithm. The last inequality is due to (5). Thus,
 1934 plugging the bounds on (I) and (II) into (28),

$$\frac{Z_{n+1}^2 - Z_n^2}{2} \leq -\eta\gamma K^B Z_n + \eta\gamma \delta_{\max} \frac{K^B(K^B-1)}{2} + \frac{\eta}{\alpha} H \log(|\mathcal{A}|/\theta) + K^B C_3. \tag{31}$$

1935 For ease of notation, let C_4 denote
 1936

$$C_4 := \eta\gamma \delta_{\max} \frac{K^B(K^B-1)}{2} + \frac{\eta}{\alpha} H \log(|\mathcal{A}|/\theta) + K^B C_3. \tag{32}$$

1941 Consider $Z_n \geq 2C_4/(\eta K^B \gamma)$. Then (31) becomes
 1942

$$\frac{Z_{n+1}^2 - Z_n^2}{2} \leq -C_4,$$

1944 which implies that $Z_{n+1} \leq Z_n$. In this case, it follows that
1945

$$\begin{aligned}
1946 \quad \mathbb{E}[Z_{n+1} - Z_n | \mathcal{F}_n] &= \mathbb{E}\left[\frac{Z_{n+1}^2 - Z_n^2}{Z_{n+1} + Z_n} | \mathcal{F}_n\right] \leq \mathbb{E}\left[\frac{Z_{n+1}^2 - Z_n^2}{2Z_n} | \mathcal{F}_n\right] \\
1947 \quad &= \frac{1}{Z_n} \mathbb{E}\left[\frac{Z_{n+1}^2 - Z_n^2}{2} | \mathcal{F}_n\right] \\
1948 \quad &\leq \frac{1}{Z_n} \mathbb{E}[-\eta\gamma K^B Z_n + C_4 | \mathcal{F}_n] \\
1949 \quad &= \frac{-\eta\gamma K^B Z_n + C_4}{Z_n} \\
1950 \quad &\leq -\eta K^B \gamma + \frac{C_4 \eta K^B \gamma}{2C_4} \\
1951 \quad &= -\frac{\eta K^B \gamma}{2} \\
1952 \quad & \\
1953 \quad & \\
1954 \quad & \\
1955 \quad & \\
1956 \quad & \\
1957 \quad & \\
1958 \quad & \\
1959 \quad &
\end{aligned}$$

1960 where the first inequality is due to $Z_{n+1} \leq Z_n$, the second inequality is due to (31), and the last
1961 inequality is because we consider $Z_n \geq 2C_4/(\eta K^B \gamma)$. The first and second equalities are because
1962 Z_n is \mathcal{F}_n -measurable. As a result, we have
1963

$$|Z_{n+1} - Z_n| \leq K^B \delta_{\max},$$

$$\mathbb{E}[Z_{n+1} - Z_n | \mathcal{F}_n] \leq \begin{cases} K^B \delta_{\max} & \text{if } Z_n \leq \frac{2C_4}{\eta K^B \gamma}, \\ -\frac{\eta K^B \gamma}{2} & \text{if } Z_n \geq \frac{2C_4}{\eta K^B \gamma}. \end{cases}$$

1968 Note that $Z_0 = 0$ and $\frac{\eta K^B \gamma}{2} \leq K^B \delta_{\max}$. Thus, by Lemma 25 with $n_0 = 1$, with probability at least
1969 $1 - \delta$, for all $n = 0, \dots, N_e$

$$Y_{k_e + nK^B} = Z_n \leq \frac{2C_4}{\eta K^B \gamma} + K^B \delta_{\max} + \frac{4K^{2B} \delta_{\max}^2}{\frac{\eta K^B \gamma}{2}} \log \frac{8K^{2B} \delta_{\max}^2}{(\frac{\eta K^B \gamma}{2})^2 \delta}.$$

1971 Furthermore, for any $k \in \{k_e + nK^B, \dots, k_e + (n+1)K^B - 1\}$, we have $Y_k \leq Y_{k_e + nK^B} +$
1972 $\sum_{\tau=k_e + nK^B}^{k-1} |Y_{\tau+1} - Y_\tau| \leq Y_{k_e + nK^B} + K^B \delta_{\max}$. Finally, it implies that for any $k \in [K]$,
1973

$$Y_k \leq \frac{2C_4}{\eta K^B \gamma} + 2K^B \delta_{\max} + \frac{8K^{2B} \delta_{\max}^2}{\eta \gamma} \log \frac{32\delta_{\max}^2}{(\eta \gamma)^2 \delta}.$$

1974 This completes the first statement. Next, we carefully plug our parameter choice into the upper
1975 bound on Y_k . Recall that the definitions of C_3, C_4, δ_{\max} , and our parameter choice such that
1976

$$B = \frac{3}{4}, \eta = H^{-2} K^{-B}, \alpha = H^{-1} K^{-B}, \theta = K^{-1}.$$

1977 δ_{\max} is bounded as
1978

$$\begin{aligned}
1979 \quad \delta_{\max} &= 4\eta\alpha H^3 (11\eta H^3 K) + 3\eta H + 4\eta\alpha H^3 + 4\eta\theta H^2 \\
1980 \quad &= 44\eta^2 \alpha H^6 K + 3\eta H + 4\eta\alpha H^3 + 4\eta\theta H^2 \\
1981 \quad &= 44HK^{-3B+1} + 3H^{-1} K^{-B} + 4K^{-2B} + 4K^{-1-B} \\
1982 \quad &= \tilde{\mathcal{O}}(HK^{-5/4} + H^{-1} K^{-3/4})
\end{aligned}$$

1983 Since we assumed $H^2 \leq K$, it follows that $HK^{-1/2} \leq 1$. Then we have
1984

$$\delta_{\max} = \tilde{\mathcal{O}}(K^{-3/4})$$

1985 C_3 is bounded as
1986

$$\begin{aligned}
1987 \quad C_3 &= \eta(2\alpha H^3 + 4H^2 \theta + 4H^2) + 2\eta^2(9H^2 + 16\alpha^2 H^6 + 1936\alpha^2 \eta^2 H^{12} K^2 + 16\theta^2 H^4) \\
1988 \quad &= 2K^{-2B} + 4K^{-1-B} + 4K^{-B} + 18H^{-2} K^{-2B} + 32K^{-4B} + 3872H^2 K^{2-6B} + 32K^{-2-2B}.
\end{aligned}$$

1998 $2C_4/(\eta K^B \gamma)$ is bounded as
 1999
 2000 $\frac{2C_4}{\eta K^B \gamma} \leq \delta_{\max} K^B + \frac{2H \log(|\mathcal{A}|/\theta)}{K^B \gamma \alpha} + \frac{2C_3}{\eta \gamma}$
 2001
 2002 $= 44HK^{-2B+1} + 3H^{-1} + 4K^{-B} + 4K^{-1}$
 2003
 2004 $+ \frac{2}{\gamma} H^2 \log(|\mathcal{A}|K)$
 2005
 2006 $+ \frac{2}{\gamma} (2H^2 K^{-B} + 4H^2 K^{-1} + 4H^2 + 18K^{-B} + 32H^2 K^{-3B} + 3872H^4 K^{2-5B} + 32H^2 K^{-2-B})$
 2007
 2008 $= \tilde{\mathcal{O}}(H^2/\gamma + H^4 K^{-7/4}/\gamma)$.
 2009

2010 Since we assumed $H^2 \leq K$, we have $H^4 K^{-7/4} \leq H^2$. Then we can drop $\tilde{\mathcal{O}}(H^4 K^{-7/4}/\gamma)$.
 2011 $2K^B \delta_{\max}$ is bounded as
 2012

$$\begin{aligned} 2013 \quad 2K^B \delta_{\max} &= 88HK^{-2B+1} + 6H^{-1} + 8K^{-2B} + 8K^{-1} \\ 2014 &= \tilde{\mathcal{O}}(HK^{-1/2}) \\ 2015 \end{aligned}$$

2016 $(8K^B \delta_{\max}^2/(\eta \gamma)) \log(32\delta_{\max}^2/(\eta^2 \gamma^2 \delta))$ is bounded as
 2017

$$\frac{8K^B \delta_{\max}^2}{\eta \gamma} \log \frac{32\delta_{\max}^2}{(\eta \gamma)^2 \delta} = \tilde{\mathcal{O}}(H^2/\gamma)$$

2018 Finally, Y_k is bounded as
 2019
 2020

$$2021 \quad Y_k = \tilde{\mathcal{O}}(H^2/\gamma).$$

□

2026 J DETAILED PROOFS FOR THE ANALYSIS

2027 In this section, we first introduce lemmas, which bound an online mirror descent term and optimism
 2028 terms, and these are useful to prove Lemma 5. Then we present the proofs of Lemmas 3, 4, 5, 6.
 2029 Then we conclude the section by providing the proof of Theorem 1.

2030 The following lemma is to bound the regret due to online mirror descent. Here, the main difference
 2031 with the standard online mirror descent lemma (e.g., Hazan et al. (2016); Lattimore & Szepesvári
 2032 (2020)) comes from the periodic policy mixing, which requires a modified analysis.

2033 **Lemma 19.** *Let $H^2 \leq K$. Suppose that E_g and the statement of Lemma 18 hold. Then we have*

$$\begin{aligned} 2034 \quad &\sum_{e \in E} \sum_{k \in K_e} \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \pi^*} \left[\sum_{h \in [H]} \langle \hat{Q}_{f,h}^k(s_h, \cdot) + Y_k \hat{Q}_{g,h}^k(s_h, \cdot), \hat{\pi}_h^k(\cdot | s_h) - \pi_h^*(\cdot | s_h) \rangle \right] \\ 2035 &= \tilde{\mathcal{O}}\left(dH^3 K^{3/4} + \frac{H^6}{\gamma^2} K^{1/4} + \frac{dH^5}{\gamma}\right). \\ 2036 \end{aligned}$$

2037 *Proof.* Consider $e \in E$. For any $s \in \mathcal{S}$ and $k \in K_e$ such that $\hat{\pi}_h^{k+1} \neq \pi_{\text{unif}}$ (i.e., $k = k_e, \dots, k_{e+1} - 2$), we have
 2038

$$2039 \quad \hat{\pi}_h^{k+1}(\cdot | s) = \arg \min_{\pi(\cdot | s) \in \Delta(\mathcal{A})} \langle \hat{Q}_{f,h}^k(s, \cdot) + Y_k \hat{Q}_{g,h}^k(s, \cdot), \pi(\cdot | s) \rangle + \frac{1}{\alpha} D(\pi(\cdot | s) || \hat{\pi}_h^k(\cdot | s)).$$

2040 For ease of notation, we omit (s, \cdot) and $(\cdot | s)$. By Lemma 23, for any policy π ,

$$2041 \quad \langle \hat{Q}_{f,h}^k + Y_k \hat{Q}_{g,h}^k, \hat{\pi}_h^{k+1} - \pi \rangle \leq \frac{1}{\alpha} D(\pi || \hat{\pi}_h^k) - \frac{1}{\alpha} D(\pi || \hat{\pi}_h^{k+1}) - \frac{1}{\alpha} D(\hat{\pi}_h^{k+1} || \hat{\pi}_h^k).$$

2052 By adding $\langle \widehat{Q}_{f,h}^k + Y_k \widehat{Q}_{g,h}^k, \widehat{\pi}_h^k - \widehat{\pi}_h^{k+1} \rangle$ on both sides, we have for $k = k_e, \dots, k_{e+1} - 2$,
 2053

$$\begin{aligned}
& \langle \widehat{Q}_{f,h}^k + Y_k \widehat{Q}_{g,h}^k, \widehat{\pi}_h^k - \pi \rangle \\
& \leq \frac{1}{\alpha} D(\pi || \widetilde{\pi}_h^k) - \frac{1}{\alpha} D(\pi || \widehat{\pi}_h^{k+1}) - \frac{1}{\alpha} D(\widehat{\pi}_h^{k+1} || \widetilde{\pi}_h^k) + \langle \widehat{Q}_{f,h}^k + Y_k \widehat{Q}_{g,h}^k, \widehat{\pi}_h^k - \widehat{\pi}_h^{k+1} \rangle \\
& \leq \frac{1}{\alpha} D(\pi || \widetilde{\pi}_h^k) - \frac{1}{\alpha} D(\pi || \widehat{\pi}_h^{k+1}) - \frac{1}{2\alpha} \|\widehat{\pi}_h^{k+1} - \widetilde{\pi}_h^k\|_1^2 + \|\widehat{Q}_{f,h}^k + Y_k \widehat{Q}_{g,h}^k\|_\infty \|\widehat{\pi}_h^k - \widehat{\pi}_h^{k+1}\|_1 \\
& \leq \frac{1}{\alpha} D(\pi || \widetilde{\pi}_h^k) - \frac{1}{\alpha} D(\pi || \widehat{\pi}_h^{k+1}) - \frac{1}{2\alpha} \|\widehat{\pi}_h^{k+1} - \widetilde{\pi}_h^k\|_1^2 + \|\widehat{Q}_{f,h}^k + Y_k \widehat{Q}_{g,h}^k\|_\infty \|\widehat{\pi}_h^{k+1} - \widetilde{\pi}_h^k\|_1 \\
& \quad + \|\widehat{Q}_{f,h}^k + Y_k \widehat{Q}_{g,h}^k\|_\infty \|\widetilde{\pi}_h^k - \widehat{\pi}_h^k\|_1 \\
& = \frac{1}{\alpha} D(\pi || \widetilde{\pi}_h^k) - \frac{1}{\alpha} D(\pi || \widehat{\pi}_h^k) + \frac{1}{\alpha} D(\pi || \widehat{\pi}_h^k) - \frac{1}{\alpha} D(\pi || \widehat{\pi}_h^{k+1}) \\
& \quad - \frac{1}{2\alpha} \|\widehat{\pi}_h^{k+1} - \widetilde{\pi}_h^k\|_1^2 + \|\widehat{Q}_{f,h}^k + Y_k \widehat{Q}_{g,h}^k\|_\infty \|\widehat{\pi}_h^{k+1} - \widetilde{\pi}_h^k\|_1 + \|\widehat{Q}_{f,h}^k + Y_k \widehat{Q}_{g,h}^k\|_\infty \|\widetilde{\pi}_h^k - \widehat{\pi}_h^k\|_1
\end{aligned} \tag{33}$$

where the second inequality follows from Pinsker's inequality and Hölder's inequality, and the last inequality is due to the triangle inequality. By taking $\sum_{k \in K_c}$ on both sides, we have

$$\begin{aligned}
& \sum_{k \in K_e} \langle \widehat{Q}_{f,h}^k + Y_k \widehat{Q}_{g,h}^k, \widehat{\pi}_h^k - \pi \rangle \\
& \leq \underbrace{\frac{1}{\alpha} \sum_{k=k_e}^{k_{e+1}-2} (D(\pi || \widetilde{\pi}_h^k) - D(\pi || \widehat{\pi}_h^k))}_{\text{(I)}} + \underbrace{\frac{1}{\alpha} \sum_{k=k_e}^{k_{e+1}-2} (D(\pi || \widehat{\pi}_h^k) - D(\pi || \widehat{\pi}_h^{k+1}))}_{\text{(II)}} \\
& \quad + \underbrace{\sum_{k=k_e}^{k_{e+1}-2} \left(-\frac{1}{2\alpha} \|\widehat{\pi}_h^{k+1} - \widetilde{\pi}_h^k\|_1^2 + \|\widehat{Q}_{f,h}^k + Y_k \widehat{Q}_{g,h}^k\|_\infty \|\widehat{\pi}_h^{k+1} - \widetilde{\pi}_h^k\|_1 \right)}_{\text{(III)}} + \underbrace{\sum_{k=k_e}^{k_{e+1}-2} \|\widehat{Q}_{f,h}^k + Y_k \widehat{Q}_{g,h}^k\|_\infty \|\widetilde{\pi}_h^k - \widehat{\pi}_h^k\|_1}_{\text{(IV)}} \\
& \quad + \langle \widehat{Q}_{f,h}^{k_{e+1}-1} + Y_k \widehat{Q}_{g,h}^{k_{e+1}-1}, \widehat{\pi}_h^{k_{e+1}-1} - \pi \rangle.
\end{aligned}$$

Note that $\langle \widehat{Q}_{f,h}^{k_{e+1}-1} + Y_k \widehat{Q}_{g,h}^{k_{e+1}-1}, \widehat{\pi}_h^{k_{e+1}-1} - \pi \rangle$ is added, as (33) does not hold for $k_{e+1} - 1$, i.e., the last episode in epoch e . Furthermore, this term can be bounded by $2\|\widehat{Q}_{f,h}^{k_{e+1}-1} + Y_k \widehat{Q}_{g,h}^{k_{e+1}-1}\|_\infty$ using Hölder's inequality.

To bound (I), we observe the following. If $k - k_e \not\equiv 0 \pmod{K^B}$, then $\tilde{\pi}_h^k = \hat{\pi}_h^k$. Thus, $D(\pi || \tilde{\pi}_h^k) - D(\pi || \hat{\pi}_h^k) = 0$. Otherwise, since $\tilde{\pi}_h^k = (1 - \theta)\hat{\pi}_h^k + \theta\pi_{\text{unif}}$, we can apply Lemma 26, and thus $D(\pi || \tilde{\pi}_h^k) - D(\pi || \hat{\pi}_h^k) \leq \theta \log |\mathcal{A}|$, i.e.,

$$D(\pi || \tilde{\pi}_h^k) - D(\pi || \hat{\pi}_h^k) \leq \begin{cases} \theta \log |\mathcal{A}| & \text{if } k - k_e \equiv 0 \pmod{K^B}, \\ 0 & \text{otherwise.} \end{cases}$$

It follows that

$$(I) \leq \frac{1}{\alpha} \sum_{k \in K_e : k-k_e = 0 \bmod K^B} \theta \log |\mathcal{A}| \leq \frac{\theta |K_e| \log |\mathcal{A}|}{\alpha K^B} + \frac{\theta \log |\mathcal{A}|}{\alpha}$$

where the second inequality is due to $|\{k \in K_e : k - k_e \equiv 0 \pmod{K^B}\}| \leq \lceil |K_e|/K^B \rceil \leq |K_e|/K^B + 1$. Furthermore, since (II) is in the form of a telescoping sum and $\hat{\pi}_{k_e}^{k_e} = \pi_{\text{unif}}$, we have

$$(II) \leq \frac{1}{c} D(\pi || \hat{\pi}_h^{k_e}) \leq \frac{\log |\mathcal{A}|}{c}.$$

To bound (III), since $-ax^2 + bx \leq b^2/(4a)$ for $a, b, x \geq 0$, we have

$$(III) \leq \frac{\alpha |K_e| C_5^2}{2}.$$

2106 where C_5 is a constant such that $\|\widehat{Q}_{f,h}^k + Y_k \widehat{Q}_{g,h}^k\|_\infty \leq C_5$ for all h, k . Again, by definition of $\tilde{\pi}_h^k$,
2107 we have

$$\begin{aligned} 2108 \text{(IV)} &= \sum_{k \in K_e : k - k_e \equiv 0 \pmod{K^B}} \|\widehat{Q}_{f,h}^k + Y_k \widehat{Q}_{g,h}^k\|_\infty \|\tilde{\pi}_h^k - \widehat{\pi}_h^k\|_1 \\ 2109 &= \sum_{k \in K_e : k - k_e \equiv 0 \pmod{K^B}} \|\widehat{Q}_{f,h}^k + Y_k \widehat{Q}_{g,h}^k\|_\infty \theta \|\pi_{\text{unif}} - \widehat{\pi}_h^k\|_1 \\ 2110 &\leq \frac{2\theta|K_e|C_5}{K^B} + 2\theta C_5. \\ 2111 \end{aligned}$$

2112 Finally, we have for any policy π and $s \in \mathcal{S}$,

$$\begin{aligned} 2113 \sum_{k \in K_e} \langle \widehat{Q}_{f,h}^k(s, \cdot) + Y_k \widehat{Q}_{g,h}^k(s, \cdot), \widehat{\pi}_h^k(\cdot | s) - \pi(\cdot | s) \rangle \\ 2114 &\leq \frac{\theta|K_e|\log|\mathcal{A}|}{\alpha K^B} + \frac{(1+\theta)\log|\mathcal{A}|}{\alpha} + \frac{\alpha|K_e|C_5^2}{2} + \frac{2\theta|K_e|C_5}{\alpha K^B} + 2\theta C_5 + 2C_5. \\ 2115 \end{aligned}$$

2116 Let us take $\pi = \pi_h^*$ for each $h \in [H]$. Then, by taking $\sum_{h \in [H]}$ and $\mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \pi^*}$, it follows that

$$\begin{aligned} 2117 \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \pi^*} \left[\sum_{h \in [H]} \sum_{k \in K_e} \langle \widehat{Q}_{f,h}^k(s_h, \cdot) + Y_k \widehat{Q}_{g,h}^k(s_h, \cdot), \widehat{\pi}_h^k(\cdot | s_h) - \pi_h^*(\cdot | s_h) \rangle \right] \\ 2118 &\leq \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \pi^*} \left[H \left(\frac{\theta|K_e|\log|\mathcal{A}|}{\alpha K^B} + \frac{(1+\theta)\log|\mathcal{A}|}{\alpha} + \frac{\alpha|K_e|C_5^2}{2} + \frac{2\theta|K_e|C_5}{K^B} + 2\theta C_5 + 2C_5 \right) \right] \\ 2119 &\leq H \left(\frac{\theta|K_e|\log|\mathcal{A}|}{\alpha K^B} + \frac{(1+\theta)\log|\mathcal{A}|}{\alpha} + \frac{\alpha|K_e|C_5^2}{2} + \frac{2\theta|K_e|C_5}{K^B} + 2\theta C_5 + 2C_5 \right). \\ 2120 \end{aligned}$$

2121 Finally, by E_g and Lemma 18, we have $C_5 = \tilde{\mathcal{O}}(H^3/\gamma)$. Furthermore, by Lemma 34, the number
2122 of epochs is at most $\tilde{\mathcal{O}}(dH)$. Then, by taking $\sum_{e \in E}$ to the above inequality, it follows that

$$\begin{aligned} 2123 \sum_{e \in E} \sum_{k \in K_e} \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \pi^*} \left[\sum_{h \in [H]} \langle \widehat{Q}_{f,h}^k(s_h, \cdot) + Y_k \widehat{Q}_{g,h}^k(s_h, \cdot), \widehat{\pi}_h^k(\cdot | s_h) - \pi_h^*(\cdot | s_h) \rangle \right] \\ 2124 &= \tilde{\mathcal{O}} \left(dH^3 K^{3/4} + \frac{H^6}{\gamma^2} K^{1/4} + \frac{dH^5}{\gamma} \right). \\ 2125 \end{aligned}$$

2126 \square

2127 The next lemma claims that the regret terms associated with optimism are nonpositive, highlighting
2128 the effectiveness of our bonus terms. We closely follow the proof of Lemma 4 of Cassel & Rosenberg
2129 (2024).

2130 **Lemma 20.** *Let $H^2 \leq K$. Suppose that E_g and the statement of Lemma 18 hold. For all
2131 $(s, a, h, k, \ell) \in \mathcal{S} \times \mathcal{A} \times [H] \times [K] \times \{f, g\}$,*

$$2132 \widehat{Q}_{\ell,h}^k(s, a) - \bar{\phi}_h^{k_e}(s, a)^\top (\theta_{\ell,h}^k + \psi_h \widehat{V}_{\ell,h+1}^k) \leq 0$$

2133 *Proof.* By definition, we have

$$\begin{aligned} 2134 \widehat{Q}_{\ell,h}^k(s, a) - \bar{\phi}_h^{k_e}(s, a)^\top (\theta_{\ell,h}^k + \psi_h \widehat{V}_{\ell,h+1}^k) \\ 2135 &= \bar{\phi}_h^{k_e}(s, a)^\top (\theta_{\ell,h}^k - \theta_{\ell,h}^k) + \bar{\phi}_h^{k_e}(s, a)^\top (\widehat{\psi}_h^k - \psi_h) \widehat{V}_{\ell,h+1}^k - \beta_b \|\bar{\phi}_h^{k_e}(s, a)\|_{(\Lambda_h^{k_e})^{-1}} \\ 2136 &\leq \|\theta_{\ell,h}^k - \theta_{\ell,h}^k\|_{\Lambda_h^{k_e}} \|\bar{\phi}_h^{k_e}(s, a)\|_{(\Lambda_h^{k_e})^{-1}} + \|(\widehat{\psi}_h^k - \psi_h) \widehat{V}_{\ell,h+1}^k\|_{\Lambda_h^{k_e}} \|\bar{\phi}_h^{k_e}(s, a)\|_{(\Lambda_h^{k_e})^{-1}} - \beta_b \|\bar{\phi}_h^{k_e}(s, a)\|_{(\Lambda_h^{k_e})^{-1}} \\ 2137 &\leq \|\theta_{\ell,h}^k - \theta_{\ell,h}^k\|_{\Lambda_h^k} \|\bar{\phi}_h^{k_e}(s, a)\|_{(\Lambda_h^{k_e})^{-1}} + \|(\widehat{\psi}_h^k - \psi_h) \widehat{V}_{\ell,h+1}^k\|_{\Lambda_h^k} \|\bar{\phi}_h^{k_e}(s, a)\|_{(\Lambda_h^{k_e})^{-1}} - \beta_b \|\bar{\phi}_h^{k_e}(s, a)\|_{(\Lambda_h^{k_e})^{-1}} \\ 2138 &\leq \beta_r \|\bar{\phi}_h^{k_e}(s, a)\|_{(\Lambda_h^{k_e})^{-1}} + \beta_p \|\bar{\phi}_h^{k_e}(s, a)\|_{(\Lambda_h^{k_e})^{-1}} - \beta_b \|\bar{\phi}_h^{k_e}(s, a)\|_{(\Lambda_h^{k_e})^{-1}} \\ 2139 &= 0 \end{aligned}$$

2140 where the first inequality is due to the Cauchy-Schwarz inequality, the second inequality follows
2141 from $\Lambda_h^{k_e} \preceq \Lambda_h^k$, and the last equality is because $\beta_b = \beta_r + \beta_p$. \square

2160 **Proof of Lemma 3** By Lemma 8,

$$\begin{aligned}
 V_{\ell,1}^{\pi^k}(s_1) - \widehat{V}_{\ell,1}^k(s_1) &= \mathbb{E}_{\mathbb{P}, \widehat{\pi}^k} \left[\sum_{h \in [H]} \phi(s_h^k, a_h^k)^\top (\theta_{\ell,h}^k + \psi_h \widehat{V}_{\ell,h+1}^k) - \widehat{Q}_{\ell,h}^k(s_h^k, a_h^k) \right] \\
 &= \mathbb{E}_{\mathbb{P}, \widehat{\pi}^k} \underbrace{\left[\sum_{h \in [H]} \bar{\phi}_h^{k_e}(s_h^k, a_h^k)^\top (\theta_{\ell,h}^k + \psi_h \widehat{V}_{\ell,h+1}^k) - \widehat{Q}_{\ell,h}^k(s_h^k, a_h^k) \right]}_{(I)} \\
 &\quad + \mathbb{E}_{\mathbb{P}, \widehat{\pi}^k} \underbrace{\left[\sum_{h \in [H]} (\phi(s_h^k, a_h^k) - \bar{\phi}_h^{k_e}(s_h^k, a_h^k))^\top (\theta_{\ell,h}^k + \psi_h \widehat{V}_{\ell,h+1}^k) \right]}_{(II)}.
 \end{aligned}$$

2175 To bound (I), we have

$$\begin{aligned}
 &\bar{\phi}_h^{k_e}(s_h^k, a_h^k)^\top (\theta_{\ell,h}^k + \psi_h \widehat{V}_{\ell,h+1}^k) - \widehat{Q}_{\ell,h}^k(s_h^k, a_h^k) \\
 &= \bar{\phi}_h^{k_e}(s_h^k, a_h^k)^\top (\theta_{\ell,h}^k - \widehat{\theta}_{\ell,h}^k) + \bar{\phi}_h^{k_e}(s_h^k, a_h^k)^\top (\psi_h - \widehat{\psi}_h^k) \widehat{V}_{\ell,h+1}^k + \beta_b \|\bar{\phi}_h^{k_e}(s_h^k, a_h^k)\|_{(\Lambda_h^{k_e})^{-1}} \\
 &\leq \beta_b \|\bar{\phi}_h^{k_e}(s_h^k, a_h^k)\|_{(\Lambda_h^k)^{-1}} + \beta_b \|\bar{\phi}_h^{k_e}(s_h^k, a_h^k)\|_{(\Lambda_h^{k_e})^{-1}}
 \end{aligned}$$

2182 where the inequality is due to the Cauchy-Schwarz inequality. Furthermore, since $k \in K_e$, it must
2183 hold $\det(\Lambda_h^k) \leq 2 \det(\Lambda_h^{k_e})$, otherwise k would belong to epoch $e + 1$. As it is obvious that
2184 $(\Lambda_h^k)^{-1} \preceq (\Lambda_h^{k_e})^{-1}$, we can apply Lemma 35 for nonzero $\bar{\phi}_h^{k_e}(s_h^k, a_h^k)$ as follows.

$$\frac{\|\bar{\phi}_h^{k_e}(s_h^k, a_h^k)\|_{(\Lambda_h^{k_e})^{-1}}^2}{\|\bar{\phi}_h^{k_e}(s_h^k, a_h^k)\|_{(\Lambda_h^k)^{-1}}^2} \leq \frac{\det((\Lambda_h^{k_e})^{-1})}{\det((\Lambda_h^k)^{-1})} \leq 2.$$

2189 This implies that $\beta_b \|\bar{\phi}_h^{k_e}(s_h^k, a_h^k)\|_{(\Lambda_h^{k_e})^{-1}} \leq 2\beta_b \|\bar{\phi}_h^{k_e}(s_h^k, a_h^k)\|_{(\Lambda_h^k)^{-1}}$ for nonzero $\bar{\phi}_h^{k_e}(s_h^k, a_h^k)$. If
2190 $\bar{\phi}_h^{k_e}(s_h^k, a_h^k) = 0$, then the inequality is trivial. Then it follows that

$$(I) \leq \mathbb{E}_{\mathbb{P}, \widehat{\pi}^k} \left[\sum_{h \in [H]} 3\beta_b \|\bar{\phi}_h^{k_e}(s_h^k, a_h^k)\|_{(\Lambda_h^k)^{-1}} \right] \leq \mathbb{E}_{\mathbb{P}, \widehat{\pi}^k} \left[\sum_{h \in [H]} 3\beta_b \|\phi(s_h^k, a_h^k)\|_{(\Lambda_h^k)^{-1}} \right].$$

2197 where the second inequality is due to $\|\bar{\phi}_h^{k_e}(s_h^k, a_h^k)\|_{(\Lambda_h^k)^{-1}} \leq \|\phi(s_h^k, a_h^k)\|_{(\Lambda_h^k)^{-1}}$. To bound (II), by
2198 Lemma 33, we have

$$\begin{aligned}
 &(\phi(s_h^k, a_h^k) - \bar{\phi}_h^{k_e}(s_h^k, a_h^k))^\top (\theta_{\ell,h}^k + \psi_h \widehat{V}_{\ell,h+1}^k) \\
 &\leq (4\beta_w^2 \|\phi(s_h^k, a_h^k)\|_{(\Lambda_h^k)^{-1}}^2 + 2K^{-1}) |\phi(s_h^k, a_h^k)^\top (\theta_{\ell,h}^k + \psi_h \widehat{V}_{\ell,h+1}^k)| \\
 &\leq 16H\beta_w^2 \|\phi(s_h^k, a_h^k)\|_{(\Lambda_h^k)^{-1}}^2 + 8HK^{-1}
 \end{aligned}$$

2205 where the second inequality follows from the fact that for any $\ell \in \{f, g\}$,

$$\phi(s_h^k, a_h^k)^\top (\theta_{\ell,h}^k + \psi_h \widehat{V}_{\ell,h+1}^k) = \ell_h^k(s_h^k, a_h^k) + \sum_{s' \in S} \mathbb{P}_h(s' | s_h^k, a_h^k) \widehat{V}_{\ell,h+1}^k(s') \leq 1 + \|\widehat{V}_{\ell,h+1}^k\|_\infty \leq 4H.$$

2209 This implies that (II) $\leq 16H\beta_w^2 \|\phi(s_h^k, a_h^k)\|_{(\Lambda_h^k)^{-1}}^2 + 8HK^{-1}$. Finally, we have

$$V_{\ell,1}^{\pi^k}(s_1) - \widehat{V}_{\ell,1}^k(s_1) \leq \mathbb{E}_{\mathbb{P}, \widehat{\pi}^k} \left[\sum_{h \in [H]} 3\beta_b \|\phi(s_h^k, a_h^k)\|_{(\Lambda_h^k)^{-1}} + 16H\beta_w^2 \|\phi(s_h^k, a_h^k)\|_{(\Lambda_h^k)^{-1}}^2 \right] + 8H^2K^{-1}.$$

2214 Taking $\sum_{k=1}^K$ on both sides,

2215

$$\sum_{k=1}^K (V_{\ell,1}^{\pi^k}(s_1) - \widehat{V}_{\ell,1}^k(s_1)) \leq \sum_{k=1}^K \mathbb{E}_{\mathbb{P}, \widehat{\pi}^k} \left[\sum_{h \in [H]} 3\beta_b \|\phi(s_h^k, a_h^k)\|_{(\Lambda_h^k)^{-1}} + 16H\beta_w^2 \|\phi(s_h^k, a_h^k)\|_{(\Lambda_h^k)^{-1}}^2 \right] + 8H^2$$

2216

$$\leq \sum_{k=1}^K \sum_{h \in [H]} \left(6\beta_b \|\phi(s_h^k, a_h^k)\|_{(\Lambda_h^k)^{-1}} + 32H\beta_w^2 \|\phi(s_h^k, a_h^k)\|_{(\Lambda_h^k)^{-1}}^2 \right)$$

2217

$$+ 8H(3\beta_b + 16H\beta_w^2) \log \frac{6K}{\delta} + 8H^2$$

2218

2219 where the second inequality follows from E_g . By Lemma 36, we have

2220

$$\sum_{k \in [K]} \|\phi(s_h^k, a_h^k)\|_{(\Lambda_h^k)^{-1}}^2 \leq 2 \log \frac{\det(\Lambda_h^{K+1})}{\det(\Lambda_h^1)} \leq 2d \log(K+1)$$

2221

2222 where the second inequality follows from $\|\Lambda_h^{K+1}\|_2 = \|I + \sum_{\tau \in [k]} \phi(s_h^\tau, a_h^\tau) \phi(s_h^\tau, a_h^\tau)^\top\|_2 \leq 1 +$
2223 k , and thus $\det(\Lambda_h^{K+1}) \leq (K+1)^d$. Furthermore, the Cauchy-Schwarz inequality implies that
2224 $\sum_{k \in [K]} \|\phi(s_h^k, a_h^k)\|_{(\Lambda_h^k)^{-1}} \leq \sqrt{2dK \log(K+1)}$. Then we deduce that

2225

$$\sum_{k=1}^K (V_{\ell,1}^{\pi^k}(s_1) - \widehat{V}_{\ell,1}^k(s_1)) \leq 6\beta_b H \sqrt{2dK \log(K+1)} + 64dH^2 \beta_w^2 \log(K+1)$$

2226

$$+ 8H(3\beta_b + 16H\beta_w^2) \log \frac{6K}{\delta} + 8H^2$$

2227

$$= \tilde{\mathcal{O}} \left(\sqrt{d^3 H^4} K^{3/4} + d^3 H^4 K^{1/2} \right)$$

2228

2229 where the last equality follows from $\beta_b, \beta_w = \tilde{\mathcal{O}}(K^{1/4} dH)$. \square

2230

2231 **Proof of Lemma 4** Given $e \in E$, for any $k \in K_e$, the dual variable Y_k is updated as

2232

$$Y_{k+1} = \begin{cases} 0 & \text{if } k+1 = k_e, \\ \left[(1 - 4\alpha\eta H^3)Y_k + \eta \left(\widehat{V}_{g,1}^k(s_1) - b - 4\alpha H^3 - 4\theta H^2 \right) \right]_+ & \text{otherwise.} \end{cases}$$

2233

2234 Then it follows that

2235

$$\begin{aligned} 0 &\leq Y_{k_e+1-1} \\ &= \sum_{k=k_e}^{k_{e+1}-2} (Y_{k+1}^2 - Y_k^2) \\ &= \sum_{k=k_e}^{k_{e+1}-2} \left(\left[(1 - 4\alpha\eta H^3)Y_k + \eta \left(\widehat{V}_{g,1}^k(s_1) - b - 4\alpha H^3 - 4\theta H^2 \right) \right]_+^2 - Y_k^2 \right) \\ &= \sum_{k=k_e}^{k_{e+1}-2} \left(\left[Y_k + \eta \left(\widehat{V}_{g,1}^k(s_1) - b - 4\alpha H^3 - 4\theta H^2 - 4\alpha H^3 Y_k \right) \right]_+^2 - Y_k^2 \right) \\ &\leq \sum_{k=k_e}^{k_{e+1}-2} \left(2Y_k \eta \left(\widehat{V}_{g,1}^k(s_1) - b - 4\alpha H^3 - 4\theta H^2 - 4\alpha H^3 Y_k \right) + \eta^2 \left(\widehat{V}_{g,1}^k(s_1) - b - 4\alpha H^3 - 4\theta H^2 - 4\alpha H^3 Y_k \right)^2 \right) \end{aligned}$$

2236

2237 where the first equality is due to $Y_{k_e} = 0$, and the last inequality is due to the fact that $\max\{0, z\}^2 \leq z^2$ for any $z \in \mathbb{R}$. This can be rewritten as

2238

$$\begin{aligned} &\sum_{k=k_e}^{k_{e+1}-2} Y_k (b - \widehat{V}_{g,1}^k(s_1)) \\ &\leq \sum_{k=k_e}^{k_{e+1}-2} Y_k (-4\alpha H^3 - 4\theta H^2 - 4\alpha H^3 Y_k) + \frac{\eta}{2} \sum_{k=k_e}^{k_{e+1}-2} \left(\widehat{V}_{g,1}^k(s_1) - b - 4\alpha H^3 - 4\theta H^2 - 4\alpha H^3 Y_k \right)^2. \end{aligned}$$

2239 \square

2240

2241

2268 Note that the first term is nonpositive. Furthermore, the second term can be bounded as
 2269

$$\begin{aligned}
 2271 \quad |\widehat{V}_{g,1}^k(s_1) - b - 4\alpha H^3 - 4\theta H^2 - 4\alpha H^3 Y_k| &\leq |\widehat{V}_{g,1}^k(s_1) - b| + 4\alpha H^3 + 4\theta H^2 + 4\alpha H^3 Y_k \\
 2272 \quad &\leq 3H + 4H^2 K^{-3/4} + 4H^2 K^{-1} + 4H^2 K^{-3/4} Y_k \\
 2273 \quad &\leq 3H + 4H^{1/2} + 4 + 4H^2 K^{-3/4} Y_k \\
 2274 \quad &\leq 11H + 4H^2 K^{-3/4} Y_k
 \end{aligned}$$

2277 where the second inequality follows from E_g , the third inequality is because we assumed that $H^2 \leq K$. Thus, (34) is bounded as
 2278

$$\begin{aligned}
 2281 \quad \sum_{k=k_e}^{k_{e+1}-2} Y_k (b - \widehat{V}_{g,1}^k(s_1)) &\leq \frac{\eta}{2} \sum_{k=k_e}^{k_{e+1}-2} (11H + 4H^2 K^{-3/4} Y_k)^2 \\
 2282 \quad &\leq \frac{\eta}{2} \sum_{k=k_e}^{k_{e+1}-2} 2(121H^2 + 16H^4 K^{-3/2} Y_k^2)
 \end{aligned}$$

2288 where the second inequality is due to the Cauchy-Schwarz inequality. Then we have
 2289

$$\begin{aligned}
 2291 \quad \sum_{k \in K_e} Y_k (b - \widehat{V}_{g,1}^k(s_1)) &= \sum_{k=k_e}^{k_{e+1}-2} Y_k (b - \widehat{V}_{g,1}^k(s_1)) + Y_{k_{e+1}-1} (b - \widehat{V}_{g,1}^{k_{e+1}-1}(s_1)) \\
 2292 \quad &\leq \frac{\eta}{2} \sum_{k=k_e}^{k_{e+1}-2} 2(121H^2 + 16H^4 K^{-3/2} Y_k^2) + 3H Y_{k_{e+1}-1} \\
 2293 \quad &\leq 121\eta H^2 |K_e| + 16\eta H^4 K^{-3/2} \sum_{k=k_e}^{k_{e+1}-2} Y_k^2 + 3H Y_{k_{e+1}-1}.
 \end{aligned}$$

2301 By Lemma 18, we have $Y_k = \tilde{\mathcal{O}}(H^2/\gamma)$ for all $k \in [K]$. Furthermore, by Lemma 34, the number
 2302 of epochs is at most $\tilde{\mathcal{O}}(dH)$. By taking $\sum_{e \in E}$, it follows that
 2303

$$\begin{aligned}
 2306 \quad \sum_{k \in [K]} Y_k (b - \widehat{V}_{g,1}^k(s_1)) &= \sum_{e \in E} \sum_{k \in K_e} Y_k (b - \widehat{V}_{g,1}^k(s_1)) \\
 2307 \quad &= \tilde{\mathcal{O}}\left(K^{1/4} + \frac{dH^6}{\gamma^2}\right).
 \end{aligned}$$

□

2315 **Proof of Lemma 5** Note that
 2316

$$\begin{aligned}
 2317 \quad &\sum_{k=1}^K \left(\widehat{V}_{f,1}^k(s_1) + Y_k \widehat{V}_{g,1}^k(s_1) - V_{f^k,1}^{\pi^*}(s_1) - Y_k V_{g,1}^{\pi^*}(s_1) \right) \\
 2318 \quad &\leq \sum_{e \in E} \sum_{k \in K_e} \left(\widehat{V}_{f,1}^k(s_1) + Y_k \widehat{V}_{g,1}^k(s_1) - \bar{V}_{f^k,1}^{\pi^*}(s_1) - Y_k \bar{V}_{g,1}^{\pi^*}(s_1) \right)
 \end{aligned}$$

2322 where $\bar{V}_{f^k,1}^{\pi^*}, \bar{V}_{g,1}^{\pi^*}$ are the value functions with respect to a contracted MDP. Furthermore, by
2323 Lemma 8, it follows that
2324

$$\begin{aligned}
& \sum_{e \in E} \sum_{k \in K_e} \left(\bar{V}_{f^k,1}^k(s_1) + Y_k \bar{V}_{g,1}^k(s_1) - \bar{V}_{f^k,1}^{\pi^*}(s_1) - Y_k \bar{V}_{g,1}^{\pi^*}(s_1) \right) \\
&= \sum_{e \in E} \sum_{k \in K_e} \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \pi^*} \left[\sum_{h \in [H]} \sum_{a \in \mathcal{A}} (\bar{Q}_{f,h}^k(s_h^k, a) + Y_k \bar{Q}_{g,h}^k(s_h^k, a)) (\hat{\pi}_h^k(a | s_h^k) - \pi_h^*(a | s_h^k)) \right] \\
&+ \sum_{e \in E} \sum_{k \in K_e} \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \pi^*} \left[\sum_{h \in [H]} \bar{Q}_{f,h}^k(s_h^k, a_h^k) - \bar{f}_h^k(s_h^k, a_h^k) - \sum_{s' \in \mathcal{S}} \bar{\mathbb{P}}_h^{k_e}(s' | s_h^k, a_h^k) \bar{V}_{f,h+1}^k(s') \right] \\
&+ \sum_{e \in E} \sum_{k \in K_e} \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \pi^*} \left[\sum_{h \in [H]} Y_k \left(\bar{Q}_{g,h}^k(s_h^k, a_h^k) - \bar{g}_h(s_h^k, a_h^k) - \sum_{s' \in \mathcal{S}} \bar{\mathbb{P}}_h^{k_e}(s' | s_h^k, a_h^k) \bar{V}_{g,h+1}^k(s') \right) \right].
\end{aligned}$$

2337 Note that by the definition of the contracted MDP, we have $\bar{f}_h^k(s, a) = \bar{\phi}_h^{k_e}(s, a)^\top \theta_{f,h}^k$, $\bar{g}_h(s, a) =$
2338 $\bar{\phi}_h^{k_e}(s, a)^\top \theta_{g,h}$, and $\bar{\mathbb{P}}_h^{k_e}(s' | s, a) = \bar{\phi}_h^{k_e}(s, a)^\top \psi_h(s')$. Then it follows that
2339

$$\begin{aligned}
& \bar{f}_h(s_h^k, a_h^k) + \sum_{s' \in \mathcal{S}} \bar{\mathbb{P}}_h^{k_e}(s' | s_h^k, a_h^k) \bar{V}_{f,h+1}^k(s') = \bar{\phi}_h^{k_e}(s_h^k, a_h^k)^\top (\theta_{f,h}^k + \psi_h \bar{V}_{f,h+1}^k), \\
& \bar{g}_h(s_h^k, a_h^k) + \sum_{s' \in \mathcal{S}} \bar{\mathbb{P}}_h^{k_e}(s' | s_h^k, a_h^k) \bar{V}_{g,h+1}^k(s') = \bar{\phi}_h^{k_e}(s_h^k, a_h^k)^\top (\theta_{g,h} + \psi_h \bar{V}_{g,h+1}^k).
\end{aligned}$$

2340 We deduce that
2341

$$\begin{aligned}
& \sum_{k=1}^K \left(\bar{V}_{f,1}^k(s_1) + Y_k \bar{V}_{g,1}^k(s_1) - \bar{V}_{f,1}^{\pi^*}(s_1) - Y_k \bar{V}_{g,1}^{\pi^*}(s_1) \right) \\
& \leq \sum_{e \in E} \sum_{k \in K_e} \left(\bar{V}_{f,1}^k(s_1) + Y_k \bar{V}_{g,1}^k(s_1) - \bar{V}_{f,1}^{\pi^*}(s_1) - Y_k \bar{V}_{g,1}^{\pi^*}(s_1) \right) \\
&= \underbrace{\sum_{e \in E} \sum_{k \in K_e} \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \pi^*} \left[\sum_{h \in [H]} \sum_{a \in \mathcal{A}} (\bar{Q}_{f,h}^k(s_h^k, a) + Y_k \bar{Q}_{g,h}^k(s_h^k, a)) (\hat{\pi}_h^k(a | s_h^k) - \pi_h^*(a | s_h^k)) \right]}_{(I)} \\
&+ \underbrace{\sum_{e \in E} \sum_{k \in K_e} \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \pi^*} \left[\sum_{h \in [H]} \bar{Q}_{f,h}^k(s_h^k, a_h^k) - \bar{\phi}_h^{k_e}(s_h^k, a_h^k)^\top (\theta_{f,h}^k + \psi_h \bar{V}_{f,h+1}^k) \right]}_{(II)} \\
&+ \underbrace{\sum_{e \in E} \sum_{k \in K_e} \mathbb{E}_{\bar{\mathbb{P}}^{k_e}, \pi^*} \left[\sum_{h \in [H]} Y_k \left(\bar{Q}_{g,h}^k(s_h^k, a_h^k) - \bar{\phi}_h^{k_e}(s_h^k, a_h^k)^\top (\theta_{g,h} + \psi_h \bar{V}_{g,h+1}^k) \right) \right]}_{(III)}.
\end{aligned}$$

2365 By Lemma 19,
2366

$$(I) = \tilde{\mathcal{O}} \left(dH^3 K^{3/4} + \frac{H^6}{\gamma^2} K^{1/4} + \frac{dH^5}{\gamma} \right).$$

2369 Note that $Y_k \geq 0$ for all k . Then, by Lemma 20, for any $(s, a, h, k) \in \mathcal{S} \times \mathcal{A} \times [H] \times [K]$, we have
2370

$$\begin{aligned}
& \bar{Q}_{f,h}^k(s, a) - \bar{\phi}_h^{k_e}(s, a)^\top (\theta_{f,h}^k + \psi_h \bar{V}_{f,h+1}^k) \leq 0, \\
& Y_k \left(\bar{Q}_{g,h}^k(s, a) - \bar{\phi}_h^{k_e}(s, a)^\top (\theta_{g,h} + \psi_h \bar{V}_{g,h+1}^k) \right) \leq 0.
\end{aligned}$$

2374 This implies that
2375

$$(II), (III) \leq 0.$$

Finally, we have

$$\sum_{k=1}^K \left(\widehat{V}_{f,1}^k(s_1) + Y_k \widehat{V}_{g,1}^k(s_1) - V_{f^k,1}^{\pi^*}(s_1) - Y_k V_{g,1}^{\pi^*}(s_1) \right) = \tilde{\mathcal{O}} \left(dH^3 K^{3/4} + \frac{H^6}{\gamma^2} K^{1/4} + \frac{dH^5}{\gamma} \right).$$

□

Proof of Lemma 6 Note that the dual update is

$$Y_{k+1} = \begin{cases} 0 & \text{if } k+1 = k_e, \\ \left[(1 - 4\alpha\eta H^3)Y_k + \eta \left(\widehat{V}_{g,1}^k(s_1) - b - 4\alpha H^3 - 4\theta H^2 \right) \right]_+ & \text{otherwise.} \end{cases}$$

Then it follows that for any $e \in E$,

$$\begin{aligned} Y_{k_{e+1}-1} &= \left[(1 - 4\alpha\eta H^3)Y_{k_{e+1}-2} + \eta \left(\widehat{V}_{g,1}^{k_{e+1}-2}(s_1) - b - 4\alpha H^3 - 4\theta H^2 \right) \right]_+ \\ &\geq (1 - 4\alpha\eta H^3)Y_{k_{e+1}-2} + \eta \left(\widehat{V}_{g,1}^{k_{e+1}-2}(s_1) - b - 4\alpha H^3 - 4\theta H^2 \right) \\ &= Y_{k_{e+1}-2} + \eta \left(\widehat{V}_{g,1}^{k_{e+1}-2}(s_1) - b - 4\alpha H^3(1 + Y_{k_{e+1}-2}) - 4\theta H^2 \right) \\ &\quad \vdots \\ &\geq Y_{k_e} + \eta \sum_{k=k_e}^{k_{e+1}-2} \left(\widehat{V}_{g,1}^k(s_1) - b - 4\alpha H^3(1 + Y_k) - 4\theta H^2 \right). \end{aligned}$$

Note that $Y_{k_e} = 0$. Then we have

$$\begin{aligned} \sum_{k=k_e}^{k_{e+1}-1} \left(\widehat{V}_{g,1}^k(s_1) - b \right) &= \sum_{k=k_e}^{k_{e+1}-2} \left(\widehat{V}_{g,1}^k(s_1) - b \right) + \left(\widehat{V}_{g,1}^{k_{e+1}-1}(s_1) - b \right) \\ &\leq \frac{Y_{k_{e+1}-1}}{\eta} + \sum_{k=k_e}^{k_{e+1}-2} (4\alpha H^3(1 + Y_k) + 4\theta H^2) + 3H. \end{aligned}$$

By Lemma 18, we have $Y_k = \tilde{\mathcal{O}}(H^2/\gamma)$ for all $k \in [K]$. Then it follows that

$$4\alpha H^3(1 + Y_k) + 4\theta H^2 = 4H^2 K^{-3/4}(1 + Y_k) + 4H^2 K^{-1} = \tilde{\mathcal{O}} \left(\frac{H^4}{\gamma} K^{-3/4} + H^2 K^{-1} \right).$$

Furthermore, by Lemma 34, the number of epochs is at most $\tilde{\mathcal{O}}(dH)$. By taking $\sum_{e \in E}$, it follows that

$$\sum_{e \in E} \sum_{k \in K_e} \left(\widehat{V}_{g,1}^k(s_1) - b \right) = \tilde{\mathcal{O}} \left(\frac{dH^5}{\gamma} K^{3/4} + \frac{H^4}{\gamma} K^{1/4} \right).$$

□

Proof of Theorem 1 If $K < \beta_w$, we cannot use Lemma 16. Nevertheless, in this case, we have the following upper bounds for regret and violation.

$$\text{Regret}(K) \leq HK < H\beta_w = \tilde{\mathcal{O}} \left(dH^2 K^{1/4} \right),$$

$$\text{Violation}(K) \leq HK < H\beta_w = \tilde{\mathcal{O}} \left(dH^2 K^{1/4} \right).$$

Otherwise, it is trivial that the conditions of Lemma 16 hold, i.e., E_g holds with probability at least $1 - \delta$. Furthermore, under E_g , we have the upper bound on Y_k as in Lemma 18 with probability at least $1 - \delta$, i.e.,

$$Y_k = \tilde{\mathcal{O}} \left(\frac{H^2}{\gamma} \right) \tag{35}$$

2430 Thus, with probability at least $1 - 2\delta$, E_g and (35) hold, which can be shown by union bound.
 2431

2432 Now, we begin with the proof of the regret upper bound. Note that an optimal policy π^* satisfies
 2433 $V_{g,1}^{\pi^*}(s_1) \leq b$. Since $Y_k \geq 0$ for all k , it follows that

2434 $\text{Regret}(K)$

$$\begin{aligned} 2436 \quad &= \sum_{k=1}^K \left(V_{f^k,1}^{\pi^k}(s_1) - \widehat{V}_{f,1}^k(s_1) \right) + \sum_{k=1}^K Y_k(b - \widehat{V}_{g,1}^k(s_1)) + \sum_{k=1}^K \left(\widehat{V}_{f,1}^k(s_1) + Y_k \widehat{V}_{g,1}^k(s_1) - V_{f^k,1}^{\pi^*}(s_1) - Y_k b \right) \\ 2437 \quad &\leq \underbrace{\sum_{k=1}^K \left(V_{f^k,1}^{\pi^k}(s_1) - \widehat{V}_{f,1}^k(s_1) \right)}_{(I)} + \underbrace{\sum_{k=1}^K Y_k(b - \widehat{V}_{g,1}^k(s_1))}_{(II)} + \underbrace{\sum_{k=1}^K \left(\widehat{V}_{f,1}^k(s_1) + Y_k \widehat{V}_{g,1}^k(s_1) - V_{f^k,1}^{\pi^*}(s_1) - Y_k V_{g,1}^{\pi^*}(s_1) \right)}_{(III)} \end{aligned}$$

2443 By Lemma 3,

$$(I) = \tilde{\mathcal{O}} \left(\sqrt{d^3 H^4} K^{3/4} + d^3 H^4 K^{1/2} \right).$$

2446 By Lemma 4,

$$(II) = \tilde{\mathcal{O}} \left(K^{1/4} + \frac{d H^6}{\gamma^2} \right).$$

2450 By Lemma 5,

$$(III) = \tilde{\mathcal{O}} \left(d H^3 K^{3/4} + \frac{H^6}{\gamma^2} K^{1/4} + \frac{d H^5}{\gamma} \right).$$

2454 Thus, we have the following regret upper bound.

$$\text{Regret}(K) = \tilde{\mathcal{O}} \left(\sqrt{d^3 H^4} K^{3/4} + d H^3 K^{3/4} + d^3 H^4 K^{1/2} + \frac{H^6}{\gamma^2} K^{1/4} + \frac{d H^6}{\gamma^2} \right).$$

2458 Next, we show the violation upper bound. If constraint violation is 0, the statement is trivial. Otherwise, we decompose it as
 2459

$$\text{Violation}(K) \leq \underbrace{\sum_{k=1}^K \left(V_{g,1}^{\pi^k}(s_1) - \widehat{V}_{g,1}^k(s_1) \right)}_{(IV)} + \underbrace{\sum_{k=1}^K \left(\widehat{V}_{g,1}^k(s_1) - b \right)}_{(V)}.$$

2465 By Lemma 3,

$$(IV) = \tilde{\mathcal{O}} \left(\sqrt{d^3 H^4} K^{3/4} + d^3 H^4 K^{1/2} \right).$$

2468 By Lemma 6,

$$(V) = \tilde{\mathcal{O}} \left(\frac{d H^5}{\gamma} K^{3/4} + \frac{H^4}{\gamma} K^{1/4} \right).$$

2473 Thus, we have the following violation upper bound.

$$\text{Violation}(K) = \tilde{\mathcal{O}} \left(\frac{d H^5}{\gamma} K^{3/4} + \sqrt{d^3 H^4} K^{3/4} + d^3 H^4 K^{1/2} \right).$$

2476 \square

K AUXILIARY LEMMAS

2481 **Lemma 21.** Let $c > 0$. For $x \in [c, \infty)^d$, let $\log x = (\log x_1, \dots, \log x_d)^\top$. For any $x, y \in [c, \infty)^d$,
 2482 we have

$$2483 \quad \|\log x - \log y\|_\infty \leq \frac{1}{c} \|x - y\|_1$$

2484 *Proof.* Fix $x, y \in [c, \infty)^d$ and $i \in \{1, \dots, d\}$. Consider the scalar function $p_i : [0, 1] \rightarrow \mathbb{R}$ defined
 2485 as

$$p_i(t) := \log(y_i + t(x_i - y_i)).$$

2486 Since $[c, \infty)^d$ is convex, we have $y_i + t(x_i - y_i) \geq \min\{x_i, y_i\} \geq c$ for all $t \in [0, 1]$, so p_i is
 2487 continuously differentiable and
 2488

$$p'_i(t) = \frac{x_i - y_i}{y_i + t(x_i - y_i)}.$$

2492 Hence, for all $t \in [0, 1]$,

$$|p'_i(t)| = \frac{|x_i - y_i|}{y_i + t(x_i - y_i)} \leq \frac{|x_i - y_i|}{c}.$$

2496 By the fundamental theorem of calculus,

$$|\log x_i - \log y_i| = |p_i(1) - p_i(0)| = \left| \int_0^1 p'_i(t) dt \right| \leq \int_0^1 |p'_i(t)| dt \leq \frac{|x_i - y_i|}{c}.$$

2501 Taking the maximum over i and using $\|z\|_\infty \leq \|z\|_1$ for all $z \in \mathbb{R}^d$ yields

$$\|\log x - \log y\|_\infty = \max_{1 \leq i \leq d} |\log x_i - \log y_i| \leq \frac{1}{c} \max_{1 \leq i \leq d} |x_i - y_i| \leq \frac{1}{c} \sum_{i=1}^d |x_i - y_i| = \frac{1}{c} \|x - y\|_1.$$

2505 \square

2507 **Lemma 22.** Let $\tilde{\pi}_h^k : \mathcal{S} \rightarrow \Delta(\mathcal{A})$ be any policies. For $\theta \in [0, 1]$, let $\tilde{\pi}_h^k(\cdot | s) = (1 - \theta)\tilde{\pi}_h^k(\cdot | s) +$
 2508 $\theta\pi_{\text{unif}}(\cdot | s)$. For $\hat{Q}_{f,h}^k, \hat{Q}_{g,h}^k : \mathcal{S} \times \mathcal{A} \rightarrow [-2H, 2H]$, $Y_k \in \mathbb{R}_+$, and $\alpha > 0$, let $\hat{\pi}^{k+1}(\cdot | s) \propto \tilde{\pi}^k(\cdot | s) \exp(-\alpha(\hat{Q}_{f,h}^k(s, \cdot) + Y_k \hat{Q}_{g,h}^k(s, \cdot)))$. For any $s \in \mathcal{S}$, we have

- 2511 1. $\|\hat{\pi}_h^{k+1}(\cdot | s) - \tilde{\pi}_h^k(\cdot | s)\|_1 \leq 2\alpha H(1 + Y_k)$,
- 2513 2. $|\langle \hat{\pi}_h^{k+1}(\cdot | s) - \tilde{\pi}_h^k(\cdot | s), \hat{Q}_{g,h}^k(s, \cdot) \rangle| \leq 4\alpha H^2(1 + Y_k) + 4\theta H$.
- 2515 3. $\langle \tilde{\pi}_h^k(\cdot | s) - \hat{\pi}_h^{k+1}(\cdot | s), \hat{Q}_{f,h}^k(s, \cdot) \rangle - \frac{1}{\alpha} D(\hat{\pi}_h^{k+1}(\cdot | s) || \tilde{\pi}_h^k(\cdot | s)) \leq 2\alpha H^2 + 4H\theta$.

2517 *Proof. (Proof of the first statement)* We show the first statement. Given $s \in \mathcal{S}$, we omit $(\cdot | s)$ in
 2518 notation for simplicity. Note that $\hat{\pi}_h^{k+1}$ can be viewed as an optimal solution for $\min_{\pi} \langle \pi, \hat{Q}_{f,h}^k +$
 2519 $Y_k \hat{Q}_{g,h}^k \rangle + (1/\alpha) D(\pi || \tilde{\pi}_h^k)$. Due to the pushback lemma (Lemma 23), by taking $z = \tilde{\pi}^k$,

$$\langle \hat{\pi}_h^{k+1}, \hat{Q}_{f,h}^k + Y_k \hat{Q}_{g,h}^k \rangle + \frac{1}{\alpha} D(\hat{\pi}_h^{k+1} || \tilde{\pi}_h^k) \leq \langle \tilde{\pi}_h^k, \hat{Q}_{f,h}^k + Y_k \hat{Q}_{g,h}^k \rangle + \frac{1}{\alpha} D(\tilde{\pi}_h^k || \tilde{\pi}_h^k) - \frac{1}{\alpha} D(\tilde{\pi}_h^k || \hat{\pi}_h^{k+1}).$$

2524 Note that $D(\tilde{\pi}_h^k || \tilde{\pi}_h^k) = 0$. This can be rewritten as

$$\frac{1}{\alpha} D(\hat{\pi}_h^{k+1} || \tilde{\pi}_h^k) + \frac{1}{\alpha} D(\tilde{\pi}_h^k || \hat{\pi}_h^{k+1}) \leq \langle \tilde{\pi}_h^k - \hat{\pi}_h^{k+1}, \hat{Q}_{f,h}^k + Y_k \hat{Q}_{g,h}^k \rangle.$$

2528 To lower bound the left-hand side, Pinsker's inequality implies that

$$\frac{1}{2} \|\hat{\pi}_h^{k+1} - \tilde{\pi}_h^k\|_1^2 \leq D(\hat{\pi}_h^{k+1} || \tilde{\pi}_h^k), \quad \frac{1}{2} \|\tilde{\pi}_h^{k+1} - \tilde{\pi}_h^k\|_1^2 \leq D(\tilde{\pi}_h^k || \hat{\pi}_h^{k+1}).$$

2532 To upper bound the right-hand side, Hölder's inequality implies that

$$\langle \tilde{\pi}_h^k - \hat{\pi}_h^{k+1}, \hat{Q}_{f,h}^k + Y_k \hat{Q}_{g,h}^k \rangle \leq \|\tilde{\pi}_h^k - \hat{\pi}_h^{k+1}\|_1 \|\hat{Q}_{f,h}^k + Y_k \hat{Q}_{g,h}^k\|_\infty.$$

2535 As a result, we deduce that

$$\frac{1}{\alpha} \|\hat{\pi}_h^{k+1} - \tilde{\pi}_h^k\|_1^2 \leq \|\tilde{\pi}_h^k - \hat{\pi}_h^{k+1}\|_1 \|\hat{Q}_{f,h}^k + Y_k \hat{Q}_{g,h}^k\|_\infty.$$

2538 If $\|\hat{\pi}_h^{k+1} - \tilde{\pi}_h^k\|_1 = 0$, then the statement is trivial. Otherwise, it follows that
 2539

$$\|\hat{\pi}_h^{k+1} - \tilde{\pi}_h^k\|_1 \leq \alpha \|\hat{Q}_{f,h}^k + Y_k \hat{Q}_{g,h}^k\|_\infty.$$

2540 Since $\|\hat{Q}_{f,h}^k\|_\infty, \|\hat{Q}_{g,h}^k\|_\infty \leq 2H$ and $Y_k \geq 0$, we have
 2541

$$\|\hat{\pi}_h^{k+1} - \tilde{\pi}_h^k\|_1 \leq 2\alpha H(1 + Y_k).$$

2542 **(Proof of the second statement)** Now, we show the second statement. By Hölder's inequality and
 2543 the triangle inequality,
 2544

$$\left| \langle \hat{\pi}_h^{k+1} - \hat{\pi}_h^k, \hat{Q}_{g,h}^k \rangle \right| \leq \|\hat{\pi}_h^{k+1} - \hat{\pi}_h^k\|_1 \|\hat{Q}_{g,h}^k\|_\infty \leq \|\hat{\pi}_h^{k+1} - \tilde{\pi}_h^k\|_1 \|\hat{Q}_{g,h}^k\|_\infty + \|\tilde{\pi}_h^k - \hat{\pi}_h^k\|_1 \|\hat{Q}_{g,h}^k\|_\infty.$$

2545 By the first statement,
 2546

$$\|\hat{\pi}_h^{k+1} - \tilde{\pi}_h^k\|_1 \leq \alpha \|\hat{Q}_{f,h}^k(s, \cdot) + Y_k \hat{Q}_{g,h}^k(s, \cdot)\|_\infty.$$

2547 Furthermore, we have
 2548

$$\|\tilde{\pi}_h^k - \hat{\pi}_h^k\|_1 = \|(1 - \theta)\hat{\pi}_h^k + \theta\pi_{\text{unif}} - \hat{\pi}_h^k\|_1 = \theta\|\tilde{\pi}_h^k + \pi_{\text{unif}}\|_1 \leq 2\theta.$$

2549 Finally, we have
 2550

$$\left| \langle \hat{\pi}_h^{k+1} - \hat{\pi}_h^k, \hat{Q}_{g,h}^k \rangle \right| \leq \alpha \|\hat{Q}_{f,h}^k(s, \cdot) + Y_k \hat{Q}_{g,h}^k(s, \cdot)\|_\infty \|\hat{Q}_{g,h}^k\|_\infty + 2\theta \|\hat{Q}_{g,h}^k\|_\infty.$$

2551 Since $\|\hat{Q}_{f,h}^k\|_\infty, \|\hat{Q}_{g,h}^k\|_\infty \leq 2H$ and $Y_k \geq 0$,
 2552

$$\left| \langle \hat{\pi}_h^{k+1} - \hat{\pi}_h^k, \hat{Q}_{g,h}^k \rangle \right| \leq 4\alpha H^2(1 + Y_k) + 4\theta H.$$

2553 **(Proof of the third statement)** Note that
 2554

$$\begin{aligned} \langle \hat{\pi}_h^k - \hat{\pi}_h^{k+1}, \hat{Q}_{f,h}^k \rangle - \frac{1}{\alpha} D(\hat{\pi}_h^{k+1} \parallel \hat{\pi}_h^k) &\leq \|\hat{\pi}_h^{k+1} - \hat{\pi}_h^k\|_1 \|\hat{Q}_{f,h}^k\|_\infty - \frac{1}{2\alpha} \|\hat{\pi}_h^{k+1} - \hat{\pi}_h^k\|_1^2 \\ &\leq 2H \|\hat{\pi}_h^{k+1} - \hat{\pi}_h^k\|_1 - \frac{1}{2\alpha} \|\hat{\pi}_h^{k+1} - \hat{\pi}_h^k\|_1^2 \\ &\leq 2H \|\hat{\pi}_h^{k+1} - \hat{\pi}_h^k\|_1 - \frac{1}{2\alpha} \|\hat{\pi}_h^{k+1} - \tilde{\pi}_h^k\|_1^2 + 2H \|\tilde{\pi}_h^k - \hat{\pi}_h^k\|_1 \\ &\leq 2\alpha H^2 + 2H \|\hat{\pi}_h^k - \tilde{\pi}_h^k\|_1 \end{aligned}$$

2555 where the first inequality is due to Hölder's inequality and Pinsker's inequality, the third inequality is
 2556 due to the triangle inequality, and the last inequality follows from the fact that $-ax^2 + bx \leq b^2/(4a)$
 2557 for $a, b, x > 0$, i.e., $a = 1/(2\alpha)$, $b = 2H$, $x = \|\hat{\pi}_h^{k+1} - \tilde{\pi}_h^k\|_1$. The following is true.
 2558

$$\|\hat{\pi}_h^k - \tilde{\pi}_h^k\|_1 \leq \theta \|\hat{\pi}_h^k - \pi_{\text{unif}}\|_1 \leq \theta (\|\hat{\pi}_h^k\|_1 + \|\pi_{\text{unif}}\|_1) \leq 2\theta.$$

2559 Finally, we have
 2560

$$\langle \hat{\pi}_h^k - \hat{\pi}_h^{k+1}, \hat{Q}_{f,h}^k \rangle - \frac{1}{\alpha} D(\hat{\pi}_h^{k+1} \parallel \hat{\pi}_h^k) \leq 2\alpha H^2 + 4H\theta$$

2561 as desired. \square
 2562

2563 **Lemma 23** (Lemma 1 of Wei et al. (2020), Lemma C.3 of Qiu et al. (2020)). Let Δ , $\text{int}(\Delta)$ be
 2564 the probability simplex and its interior, respectively, and let $f : \mathcal{C} \rightarrow \mathbb{R}$ be a convex function. Fix
 2565 $\alpha > 0$, $y \in \text{int}(\Delta)$. Suppose $x^* \in \arg \min_{x \in \Delta} f(x) + (1/\alpha)D(x \parallel y)$ and $x^* \in \text{int}(\Delta)$, then, for
 2566 any $z \in \Delta$,

$$f(x^*) + \frac{1}{\alpha} D(x^* \parallel y) \leq f(z) + \frac{1}{\alpha} D(z \parallel y) - \frac{1}{\alpha} D(z \parallel x^*).$$

2567 **Lemma 24** (Lemma 33 of Kitamura et al. (2025)). Let $Q_1, Q_2 : \mathcal{A} \rightarrow \mathbb{R}$ be two functions. For
 2568 $\alpha > 0$, let $\pi_1 \propto \exp(\alpha Q_1)$, $\pi_2 \propto \exp(\alpha Q_2)$. Then we have
 2569

$$\|\pi_1 - \pi_2\|_1 \leq 8\alpha \|Q_1 - Q_2\|_\infty.$$

2592 **Lemma 25** (Lemma 5 of [Yu et al. \(2017\)](#)). *Let $\{Z_n\}_{n \geq 0}$ be a discrete time stochastic process*
 2593 *adapted to a filtration $\{\mathcal{F}_n\}_{n \geq 0}$ with $Z_0 = 0$ and $\mathcal{F}_0 = \{\emptyset, \Omega\}$. Suppose that there exists an integer*
 2594 *$n_0 > 0$, real constants $\rho > 0$, $\delta_{\max} > 0$, and $0 < \zeta \leq \delta_{\max}$ such that*

$$2596 \quad |Z_{n+1} - Z_n| \leq \delta_{\max},$$

$$2597 \quad \mathbb{E}[Z_{n+n_0} - Z_n \mid \mathcal{F}_n] \leq \begin{cases} n_0 \delta_{\max}, & \text{if } Z_n < \rho \\ -n_0 \zeta, & \text{if } Z_n \geq \rho \end{cases}$$

2599 *hold for all $n \in \{1, 2, \dots\}$. Then the following holds:*

$$2601 \quad \mathbb{E}[Z_n] \leq \rho + n_0 \delta_{\max} + n_0 \frac{4\delta_{\max}^2}{\zeta} \log \frac{8\delta_{\max}^2}{\zeta^2}, \quad \forall n \in \{1, 2, \dots\}.$$

2604 *Moreover, with probability at least $1 - \delta$,*

$$2605 \quad Z_n \leq \rho + n_0 \delta_{\max} + n_0 \frac{4\delta_{\max}^2}{\zeta} \log \frac{8\delta_{\max}^2}{\zeta^2} + n_0 \frac{4\delta_{\max}^2}{\zeta} \log \frac{1}{\delta} \quad \forall n \in \{1, 2, \dots\}.$$

2608 **Lemma 26** (Lemma 31 of [Wei et al. \(2020\)](#)). *Let π_1, π_2 be two probability distributions in $\Delta(\mathcal{A})$.
 2609 Let $\tilde{\pi}_2 = (1 - \theta)\pi_2 + \theta/|\mathcal{A}|$ where $\theta \in (0, 1)$. Then,*

$$2610 \quad D(\pi_1 \parallel \tilde{\pi}_2) - D(\pi_1 \parallel \pi_2) \leq \theta \log |\mathcal{A}|, \quad D(\pi_1 \parallel \tilde{\pi}_2) \leq \log(|\mathcal{A}|/\theta).$$

2612 **Lemma 27** (Lemma 24 of [Cassel & Rosenberg \(2024\)](#)). *Let $\mathcal{V} = \{V(\cdot; \theta) : \|\theta\| \leq W\}$ denote a
 2613 class of functions $V : \mathcal{S} \rightarrow \mathbb{R}$. Suppose that any $V \in \mathcal{V}$ is L -Lipschitz with respect to θ and the
 2614 supremum distance, i.e.,*

$$2615 \quad \|V(\cdot; \theta_1) - V(\cdot; \theta_2)\|_{\infty} \leq L\|\theta_1 - \theta_2\|_1, \quad \|\theta_1\|_2, \|\theta_2\|_2 \leq W.$$

2616 *Let \mathcal{N}_{ϵ} be the ϵ -covering number of \mathcal{V} with respect to the supremum distance. Then*

$$2618 \quad \log \mathcal{N}_{\epsilon} \leq d \log(1 + 2WL/\epsilon).$$

2619 **Lemma 28** (Lemma 18 of [Cassel & Rosenberg \(2024\)](#)). *For any $K \geq 1$, $\beta > 0$, we have that*

$$2621 \quad \max_{y \geq 0} [y \cdot \sigma(-\beta y + \log K)] \leq \frac{2 \log K}{\beta}.$$

2623 **Lemma 29** (Lemma D.4 of [Rosenberg et al. \(2020\)](#)). *Let $\{X_t\}_{t \geq 1}$ be a sequence of random vari-
 2624 ables with expectation adapted to a filtration \mathcal{F}_t . Suppose that $0 \leq X_t \leq C$ almost surely. Then
 2625 with probability at least $1 - \delta$,*

$$2627 \quad \sum_{t=1}^T \mathbb{E}[X_t \mid \mathcal{F}_{t-1}] \leq 2 \sum_{t=1}^T X_t + 4C \log \frac{2T}{\delta}.$$

2630 **Lemma 30** (Lemma 21 of [Cassel & Rosenberg \(2024\)](#)). *Let $\hat{\theta}_{g,h}^k$ be as in line 14 of Algorithm 1.
 2631 With probability at least $1 - \delta$, for all $k \geq 1$, $h \in [H]$,*

$$2632 \quad \|\theta_{g,h} - \hat{\theta}_{g,h}^k\|_{\Lambda_h^k} \leq 2\sqrt{2d \log(2KH/\delta)}.$$

2634 **Lemma 31** (Lemma 22 of [Cassel & Rosenberg \(2024\)](#)). *Let $\hat{\psi}_h^k : \mathbb{R}^{|\mathcal{S}|} \rightarrow \mathbb{R}^d$ be the linear operator
 2635 defined in line 16 of Algorithm 1. For all $h \in [H]$, let $\hat{\mathcal{V}}_h \subset \mathbb{R}^{|\mathcal{S}|}$ be a set of mappings $\hat{V} : \mathcal{S} \rightarrow \mathbb{R}$
 2636 such that $\|\hat{V}\|_{\infty} \leq \beta_Q$ and $\beta_Q \geq 1$. With probability at least $1 - \delta$, for all $h \in [H]$, $\hat{V} \in \hat{\mathcal{V}}_{h+1}$, and
 2637 $k \geq 1$,*

$$2638 \quad \|(\psi_h - \hat{\psi}_h^k)\hat{V}\|_{\Lambda_h^k} \leq 4\beta_Q \sqrt{d \log(K+1) + 2 \log(H\mathcal{N}_{\epsilon}/\delta)},$$

2640 *where $\epsilon \leq \beta\sqrt{d}/(2K)$, $\mathcal{N}_{\epsilon} = \sum_{h \in [H]} \mathcal{N}_{\epsilon}(\hat{\mathcal{V}}_h)$, and $\mathcal{N}_{\epsilon}(\hat{\mathcal{V}}_h)$ is the ϵ -covering number of $\hat{\mathcal{V}}_h$ with
 2641 respect to the ℓ_{∞} -norm.*

2642 **Lemma 32** (Lemma 17 of [Cassel & Rosenberg \(2024\)](#)). *For any $\lambda > 0$ and matrices $\Lambda, \Lambda' \in \mathbb{R}^{d \times d}$
 2643 satisfying $\Lambda, \Lambda' \succeq \lambda I$, we have that*

$$2645 \quad \|\Lambda^{1/2} - (\Lambda')^{1/2}\|_2 \leq \frac{1}{2\sqrt{\lambda}} \|\Lambda - \Lambda'\|_2.$$

2646 **Lemma 33** (Lemma 3 of [Cassel & Rosenberg \(2024\)](#)). *For any $e \in [E]$ and $v \in \mathbb{R}^d$, we have that*

$$2648 \quad \left(\phi(s_h, a_h) - \bar{\phi}_h^{k_e}(s_h, a_h) \right)^\top v \leq \left(4\beta_w^2 \|\phi(s_h, a_h)\|_{(\Lambda_h^k)^{-1}}^2 + 2K^{-1} \right) |\phi(s_h, a_h)^\top v|. \\ 2649$$

2650 **Lemma 34** (Lemma 8 of [Cassel & Rosenberg \(2024\)](#)). *The number of epochs $|E|$ is bounded by $(3/2)dH \log(2K)$.*

2652 **Lemma 35** (Lemma 12 of [Abbasi-Yadkori et al. \(2011\)](#)). *Let A, B, C be positive semi-definite
2653 matrices such that $A = B + C$. Then, we have that*

$$2655 \quad \sup_{x \neq 0} \frac{x^\top Ax}{x^\top Bx} \leq \frac{\det(A)}{\det(B)}. \\ 2656$$

2657 **Lemma 36** (Lemma D.2 of [Jin et al. \(2020\)](#)). *Let $\{\phi_t\}_{t \geq 0}$ be a bounded sequence in \mathbb{R}^d satisfying
2658 $\sup_{t \geq 0} \|\phi_t\| \leq 1$. Let $\Lambda_0 \in \mathbb{R}^{d \times d}$ be a positive definite matrix. For any $t \geq 0$, define*

$$2660 \quad \Lambda_t = \Lambda_0 + \sum_{j=1}^t \phi_j \phi_j^\top. \\ 2661 \\ 2662$$

2663 *Then, if the smallest eigenvalue of Λ_0 satisfies $\lambda_{\min}(\Lambda_0) \geq 1$, we have*

$$2665 \quad \log \left[\frac{\det(\Lambda_t)}{\det(\Lambda_0)} \right] \leq \sum_{j=1}^t \phi_j^\top \Lambda_{j-1}^{-1} \phi_j \leq 2 \log \left[\frac{\det(\Lambda_t)}{\det(\Lambda_0)} \right]. \\ 2666 \\ 2667$$

2669 L NUMERICAL EXPERIMENT

2671 We evaluate Algorithm 1 on a finite-horizon job-scheduling CMDP closely following the setup of
2672 [Ghosh et al. \(2022\)](#) with modifications to incorporate adversarial losses. The number of episodes
2673 and the horizon are set to $K = 100,000$ and $H = 10$, respectively, and the state space is $\mathcal{S} =$
2674 $\{0, 1, \dots, 9\}$. At step h , s_h denotes the number of remaining jobs in the stack, and each episode
2675 begins with the initial state $s_1 = 9$. The agent chooses $a_h \in \mathcal{A} = \{0, 1\}$, where $a_h = 1$ corresponds
2676 to processing the current job and $a_h = 0$ corresponds to idling. Specifically, if $a_h = 1$, then
2677 $s_{h+1} = \max\{s_h - 2, 0\}$ with probability 0.8, $s_{h+1} = \max\{s_h - 1, 0\}$ with probability 0.1, and
2678 $s_{h+1} = s_h$ otherwise. If $a_h = 0$, then $s_{h+1} = s_h$.

2679 The loss and cost functions are defined as follows. To simulate an adversarial setting, in each episode
2680 k , the loss is chosen between two functions, $f^{(1)}$ and $f^{(2)}$, with probabilities $0.9 - (k-1)/(K-1)$
2681 and $0.1 + (k-1)/(K-1)$, respectively. These functions are defined as

$$2682 \quad f_h^{(1)}(a_h) = \begin{cases} 1 & a_h = 0, \\ 0.55 & a_h = 1 \text{ and } h \in \{3, 4, 5, 6\}, \\ 0.2 & a_h = 1 \text{ and } h \notin \{3, 4, 5, 6\}, \end{cases} \quad f_h^{(2)}(a_h) = \begin{cases} 1 & a_h = 0, \\ 0.6 & a_h = 1 \text{ and } h \in \{4, 5, 6\}, \\ 0.2 & a_h = 1 \text{ and } h \notin \{4, 5, 6\}. \end{cases}$$

2686 The cost is defined as $g_h(s_h, a_h, s_{h+1}) = 1 - (s_h - s_{h+1})/2$ for all h , and the cost budget is set to
2687 $b = 5.6$.

2688 Figure 1 summarizes the results of running Algorithm 1 for $K = 100,000$ episodes. To promote
2689 learning, we set the parameters as $\alpha = 0.1$, $\beta_b = K^{1/4}$, and $\beta_w = \beta_b \log K$, while keeping the
2690 other parameters same as in the setup of Algorithm 1. As shown in Figure 1a, the regret grows sub-
2691 linearly in K , despite the fact that the losses are not sampled from a fixed distribution. Furthermore,
2692 Figure 1b shows that while the constraint violation grows rapidly in the early phase, it eventually
2693 converges to 0 approximately after episode 45,000. These results support our main claim that both
2694 regret and constraint violation are bounded by sublinear terms.

2696 M THE USE OF LARGE LANGUAGE MODELS

2698 Portions of the text were polished using ChatGPT-5, which was employed for grammar checking
2699 and sentence refinement.