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ABSTRACT

Existing work on linear constrained Markov decision processes (CMDPs) has pri-
marily focused on stochastic settings, where the losses and costs are either fixed
or drawn from fixed distributions. However, such formulations are inherently
vulnerable to adversarially changing environments. To overcome this limitation,
we propose a primal-dual policy optimization algorithm for online finite-horizon
adversarial linear CMDPs, where the losses are adversarially chosen under full-
information feedback and the costs are stochastic under bandit feedback. Our
algorithm is the first to achieve sublinear regret and constraint violation bounds in
this setting, both bounded by Õ(K3/4), where K denotes the number of episodes.
The algorithm introduces and runs with a new class of policies, which we call
weighted LogSumExp softmax policies, designed to adapt to adversarially chosen
loss functions. Our main result stems from the following key contributions: (i)
a new covering number argument for the weighted LogSumExp softmax policies,
and (ii) two novel algorithmic components—periodic policy mixing and a regular-
ized dual update—which allow us to effectively control both the covering number
and the dual variable. We also report numerical results that validate our theoretical
findings on the performance of the algorithm.

1 INTRODUCTION

Safe reinforcement learning (RL) studies sequential decision-making under safety constraints
through interaction with an unknown environment. Many real-world applications have been
explored under the safe RL framework, including autonomous driving (Isele et al., 2018),
robotics (Achiam et al., 2017), and healthcare (Coronato et al., 2020). A common modeling frame-
work for safe RL is the online constrained Markov decision process (CMDP) formulation, where
the agent seeks a policy that minimizes (or maximizes) cumulative expected loss (or reward), while
ensuring that the expected cumulative cost does not exceed a given budget (Altman, 2021).

To better capture realistic scenarios, it is often necessary to model adversarial environments, where
different components of the environment may vary arbitrarily over time. For instance, in autonomous
driving, the loss may reflect safety risks such as sudden braking events, but it can also increase
drastically due to unexpected traffic conditions or hazardous weather. In service robotics, the loss
may correspond to task failures or user dissatisfaction, which can fluctuate depending on human
preferences or rapidly changing tasks. In such applications, assuming a fixed loss signal is overly
restrictive. Therefore, to model these practical scenarios, it is essential to consider a class of CMDPs
under adversarial settings.

Online adversarial CMDPs assume that the loss or cost functions can change arbitrarily across
episodes, rather than being drawn from fixed stochastic distributions. Recently, adversarial CMDPs
have been investigated under the tabular setting (Qiu et al., 2020; Stradi et al., 2024; 2025a;c; Zhu
et al., 2025). Although these works achieved sublinear regret and constraint violation bounds, they
focused only on environments where the state space is finite and relatively small. As a result, their
algorithmic guarantees may not extend to settings with large state spaces. Such algorithms are often
unsatisfactory in real-world applications, where the number of states is typically extremely large.

To capture settings with a large state space, safe RL with linear function approximation has been
studied. Ding et al. (2021) proposed a primal-dual policy optimization algorithm for linear mixture
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CMDPs, where the dynamics are expressed as a mixture of a finite set of basis kernels. For linear
CMDPs, assuming linear structure in the loss and cost functions as well as in the dynamics, Ghosh
et al. (2022; 2024) designed a primal-dual-type optimistic value iteration algorithm with a softmax
policy. For the same setting, Kitamura et al. (2025) developed an algorithm achieving zero constraint
violation under the assumption of a known safe policy. Although these algorithms can handle large
state spaces, they considered only stochastic settings, where the loss and cost functions are fixed or
drawn from underlying distributions. That said, they fail to capture the aforementioned applications,
where taking into account adversarial environments is essential when modeling safe RL algorithms.

To overcome these limitations, this paper proposes an algorithm for adversarial linear CMDPs. To
handle adversarial losses with constraints, as online primal-dual mirror descent type algorithms be-
come a standard choice, it is natural to consider primal-dual policy optimization for our setting (Chen
et al., 2021; Ding et al., 2021). However, when applying primal-dual policy optimization to adver-
sarial linear CMDPs, additional challenges arise—most notably in bounding the covering number
of the value function class (Jin et al., 2020).

To elaborate on this challenge, primal-dual policy optimization induces a more intricate policy class,
necessitating a new covering number argument. In particular, slightly perturbing the primal variable
before optimizing it—namely, the policy in our case—is commonly used in various settings (Wei
et al., 2020; Qiu et al., 2020; Ding et al., 2021; Stradi et al., 2025c). The purpose of this step is to
derive a compact dual variable bound, which is essential for regret and violation analyses. However,
this step breaks the recursive structure of policy optimization, so the resulting policy cannot be
represented as a typical softmax policy. As a consequence, the covering number argument becomes
non-trivial. In other words, while policy mixing is simple and common, it poses a critical issue
for covering number arguments in linear CMDPs. Despite these challenges, we aim to answer the
following question:

Can we design a primal-dual policy optimization algorithm for adversarial linear CMDPs that
ensures sublinear regret and violation bounds?

Main Contributions We answer the question affirmatively with Algorithm 1, designed for finite-
horizon adversarial linear CMDPs, where the losses are adversarially chosen under full-information
feedback, and the costs are stochastic under bandit feedback. We summarize our main contributions.

• We present a primal-dual policy optimization algorithm (Algorithm 1) for adversarial lin-
ear CMDPs that achieves regret and constraint violation upper bounds of Õ(K3/4), where
K is the number of episodes. Our algorithm is the first algorithm that achieves sublinear
regret and violation in the adversarial linear CMDP setting. Moreover, the algorithm devel-
ops a new class of policies, which we refer to as weighted LogSumExp softmax policies,
designed to adapt to adversarially chosen loss functions.

• We establish a covering number argument for the novel class of weighted LogSumExp soft-
max policies, induced by primal-dual policy optimization algorithms. The main technical
difficulty arises from the fact that the weight parameters across policies may differ, prevent-
ing direct application of standard properties of the LogSumExp function. Nevertheless, our
analysis shows that the covering number under this policy class is bounded by Õ(n2d2),
where n is the maximum number of mixing steps, and d is the feature dimension of the
linear CMDP.

• Another challenge in designing a sublinear algorithm for adversarial linear CMDPs lies
in the need to simultaneously control both the covering number and the dual variable. To
address this, our algorithm incorporates two novel components: (i) periodic policy mixing
and (ii) regularized dual updates. Since the covering number grows with the number of
mixing steps, the purpose of periodic policy mixing is to regulate the frequency of mixing
steps by applying it once in every specified mixing period, rather than in every episode.
To incorporate periodic policy mixing, our dual update has to introduce an additional reg-
ularization term in order to obtain a compact bound on the dual variable. Together, these
algorithmic components allow us to effectively control both the covering number and the
dual variable, establishing a sublinear algorithm.

A more detailed review of related work is deferred to the appendix.
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2 PROBLEM SETTING

Finite-Horizon Adversarial CMDP A finite-horizon adversarial CMDP is defined by the tuple
M = (H,S,A, {Ph}Hh=1, {fk}Kk=1, {gk}Kk=1, s1, b), where H is the finite-horizon, S is the finite
state space1, and A is the finite action space. {Ph}Hh=1 is a collection of transition kernels for each
step h ∈ [H], where Ph(s

′ | s, a) denotes the probability of transitioning from state s to state s′
when action a is taken at step h. {fk}Kk=1 and {gk}Kk=1 are the sequences of loss and cost functions
over episodes k ∈ [K], where fk = {fkh}Hh=1 and gk = {gkh}Hh=1 satisfy fkh , g

k
h : S × A → [0, 1].

s1 ∈ S is the fixed initial state, and b ∈ [0, H] is the cost budget.

We consider a setting where the loss functions are adversarial, while the cost functions are stochastic.
Specifically, at the beginning of each episode k ∈ [K], an adversary chooses the loss function fk,
which can be selected arbitrarily (i.e., not drawn from a distribution). In contrast, the cost function
gk is sampled i.i.d. from a fixed distribution G, satisfying E[gkh(s, a) | s, a] = gh(s, a).

The interaction between the agent and the environment proceeds as follows. At the beginning of
each episode k ∈ [K], fk is adversarially chosen, which is not revealed to the agent. Next, the agent
selects a collection of policies {πh}Hh=1, where πh(a | s) denotes the probability of taking action a
given state s at step h. Once the episode begins, at each step h ∈ [H], the agent samples an action
ah ∼ π(· | sh). Upon taking ah, the agent observes fkh and gkh(sh, ah), which are full-information
feedback for the adversarial loss and bandit feedback for the stochastic cost, respectively. Lastly, the
next state is sampled as sh+1 ∼ Ph(· | sh, ah).
We define the value function and the Q-function. Let V π

ℓ,h(s) denote the value function at state s
and step h with respect to a function ℓ = {ℓh}Hh=1 and policy π, which is written as V π

ℓ,h(s) =

EP,π[
∑H

j=h ℓj(sj , aj) | sh = s]. Similarly, the Q-function Qπ
ℓ,h(s, a) is defined as Qπ

ℓ,h(s, a) =

EP,π[
∑H

j=h ℓj(sj , aj) | sh = s, ah = a].

We define the performance metrics—regret and constraint violation—as follows. Given a se-
quence of policies π1, . . . , πK generated by the agent, the regret and constraint violation for
K episodes are defined as Regret(K) =

∑K
k=1(V

πk

fk,1(s1) − V π∗

fk,1(s1)) and Violation(K) =[∑K
k=1(V

πk

g,1 (s1)− b)
]
+

, where [·]+ denotes max{·, 0}. Here, π∗ is an optimal policy, de-

fined as a solution to the following optimization problem over the set of all policies Π: π∗ ∈
argminπ∈Π

∑K
k=1 V

π
fk,1(s1) s.t. V π

g,1(s1) ≤ b.

Linear CMDP We consider a class of CMDP instances with an underlying linear structure, re-
ferred to as linear CMDP (Ghosh et al., 2022). Let ϕ : S × A → Rd denote the known feature
mapping. With the feature ϕ, the transition kernel is defined as Ph(s

′ | s, a) = ϕ(s, a)⊤ψh(s
′)

where ψh(s
′) ∈ Rd is an unknown signed measure. Similarly, the loss and cost functions are as-

sumed to be linear in ϕ and are defined as fkh (s, a) = ϕ(s, a)⊤θkf,h and gh(s, a) = ϕ(s, a)⊤θg,h,
where θkf,h, θg,h ∈ Rd are unknown parameters. Moreover, we further assume that the parame-
ters for linear CMDPs are all bounded as follows. For all (s, a, h, k) ∈ S × A × [H] × [K], we
have ∥ϕ(s, a)∥2≤ 1 and max{∥

∑
s′∈S |ψh|(s′)∥2, ∥θkf,h∥2, ∥θg,h∥2} ≤

√
d, where |ψh|(s′) denotes

(|(ψh(s
′))1|, |(ψh(s

′))2|, . . . , |(ψh(s
′))d|)⊤ ∈ Rd.

Next, we introduce the Slater condition, which is a mild assumption commonly made in the CMDP
literature (Efroni et al., 2020; Liu et al., 2021; Ding et al., 2021; Ghosh et al., 2022).

Assumption 1 (Slater Condition). We assume that there exists a Slater policy π̄ ∈ Π such that
V π̄
g,1(s1) + γ ≤ b for some Slater constant γ > 0.

1For simplicity, we assume that the state space is finite. However, the state space may be arbitrarily large,
as discussed in Cassel et al. (2024), since the computational complexity of our algorithm—as well as the regret
and constraint violation—does not scale with |S|, which will be presented in the following sections.
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3 CHALLENGES AND NOVEL TECHNIQUES

Novelty 1: Analysis for Weighted LogSumExp Softmax We construct a covering number ar-
gument with a new policy structure—weighted LogSumExp softmax policies—which arises from
combining policy optimization with policy mixing. This policy is given by the weighted sum of
exponentials of sums of Q-function estimates2: given a step size α, weight parameters ζi, and Q-
function estimates Q̂j ,

π̂k ∝
k∑

i=1

ζi exp

−α k−1∑
j=k−i

Q̂j

 . (1)

Let us explain how (1) arises in primal–dual policy optimization. Perturbing the primal variable be-
fore optimizing it is a simple yet effective technique for controlling the scale of the dual variable (Wei
et al., 2020; Qiu et al., 2020). In the context of policy optimization, this technique translates into the
following update: given a uniform policy πunif over A and a mixing parameter θ,

π̂k−1 ← (1− θ)π̂k−1 + θπunif︸ ︷︷ ︸
Policy Mixing

and then π̂k ∝ π̂k−1 exp(−αQ̂k−1)︸ ︷︷ ︸
Policy Optimization

.

Here, the additive relation (Policy Mixing) breaks the recursion in the proportional relation (Policy
Optimization). As a consequence, the resulting policy takes the form of the weighted LogSumExp
softmax. In particular, (1) may assign different weights ζi to partial sums

∑k−1
j=k−i Q̂

j for i ∈ [k].
This yields a more expressive policy compared to the case without policy mixing, where the update
simplifies to π̂k ∝ exp(−α

∑k−1
j=0 Q̂

j).

Our first contribution is to provide a new covering number argument for the value function class,
where the policy is given by (1). For comparison, Jin et al. (2020) studied the greedy policy, where
the policy is defined as argmaxa∈A Q̂

k. Then the covering number can be analyzed since the max
operation is a contraction mapping. Moreover, the simple softmax policy has been studied in several
works, e.g., Ghosh et al. (2022). In that case, leveraging well-established Lipschitz properties of the
softmax function is sufficient to analyze the covering number.

We note that constructing a covering number argument for (1) is non-trivial. The main difficulty
is that the weight parameters {ζi}ki=1 depend not only on the mixing parameter θ but also on Q-
function estimates. This means that different policies can have different weight parameters {ζi}ki=1,
and thus, well-known properties of LogSumExp cannot be applied. Despite these challenges, our
analysis shows that the logarithm of the covering number under (1), denoted by logNϵ, grows
quadratically with n, where n is the maximum number of mixing steps during the learning process:

logNϵ = Õ(n2d2). (2)

Novelty 2: Periodic Policy Mixing However, deriving an upper bound on the covering number
alone is not sufficient to guarantee sublinear regret and violation. In particular, if mixing is applied
in every episode, then logNϵ grows to the order of Õ(K2d2), which is too large to yield a sublinear
guarantee. On the other hand, if mixing is performed insufficiently, then the dual variable cannot be
bounded, which is critical for violation analysis. These observations highlight an inherent trade-off
between the covering number and the size of dual variables, both of which heavily depend on the
frequency of mixing. This necessitates a new algorithmic component to balance the two.

The aforementioned trade-off motivates our second contribution—periodic policy mixing—which
applies the policy mixing every KB episodes3, where B is a period parameter between 0 and 1.
The purpose of the periodic policy mixing is to balance the covering number and the size of dual
variables. The covering number can be easily observed from (2), since the number of mixing steps
is at most K1−B (i.e., the number of episodes divided by the mixing period). However, it remains
unclear whether periodic policy mixing is effective in controlling the dual variable. To address this,
in the next paragraph, we show that the dual variable can indeed be bounded when periodic policy
mixing is combined with a new dual update rule.

2We call this formulation the weighted LogSumExp softmax, as it is equivalent to π̂k ∝
exp(log(

∑
i ζi exp(−α

∑
j Q̂

j)))—a softmax of weighted LogSumExp with respect to −α
∑

j Q̂
j .

3For simplicity, we assume that KB ,K1−B are integers to avoid additional notation such as
⌊
KB

⌋
.
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Novelty 3: Regularized Dual Update Our third contribution is another algorithmic component—
a new dual update rule with additional regularization. When combined with periodic policy mixing,
the dual variable Yk is bounded by Õ(ηKB), where η is the step size and KB is the mixing period.
For clarity, this bound omits the dependence on γ,H to highlight the impact of the mixing period.

To elaborate on our dual update method, it takes the following form: given regularization parameters
c1, c2 > 0 and the cost value function estimate V̂ k

g,1,

Yk+1 ← [Yk + η(V̂ k
g,1(s1)− b) + (−c1Yk − c2)︸ ︷︷ ︸

Regularization

]+.

For interpretation, Yk + η(V̂ k
g,1(s1)− b) corresponds to the standard online gradient ascent step for

dual updates in primal-dual algorithms, while the regularization term (−c1Yk − c2) pulls the dual
variable towards 0, keeping it compact. The regularization parameters c1, c2 will be specified in the
following paragraph, along with the intuition for our design.

The intuition behind our regularization is that it serves as a crucial ingredient for a drift-based anal-
ysis, a well-known method for bounding dual variables (see, e.g., Yu et al. (2017); Wei et al. (2020)
in constrained online convex optimization). To enable drift analysis, these works typically incorpo-
rate an inner product term in the dual update, determined by the decision variables and the gradient,
i.e., ⟨xt+1 − xt,∇t⟩. In primal-dual policy optimization, we realize that this translates to a term
involving the transition kernel, i.e., EP[⟨π̂k+1 − π̂k, Q̂k⟩]. However, since the transition kernel is
unknown, this term cannot be directly incorporated into our algorithm. Instead, we take a lower
bound on this term, which becomes our regularizing component with the choice of c1 = 4αηH3

and c2 = 4αηH3 + 4θηH2. In this way, our dual update can be viewed as a key adaptation that
enables drift analysis in primal-dual policy optimization for adversarial linear CMDPs.

4 ALGORITHM

We present Primal-Dual Policy Optimization for Adversarial Linear CMDPs (Algorithm 1). The al-
gorithm consists of four main components: epoch initialization (lines 2-7), policy execution and
estimation (lines 8-19), policy optimization with periodic policy mixing (lines 20-26), and updating
the dual variable (line 27).

In lines 2-7, the algorithm initializes a new epoch when the determinant of the design matrix Λk
h′

decreases by a multiplicative factor compared to that of Λke

h′ for some h′. Once the initialization
procedure begins, the algorithm sets the policy to the uniform policy and initializes the dual variable
to 0. Furthermore, it defines a contracted feature ϕ̄ke

h by shrinking the original feature ϕ. The multi-
plicative contraction factor is determined by σ(−βw∥ϕ(·, ·)∥(Λke

h )−1+ logK), where σ denotes the
sigmoid function, and ∥ϕ(·, ·)∥(Λke

h )−1 quantifies the current uncertainty of least-squares estimators.
This contracted feature is then used in the estimation of Q-functions.
Remark 1. The feature contraction—originally proposed by Cassel & Rosenberg (2024) for ad-
versarial linear (unconstrained) MDPs—is necessary for the following reason. Specifically, it pro-
vides a simpler expression for the policy, which is useful in covering number arguments, via a low-
dimensional representation of the sum of Q-function estimates. For this, they omitted a clipping
operation in the definition of Q-function estimates, so the sum collapses into a simple inner prod-
uct with an optimistic bonus. Instead of clipping, they properly contracted the feature to prevent
Q-function estimates from expanding uncontrollably. This technique can be replaced with other ap-
proaches with the same purpose, such as Sherman et al. (2024), but it may lead to higher dependence
on d,H in regret and violation bounds.

In lines 8-10, the algorithm takes action akh ∼ π̂k
h(·|skh) for each step h ∈ [H] and observes

θkf,h, g
k
h(s

k
h, a

k
h), and skh+1 ∼ Ph(·|skh, akh). In lines 11-14, the design matrix Λk+1

h is updated, and
the parameters for the loss and cost functions are estimated, denoted by θ̂kf,h and θ̂kg,h, respectively.
Based on these, in lines 15-19, for each ℓ = f, g, it computes the Q-function estimates Q̂k

ℓ,h(s, a)

using the contracted feature and the value function estimates V̂ k
ℓ,h(s), which are defined by the inner

product of π̂k
h(·|s) and Q̂k

ℓ,h(s, ·) for each s ∈ S.
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Algorithm 1 Primal-Dual Policy Optimization for Adversarial Linear CMDPs

Input: δ ∈ (0, 1), βb = 2
√
2d log(6KH/δ) + 50(K1/4 + 1)dH

√
log(5H2K2|A|/δ), βw =

4βb logK,α = H−1K−3/4, η = H−2K−3/4, θ = K−1

Initialization: Y1 ← 0, e← 0, Λ1
h ← I, V̂ k

ℓ,H+1(s)← 0 ∀(h, k, s, ℓ) ∈ [H]× [K]×S ×{f, g}
1: for k = 1, . . . ,K do
2: if k = 1 or ∃h′ ∈ [H] such that det(Λk

h′) ≥ 2 det(Λke

h′ ) then
3: e← e+ 1 and ke ← k
4: π̂ke

h (· | s)← πunif(· | s) ∀h ∈ [H]
5: Yke

← 0

6: ϕ̄ke

h (·, ·) = ϕ(·, ·) · σ(−βw∥ϕ(·, ·)∥(Λke
h )−1+ logK) ∀h ∈ [H] ▷ Feature Contraction

7: end if
8: for h = 1, . . . ,H do
9: Take akh ∼ π̂k

h(· | skh), and observe θkf,h, g
k
h(s

k
h, a

k
h), s

k
h+1 ∼ Ph(· | skh, akh)

10: end for
11: for h = H, . . . , 1 do
12: Λk+1

h ← I +
∑

τ∈[k] ϕ(s
τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤

13: θ̂kf,h ← θkf,h
14: θ̂kg,h ← (Λk

h)
−1
∑

τ∈[k−1] ϕ(s
τ
h, a

τ
h)g

τ
h(s

τ
h, a

τ
h)

15: for ℓ ∈ {f, g} do
16: ψ̂k

hV̂
k
ℓ,h+1 = (Λk

h)
−1
∑

τ∈[k−1] ϕ(s
τ
h, a

τ
h)V̂

k
ℓ,h+1(s

τ
h+1)

17: Q̂k
ℓ,h(·, ·)← ϕ̄ke

h (·, ·)⊤
[
θ̂kℓ,h + ψ̂k

hV̂
k
ℓ,h+1

]
− βb∥ϕ̄ke

h (·, ·)∥(Λke
h )−1

18: V̂ k
ℓ,h(·)←

∑
a∈A π̂

k
h(a | ·)Q̂k

ℓ,h(·, a)
19: end for
20: if k − ke ≡ 0 mod K3/4 then ▷ Periodic Policy Mixing
21: π̃k

h(· | s)← (1− θ)π̂k
h(· | s) + θπunif(· | s)

22: else
23: π̃k

h(· | s)← π̂k
h(· | s)

24: end if
25: π̂k+1

h (· | s) ∝ π̃k
h(· | s) exp

(
−α(Q̂k

f,h(s, ·) + YkQ̂
k
g,h(s, ·))

)
▷ Policy Optimization

26: end for
27: Yk+1 ←

[
(1− 4αηH3)Yk + η

(
V̂ k
g,1(s1)− b− 4αH3 − 4θH2

)]
+

▷ Dual Update

28: end for

In lines 20-24, the algorithm applies the policy mixing every K3/4 episodes. Here, the mixed policy
is obtained by taking a convex combination of π̂k

h and πunif with coefficients 1−θ and θ, respectively.
After this, the algorithm performs policy optimization—equivalently, an online mirror descent step
with Kullback-Leibler (KL) divergence over the policy space.

In line 27, the algorithm updates the dual variable, Yk. First, it scales down the dual variable by a
factor of 1−4αηH3, and then adds η(V̂ k

g,1(s1)− b−4αH3−4θH2). Finally, it takes [·]+ to ensure
that the dual variable remains nonnegative.

The computational complexity of Algorithm 1 is O(d3HK + d2|A|HK2), which is independent
of |S|. Specifically, in lines 2-7, computing determinants simply takes O(d3HK) and contracting
features takes O(d2K · |A|·HK), since the inverse of the design matrices can be computed in
O(d2K), applying the Sherman-Morrison formula. In lines 8-29, the dominant step is function
estimation: lines 16-18 take O(d2|A|HK2).

4.1 COMPARISON OF DUAL UPDATES

Since our algorithm is designed for adversarial linear CMDPs, it is worth comparing our dual update
with that of algorithms for (i) stochastic linear CMDPs (Ghosh et al., 2022) and (ii) tabular CMDPs
with adversarial losses (Qiu et al., 2020).
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First, we compare with Ghosh et al. (2022), which focused on stochastic linear CMDPs. The key
difference comes from the way the dual variable is regularized. Specifically, while both approaches
adopt the standard online gradient ascent procedure, their update rule truncates the dual variable at
2H/γ to ensure that it never exceeds this threshold. In contrast, our update incorporates an extra
regularization term to keep the dual variable compact. Although their update is simple and effective
in the stochastic setting, it cannot be extended to the adversarial setting, since their analysis relies
on the fact that the loss and cost functions are fixed over episodes. This justifies the need for our
design of dual update steps in handling adversarial losses.

Second, we compare with Qiu et al. (2020), which proposed an occupancy measure-based algorithm
for adversarial tabular CMDPs. The main difference in the dual updates arises from the choice
of primal variable: policy-based mirror descent versus occupancy measure-based mirror descent.
Before elaborating on this, we recall a dual update from the constrained online convex optimization
literature, proposed by Wei et al. (2020) with minor modifications: given a convex cost function
ℓ : Rd → R and primal variables xk, xk+1 ∈ Rd,

Yk+1 ←
[
Yk + η

(
ℓ(xk)− b+ ⟨∇ℓ(xk), xk+1 − xk⟩

)]
+
.

Based on this update, let us show how the dual update for occupancy measure-based algorithms can
be derived. Since the occupancy measure serves as the primal variable, we take xk ← qk, where qk
denotes an occupancy measure in episode k. Furthermore, in CMDPs, note that the expected cost is
given by ⟨g, qk⟩4, where g ∈ R|S|×|A|×H denotes a vector representation of the cost function. Then
we can take ℓ(xk) ← ⟨g, qk⟩ and ∇ℓ(xk) ← g. This leads to Yk+1 ← [Yk + η(⟨g, qk+1⟩ − b)]+,
which is the key intuition behind the dual update in Qiu et al. (2020).

However, this argument does not apply to policy-based mirror descent. This is because even if we
take xk ← πk, the expected cost is not linear in πk, unlike in the occupancy measure case. That
said, the dual updates for occupancy measure-based algorithms can be extended from the online
convex optimization literature, whereas extending this to policy-based algorithms is non-trivial. This
highlights the significance of our proposed design.

4.2 MAIN RESULT

Finally, we present upper bounds on regret and constraint violation under Algorithm 1.
Theorem 1. Let H2 ≤ K and Assumption 1 hold. Suppose that we run Algorithm 1. Given δ > 0,
with probability at least 1− 2δ, then we have

Regret(K) = Õ
(√

d3H4K3/4 + dH3K3/4 + d3H4K1/2 +
H6

γ2
K1/4 +

dH6

γ2

)
,

Violation(K) = Õ
(
dH5

γ
K3/4 +

√
d3H4K3/4 + d3H4K1/2

)
where Õ (·) hides polynomial factors in log(dHK|A|/(δγ)).

5 ANALYSIS

In this section, we present the proof outline of Theorem 1, where the details of the proofs can be
found in the appendix. As a first step, we introduce two key ingredients: (i) a high-probability
good event and (ii) bounding the dual variable. We note that our covering number argument plays a
central role in showing that the good event holds with high probability. Furthermore, to bound the
dual variable, the key part is to consider periodic policy mixing and the regularized dual update.

Good Event We first introduce a high-probability event, denoted by Eg , whose formal definition
is provided in the appendix. Basically, the event captures estimation errors for the loss, the cost, and
the transition kernel. In addition, it guarantees the boundedness of Q-function estimates, reflecting
the usefulness of the feature contraction. The following lemma shows that Eg holds with high
probability.

4For simplicity, we assume the case where g is deterministic and known, and qk is the occupancy measure
induced by the true transition kernel.
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Lemma 1. Let βw ≤ K. Then for any δ ∈ (0, 1), Pr[Eg] ≥ 1− δ.

In the proof of Lemma 1, the main distinction from previous works arises in our covering number
argument. Specifically, our case incorporates weighted LogSumExp softmax policies, induced by
mixing the policy. Then we have to derive a Lipschitz property of the policies that have been mixed
n times, as the number of mixing steps is a key factor in determining the policy structure. Note that
the Lipschitzness of policies is fundamentally required in most covering number arguments.

To attain this property, we prove the following recursion in n, presented here in simplified form:

∥π̂n
1 − π̂n

2 ∥1≤ c∥π̂n−1
1 − π̂n−1

2 ∥1+∥Pn
1 − Pn

2 ∥2
where π̂n

1 , π̂
n
2 denote the policies that have been mixed n times, Pn

1 ,Pn
2 denote the subsets of the

corresponding parameters, and c is a constant. By applying this recursion repeatedly, we can bound
the difference between policies using the sum of differences in their parameters, establishing the
Lipschitzness. Based on this, we can show that the covering number is bounded as Õ(n2d2).

Dual Variable Bound Under the good event Eg , we can establish another ingredient of our
analysis—a drift analysis for bounding the dual variable.
Lemma 2. Assume that the good event Eg holds. Let H2 ≤ K. Let Yk be the dual variable
generated by Algorithm 1 for each k ∈ [K]. For any δ ∈ (0, 1) and k ∈ [K], with probability at
least 1− δ, we have Yk = Õ(H2/γ).

Let us briefly explain our proof strategy for Lemma 2. Although the regularization in our dual update
enables drift analysis, we cannot directly apply the previous proofs proposed by Wei et al. (2020);
Qiu et al. (2020). This is because their analyses rely on applying policy mixing in every episode,
whereas our algorithm applies it only sparsely. To exploit this sparse structure, we instead consider
a subsequence of dual variables corresponding to the mixing episodes, denoted by {Zn}n≥1 where
Zn = Yke+nKB for each epoch e. We first bound Zn for all n, and consequently extend the result
to derive a bound on Yk for all k.

Next, we introduce decompositions of both Regret(K) and Violation(K). Let E be the set of all
epochs, and let Ke be the set of episodes in epoch e ∈ E. We have

Regret(K) ≤
K∑

k=1

(
V πk

fk,1(s1)− V̂
k
f,1(s1)

)
︸ ︷︷ ︸

(I)

+

K∑
k=1

Yk

(
b− V̂ k

g,1(s1)
)

︸ ︷︷ ︸
(II)

+

K∑
k=1

(
V̂ k
f,1(s1) + YkV̂

k
g,1(s1)− V π∗

fk,1 − YkV
π∗

g,1 (s1)
)

︸ ︷︷ ︸
(III)

,

Violation(K) ≤
K∑

k=1

(
V πk

g,1 (s1)− V̂ k
g,1(s1)

)
︸ ︷︷ ︸

(IV)

+

K∑
k=1

(
V̂ k
g,1(s1)− b

)
︸ ︷︷ ︸

(V)

.

(3)

Terms (I), (IV) arise from the difference between the true value function and its optimistic estimates,
which are closely related to the optimistic bonus−βb∥ϕ̄ke

h (·, ·)∥(Λke
h )−1 . Since our parameter for op-

timistic bonus is set as βb = Õ(K1/4dH), where K1/4 comes from the covering number argument,
these terms are bounded by Õ(K3/4), as stated in the following lemma.
Lemma 3. Let H2 ≤ K. Suppose that Eg holds. For all ℓ ∈ {f, g},

K∑
k=1

(V πk

ℓ,1 (s1)− V̂ k
ℓ,1(s1)) = Õ

(√
d3H4K3/4 + d3H4K1/2

)
.

Term (II) arises from the dual update in the sense that if the dual variable is not updated (i.e., Yk = 0
for all k), then this term vanishes. It can be bounded using the following lemma.
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Lemma 4. Let H2 ≤ K. Suppose that Eg and the statement of Lemma 2 hold. Then we have
K∑

k=1

Yk(b− V̂ k
g,1(s1)) = Õ

(
K1/4 +

dH6

γ2

)
.

To bound term (III), we further decompose it into two parts—optimism terms and an online mirror
descent term—and then bound each individually. This leads to the following lemma.
Lemma 5. Let H2 ≤ K. Suppose that Eg and the statement of Lemma 2 hold. Then we have

K∑
k=1

(
V̂ k
f,1(s1) + YkV̂

k
g,1(s1)− (V π∗

fk,1 + YkV
π∗

g,1 (s1))
)
= Õ

(
dH3K3/4 +

H6

γ2
K1/4 +

dH5

γ

)
.

Finally, term (V) can be bounded via the dual variable bound. This is because η(V̂ k
g,1(s1) − b)

accumulates in the dual variable, as it is repeatedly added in the dual update. Based on this idea, we
show the following lemma, which bounds term (V).
Lemma 6. Let H2 ≤ K. Suppose that Eg and the statement of Lemma 2 hold. Then we have

K∑
k=1

(V̂ k
g,1(s1)− b) = Õ

(
dH5

γ
K3/4 +

H4

γ
K1/4

)
.

6 NUMERICAL EXPERIMENT

We evaluate Algorithm 1 on a job-scheduling CMDP (Ghosh et al., 2022), modified to incorporate
adversarial losses. We conduct 10 simulations with different random seeds, each running for K =
105 episodes. Additional details about the experimental setup are deferred to the appendix.

(a) Regret (b) Constraint Violation

Figure 1: Plots of regret and constraint violation for K = 100,000 episodes. Each plot represents
the average over 10 trials with random seeds, and shaded regions indicate 95% confidence intervals.

Figure 1 summarizes the results. As shown in Figure 1a, the regret grows sublinearly in K, and
Figure 1b shows that while the constraint violation grows rapidly in the early phase, it eventually
converges to 0. These results support our theoretical claims.

7 CONCLUSION

This paper studies adversarial linear CMDPs, where the losses are adversarially chosen under full-
information feedback and the costs are stochastic under bandit feedback. We propose a primal-dual
policy optimization algorithm—the first provably efficient algorithm for safe RL with linear function
approximation in adversarial settings. We establish a new covering number argument for weighted
LogSumExp softmax policies, along with novel algorithmic components that jointly control the
covering number and the dual variable. Building on these, we show that the proposed algorithm
achieves Õ(K3/4) regret and violation bounds. Moreover, our numerical experiments support this.
As directions for future work, it remains open to investigate the following challenges: (i) whether
Õ(
√
K) regret and violation bounds can be achieved in our setting, and (ii) whether a sample-

efficient algorithm can be designed for linear CMDPs with adversarial losses under bandit feedback.
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A NOTATION

Table 1: Summary of notation

NOTATION DEFINITION

H,S,A,K The finite-horizon, the state and action spaces, and the number of episodes
d The feature dimension
P The transition kernel
f, g The loss and the cost functions
b The budget
E The set of epochs
ke The first episode of epoch e ∈ E
ϕ The feature
ϕ̄ke

h The contracted feature at step h in epoch e
θ̂kℓ,h The estimate of θkℓ,h
Λk
h The design matrix at step h in episode k

ψhV
∑

s′∈S ψh(s
′)V (s′) for V : S → R

ψ̂k
hV The estimate of ψhV at step h in episode k
[n] The set {1, 2, . . . , n} for a positive integer n
Z+ The set {0, 1, 2, . . .}
R+ The set {z ∈ R : z ≥ 0}
∥·∥2 The ℓ2-norm for vectors and the operator norm for matrices
∥·∥∞ The ℓ∞-norm
∥·∥F The Frobenius norm
∥·∥Λ ∥x∥Λ=

√
x⊤Λx for Λ ≻ 0

∆(A) The probability simplex over A
I The d× d identity matrix

D(·||·) Kullback-Leibler divergence
σ The sigmoid function
γ, π̄ The Slater constant and the Slater policy

Qπ
ℓ,h(s, a) The Q-function

Q̂k
ℓ,h(s, a) The Q-function estimate
V π
ℓ,h(s) The value function
V̂ k
ℓ,h(s) the value function estimate

V̄ π
ℓ,h(s; ρ) The value function with respect to a ρ-contracted MDP
π̂k
h The policy at step h in episode k

πunif πunif(a | s) = 1/|A| for all (s, a) ∈ S ×A
Yk The dual variable in episode k
KB The mixing period, K3/4

θ The mixing parameter, θ = K−1

α The step size for the mirror descent, α = H−1K−3/4

η The step size for the dual update, η = H−2K−3/4

βr 2
√
2d log(6KH/δ)

βp 50(K1/4 + 1)dH
√

log(5H2K2|A|/δ)
βb βr + βp
βw 4βb logK
βQ,h 2(H − h+ 1)

Nϵ(V̂) The ϵ-covering number of V̂ with respect to the ℓ∞-norm

B LIMITATIONS OF PRIOR WORK AND NAÏVE EXTENSION

In this section, we clarify why previous works—and their naı̈ve extensions—fail in our setting,
where the losses are adversarially chosen in each episode. In particular, we address the following
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two questions: (i) why the algorithm of Ghosh et al. (2022) fails in the adversarial setting; and (ii)
why simply adapting a mirror-descent update is insufficient for adversarial linear CMDPs.

Limitation of Prior Work While Ghosh et al. (2022) proposed a primal-dual algorithm for linear
CMDPs, their analysis is limited to the setting with stochastic losses and constraints. The funda-
mental reason is that their algorithm is value-based, whose policy is determined solely by the current
Q-function estimates in each episode; that is π̂k(· | s) ∝ exp(−αQ̂k−1). Such a policy cannot adapt
to time-varying environments, and in particular, cannot handle adversarially chosen losses.

Another limitation is that the dual update of Ghosh et al. (2022) fails to handle adversarial envi-
ronments. Their key technique is a dual clipping technique—cutting off the dual variable when it
exceeds 2H/γ—which enables them to leverage the strong duality of CMDPs. Moreover, to lever-
age strong duality in their analysis, they reformulate the weighted sum of regret and violation into a
simple Lagrangian form (e.g., Appendix D of Ghosh et al. (2022)), i.e., there exists a policy π′ such
that

1

K

( K∑
k=1

(V π̂k

f,1 − V π⋆

f,1 ) + Y

K∑
k=1

(V π̂k

g,1 − b)
)
= (V π′

f,1 − V π⋆

f,1 ) + Y (V π′

g,1 − b).

In our case, when losses are adversarially chosen in each episode, reformulating the sum into a
simple Lagrangian form is not allowed, i.e.,

1

K

( K∑
k=1

(V π̂k

fk,1 − V
π⋆

fk,1) + Y

K∑
k=1

(V π̂k

g,1 − b)
)
̸= (V π′

f ′,1 − V π⋆

f ′,1) + Y (V π′

g,1 − b).

In turn, leveraging strong duality in our setting is non-trivial.

Naı̈ve Extension To overcome the limitations of value-based algorithms in adversarial settings, a
natural approach is to adopt a mirror-descent update, whose regularizer is given by a KL divergence.
In our case, this corresponds to a policy optimization, i.e.,

π̂k = argmin
π∈Π

⟨π, Q̂k−1⟩+ 1

α
D(π||π̂k−1) ⇒ π̂k ∝ π̂k−1 exp

(
−αQ̂k−1

)
.

Due to its recursive formulation, we can see that the resulting policy depends on the sum of all pre-
vious Q-function estimates, namely π̂k ∝ exp(−α

∑k−1
j=1 Q̂

j). This is the key difference compared
with value-based algorithms.

More technically, let us attempt to adapt the algorithm of Wei et al. (2020) to the linear CMDP set-
ting. Their method is a mirror-descent type algorithm—in our case, policy optimization—designed
for constrained online convex optimization with adversarial losses and stochastic constraints. Be-
yond policy optimization, there are two additional distinctions compared with Ghosh et al. (2022):

• (Drift Analysis) As previously mentioned, since strong duality is difficult to use in the
adversarial setting, the dual clipping technique may not works in the adversarial setting.
To address this, Wei et al. (2020) came up with a dual update that admits a Lyapunov drift
analysis. In particular, Lyapunov drift analysis is a standard tool for bounding the dual
variable. For this, we first derive an upper bound on the Lyapunov drift term defined as
∆(k) := (Y 2

k+1 − Y 2
k )/2, and then utilize it to bound Yk. The key point is to make ∆(k)

small enough so that Yk stays stable, as ∆(k) captures the difference between successive
dual variables.

• (Policy Mixing) Another key technique of Wei et al. (2020) is policy mixing—perturbing
the policy before applying the policy optimization update. The motivation behind this tech-
nique is to make ∆(k) small. In particular, a typical bound on ∆(k) in policy optimization
involves KL divergence terms as follows:

∆(k) ≤ −c1Yk + c2 +D(π||π̃k
h)−D(π||π̂k+1

h )

The key issue is that D(π||π̃k
h) can become arbitrarily large when π̃k

h(a) ≈ 0 for some a ∈
A, because the KL divergence is unbounded near the simplex boundary. In contrast, when a
mixing step is applied, we ensure that π̃k

h(a) ≥ θ/|A| for all a, where θ denotes the level of
mixing. In this case, we can easily show that D(π||π̃k

h) ≤ log(|A|/θ) (Lemma 26). Hence,
the mixing step guarantees that the KL term remains bounded, which in turn prevents the
dual variable from blowing up.
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Insufficiency of Naı̈ve Extension While policy mixing is essential to keep the dual variable stable,
it becomes problematic in the linear CMDP setting, where the main difficulty arises in the covering
number argument. In particular, as described in Section 3, we have to derive an upper bound on
the covering number of the weighted LogSumExp softmax policy. Establishing such a bound is
one of our key challenges and is highly non-trivial. Thus, although adapting Wei et al. (2020) to
the framework of Ghosh et al. (2022) is a natural step toward handling adversarial losses, obtaining
sublinear regret and constraint violation bounds becomes unclear.

C ADDITIONAL DISCUSSIONS

Intuition on Covering Number We provide an intuition on why the weighted LogSumExp soft-
max policy yields Õ(n2d2), where n denotes the number of mixing steps, while the covering number
under greedy or softmax policies is just Õ(d2). Before explaining this, we note that the covering
number of a function class depends on (i) how many parameters are required and (ii) how close
these parameters must be for the functions to be sufficiently similar. Based on this high-level idea,
the number of parameters needed to determine a weighted LogSumExp softmax policy is O(nd2),
as each

∑
j Q̂

j requires O(d2) parameters once the feature contraction is applied. Furthermore, we
observe that the impact of parameters decreases exponentially as mixing continues, meaning that
the parameters must be chosen increasingly close (see the proof of Lemma 11). This leads to an
additional multiplicative factor n, resulting in Õ(n2d2).

Choice of Mixing Period To justify the choice of K3/4, we first clarify how Regret(K) and
Violation(K) depend on the mixing period KB . Note that the covering number is closely related to
terms (I) and (IV) of the decompositions in (3), and the dual variable directly affects term (V). This
yields the following simplified regret and constraint violation bounds.

Regret(K) = Õ(
√
K logNϵ), Violation(K) = Õ(

√
K logNϵ + Yk/η).

We emphasize that Violation(K) can be bounded by Õ(
√
K3−2B +KB). This is because the log

covering number is bounded by Õ(K2−2Bd2), and the dual variable is bounded by Õ(ηKB). Thus,
to minimize the dependency on K, we set B = 3/4.

Discussion on Lower Bound We note that the regret lower bound of Ω(
√
H3d2K) also applies to

our setting, which is for stochastic linear unconstrained MDPs (Zhou et al., 2021; He et al., 2022).
This is because by taking the loss to be fixed across episodes and using a trivial constraint (i.e., taking
b = H), our problem reduces to a stochastic linear unconstrained MDP. Therefore, we conjecture
that there remains room for improving our regret bound by a factor of Õ(K1/4).

Additionally, we outline a promising direction toward achieving Õ(
√
K) regret and violation in our

setting. The main challenge is analyzing the constraint violation without relying on mixing steps. In
our current analysis, the mixing step is inevitable to mitigate KL divergence terms in the drift upper
bound (Lemma 17); these KL divergence terms arise from mirror-descent type updates to control
adversarial losses. However, mixing becomes problematic for linear CMDPs because it enlarges the
covering number. If one can design an approach that controls the dual variable without mixing, then
achieving optimal bounds may become possible.

D RELATED WORK

Online Tabular CMDP Starting from the seminal work of Efroni et al. (2020), minimizing regret
and constraint violation in online tabular CMDPs has been studied under various settings. Several
works (Liu et al., 2021; Bura et al., 2022; Yu et al., 2025) considered the case of zero constraint
violation under the assumption of a known safe policy. Under the same assumption, Müller et al.
(2023) studied hard constraint violation—the sum of only positive constraint violations. Without this
assumption, the hard constraint violation was studied by Müller et al. (2024); Stradi et al. (2025b).
Moreover, Wei et al. (2022b) proposed a model-free algorithm for finite-horizon CMDPs, and Wei
et al. (2022a); Chen et al. (2022) proposed algorithms for infinite-horizon average-reward CMDPs.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

However, these works assume stationary environments. To relax this assumption, Qiu et al. (2020)
studied adversarial losses under full-information feedback. For both adversarial losses and costs,
Stradi et al. (2024; 2025c) considered full-information feedback and bandit feedback, respectively.
More recently, several papers proposed algorithms for adversarial CMDPs with hard constraint vio-
lation guarantees. Stradi et al. (2025a) proposed an algorithm for adversarial losses and stochastic
costs under bandit feedback, and Zhu et al. (2025) studied stochastic losses and adversarial costs
under full-information feedback.

Online Linear CMDP For finite-horizon linear CMDPs, Ghosh et al. (2022; 2024) studied cumu-
lative and hard constraint violations, respectively. Similarly, Ghosh et al. (2023) developed several
algorithms for the infinite-horizon average-reward setting. Kitamura et al. (2025) studied achiev-
ing zero constraint violation under the assumption of a known safe policy, and Liu et al. (2025)
studied sample complexity under the assumption of a generative model. Wei et al. (2023) studied
non-stationary CMDPs, where components of the environment may change subject to bounded total
variation. However, this setting differs from adversarial settings, in which the variation of functions
is not assumed to be bounded by some factor. Amani et al. (2021); Wei et al. (2024); Roknilamouki
et al. (2025) investigated hard instantaneous constraints, where unsafe actions must not be taken in
each step. We also note additional works that are not linear CMDPs but incorporate linear function
approximation. There are several works for linear mixture CMDPs with various settings (Ding et al.,
2021; Ding & Lavaei, 2023; Shi et al., 2023). More generally, the qπ-realizable setting was studied
by Tian et al. (2024), which only assumes that value functions can be represented as an inner product
of a given feature. However, adversarial environments have not been considered in these settings.

Online Adversarial Linear MDP Online adversarial linear MDPs have been studied under full-
information feedback (Zhong & Zhang, 2023; Sherman et al., 2024; Cassel & Rosenberg, 2024) and
bandit feedback (Neu & Olkhovskaya, 2021; Luo et al., 2021; Dai et al., 2023; Sherman et al., 2023;
Kong et al., 2024; Liu et al., 2024). Specifically, in the full-information feedback setting, Zhong &
Zhang (2023) proposed a multi-batched policy optimization algorithm, achieving a Õ(K3/4) regret
bound. Sherman et al. (2024) achieved a Õ(

√
K) regret bound, adopting a warm-up phase to obtain

a simple expression for policies. In addition, Cassel & Rosenberg (2024) proposed a warm-up free
policy optimization algorithm with an improved regret bound. In the bandit feedback setting, Luo
et al. (2021) introduced the notion of dilated bonus, and Liu et al. (2024) proposed two algorithms:
one achieved a Õ(

√
K) regret bound but was computationally inefficient, and the other achieved

Õ(K3/4) and was computationally efficient.

E CONTRACTED MDP

In this section, we explain the notion of a contracted MDP (Cassel & Rosenberg, 2024), which
is essential for deriving our main results. A contracted MDP is defined by the tuple M̄ =
(H,S,A, {P̄h}Hh=1, {ℓ̄h}Hh=1, s1, ρ). Here, ρ : S × A × [H] → [0, 1] specifies the level of con-
traction. In particular, the loss function and transition kernel are defined as

ℓ̄h(s, a) = ρ(s, a, h)ℓh(s, a),

P̄h(s
′ | s, a) = ρ(s, a, h)Ph(s

′ | s, a).
Since ρ(s, a, h) ∈ [0, 1], it follows that ℓ̄h(s, a) ∈ [0, 1], meaning that the contraction preserves
the boundedness of the original loss function. On the other hand,

∑
s′∈S P̄h(s

′ | s, a) ≤ 1, which
implies that P̄ defines a sub-probability measure. Although this does not satisfy the definition of
a probability measure, it is sufficient for our purposes, as the contracted transition kernel is only
used in the analysis. Furthermore, it is often called a sub-MDP because its transition kernel is a
sub-probability measure.

Accordingly, V̄ π
ℓ,h(s; ρ) denotes the ρ-contracted value function with respect to a policy π and a

contracted MDP M̄. Given V̄ π
ℓ,H+1(s; ρ) = 0 for all s ∈ S, V̄ π

ℓ,h(s; ρ) is defined recursively as

V̄ π
ℓ,h(s; ρ) = EP̄,π

 H∑
j=h

ℓ̄j(sj , aj)|sh = s

 = Ea∼π(·|s)

[
ℓ̄h(s, a) +

∑
s′∈S

P̄h(s
′ | s, a)V̄ π

ℓ,h+1(s
′; ρ)

]
.

(4)
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We next introduce a lemma that highlights a key property of contracted MDPs, which states a ρ-
contracted value function is less than or equal to its original value function.

Lemma 7 (Lemma 2 of Cassel & Rosenberg (2024)). For any ρ : S × A × [H] → [0, 1], π ∈ Π,
h ∈ [H], s ∈ S, and ℓ : S ×A× [H]→ [0, 1], we have V̄ π

ℓ,h(s; ρ) ≤ V π
ℓ,h(s).

Since P̄ is a sub-probability, we note that EP̄,π applied to a constant c ≥ 0 could be less than c
itself. Although this is trivial, we state it formally below for completeness, as this relation is used
frequently in our analysis.

EP̄,π[c | s1 = s] ≤ EP,π[c | s1 = s] = c ∀s ∈ S (5)

Proof of (5). First, we prove EP̄,π[
∑

h∈[H] ℓh(s, a)|s1 = s] ≤ EP,π[
∑

h∈[H] ℓh(s, a)|s1 = s] for
any s ∈ S and {ℓh}Hh=1 where ℓh : S × A → R+, using induction on h. For the base case,
h = H , EP̄,π[ℓH(sH , aH)|sH ] = EP,π[ℓH(sH , aH)|sH ] = EaH∼π(·|sH)[ℓH(sH , aH)]. Assuming
the statement is true for h+ 1, we have

EP̄,π

 H∑
j=h

ℓj(sj , aj)|sh = s

 = Ea∼π(·|s)

ℓh(sh, ah) + ∑
s′∈S

P̄h(s
′ | sh, ah)EP̄,π

 H∑
j=h+1

ℓj(sj , aj)|s′


≤ Ea∼π(·|s)

ℓh(sh, ah) + ∑
s′∈S

Ph(s
′ | sh, ah)EP,π

 H∑
j=h+1

ℓj(sj , aj)|s′


= EP,π

 H∑
j=h

ℓj(sj , aj)|sh = s

 .
This completes the induction. Furthermore, by taking ℓh(s, a) = c/H for all (s, a, h) ∈ S×A×[H],
we have

∑
h∈[H] ℓh(s, a) = c, and thus EP̄,π[c|s] ≤ EP,π[c|s] for any s ∈ S . Since P is not

contracted, we know that EP,π[c|s] = c. This completes the proof.

The following lemma is an extension of a well-known value difference lemma to incorporate con-
tracted MDPs.

Lemma 8 (Lemma 1 of Shani et al. (2020) and Lemma 14 of Cassel & Rosenberg (2024)). Let π, π̂
be two policies, and let M = (H,S,A, {Ph}Hh=1, {ℓh}Hh=1, s1) be a (possibly sub) MDP. For all

h ∈ [H], let Q̂ℓ,h : S × A → R be an arbitrary function, and let V̂ℓ,h(s) =
〈
Q̂ℓ,h(s, ·), π̂h(· | s)

〉
for all s ∈ S. Then,

V π
ℓ,1(s1)− V̂ℓ,1(s1) = EP,π

[
H∑

h=1

〈
Q̂ℓ,h(sh, ·), πh(· | sh)− π̂h(· | sh)

〉 ∣∣∣∣∣ s1
]

+ EP,π

[
H∑

h=1

ℓh(sh, ah) + PhV̂ℓ,h+1(sh, ah)− Q̂ℓ,h(sh, ah)

∣∣∣∣∣ s1
]
,

where V π
ℓ,1 is the value function of π, and PhV̂ℓ,h+1(s, a) =

∑
s′∈S Ph(s

′ | s, a)V̂ℓ,h+1(s
′).

Since we assume that the initial state s1 is fixed, we omit it when clear from the context for simplic-
ity.

F PARAMETERIZATIONS AND FUNCTION CLASSES

In this section, we introduce the parameterizations of Q̂ and π̂. Following this, we define the function
classes to which the value function estimates and policies belong.
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Parameterization For the parameterization of Q̂, given β ∈ R, w ∈ Rd,Λ ∈ Rd×d, we define
Q̂(·, ·;β,w,Λ) as

Q̂(·, ·;β,w,Λ) =
(
ϕ(·, ·)⊤w − β∥ϕ(·, ·)∥Λ

)
· σ(−βw∥ϕ(·, ·)∥Λ+ logK). (6)

Next, we consider the parameterization of π̂. Let n ∈ Z+ denote the number of mixing steps.

For the parameterization of π̂, given n, {βi, wi}ni=0,Λ and a mixing parameter θ ∈ (0, 1), we first
generate policies {π̂i}n+1

i=0 recursively, and define the final policy as π̂(·|·; {βi, wi}ni=0,Λ):

Generate π̂i : π̂0(· | s) = πunif(· | s),
π̃i(· | s) = (1− θ)π̂i(· | s) + θπunif(· | s) i = 0, . . . , n,

π̂i+1(· | s) ∝ π̃i(· | s) exp
(
Q̂(s, ·;βi, wi,Λ)

)
i = 0, . . . , n,

Define : π̂(· | s; {βi, wi}ni=0,Λ) = π̂n+1(· | s).

(7)

We keep the policy parameterization in its recursive form for the following reason. Although we can
easily show that π̂(·|·; {βi, wi}ni=0,Λ) follows the weighted LSE softmax, i.e.,

∑
i ζi exp(

∑
j Q̂j),

the weight parameters ζi depend on {βi, wi}ni=0 and Λ, which makes analyzing this form difficult.
Thus, obtaining the closed form of π̂(·|·; {βi, wi}ni=0,Λ) is intractable, as specifying exact ζi is
difficult.

Since π̂n+1(· | s) induces a probability distribution overA for each s ∈ S, (7) indeed defines a valid
policy. Furthermore, the following lemma shows that Q-function estimates and policies generated
by Algorithm 1 can be parameterized using (6), (7).
Lemma 9. For any e ∈ E, consider k ∈ Ke. For some n ≥ 0, let ke + nKB be the last
index that the mixing is applied before episode k, i.e., n = max{0,

⌊
(k − 1− ke)/KB

⌋
}. Let

π̂k
h, {Q̂

j
f,h, Q̂

j
g,h}

k−1
j=ke

be the policy and Q-function estimates generated by Algorithm 1, respec-
tively. Let Si be the index set defined as

Si =

{
{ke + iKB , . . . , ke + (i+ 1)KB − 1} for i = 0, . . . , n− 1,

{ke + nKB , . . . , k − 1} for i = n.
(8)

Then there exists {wj
f,h, w

j
g,h}

k−1
j=ke

,Λ such that for j = ke, . . . , k − 1,

Q̂j
f,h(·, ·) = Q̂(·, ·;βb, wj

f,h,Λ), Q̂j
g,h(·, ·) = Q̂(·, ·;βb, wj

g,h,Λ).

Furthermore, we have

π̂k
h(·|·) = π̂(· | ·; {βi, wi}ni=0,Λ)

where βi = −αβb
∑

j∈Si
(1+Yj), wi = −α

∑
j∈Si

(wj
f,h+Yjw

j
g,h) for i = 0, . . . , n, and Yj is the

dual variable in episode j.

Proof. Note that for any j, by algorithm

Q̂j
f,h(·, ·) =

(
ϕ(·, ·)⊤

[
θ̂jf,h + ψ̂k

hV̂
j
f,h+1

]
− βb∥ϕ(·, ·)∥(Λke

h )−1

)
σ(−βw∥ϕ(·, ·)∥(Λke

h )−1+ logK).

Then we can take wj
f,h = θ̂jf,h + ψ̂k

hV̂
j
f,h+1 and Λ = (Λke

h )−1. Here, it is clear that (2K)−1I ⪯
(Λke

h )−1 ⪯ I . Also, we can apply the same argument to Q̂j
g,h. Then the first statement is proved.

Let us prove the second statement. By the definition of n, the mixing is not applied from episode
ke + nKB + 1 to k − 1. Then we have

π̂k
h(· | s) ∝ π̃

ke+nKB

h (· | s) exp

−α ∑
j∈Sn

(Q̂j
f,h(s, ·) + YjQ̂

j
g,h(s, ·))

 .

Furthermore, since (ke + nKB) − ke ≡ 0 mod KB , we know that π̃ke+nKB

h is mixed. Then we
have

π̃ke+nKB

h (· | s) = (1− θ)π̂ke+nKB

h (· | s) + θπunif(· | s).
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Similarly, we can deduce π̂ke+nKB

h using the fact that the mixing is not applied from episode ke +
(n− 1)KB to ke + nKB − 1.

π̂ke+nKB

h (· | s) ∝ π̃ke+(n−1)KB

h (· | s) exp

−α ∑
j∈Sn−1

(Q̂j
f,h(s, ·) + YjQ̂

j
g,h(s, ·))

 .

We repeatedly apply these steps until episode ke. Then we have for i = 0, . . . , n− 1,

π̃ke+iKB

h (· | s) = (1− θ)π̂ke+iKB

h (· | s) + θπunif(· | s),

π̂
ke+(i+1)KB

h (· | s) ∝ π̃ke+iKB

h (· | s) exp

−α∑
j∈Si

(Q̂j
f,h(s, ·) + YjQ̂

j
g,h(s, ·))

 .

Note that π̂ke

h = πunif . Then we have π̂k
h = π̂n+1, where π̂n+1 is recursively defined as

π̂0(· | s) = πunif(· | s)
π̃i(· | s) = (1− θ)π̃i(· | s) + θπunif(· | s) ∀i = 0, . . . , n

π̂i+1(· | s) ∝ π̃i(· | s) exp

−α∑
j∈Si

(Q̂j
f,h(s, ·) + YjQ̂

j
g,h(s, ·))

 ∀i = 0, . . . , n.

Note that

− α
∑
j∈Si

(Q̂j
f,h(s, a) + YjQ̂

j
g,h(s, a))

= −α
∑
j∈Si

(
ϕ(s, a)⊤(wj

f,h + Yjw
j
g,h)− βb(1 + Yj)∥ϕ(s, a)∥Λ

)
σ(−βw∥ϕ(s, a)∥Λ+ logK)

= (ϕ(s, a)⊤wi − βi∥ϕ(s, a)∥Λ)σ(−βw∥ϕ(s, a)∥Λ+ logK)

= Q̂(s, a;βi, wi,Λ)

where βi = −αβb
∑

j∈Si
(1 + Yj), wi = −α

∑
j∈Si

(wj
f,h + Yjw

j
g,h). This completes the proof for

the second statement.

Function Class Now, we define the function classes as follows. Given some boundedness con-
stants Cβ , Cw, CQ ≥ 0,

Q̂(Cβ , Cw, CQ) =
{
Q̂(·, ·;β,w,Λ) : |β|≤ Cβ , ∥w∥2≤ Cw, (2K)−1I ⪯ Λ ⪯ I, ∥Q̂(·, ·;β,w,Λ)∥∞≤ CQ

}
.

Unlike Q̂, the class of policies has to be defined based on the number of mixing steps, since the
formulation is determined by this number. Let Π̂n denote the set of policies that involve exactly n
mixing operations. Furthermore, we consider a boundedness constant CY to incorporate the scale
of the dual variable. Given n ∈ Z+ and some boundedness constants Cβ , Cw, CQ, CY ≥ 0,

Π̂n(Cβ , Cw, CQ, CY )

=

{
π̂(· | s; {βi, wi}ni=0,Λ) :

|βi|≤ (1 + CY )Cβ , ∥wi∥2≤ (1 + CY )Cw,

(2K)−1I ⪯ Λ ⪯ I, ∥Q̂(·, ·;βi, wi,Λ)∥∞≤ (1 + CY )CQ,
i = 0, . . . , n

}
.

Similar to Π̂n, since V̂ is defined by Q̂ and π̂, we define the function class of V̂ for each n.

V̂n(Cβ , Cw, CQ, CY ) =

{
V̂ (·) : V̂ (·) =

∑
a∈A

π̂(a | ·)Q̂(·, a),
Q̂ ∈ Q̂(Cβ , Cw, CQ),

π̂ ∈ Π̂n(KCβ ,KCw,KCQ, CY )

}
.

Note that if we apply the policy mixing every KB episodes, then the number of mixing steps is at
most K1−B = KL, where L = 1− B. Thus, we define V̂(Cβ , Cw, CQ, CY ), Π̂(Cβ , Cw, CQ, CY )
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as the unions over n = 0, . . . ,KL as follows.

V̂(Cβ , Cw, CQ, CY ) =

KL⋃
n=0

V̂n(Cβ , Cw, CQ, CY ),

Π̂(Cβ , Cw, CQ, CY ) =

KL⋃
n=0

Π̂n(Cβ , Cw, CQ, CY ).

G COVERING NUMBER

In this section, we show an upper bound on the covering number of V̂(Cβ , Cw, CQ, CY ), which
is crucial to analyze linear CMDPs. As a first step, we show that any Q̂ ∈ Q̂(Cβ , Cw, CQ) is
Lipschitz, i.e., the ℓ∞-norm between Q-function estimates is bounded by the ℓ2-norm between their
parameters. We closely follow the proof of Lemma 10 of Cassel & Rosenberg (2024).

Lemma 10 (Lipschitz Q̂). Let 1 ≤ βw, Cw, Cβ . For any Q̂(·, ·;β1, w1,Λ1), Q̂(·, ·;β2, w2,Λ2) ∈
Q̂(Cβ , Cw, CQ), we have∥∥∥Q̂(·, ·;β1, w1,Λ1)− Q̂(·, ·;β2, w2,Λ2)

∥∥∥
∞
≤ 4
√
Kβw max{Cw, Cβ}

∥∥(β1, w1,Λ1)− (β2, w2,Λ2)
∥∥
2

where
∥∥(β1, w1,Λ1)− (β2, w2,Λ2)

∥∥
2

is defined in (9).

Proof. Consider

|Q̂(s, a;β1, w1,Λ1)− Q̂(s, a;β2, w2,Λ2)|
≤ |Q̂(s, a;β1, w1,Λ1)− Q̂(s, a;β2, w1,Λ1)|︸ ︷︷ ︸

(I)

+ |Q̂(s, a;β2, w1,Λ1)− Q̂(s, a;β2, w2,Λ1)|︸ ︷︷ ︸
(II)

+ |Q̂(s, a;β2, w2,Λ1)− Q̂(s, a;β2, w2,Λ2)|︸ ︷︷ ︸
(III)

.

We bound each term individually. Note that (2K)−1I ⪯ Λ1 ⪯ I . For (I), since ∥ϕ(s, a)∥Λ1≤
∥(Λ1)1/2∥2∥ϕ(s, a)∥2≤ 1 and |σ(z)|≤ 1 for any z ∈ R,

(I) = |β1 − β2|·∥ϕ(s, a)∥Λ1σ(−βw∥ϕ(s, a)∥Λ1+ logK)

≤ |β1 − β2|.
For (II), by the Cauchy-Schwarz inequality,

(II) = |ϕ(s, a)⊤(w1 − w2)|σ(−βw∥ϕ(s, a)∥Λ1+ logK)

≤ ∥w1 − w2∥2
For (III), by the triangle inequality,

(III) = |Q̂(s, a;β2, w2,Λ1)− Q̂(s, a;β2, w2,Λ2)|
≤ |ϕ(s, a)⊤w2|· |σ(−βw∥ϕ(s, a)∥Λ1+ logK)− σ(−βw∥ϕ(s, a)∥Λ2+ logK)|
+ β2 |∥ϕ(s, a)∥Λ1−∥ϕ(s, a)∥Λ2 | · σ(−βw∥ϕ(s, a)∥Λ1+ logK)

+ β2∥ϕ(s, a)∥Λ2 · |σ(−βw∥ϕ(s, a)∥Λ1+ logK)− σ(−βw∥ϕ(s, a)∥Λ2+ logK)| .
Note that the sigmoid function is 1-Lipschitz on R, and the triangle inequality implies that
|∥ϕ(s, a)∥Λ1−∥ϕ(s, a)∥Λ2 | ≤ ∥(Λ1)1/2 − (Λ2)1/2∥2. Then we can deduce that

|Q̂(s, a;β2, w2,Λ1)− Q̂(s, a;β2, w2,Λ2)|
≤ Cwβw∥(Λ1)1/2 − (Λ2)1/2∥2 + Cβ∥(Λ1)1/2 − (Λ2)1/2∥2+Cββw∥(Λ1)1/2 − (Λ2)1/2∥2
≤ 3max{Cwβw, Cβ , Cββw}∥(Λ1)1/2 − (Λ2)1/2∥2

≤ 3max{Cwβw, Cβ , Cββw} ·
1

2
√

1/(2K)
∥Λ1 − Λ2∥2

≤ (3/
√
2)
√
Kβw max{Cw, Cβ}∥Λ1 − Λ2∥2
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where the third inequality is due to Lemma 32, and the last inequality is because we assumed that
βw ≥ 1. Note that we know ∥Λ1 − Λ2∥2≤ ∥Λ1 − Λ2∥F where ∥·∥F denotes the Frobenius norm.
Finally, we show that for any (s, a) ∈ S ×A,

|Q̂(s, a;β1, w1,Λ1)− Q̂(s, a;β2, w2,Λ2)|
≤ ∥w1 − w2∥2+|β1 − β2|+(3/

√
2)
√
Kβw max{Cβ , Cβ}∥Λ1 − Λ2∥F

≤
√

3
(
∥w1 − w2∥22+|β1 − β2|2+((3/

√
2)
√
Kβw max{Cw, Cβ})2∥Λ1 − Λ2∥2F

)
≤ 4
√
Kβw max{Cw, Cβ}

∥∥(β1, w1,Λ1)− (β2, w2,Λ2)
∥∥
2

where the second inequality follows from the Cauchy-Schwarz inequality, and the last inequal-
ity is due to 1 ≤ (3/

√
2)
√
Kβw max{Cw, Cβ}, as we assumed that 1 ≤ βw, Cw, Cβ . Here,∥∥(β1, w1,Λ1)− (β2, w2,Λ2)
∥∥
2

denotes∥∥(β1, w1,Λ1)− (β2, w2,Λ2)
∥∥
2
=
√
|β1 − β2|2+∥w1 − w2∥22+∥Λ1 − Λ2∥2F . (9)

Now, we have to show that the policy parameterization given in (7) satisfies a Lipschitz property,
i.e., ℓ1-norm between any two policies is bounded by the ℓ2-norm between their parameters.
Lemma 11 (Lipschitz π̂). Let 1 ≤ βw, Cw, Cβ and 0 ≤ CY . Suppose that two policies
π̂1, π̂2 ∈ Π̂n(Cβ , Cw, CQ, CY ) are parameterized by {β1

i , w
1
i }ni=0,Λ

1 and {β2
i , w

2
i }ni=0,Λ

2, re-
spectively. Then the following holds for any s ∈ S.

∥π̂1(· | s)− π̂2(· | s)∥1

≤ 32
√
(n+ 1)Kβw(1 + CY )max{Cw, Cβ}

(
8|A|
θ

)n
√√√√ n∑

i=0

∥(β1
i , w

1
i ,Λ

1)− (β2
i , w

2
i ,Λ

2)∥22.

Proof. Fix s ∈ S. Let {π̂1
i , π̃

1
i }

n+1
i=0 , {π̂2

i , π̃
2
i }

n+1
i=0 be the sequences of policies recursively generated

by (7) to define π̂1, π̂2, respectively. Then it follows that

π̂1(· | s) = π̂1
n+1(· | s) ∝ π̃1

n(· | s) exp(Q̂(s, ·;β1
n, w

1
n,Λ

1)),

π̂2(· | s) = π̂2
n+1(· | s) ∝ π̃2

n(· | s) exp(Q̂(s, ·;β2
n, w

2
n,Λ

2)).

Note that π̃1
n(a | s), π̃2

n(a | s) > 0 for all a ∈ A, since they are perturbed. Then we can define
log π̃1

n(a | s), log π̃2
n(a | s), and it leads to

π̂1
n+1(· | s) ∝ exp

(
log π̃1

n(· | s) + Q̂(s, ·;β1
n, w

1
n,Λ

1)
)
,

π̂2
n+1(· | s) ∝ exp

(
log π̃2

n(· | s) + Q̂(s, ·;β2
n, w

2
n,Λ

2)
)
.

(10)

By Lemma 24,

∥π̂1
n+1(· | s)− π̂2

n+1(· | s)∥1

≤ 8
∥∥∥log π̃1

n(· | s) + Q̂(s, ·;β1
n, w

1
n,Λ

1)− log π̃2
n(· | s)− Q̂(s, ·;β2

n, w
2
n,Λ

2)
∥∥∥
∞

≤ 8
∥∥log π̃1

n(· | s)− log π̃2
n(· | s)

∥∥
∞ + 8

∥∥∥Q̂(s, ·;β1
n, w

1
n,Λ

1)− Q̂(s, ·;β2
n, w

2
n,Λ

2)
∥∥∥
∞
.

Note that π̃1
n(a | s), π̃2

n(a | s) ≥ θ/|A| for all a ∈ A due to the definition. Then we can utilize the
Lipschitzness of log function in [θ/|A|,∞)

|A|. Thus, by Lemma 21,∥∥log π̃1
n(· | s)− log π̃2

n(· | s)
∥∥
∞ ≤

|A|
θ
∥π̃1

n(· | s)− π̃2
n(· | s)∥1

=
|A|
θ

(1− θ)∥π̂1
n(· | s)− π̂2

n(· | s)∥1

≤ |A|
θ
∥π̂1

n(· | s)− π̂2
n(· | s)∥1

(11)
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where the equality is due to π̃1
n(· | s) = (1−θ)π̂1

n(· | s)+θπunif(· | s) and π̃2
n(· | s) = (1−θ)π̂2

n(· |
s) + θπunif(· | s). Plugging (11) into (10), we have a recursive relation, and it leads to

∥π̂1
n+1(· | s)− π̂2

n+1(· | s)∥1

≤ 8|A|
θ

∥∥π̂1
n(· | s)− π̂2

n(· | s)
∥∥
1
+ 8

∥∥∥Q̂(s, ·;β1
n, w

1
n,Λ

1)− Q̂(s, ·;β2
n, w

2
n,Λ

2)
∥∥∥
∞

≤
(
8|A|
θ

)2 ∥∥π̂1
n−1(· | s)− π̂2

n−1(· | s)
∥∥
1

+ 8

1∑
i=0

(
8|A|
θ

)i ∥∥∥Q̂(s, ·;β1
n−i, w

1
n−i,Λ

1)− Q̂(s, ·;β2
n−i, w

2
n−i,Λ

2)
∥∥∥
∞

...

≤
(
8|A|
θ

)n+1 ∥∥π̂1
0(· | s)− π̂2

0(· | s)
∥∥
1

+ 8

n∑
i=0

(
8|A|
θ

)i ∥∥∥Q̂(s, ·;β1
n−i, w

1
n−i,Λ

1)− Q̂(s, ·;β2
n−i, w

2
n−i,Λ

2)
∥∥∥
∞

= 8

n∑
i=0

(
8|A|
θ

)i ∥∥∥Q̂(s, ·;β1
n−i, w

1
n−i,Λ

1)− Q̂(s, ·;β2
n−i, w

2
n−i,Λ

2)
∥∥∥
∞

where the equality is due to π̂1
0(· | s) = π̂2

0(· | s) = πunif(· | s). Furthermore, by the Cauchy-
Schwarz inequality,

∥π̂1
n+1(· | s)− π̂2

n+1(· | s)∥1

≤ 8

√√√√ n∑
i=0

(
8|A|
θ

)2i
√√√√ n∑

i=0

∥∥∥Q̂(s, ·;β1
i , w

1
i ,Λ

1)− Q̂(s, ·;β2
i , w

2
i ,Λ

2)
∥∥∥2
∞

≤ 8

√
(n+ 1)

(
8|A|
θ

)2n
√√√√ n∑

i=0

∥∥∥Q̂(s, ·;β1
i , w

1
i ,Λ

1)− Q̂(s, ·;β2
i , w

2
i ,Λ

2)
∥∥∥2
∞
.

Note that Q̂(s, ·;β1
i , w

1
i ,Λ

1), Q̂(s, ·;β2
i , w

2
i ,Λ

2) ∈ Q̂((1 + CY )Cβ , (1 + CY )Cw, (1 + CY )CQ).
By the Lipschitzness of Q̂ (Lemma 10),

∥π̂1
n+1(· | s)− π̂2

n+1(· | s)∥1

≤ 8

√
(n+ 1)

(
8|A|
θ

)2n
√√√√ n∑

i=0

(
4
√
Kβw(1 + CY )max{Cw, Cβ}

)2
∥(β1

i , w
1
i ,Λ

1)− (β2
i , w

2
i ,Λ

2)∥22

= 32
√
(n+ 1)Kβw(1 + CY )max{Cw, Cβ}

(
8|A|
θ

)n
√√√√ n∑

i=0

∥(β1
i , w

1
i ,Λ

1)− (β2
i , w

2
i ,Λ

2)∥22

as desired.

Based on the Lipschitz properties that we have shown, we show a Lipschitz property of V̂ , and it
leads to an upper bound on the covering number of V̂n(Cβ , Cw, CQ, CY ).

Lemma 12. Let 1 ≤ βw, Cβ , Cw, CQ and 0 ≤ CY . Given ϵ > 0, let Nϵ(V̂n(Cβ , Cw, CQ, CY ))

denote the ϵ-covering number of V̂n(Cβ , Cw, CQ, CY ) with respect to the ℓ∞-norm. Then we have

logNϵ(V̂n(Cβ , Cw, CQ, CY )) ≤ 3(n+ 2)2d2 log((8|A|/θ)(1 + 2C1C2/ϵ))

where

C1 = 91
√
(n+ 1)K3βw max{Cw, Cβ}CQ(1 + CY ),

C2 = (n+ 2)(1 + CY )K(Cβ + Cw) + (n+ 2)
√
d.

(12)
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Proof. Recall that V̂ ∈ V̂n(Cβ , Cw, CQ, CY ) can be expressed as V̂ (·) =
∑

a∈A π̂(a | ·)Q̂(·, a),
where Q̂ ∈ Q̂(Cβ , Cw, CQ), π̂ ∈ Π̂n(KCβ ,KCw,KCQ, CY ). Then consider V̂1, V̂2 ∈
V̂n(Cβ , Cw, CQ, CY ) such that V̂ 1(·) =

∑
a∈A π̂

1(a | ·)Q̂1(·, a) and V̂ 2(·) =
∑

a∈A π̂
2(a |

·)Q̂2(·, a). Suppose that each of those are parameterized as follows.

π̂1 = π̂(·|·; {βπ,1
i , wπ,1

i }
n
i=0,Λ

π,1) ∈ Π̂n(KCβ ,KCw,KCQ, CY ),

π̂2 = π̂(·|·; {βπ,2
i , wπ,2

i }
n
i=0,Λ

π,2) ∈ Π̂n(KCβ ,KCw,KCQ, CY ),

Q̂1 = Q̂(·, ·;βQ,1, wQ,1,ΛQ,1) ∈ Q̂(Cβ , Cw, CQ),

Q̂2 = Q̂(·, ·;βQ,2, wQ,2,ΛQ,2) ∈ Q̂(Cβ , Cw, CQ).

Then for any s ∈ S,∣∣∣V̂ 1(s)− V̂ 2(s)
∣∣∣

=

∣∣∣∣∣∑
a∈A

π̂1(a | s)Q̂1(s, a)−
∑
a∈A

π̂2(a | s)Q̂2(s, a)

∣∣∣∣∣
≤

∣∣∣∣∣∑
a∈A

π̂1(a | s)Q̂1(s, a)−
∑
a∈A

π̂1(a | s)Q̂2(s, a)

∣∣∣∣∣+
∣∣∣∣∣∑
a∈A

π̂1(a | s)Q̂2(s, a)−
∑
a∈A

π̂2(a | s)Q̂2(s, a)

∣∣∣∣∣
≤ ∥π̂1(· | s)∥1∥Q̂1(s, ·)− Q̂2(s, ·)∥∞+∥π̂1(· | s)− π̂2(· | s)∥1∥Q̂2(s, ·)∥∞
= ∥Q̂1(s, ·)− Q̂2(s, ·)∥∞+∥π̂1(· | s)− π̂2(· | s)∥1∥Q̂2(s, ·)∥∞

where the first inequality is due to the triangle inequality, and the second inequality is due to Hölder’s
inequality. By Lemma 10,

∥Q̂1(s, ·)− Q̂2(s, ·)∥∞≤ 4
√
Kβw max{Cw, Cβ}

∥∥(βQ,1, wQ,1,ΛQ,1)− (βQ,2, wQ,2,ΛQ,2)
∥∥
2
.

Furthermore, for the second term,
∥π̂1(· | s)− π̂2(· | s)∥1∥Q̂2(s, ·)∥∞
≤ CQ∥π̂1(· | s)− π̂2(· | s)∥1

≤ CQ · 32
√
(n+ 1)Kβw(1 + CY )max{KCw,KCβ}

(
8|A|
θ

)n

×

√√√√ n∑
i=0

∥(βπ,1
i , wπ,1

i ,Λπ,1)− (βπ,2
i , wπ,2

i ,Λπ,2)∥22

where the first inequality is due to ∥Q̂2∥∞≤ CQ for any Q̂2 ∈ Q̂(Cβ , Cw, CQ), and the second
inequality is due to Lemma 11. Then we deduce that

max
s∈S

∣∣∣V̂ 1(s)− V̂ 2(s)
∣∣∣

≤ 4
√
Kβw max{Cw, Cβ}

∥∥(βQ,1, wQ,1,ΛQ,1)− (βQ,2, wQ,2,ΛQ,2)
∥∥
2

+ 32CQ

√
(n+ 1)K3βw(1 + CY )max{Cw, Cβ}

(
8|A|
θ

)n
√√√√ n∑

i=0

∥(βπ,1
i , wπ,1

i ,Λπ,1)− (βπ,2
i , wπ,2

i ,Λπ,2)∥22

≤
√
(4
√
Kβw max{Cw, Cβ})2 + (32CQ

√
(n+ 1)K3βw(1 + CY )max{Cw, Cβ}(8|A|/θ)n)2

×

√√√√∥(βQ,1, wQ,1,ΛQ,1)− (βQ,2, wQ,2,ΛQ,2)∥22 +
n∑

i=0

∥(βπ,1
i , wπ,1

i ,Λπ,1)− (βπ,2
i , wπ,2

i ,Λπ,2)∥22

≤ 33
√
(n+ 1)K3βw(1 + CY )max{Cw, Cβ}CQ

(
8|A|
θ

)n

×

√√√√∥(βQ,1, wQ,1,ΛQ,1)− (βQ,2, wQ,2,ΛQ,2)∥22 +
n∑

i=0

∥(βπ,1
i , wπ,1

i ,Λπ,1)− (βπ,2
i , wπ,2

i ,Λπ,2)∥22
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where the second inequality is due to the Cauchy-Schwarz inequality, and the last inequality is due
to the assumption that 1 ≤ CQ and θ ∈ (0, 1).

Note that

∥βQ,1, wQ,1,ΛQ,1, {βπ,1
i , wπ,1

i ,Λπ,1}ni=0∥2 ≤ |βQ,1|+∥wQ,1∥2+∥ΛQ,1∥F+
n∑

i=0

(|βπ,1
i |+∥w

π,1
i ∥2+∥Λ

π,1∥F )

≤ Cβ + Cw +
√
d+ (n+ 1)(1 + CY )K(Cβ + Cw) + (n+ 1)

√
d

≤ (n+ 2)(1 + CY )K(Cβ + Cw) + (n+ 2)
√
d.

Note that (βQ,1, wQ,1,ΛQ,1, {βπ,1
i , wπ,1

i ,Λπ,1}ni=0) can be viewed as a (n + 2)(1 + d + d2)-
dimensional vector. Since 1 + d+ d2 ≤ 3d2, by Lemma 27,

logNϵ(V̂n(Cβ , Cw, CQ, CY )) ≤ 3(n+ 2)d2 log (1 + 2(8|A|/θ)nC1C2/ϵ)

where

C1 = 33
√

(n+ 1)K3βwCQ(1 + CY )max{Cw, Cβ},

C2 = (n+ 2)(1 + CY )K(Cβ + Cw) + (n+ 2)
√
d.

Furthermore, the log term contains an exponential term in n, we further deduce as follows.

log (1 + 2(8|A|/θ)nC1C2/ϵ) ≤ n log(8|A|/θ) + log(1 + 2C1C2/ϵ)

≤ (n+ 1) log((8|A|/θ)(1 + 2C1C2/ϵ)).

Finally, we have

logNϵ(V̂n(Cβ , Cw, CQ, CY )) ≤ 3(n+ 2)2d2 log((8|A|/θ)(1 + 2C1C2/ϵ)).

Finally, we show an upper bound on the covering number of V̂(Cβ , Cw, CQ, CY ).

Lemma 13. Let 1 ≤ βw, Cβ , Cw, CQ and 0 ≤ CY . Given ϵ > 0, let Nϵ(V̂(Cβ , Cw, CQ, CY ))

denote the ϵ-covering number of V̂(Cβ , Cw, CQ, CY ) with respect to the ℓ∞-norm, where

V̂(Cβ , Cw, CQ, CY ) =
⋃KL

n=0 V̂n(Cβ , Cw, CQ, CY ). Then we have

logNϵ(V̂(Cβ , Cw, CQ, CY )) ≤ 3(KL + 2)2d2 log

(
(KL + 1)

8|A|
θ

(1 +
2C1C2

ϵ
)

)
where C1, C2 are defined in (12) with n = KL.

Proof. For each n = 0, . . . ,KL, let Cn ⊆ V̂n(Cβ , Cw, CQ, CY ) be an ϵ-cover of
V̂n(Cβ , Cw, CQ, CY ) with respect to the ℓ∞-norm. By Lemma 12, suppose that the covers satisfy

log|Cn|≤ 3(n+ 2)2d2 log((8|A|/θ)(1 + 2C1C2/ϵ)) ∀n = 0, . . . ,KL

where C1, C2 are defined in (12) with n = KL. Furthermore, let

C =
KL⋃
n=0

Cn.

Then we claim that C is an ϵ-cover of V̂(Cβ , Cw, CQ, CY ). For any V̂ ∈ V̂(Cβ , Cw, CQ, CY ), since
V̂(Cβ , Cw, CQ, CY ) is defined as the union, there exists m ∈ {0, . . . ,KL} such that

V̂ ∈ V̂m(Cβ , Cw, CQ, CY ).

Since Cm is an ϵ-cover of V̂m(Cβ , Cw, CQ, CY ), there exists V̂m ∈ Cm ⊆ C such that

∥V̂ − V̂m∥∞≤ ϵ.
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This implies that C is an ϵ-cover of V̂(Cβ , Cw, CQ, CY ) with respect to the ℓ∞-norm. Furthermore,
we have

Nϵ(V̂(Cβ , Cw, CQ, CY )) ≤ |C|≤
KL∑
n=0

|Cn| ≤ (KL + 1)

(
8|A|
θ

(1 +
2C1C2

ϵ
)

)3(KL+2)2d2

≤
(
(KL + 1)

8|A|
θ

(1 +
2C1C2

ϵ
)

)3(KL+2)2d2

where the second inequality is true because z ≤ zy for any z, y ≥ 1. Finally, by taking log on both
sides, we have

logNϵ(V̂(Cβ , Cw, CQ, CY )) ≤ 3(KL + 2)2d2 log

(
(KL + 1)

8|A|
θ

(1 +
2C1C2

ϵ
)

)
as desired.

H GOOD EVENT

In this section, we introduce a high probability good event, denoted by Eg , which simplifies our
analysis. We begin by presenting the formal definition of Eg . We define Eg as

Eg = E1 ∩ E2 ∩ E3. (13)

E1, E2, E3 are defined as

E1 =
{
∀(k, h) ∈ [K]× [H] : ∥θkf,h − θ̂kf,h∥Λk

h
≤ βr, ∥θg,h − θ̂kg,h∥Λk

h
≤ βr

}
, (14)

E2 =
{
∀(k, h, ℓ) ∈ [K]× [H]× {f, g} : ∥(ψh − ψ̂k

h)V̂
k
ℓ,h+1∥Λk

h
≤ βp, ∥Q̂k

ℓ,h∥∞≤ βQ, Yk ≤ 11ηH3K
}
,

(15)

E3 =

 ∑
k∈[K]

EP,π̂k [Wk] ≤ 2
∑

k∈[K]

Wk + 4H(3βb + 8βQβ
2
w) log

6K

δ

 , (16)

where

βr = 2
√

2d log(6KH/δ),

βp = 50(K1/4 + 1)dH
√

log(5H2K2|A|/δ),
βQ = 2H,

βb = βr + βp,

βw = 4βb logK,

Wk =
∑

h∈[H]

(
3βb∥ϕ(skh, akh)∥(Λk

h)
−1+8βQβ

2
w∥ϕ(skh, akh)∥2(Λk

h)
−1

)
.

We note that one of the key differences from Cassel & Rosenberg (2024) is thatE2 involves an upper
bound of Yk. This is because a (possibly polynomial in d,H,K) upper bound of Yk is required to
prove thatEg holds with high probability. In contrast, since we do not truncate Q̂k

g,h, its trivial upper
bound cannot be obtained. Thus, to avoid circular logic, we include it in E2, and use induction to
show (Step 3-2 of Lemma 16).

However, since directly proving Eg holds with high probability is difficult, we instead consider a
proxy good event and then show that it implies Eg . Here, we define the proxy good event Ēg as

Ēg = E1 ∩ Ē2 ∩ E3, (17)

where Ē2 is defined as

Ē2 =
{
∀(k, h, V̂ ) ∈ [K]× [H]× V̂(βb, 2KβQ, βQ, 11ηH3K) : ∥(ψh − ψ̂k

h)V̂ ∥Λk
h
≤ βp

}
.

Based on the upper bound of the covering number of V̂(Cβ , Cw, CQ, CY ), we prove that Ēg holds
with high probability.
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Lemma 14 (Proxy Good Event, Ēg). Let 1 ≤ βw ≤ K, and let η, α ≤ 1. Then Pr[Ēg] ≥ 1− δ for
any δ ∈ (0, 1).

Proof. We prove the statement by showing Pr[E1] ≥ 1 − δ/3, Pr[Ē2] ≥ 1 − δ/3, and Pr[E3] ≥
1− δ/3. For E1, by Lemma 30, we have for all h ∈ [H], k ≥ 1 with probability at least 1− δ/3,

∥θg,h − θ̂kg,h∥Λk
h
≤ 2
√

2d log(6KH/δ) := βr.

Furthermore, it is clear that ∥θkf,h − θ̂kf,h∥Λk
h
= 0 ≤ βr because we take θ̂kf,h = θkf,h. Then for any

h, k, ℓ ∈ {f, g}, E1 holds with probability at least 1− δ/3.

Now we consider Ē2. By Lemma 31, for all V̂ ∈ V̂(βb, 2KβQ, βQ, 11ηH3K), with probability at
least 1− δ/3,

∥(ψh − ψ̂k
h)V̂ ∥Λk

h
≤ 4βQ,h

√
d log(K + 1) + 2 log(3H2/δ) + 2 logNϵ(V̂(βb, 2KβQ, βQ, 11ηH3K)).

(18)

The parameters in Algorithm 1 satisfy 1 ≤ βb, 2KβQ, βQ. Then Lemma 13 can be applied to deduce
the covering number. It follows that

logNϵ(V̂(βb, 2KβQ, βQ, 11ηH3K)) ≤ 3(KL + 2)2d2 log

(
(KL + 1)

8|A|
θ

(1 +
2C1C2

ϵ
)

)
.

Since we assume 1 ≤ βw ≤ K, βQ ≤ 2H, η, α ≤ 1, and KL ≤ K, we have the following bounds
on C1, C2 with n = KL.

C1 = 33
√
(KL + 1)K3βw max{2KβQ, βb}βQ(1 + 11ηH3K)

≤ 4481H5K6,

C2 = (KL + 2)(1 + 11ηH3K)K(βb + 2KβQ) + (KL + 2)
√
d

≤ 242
√
dH4K4.

By Lemma 31, we can take ϵ =
√
d/(2K), and thus the covering number is bounded as

logNϵ(V̂(βb, 2KβQ, βQ, 11ηH3K)) ≤ 36(KL + 2)2d2 log(5HK|A|/θ).

Applying this to (18), since θ = K−1,

∥(ψh − ψ̂k
h)V̂ ∥Λk

h
≤ 8H

√
d log(K + 1) + 2 log(3H2/δ) + 36(KL + 2)2d2 log(5HK|A|/θ)

≤ 50(KL + 1)dH
√
log(5H2K2|A|/δ)

:= βp.

Thus, we showed that Pr[Ē2] ≥ 1− δ/3 holds. For E3, note that for any (s, a) ∈ S ×A,∑
h∈[H]

3βb∥ϕ(s, a)∥(Λk
h)

−1+8βQβ
2
w∥ϕ(s, a)∥2(Λk

h)
−1≤ H

(
3βb + 8βQβ

2
w

)
.

Furthermore, skh, a
k
h are generated under P, π̂k. Then, by Lemma 29 with probability at least 1−δ/3,∑
k∈[K]

EP,π̂k [Wk] ≤ 2
∑

k∈[K]

Wk + 4H(3βb + 8βQβ
2
w) log

6K

δ
.

Consequently, by union bound, we have Pr[Ēg] ≥ 1− δ.

Before proving that Eg holds with high probability, we show the following lemma, which is a
modification of Lemma 12 of Cassel & Rosenberg (2024) to our CMDP setting. This lemma plays
a crucial role in establishing the connection between Ēg and Eg .
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Lemma 15. Suppose that Ēg holds. Given k ∈ [K], if π̂k
h ∈ Π̂(Kβb, 2K

2βQ,KβQ,h, 11ηH
3K)

for all h ∈ [H], then Q̂k
f,h, Q̂

k
g,h ∈ Q̂(βb, 2KβQ, βQ,h), and V̂ k

f,h, V̂
k
g,h ∈

V̂(βb, 2KβQ, βQ,h, 11ηH
3K) for all h ∈ [H + 1].

Proof. To show the statement, we apply induction on h for fixed k. For the base case, consider
h = H + 1. As we initialize as Q̂k

f,H+1(s, a) = Q̂k
g,H+1(s, a) = V̂ k

f,H+1(s) = V̂ k
g,H+1(s) = 0

for all (s, a), it is clear that Q̂k
f,H+1, Q̂

k
g,H+1 ∈ Q̂(βb, 2KβQ, βQ,H+1) and V̂ k

f,H+1, V̂
k
g,H+1 ∈

V̂(βb, 2KβQ, βQ,H+1, 11ηH
3K). Next, we assume that the statement is true for h + 1, i.e.,

Q̂k
f,h+1, Q̂

k
g,h+1 ∈ Q̂(βb, 2KβQ, βQ,h+1), V̂ k

f,h+1, V̂
k
g,h+1 ∈ V̂(βb, 2KβQ, βQ,h+1, 11ηH

3K). It
follows that for any ℓ ∈ {f, g},

|Q̂k
ℓ,h(s, a)| =

∣∣∣∣ϕ̄ke

h (s, a)⊤
(
θ̂kℓ,h + ψ̂k

hV̂
k
ℓ,h+1

)
− βb

∥∥∥ϕ̄ke

h (s, a)
∥∥∥
(Λke

h )−1

∣∣∣∣
≤
∣∣∣ϕ̄ke

h (s, a)⊤
(
θkℓ,h + ψhV̂

k
ℓ,h+1

)∣∣∣
+

(
βb +

∥∥∥θ̂kℓ,h − θkℓ,h∥∥∥
Λke

h

+
∥∥∥(ψ̂k

h − ψh)V̂
k
ℓ,h+1

∥∥∥
Λke

h

)∥∥∥ϕ̄ke

h (s, a)
∥∥∥
(Λke

h )−1

≤
∣∣∣ϕ̄ke

h (s, a)⊤
(
θkℓ,h + ψhV̂

k
ℓ,h+1

)∣∣∣
+

(
βb +

∥∥∥θ̂kℓ,h − θkℓ,h∥∥∥
Λk

h

+
∥∥∥(ψ̂k

h − ψh)V̂
k
ℓ,h+1

∥∥∥
Λk

h

)∥∥∥ϕ̄ke

h (s, a)
∥∥∥
(Λke

h )−1

where the first inequality is due to the triangle inequality and the Cauchy-Schwarz inequality, and
the second inequality is due to the fact that Λke

h ⪯ Λk
h.

We bound each term individually. For the first term, for all ℓ ∈ {f, g},∣∣∣ϕ̄ke

h (s, a)⊤
(
θkℓ,h + ψhV̂

k
ℓ,h+1

)∣∣∣ = σ
(
−βw∥ϕ(s, a)∥(Λke

h )−1+ logK
) ∣∣∣ϕ(s, a)⊤(θkℓ,h + ψhV̂

k
ℓ,h+1)

∣∣∣
≤
∣∣∣ϕ(s, a)⊤(θkℓ,h + ψhV̂

k
ℓ,h+1)

∣∣∣
=

∣∣∣∣∣ℓkh(s, a) + ∑
s′∈S

Ph(s
′ | s, a)V̂ k

ℓ,h+1(s
′)

∣∣∣∣∣
≤ 1 + ∥V̂ k

ℓ,h+1∥∞

where the first and second equality are due to the definition of ϕ̄ke

h and linear MDPs, respectively.
Next, we can bound the second term, since the proxy good event Ēg is assumed.(
βb +

∥∥∥θ̂kℓ,h − θkℓ,h∥∥∥
Λk

h

+
∥∥∥(ψ̂k

h − ψh)V̂
k
ℓ,h+1

∥∥∥
Λk

h

)∥∥∥ϕ̄ke

h (s, a)
∥∥∥
(Λke

h )−1
≤ (βb + βr + βp)

∥∥∥ϕ̄ke

h (s, a)
∥∥∥
(Λke

h )−1
.

Recall that ∥ϕ̄ke

h (s, a)∥(Λke
h )−1= ∥ϕ(s, a)∥(Λke

h )−1σ(−βw∥ϕ(s, a)∥(Λke
h )−1+ logK) ≤ maxy≥0 y ·

σ(−βwy + logK). It follows that

|Q̂k
ℓ,h(s, a)| ≤ 1 + ∥V̂ k

ℓ,h+1∥∞+(βb + βr + βp)
∥∥∥ϕ̄ke

h (s, a)
∥∥∥
(Λke

h )−1

≤ 1 + ∥V̂ k
ℓ,h+1∥∞+(βb + βr + βp)max

y≥0
[y · σ(−βwy + logK)]

≤ 1 + ∥V̂ k
ℓ,h+1∥∞+

2 logK

βw
(βr + βp + βb)

= 2 + ∥V̂ k
ℓ,h+1∥∞

≤ 2 + βQ,h+1

= βQ,h

where the third inequality follows from Lemma 28, the equality is due to βw = 2(βr + βp +
βb) logK, and the last inequality holds because of the induction hypothesis.
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So far, we have shown that ∥Q̂k
ℓ,h∥∞≤ βQ,h. To show Q̂k

ℓ,h ∈ Q̂(βb, 2KβQ, βQ,h), it remains to
show that the corresponding parameters are upper bounded. Recall that Q̂k

ℓ,h is defined as

Q̂k
ℓ,h(s, a) = ϕ̄ke

h (s, a)⊤wk
ℓ,h − βb

∥∥∥ϕ̄ke

h (s, a)
∥∥∥
(Λke

h )−1

where wk
ℓ,h = θ̂kℓ,h + ψ̂k

hV̂
k
ℓ,h+1. Note that

∥θ̂kℓ,h∥2≤

∥∥∥∥∥∥(Λk
h)

−1
∑

τ∈[k−1]

ϕ(sτh, a
τ
h)ℓ

τ
h(s

τ
h, a

τ
h)

∥∥∥∥∥∥
2

≤
∥∥(Λk

h)
−1
∥∥
2

∥∥∥∥∥∥
∑

τ∈[k−1]

ϕ(sτh, a
τ
h)ℓ

τ
h(s

τ
h, a

τ
h)

∥∥∥∥∥∥
2

≤ K.

Furthermore, the induction hypothesis implies that

∥∥∥ψ̂k
hV̂

k
ℓ,h+1

∥∥∥
2
=

∥∥∥∥∥∥(Λk
h)

−1
∑

τ∈[k−1]

ϕ(sτh, a
τ
h)V̂

k
ℓ,h+1(s

τ
h+1)

∥∥∥∥∥∥
2

≤ βQ,h+1K.

It follows that

∥wk
ℓ,h∥2≤ ∥θ̂kℓ,h∥2+

∥∥∥ψ̂k
hV̂

k
ℓ,h+1

∥∥∥
2
≤ 2βQK.

Furthermore, we have (2K)−1I ⪯ (Λke

h )−1 ⪯ I . Thus, we have

Q̂k
ℓ,h ∈ Q̂(βb, 2KβQ, βQ,h).

By definition, since we have V̂ k
ℓ,h(s) =

∑
a∈A π̂

k
h(a | s)Q̂k

ℓ,h(s, a) and the assumption π̂k
h ∈

Π̂(Kβb, 2K
2βQ,KβQ,h, 11ηH

3K), it follows that

V̂ k
ℓ,h ∈ V̂(βb, 2KβQ, βQ,h, 11ηH

3K).

This completes the proof.

Finally, we prove that Eg holds with high probability. The proof closely follows Lemma 6 of Cassel
& Rosenberg (2024), with modifications for the CMDP setting.

Lemma 16 (Restatement of Lemma 1). Let 1 ≤ βw ≤ K, let η, α ≤ 1 and 4αηH3 ≤ 1. Then
Pr[Eg] ≥ 1− δ for any δ ∈ (0, 1).

Proof. We assume Ēg , which holds with probability at least 1 − δ by Lemma 14. Next, under Ēg ,
we focus on showing E2. As a first step, we show that π̂k

h ∈ Π̂(Kβb, 2K
2βQ,KβQ,h, 11ηH

3K)
and Yk ∈ [0, 11ηH3k] for all k, h using induction on k ∈ Ke for each epoch e ∈ E. Finally, based
on this induction, we prove that E2 holds.

Step 1: Base Case First, let us fix e ∈ E. For the base case, consider k = ke. Since π̂ke

h = πunif
for all h, it follows that π̂ke

h ∈ Π̂(Kβb, 2K
2βQ,KβQ,h, 11ηH

3K), as πunif can be viewed as
π(a | s; 0, 0, I) with n = 0. Furthermore, we initialize Yke = 0. Thus, the base case holds.

Step 2: Induction Hypothesis For k ∈ Ke, we assume that π̂k′

h ∈
Π̂(Kβb, 2K

2βQ,KβQ,h, 11ηH
3K) and Yk′ ∈ [0, 11ηH3k′] for all h and ke ≤ k′ < k.

Then, by Lemma 15, it follows that for all (h, k′, ℓ) ∈ [H]× {ke, . . . , k − 1} × {f, g},

Q̂k′

ℓ,h ∈ Q̂(βb, 2KβQ, βQ,h), V̂ k′

ℓ,h ∈ V̂(βb, 2KβQ, βQ,h, 11ηH
3K). (19)

Furthermore, let βb, wk′

ℓ,h,Λ denote the parameters that specify Q̂k′

ℓ,h, i.e., for all h, k′ < k, ℓ ∈
{f, g}, Q̂k′

ℓ,h(·, ·) = Q̂(·, ·;βb, wk′

ℓ,h,Λ).
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Step 3-1: Induction Step (π̂k
h) Next, we show that π̂k

h ∈ Π̂(Kβb, 2K
2βQ,KβQ,h, 11ηH

3K) for
all h. By Lemma 9,

π̂k
h(· | ·) = π̂(· | ·; {βi, wi}ni=0,Λ)

where wi = −α
∑

j∈Si
(wj

f,h + Yjw
j
g,h), βi = −αβb

∑
j∈Si

(1 + Yj). Note that j ∈ Si satisfies
j < k for each i, thus we can use (19) to bound the parameters. For wi,

∥wi∥2 ≤
∑
j∈Si

∥wj
f,h + Yjw

j
g,h∥2

≤
∑
j∈Si

∥wj
f,h∥2+Yj∥w

j
g,h∥2

≤
∑
j∈Si

(1 + 11ηH3K)2KβQ

≤ (1 + 11ηH3K)2K2βQ

(20)

where the first inequality is due to |α|≤ 1, and the third inequality is due to the induction hypothesis
(Yk′ < 11ηH3k′ for all k′ < k) and that (19) implies ∥wj

ℓ,h∥2≤ 2KβQ. Similarly,

|βi|≤ (1 + 11ηH3K)Kβb. (21)

Again, by (19), we have ∥Q̂j
f,h∥∞, ∥Q̂

j
g,h∥∞≤ βQ. Then, for any (s, a) ∈ S ×A and i = 0, . . . , n,∣∣∣∣∣∣−α

∑
j∈Si

(Q̂j
f,h(s, a) + YjQ̂

j
g,h(s, a))

∣∣∣∣∣∣ ≤ (1 + 11ηH3K)KβQ,h. (22)

Note that n = max{0,
⌊
(k − 1− ke)/KB

⌋
} ≤

⌊
K/KB

⌋
≤ K1−B = KL. Furthermore, its

parameters are bounded by (20), (21), and (22), and the same argument can be applied for all h ∈
[H]. Thus, for all h ∈ [H],

π̂k
h ∈ Π̂(Kβb, 2K

2βQ,KβQ,h, 11ηH
3K).

Step 3-2: Induction Step (Yk) To bound Yk,

Yk =
[
(1− 4αηH3)Yk−1 + η

(
V̂ k−1
g,1 (s1)− b− 4αH3 − 4θH2

)]
+

≤
∣∣∣(1− 4αηH3)Yk−1 + η

(
V̂ k−1
g,1 (s1)− b− 4αH3 − 4θH2

)∣∣∣
≤ (1− 4αηH3)|Yk−1|+η|V̂ k−1

g,1 (s1)− b− 4αH3 − 4θH2|

≤ |Yk−1|+η|V̂ k−1
g,1 (s1)− b− 4αH3 − 4θH2|

≤ 11ηH3(k − 1) + 11ηH3

≤ 11ηH3k

where the first inequality is due to the fact that max{0, z} ≤ |z| for all z ∈ R, the second and third
inequality follows from the triangle inequality and 0 ≤ 1 − 4αηH3 ≤ 1, and the fourth inequality
is due the induction hypothesis, i.e., Yk′ ≤ 11ηH3k′ and ∥V̂ k−1

g,1 ∥∞≤ 2H for all k′ < k.

These complete the induction, i.e., π̂k
h ∈ Π̂(Kβb, 2K

2βQ,KβQ,h, 11ηH
3K) and Yk ∈ [0, 11ηH3k]

for all (h, k) ∈ [H] × Ke. Furthermore, we can apply the same argument for all e ∈ E. Thus, it
holds for all (h, k) ∈ [H]× [K].

Step 4: Showing Eg By Lemma 15, we have for all h, k,

Q̂k
f,h, Q̂

k
g,h ∈ Q̂(βb, 2KβQ, βQ,h), V̂ k

f,h, V̂
k
g,h ∈ V̂(βb, 2KβQ, βQ,h, 11ηH

3K).

As a result, since Ē2 is assumed, we have ∥(ψh−ψ̂k
h)V̂

k
ℓ,h+1∥Λk

h
≤ βp. Thus,E2 holds. Furthermore,

E1, E3 hold by Ēg . This completes the proof.
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I LYAPUNOV DRIFT ANALYSIS

In this section, we upper bound the dual variable based on a Lyapunov drift analysis. As a first step,
we bound the Lyapunov drift (Y 2

k+1 − Y 2
k )/2.

Lemma 17. Assume that the good event Eg holds. For all e ∈ E and k, k + 1 ∈ Ke, the Lyapunov
drift is bounded as

Y 2
k+1 − Y 2

k

2
≤ −ηγYk +

η

α
EP̄ke ,π̄

 ∑
h∈[H]

D(π̄h(·|sh)||π̃k
h(·|sh))−D(π̄h(·|sh)||π̂k+1

h (·|sh))


+ η(2αH3 + 4H2θ + 4H2) + 2η2(9H2 + 16α2H6 + 1936α2η2H12K2 + 16θ2H4).

Proof. Recall that the dual variable follows Yk+1 = [(1− 4αηH3)Yk + η(V̂ k
g,1(s1)− b− 4αH3 −

4θH2)]+. It can be rewritten as

Yk+1 =
[
Yk + η

(
V̂ k
g,1(s1)− b− 4αH3(1 + Yk)− 4θH2

)]
+
.

Note that max{0, z}2 ≤ z2 for any z ∈ R. Then, if we square both sides, we have

Y 2
k+1 ≤ Y 2

k + 2Ykη
(
V̂ k
g,1(s1)− b− 4αH3(1 + Yk)− 4θH2

)
+ η2

(
V̂ k
g,1(s1)− b− 4αH3(1 + Yk)− 4θH2

)2
.

It can be rewritten as

Y 2
k+1 − Y 2

k

2

≤ Ykη
(
V̂ k
g,1(s1)− b− 4αH3(1 + Yk)− 4θH2

)
︸ ︷︷ ︸

(I)

+
η2

2

(
V̂ k
g,1(s1)− b− 4αH3(1 + Yk)− 4θH2

)2
︸ ︷︷ ︸

(II)

.

(23)

(II) can be bounded as follows.

(II) ≤ η2

2
· 4((V̂ k

g,1(s1)− b)2 + (4αH3)2 + (4αH3Yk)
2 + (4θH2)2)

≤ η2

2
· 4(9H2 + 16α2H6 + 16α2H6Y 2

k + 16θ2H4)

≤ η2

2
· 4(9H2 + 16α2H6 + 1936α2η2H12K2 + 16θ2H4)

where the first inequality follows from the Cauchy-Schwarz inequality, the second and third inequal-
ities follow from that Eg implies |V̂ k

g,1(s1)|≤ 2H and 0 ≤ Yk ≤ 11ηH3k for all k.

Next, we bound (I). To obtain a negative drift, we first deduce a bound on Yk⟨π̂k+1
h (·|sh) −

π̂k
h(·|sh), Q̂k

g,h(sh, ·)⟩. Since we assumed k, k + 1 ∈ Ke, π̂k+1
h ̸= πunif . Then π̂k+1

h satisfies

π̂k+1
h (· | s) = argmin

π(·|s)∈∆(A)

⟨π, Q̂k
f,h + YkQ̂

k
g,h⟩+

1

α
D(π||π̃k

h).

Applying Lemma 23 and letting z = π̄h, we have for any sh ∈ S,〈
π̂k+1
h (·|sh), Q̂k

f,h(sh, ·) + YkQ̂
k
g,h(sh, ·)

〉
+

1

α
D(π̂k+1

h (·|sh)||π̃k
h(·|sh))

≤
〈
π̄h(·|sh), Q̂k

f,h(sh, ·) + YkQ̂
k
g,h(sh, ·)

〉
+

1

α
D(π̄h(·|sh)||π̃k

h(·|sh))−
1

α
D(π̄h(·|sh)||π̂k+1

h (·|sh))
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where π̄ is the Slater policy satisfying V π̄
g,1(s1) ≤ b− γ for some γ > 0. Next, summing over h and

rearranging terms yield

Yk
∑

h∈[H]

⟨π̂k+1
h (·|sh)− π̂k

h(·|sh), Q̂k
g,h(sh, ·)⟩

≤ 1

α

∑
h∈[H]

D(π̄h(·|sh)||π̃k
h(·|sh))−

1

α

∑
h∈[H]

D(π̄h(·|sh)||π̂k+1
h (·|sh))

+
∑

h∈[H]

⟨π̂k
h(·|sh)− π̂k+1

h (·|sh), Q̂k
f,h(sh, ·)⟩ −

1

α

∑
h∈[H]

D(π̂k+1
h (·|sh)||π̃k

h(·|sh))

+
∑

h∈[H]

⟨π̄h(·|sh)− π̂k
h(·|sh), Q̂k

f,h(sh, ·)⟩+ Yk
∑

h∈[H]

⟨π̄h(·|sh)− π̂k
h(·|sh), Q̂k

g,h(sh, ·)⟩.

(24)

Now, we take EP̄ke ,π̄ , which is taken over {sh}Hh=1 under P̄ke , π̄ for a fixed s1. Note that since P̄ke

is a transition kernel of a contracted MDP, it could be
∑

s′ P̄ke(s′|s, a) ≤ 1. However, taking EP̄ke ,π̄
can be viewed as a linear combination, where its coefficients is in the form of a sub-probability
measure defined as Pr[s1 = s, . . . , sH = s′ | s1, P̄ke , π̄] ∈ [0, 1]. This implies that taking EP̄ke ,π̄
guarantees monotonicity, i.e.,

YkEP̄ke ,π̄

 ∑
h∈[H]

⟨π̂k+1
h (·|sh)− π̂k

h(·|sh), Q̂k
g,h(sh, ·)⟩


≤ 1

α
EP̄ke ,π̄

 ∑
h∈[H]

D(π̄h(·|sh)||π̃k
h(·|sh))−D(π̄h(·|sh)||π̂k+1

h (·|sh))


+ EP̄ke ,π̄

 ∑
h∈[H]

⟨π̂k
h(·|sh)− π̂k+1

h (·|sh), Q̂k
f,h(sh, ·)⟩ −

1

α
D(π̂k+1

h (·|sh)||π̃k
h(·|sh))


︸ ︷︷ ︸

(III)

+ EP̄ke ,π̄

 ∑
h∈[H]

⟨π̄h(·|sh)− π̂k
h(·|sh), Q̂k

f,h(sh, ·)⟩


︸ ︷︷ ︸

(IV)

+ YkEP̄ke ,π̄

 ∑
h∈[H]

⟨π̄h(·|sh)− π̂k
h(·|sh), Q̂k

g,h(sh, ·)⟩


︸ ︷︷ ︸

(V)

.

(25)

We bound (III). By the third statement of Lemma 22, for any sh ∈ S, we have

⟨π̂k
h(·|sh)− π̂k+1

h (·|sh), Q̂k
f,h(sh, ·)⟩ −

1

α
D(π̂k+1

h (·|sh)||π̃k
h(·|sh)) ≤ 2αH2 + 4Hθ.

Thus, summing over h ∈ [H] and taking EP̄ke ,π̄ , we have

(III) ≤ EP̄ke ,π̄

[
2αH3 + 4H2θ

]
≤ 2αH3 + 4H2θ

where the second inequality is due to (5). To bound (IV),

(IV) ≤ EP̄ke ,π̄

 ∑
h∈[H]

∥π̄h(·|sh)− π̂k
h(·|sh)∥1∥Q̂k

f,h(sh, ·)∥∞


≤ EP̄ke ,π̄

[
4H2

]
≤ 4H2

where the first inequality is due to Hölder’s inequality, and the last inequality is due to (5).
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To bound (V), we observe the following. Let V̄ π̄
g,1(s) denote the ρ-contracted value function, where

ρ(s, a, h) = σ(−βw∥ϕ(s, a)∥(Λke
h )−1+ logK). By Lemmas 7 and 8, we have

V π̄
g,1(s1)− V̂ k

g,1(s1) ≥ V̄ π̄
g,1(s1)− V̂ k

g,1(s1)

= EP̄ke ,π̄

 ∑
h∈[H]

⟨π̄h(· | sh)− π̂k
h(· | sh), Q̂k

g,h(· | sh)⟩


+ EP̄ke ,π̄

 ∑
h∈[H]

ḡh(sh, ah) +
∑
s′∈S

P̄ke

h (s′ | sh, ah)V̂ k
g,h+1(s

′)− Q̂k
g,h(sh, ah)

 .

To bound the latter term, we have for any (sh, ah) ∈ S ×A,

ḡh(sh, ah) +
∑
s′∈S

P̄h(s
′ | sh, ah)V̂ k

g,h+1(s
′)− Q̂k

g,h(sh, ah)

= ϕ̄ke

h (sh, ah)
⊤θg,h + ϕ̄ke

h (sh, ah)
⊤ψhV̂

k
g,h+1 − ϕ̄

ke

h (sh, ah)
⊤
[
θ̂kg,h + ψ̂k

hV̂
k
g,h+1

]
+ βb∥ϕ̄ke

h (sh, ah)∥(Λke
h )−1

≥ −∥θg,h − θ̂kg,h∥Λke
h
∥ϕ̄ke

h (sh, ah)∥(Λke
h )−1−∥(ψh − ψ̂k

h)V̂
k
g,h+1∥Λke

h
∥ϕ̄ke

h (sh, ah)∥(Λke
h )−1+βb∥ϕ̄ke

h (sh, ah)∥(Λke
h )−1

≥ −∥θg,h − θ̂kg,h∥Λk
h
∥ϕ̄ke

h (sh, ah)∥(Λke
h )−1−∥(ψh − ψ̂k

h)V̂
k
g,h+1∥Λk

h
∥ϕ̄ke

h (sh, ah)∥(Λke
h )−1+βb∥ϕ̄ke

h (sh, ah)∥(Λke
h )−1

≥ −βr∥ϕ̄ke

h (sh, ah)∥(Λke
h )−1−βp∥ϕ̄ke

h (sh, ah)∥(Λke
h )−1+βb∥ϕ̄ke

h (sh, ah)∥(Λke
h )−1

= 0

where the first equality is due to the definition of contracted MDP, the first inequality is due to the
Cauchy-Schwarz inequality, the second inequality is due to Λke

h ⪯ Λk
h, the third inequality is due to

Eg , and the last equality is due to βb = βr + βp. This implies that the latter term is nonnegative, as
EP̄ke ,π[0] = 0. Thus, it follows that

(V) = YkEP̄ke ,π̄

 ∑
h∈[H]

⟨π̄h(· | sh)− π̂k
h(· | sh), Q̂k

g,h(· | sh)⟩


≤ Yk(V π̄

g,1(s1)− V̂ k
g,1(s1))

≤ Yk(b− γ − V̂ k
g,1(s1))

where the last inequality is due to the Slater condition and Yk ≥ 0. Finally, plugging the bounds on
(III),(IV), and (V) into (25), we have

YkEP̄ke ,π̄

 ∑
h∈[H]

⟨π̂k+1
h (·|sh)− π̂k

h(·|sh), Q̂k
g,h(sh, ·)⟩


≤ 1

α
EP̄ke ,π̄

 ∑
h∈[H]

D(π̄h(·|sh)||π̃k
h(·|sh))−D(π̄h(·|sh)||π̂k+1

h (·|sh))


+ 2αH3 + 4H2θ + 4H2 + Yk(b− γ − V̂ k

g,1(s1)).
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Then we can bound (I) as follows.

(I) = Ykη
(
V̂ k
g,1(s1)− b− 4αH3(1 + Yk)− 4θH2

)
≤ Ykη

V̂ k
g,1(s1)− b+ EP̄ke ,π̄

 ∑
h∈[H]

⟨π̂k+1
h (·|sh)− π̂k

h(·|sh), Q̂k
g,h(sh, ·)⟩


≤ Ykη(V̂ k

g,1(s1)− b) +
η

α
EP̄ke ,π̄

 ∑
h∈[H]

D(π̄h(·|sh)||π̃k
h(·|sh))−D(π̄h(·|sh)||π̂k+1

h (·|sh))


+ η(2αH3 + 4H2θ + 4H2) + ηYk(b− γ − V̂ k

g,1(s1))

= −ηγYk +
η

α
EP̄ke ,π̄

 ∑
h∈[H]

D(π̄h(·|sh)||π̃k
h(·|sh))−D(π̄h(·|sh)||π̂k+1

h (·|sh))


+ η(2αH3 + 4H2θ + 4H2).

Here, the first inequality is true as follows. For any s1, . . . , sH ∈ S,∣∣∣∣∣∣
∑

h∈[H]

⟨π̂k+1
h (·|sh)− π̂k

h(·|sh), Q̂k
g,h(sh, ·)⟩

∣∣∣∣∣∣ ≤
∑

h∈[H]

∣∣∣⟨π̂k+1
h (·|sh)− π̂k

h(·|sh), Q̂k
g,h(sh, ·)⟩

∣∣∣
≤
∑

h∈[H]

(4αH2(1 + Yk) + 4θH)

= 4αH3(1 + Yk) + 4θH2

where the first inequality is due to the triangle inequality, and the second inequality is due to the
second statement of Lemma 22. Note that the second inequality holds regardless of whether π̃k

h is
perturbed, because when π̃k

h is not perturbed, it can be viewed as θ = 0. It follows that

EP̄ke ,π̄

 ∑
h∈[H]

⟨π̂k+1
h (·|sh)− π̂k

h(·|sh), Q̂k
g,h(sh, ·)⟩

 ≥ −EP̄ke ,π̄[4αH
3(1 + Yk) + 4θH2]

≥ −(4αH3(1 + Yk) + 4θH2)

where the second inequality is due to (5).

Consequently, plugging the bounds on (I) and (II) into (23), the Lyapunov drift is bounded as

Y 2
k+1 − Y 2

k

2
≤ −ηγYk +

η

α
EP̄ke ,π̄

 ∑
h∈[H]

D(π̄h(·|sh)||π̃k
h(·|sh))−D(π̄h(·|sh)||π̂k+1

h (·|sh))


+ η(2αH3 + 4H2θ + 4H2) + 2η2(9H2 + 16α2H6 + 1936α2η2H12K2 + 16θ2H4).

Lemma 18 (Restatement of Lemma 2). Assume that the good event Eg holds. Let H2 ≤ K. For
any δ ∈ (0, 1) and k ∈ [K], with probability at least 1− δ, we have

Yk ≤
2C4

ηKBγ
+ 2KBδmax +

8KBδ2max

ηγ
log

32δ2max

(ηγ)2δ
.

where δmax and C4 are given in (26) and (32), respectively. Furthermore, under the parameter
choice of Algorithm 1, we have

Yk = Õ(H2/γ).

Proof. For ease of notation, let Ne = max{n ∈ Z+ : ke + nKB ∈ Ke}, and let

Zn = Yke+nKB .
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To show the lemma, we apply Lemma 25 to {Zn}Ne
n=0. Let ξ0 = ∅, and let ξn be the set of all

random variables until episode ke + nKB − 1, i.e.,

ξn =
{
(sτh, a

τ
h, θ

τ
f,h, gh(s

τ
h, a

τ
h))
}
h∈[H],τ∈[ke+nKB−1]

.

Let Fn denote the σ-algebra generated by ξn for n = 0, . . . , Ne. Then {Fn}Ne
n=0 forms a filtration.

Note that Z0 = Yke
= 0 and thus Z0 is F0-measurable. Furthermore, Zn = Yke+nKB is determined

by information up to episode ke + nKB − 1, which implies that Zn is Fn-measurable. Hence,
{Zn}Ne

n=0 is adapted to {Fn}Ne
n=0.

Note that |max{z1, 0} − z2|≤ |z1 − z2| for any z1 ∈ R and z2 ∈ R+. Then it follows that

|Yk+1 − Yk| ≤
∣∣∣−4αηH3Yk + η(V̂ k

g,1(s1)− b− 4αH3 − 4θH2)
∣∣∣

≤ 4ηαH3(11ηH3K) + 3ηH + 4ηαH3 + 4ηθH2

:= δmax.

(26)

where the second inequality is due to the triangle inequality and the fact that Yk ≤ 11ηH3K and
∥V̂ k

g,1∥∞≤ 2H under Eg . Thus, by the triangle inequality,

|Zn+1 − Zn|=

∣∣∣∣∣∣
ke+(n+1)KB−1∑

τ=ke+nKB

(Yτ+1 − Yτ )

∣∣∣∣∣∣ ≤ KBδmax. (27)

By Lemma 17, we deduce the Lyapunov drift of Zn as

Z2
n+1 − Z2

n

2
=

ke+(n+1)KB−1∑
τ=ke+nKB

Y 2
τ+1 − Y 2

τ

2

≤
ke+(n+1)KB−1∑

τ=ke+nKB

−ηγYτ︸ ︷︷ ︸
(I)

+

ke+(n+1)KB−1∑
τ=ke+nKB

η

α
EP̄ke ,π̄

 ∑
h∈[H]

D(π̄h(·|sh)||π̃k
h(·|sh))−D(π̄h(·|sh)||π̂k+1

h (·|sh))


︸ ︷︷ ︸

(II)

+KBC3

(28)

where

C3 = η(2αH3 + 4H2θ + 4H2) + 2η2(9H2 + 16α2H6 + 1936α2η2H12K2 + 16θ2H4) (29)
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To bound (I),

(I) =
ke+(n+1)KB−1∑

τ=ke+nKB

−ηγYτ

=

ke+(n+1)KB−1∑
τ=ke+nKB

−ηγ

Yke+nKB +

τ−1∑
τ ′=ke+nKB

(Yτ ′+1 − Yτ ′)


≤ −ηγKBYke+nKB + ηγ

ke+(n+1)KB−1∑
τ=ke+nKB

τ−1∑
τ ′=ke+nKB

|Yτ ′+1 − Yτ ′ |

≤ −ηγKBYke+nKB + ηγ

ke+(n+1)KB−1∑
τ=ke+nKB

τ−1∑
τ ′=ke+nKB

δmax

= −ηγKBYke+nKB + ηγ

ke+(n+1)KB−1∑
τ=ke+nKB

(τ − ke − nKB)δmax

= −ηγKBYke+nKB + ηγδmax
KB(KB − 1)

2

(30)

where the second inequality due to the fact that z ≤ |z| for any z ∈ R and the triangle inequality, the
second inequality follows from (26), and the last equality is because the sum of 0, . . . , z − 1 equals
z(z − 1)/2 for any z ∈ Z+.

To bound (II),

(II) =
η

α

∑
h∈[H]

EP̄ke ,π̄

ke+(n+1)KB−1∑
τ=ke+nKB

D(π̄h(·|sh)||π̃τ
h(·|sh))−D(π̄h(·|sh)||π̂τ+1

h (·|sh))


=
η

α

∑
h∈[H]

EP̄ke ,π̄

[
D(π̄(·|sh)||π̃ke+nKB

h (·|sh))−D(π̄(·|sh)||π̂ke+(n+1)KB

h (·|sh))
]

+
η

α

∑
h∈[H]

EP̄ke ,π̄

ke+(n+1)KB−1∑
τ=ke+nKB+1

D(π̄h(·|sh)||π̃τ
h(·|sh))−D(π̄h(·|sh)||π̂τ

h(·|sh))


=
η

α

∑
h∈[H]

EP̄ke ,π̄

[
D(π̄(·|sh)||π̃ke+nKB

h (·|sh))−D(π̄(·|sh)||π̂ke+(n+1)KB

h (·|sh))
]

≤ η

α

∑
h∈[H]

EP̄ke ,π̄ [log(|A|/θ)]

≤ η

α
H log(|A|/θ)

where the last equality is because π̃τ
h = π̂τ

h for all τ such that τ − ke ̸≡ 0 mod KB by algorithm.
The first inequality is because the KL divergence is nonnegative, and we apply Lemma 26, as we
know π̃ke+nKB

h = (1− θ)π̂ke+nKB

h + θπunif by algorithm. The last inequality is due to (5). Thus,
plugging the bounds on (I) and (II) into (28),

Z2
n+1 − Z2

n

2
≤ −ηγKBZn + ηγδmax

KB(KB − 1)

2
+
η

α
H log(|A|/θ) +KBC3. (31)

For ease of notation, let C4 denote

C4 := ηγδmax
KB(KB − 1)

2
+
η

α
H log(|A|/θ) +KBC3. (32)

Consider Zn ≥ 2C4/(ηK
Bγ). Then (31) becomes

Z2
n+1 − Z2

n

2
≤ −C4,
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which implies that Zn+1 ≤ Zn. In this case, it follows that

E [Zn+1 − Zn|Fn] = E
[
Z2
n+1 − Z2

n

Zn+1 + Zn
|Fn

]
≤ E

[
Z2
n+1 − Z2

n

2Zn
|Fn

]
=

1

Zn
E
[
Z2
n+1 − Z2

n

2
|Fn

]
≤ 1

Zn
E
[
−ηγKBZn + C4|Fn

]
=
−ηγKBZn + C4

Zn

≤ −ηKBγ +
C4ηK

Bγ

2C4

= −ηK
Bγ

2

where the first inequality is due to Zn+1 ≤ Zn, the second inequality is due to (31), and the last
inequality is because we consider Zn ≥ 2C4/(ηK

Bγ). The first and second equalities are because
Zn is Fn-measurable. As a result, we have

|Zn+1 − Zn|≤ KBδmax,

E[Zn+1 − Zn|Fn] ≤


KBδmax if Zn ≤

2C4

ηKBγ
,

−ηKBγ
2 if Zn ≥

2C4

ηKBγ
.

Note that Z0 = 0 and ηKBγ
2 ≤ KBδmax. Thus, by Lemma 25 with n0 = 1, with probability at least

1− δ, for all n = 0, . . . , Ne

Yke+nKB = Zn ≤
2C4

ηKBγ
+KBδmax +

4K2Bδ2max
ηKBγ

2

log
8K2Bδ2max

(ηK
Bγ
2 )2δ

.

Furthermore, for any k ∈ {ke + nKB , . . . , ke + (n + 1)KB − 1}, we have Yk ≤ Yke+nKB +∑k−1
τ=ke+nKB |Yτ+1 − Yτ |≤ Yke+nKB +KBδmax. Finally, it implies that for any k ∈ [K],

Yk ≤
2C4

ηKBγ
+ 2KBδmax +

8KBδ2max

ηγ
log

32δ2max

(ηγ)2δ
.

This completes the first statement. Next, we carefully plug our parameter choice into the upper
bound on Yk. Recall that the definitions of C3, C4, δmax, and our parameter choice such that

B =
3

4
, η = H−2K−B , α = H−1K−B , θ = K−1.

δmax is bounded as

δmax = 4ηαH3(11ηH3K) + 3ηH + 4ηαH3 + 4ηθH2

= 44η2αH6K + 3ηH + 4ηαH3 + 4ηθH2

= 44HK−3B+1 + 3H−1K−B + 4K−2B + 4K−1−B

= Õ
(
HK−5/4 +H−1K−3/4

)
Since we assumed H2 ≤ K, it follows that HK−1/2 ≤ 1. Then we have

δmax = Õ
(
K−3/4

)
C3 is bounded as

C3 = η(2αH3 + 4H2θ + 4H2) + 2η2(9H2 + 16α2H6 + 1936α2η2H12K2 + 16θ2H4)

= 2K−2B + 4K−1−B + 4K−B + 18H−2K−2B + 32K−4B + 3872H2K2−6B + 32K−2−2B .
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2C4/(ηK
Bγ) is bounded as

2C4

ηKBγ
≤ δmaxK

B +
2H log(|A|/θ)

KBγα
+

2C3

ηγ

= 44HK−2B+1 + 3H−1 + 4K−B + 4K−1

+
2

γ
H2 log(|A|K)

+
2

γ
(2H2K−B + 4H2K−1 + 4H2 + 18K−B + 32H2K−3B + 3872H4K2−5B + 32H2K−2−B)

= Õ
(
H2/γ +H4K−7/4/γ

)
.

Since we assumed H2 ≤ K, we have H4K−7/4 ≤ H2. Then we can drop Õ(H4K−7/4/γ).
2KBδmax is bounded as

2KBδmax = 88HK−2B+1 + 6H−1 + 8K−2B + 8K−1

= Õ
(
HK−1/2

)
(8KBδ2max/(ηγ)) log(32δ

2
max/(η

2γ2δ)) is bounded as

8KBδ2max

ηγ
log

32δ2max

(ηγ)2δ
= Õ

(
H2/γ

)
Finally, Yk is bounded as

Yk = Õ
(
H2/γ

)
.

J DETAILED PROOFS FOR THE ANALYSIS

In this section, we first introduce lemmas, which bound an online mirror descent term and optimism
terms, and these are useful to prove Lemma 5. Then we present the proofs of Lemmas 3, 4, 5, 6.
Then we conclude the section by providing the proof of Theorem 1.

The following lemma is to bound the regret due to online mirror descent. Here, the main difference
with the standard online mirror descent lemma (e.g., Hazan et al. (2016); Lattimore & Szepesvári
(2020)) comes from the periodic policy mixing, which requires a modified analysis.

Lemma 19. Let H2 ≤ K. Suppose that Eg and the statement of Lemma 18 hold. Then we have

∑
e∈E

∑
k∈Ke

EP̄ke ,π∗

 ∑
h∈[H]

⟨Q̂k
f,h(sh, ·) + YkQ̂

k
g,h(sh, ·), π̂k

h(· | sh)− π∗
h(· | sh)⟩


= Õ

(
dH3K3/4 +

H6

γ2
K1/4 +

dH5

γ

)
.

Proof. Consider e ∈ E. For any s ∈ S and k ∈ Ke such that π̂k+1
h ̸= πunif (i.e., k = ke, . . . , ke+1−

2), we have

π̂k+1
h (· | s) = argmin

π(·|s)∈∆(A)

⟨Q̂k
f,h(s, ·) + YkQ̂

k
g,h(s, ·), π(· | s)⟩+

1

α
D(π(· | s)||π̃k

h(· | s)).

For ease of notation, we omit (s, ·) and (· | s). By Lemma 23, for any policy π,

⟨Q̂k
f,h + YkQ̂

k
g,h, π̂

k+1
h − π⟩ ≤ 1

α
D(π||π̃k

h)−
1

α
D(π||π̂k+1

h )− 1

α
D(π̂k+1

h ||π̃k
h).
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By adding ⟨Q̂k
f,h + YkQ̂

k
g,h, π̂

k
h − π̂

k+1
h ⟩ on both sides, we have for k = ke, . . . , ke+1 − 2,

⟨Q̂k
f,h + YkQ̂

k
g,h, π̂

k
h − π⟩

≤ 1

α
D(π||π̃k

h)−
1

α
D(π||π̂k+1

h )− 1

α
D(π̂k+1

h ||π̃k
h) + ⟨Q̂k

f,h + YkQ̂
k
g,h, π̂

k
h − π̂k+1

h ⟩

≤ 1

α
D(π||π̃k

h)−
1

α
D(π||π̂k+1

h )− 1

2α
∥π̂k+1

h − π̃k
h∥21+∥Q̂k

f,h + YkQ̂
k
g,h∥∞∥π̂k

h − π̂k+1
h ∥1

≤ 1

α
D(π||π̃k

h)−
1

α
D(π||π̂k+1

h )− 1

2α
∥π̂k+1

h − π̃k
h∥21+∥Q̂k

f,h + YkQ̂
k
g,h∥∞∥π̂k+1

h − π̃k
h∥1

+ ∥Q̂k
f,h + YkQ̂

k
g,h∥∞∥π̃k

h − π̂k
h∥1

=
1

α
D(π||π̃k

h)−
1

α
D(π||π̂k

h) +
1

α
D(π||π̂k

h)−
1

α
D(π||π̂k+1

h )

− 1

2α
∥π̂k+1

h − π̃k
h∥21+∥Q̂k

f,h + YkQ̂
k
g,h∥∞∥π̂k+1

h − π̃k
h∥1+∥Q̂k

f,h + YkQ̂
k
g,h∥∞∥π̃k

h − π̂k
h∥1

(33)

where the second inequality follows from Pinsker’s inequality and Hölder’s inequality, and the last
inequality is due to the triangle inequality. By taking

∑
k∈Ke

on both sides, we have∑
k∈Ke

⟨Q̂k
f,h + YkQ̂

k
g,h, π̂

k
h − π⟩

≤ 1

α

ke+1−2∑
k=ke

(
D(π||π̃k

h)−D(π||π̂k
h)
)

︸ ︷︷ ︸
(I)

+
1

α

ke+1−2∑
k=ke

(
D(π||π̂k

h)−D(π||π̂k+1
h )

)
︸ ︷︷ ︸

(II)

+

ke+1−2∑
k=ke

(
− 1

2α
∥π̂k+1

h − π̃k
h∥21+∥Q̂k

f,h + YkQ̂
k
g,h∥∞∥π̂k+1

h − π̃k
h∥1
)

︸ ︷︷ ︸
(III)

+

ke+1−2∑
k=ke

∥Q̂k
f,h + YkQ̂

k
g,h∥∞∥π̃k

h − π̂k
h∥1︸ ︷︷ ︸

(IV)

+ ⟨Q̂ke+1−1
f,h + YkQ̂

ke+1−1
g,h , π̂

ke+1−1
h − π⟩.

Note that ⟨Q̂ke+1−1
f,h + YkQ̂

ke+1−1
g,h , π̂

ke+1−1
h − π⟩ is added, as (33) does not holds for ke+1 − 1, i.e.,

the last episode in epoch e. Furthermore, this term can be bounded by 2∥Q̂ke+1−1
f,h + YkQ̂

ke+1−1
g,h ∥∞

using Hölder’s inequality.

To bound (I), we observe the following. If k−ke ̸≡ 0 mod KB , then π̃k
h = π̂k

h. Thus, D(π||π̃k
h)−

D(π||π̂k
h) = 0. Otherwise, since π̃k

h = (1 − θ)π̂k
h + θπunif , we can apply Lemma 26, and thus

D(π||π̃k
h)−D(π||π̂k

h) ≤ θ log|A|, i.e.,

D(π||π̃k
h)−D(π||π̂k

h) ≤
{
θ log|A| if k − ke ≡ 0 mod KB ,

0 otherwise.

It follows that

(I) ≤ 1

α

∑
k∈Ke:k−ke≡0 modKB

θ log|A|≤ θ|Ke|log|A|
αKB

+
θ log|A|

α

where the second inequality is due to |{k ∈ Ke : k − ke ≡ 0 mod KB}|≤
⌈
|Ke|/KB

⌉
≤

|Ke|/KB +1. Furthermore, since (II) is in the form of a telescoping sum and π̂ke

h = πunif , we have

(II) ≤ 1

α
D(π||π̂ke

h ) ≤ log|A|
α

.

To bound (III), since −ax2 + bx ≤ b2/(4a) for a, b, x ≥ 0, we have

(III) ≤ α|Ke|C2
5

2
.
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where C5 is a constant such that ∥Q̂k
f,h + YkQ̂

k
g,h∥∞≤ C5 for all h, k. Again, by definition of π̃k

h,
we have

(IV) =
∑

k∈Ke:k−ke≡0 modKB

∥Q̂k
f,h + YkQ̂

k
g,h∥∞∥π̃k

h − π̂k
h∥1

=
∑

k∈Ke:k−ke≡0 modKB

∥Q̂k
f,h + YkQ̂

k
g,h∥∞θ∥πunif − π̂k

h∥1

≤ 2θ|Ke|C5

KB
+ 2θC5.

Finally, we have for any policy π and s ∈ S,∑
k∈Ke

⟨Q̂k
f,h(s, ·) + YkQ̂

k
g,h(s, ·), π̂k

h(· | s)− π(· | s)⟩

≤ θ|Ke|log|A|
αKB

+
(1 + θ) log|A|

α
+
α|Ke|C2

5

2
+

2θ|Ke|C5

αKB
+ 2θC5 + 2C5.

Let us take π = π∗
h for each h ∈ [H]. Then, by taking

∑
h∈[H] and EP̄ke ,π∗ , it follows that

EP̄ke ,π∗

 ∑
h∈[H]

∑
k∈Ke

⟨Q̂k
f,h(sh, ·) + YkQ̂

k
g,h(sh, ·), π̂k

h(· | sh)− π∗
h(· | sh)⟩


≤ EP̄ke ,π∗

[
H

(
θ|Ke|log|A|

αKB
+

(1 + θ) log|A|
α

+
α|Ke|C2

5

2
+

2θ|Ke|C5

KB
+ 2θC5 + 2C5

)]
≤ H

(
θ|Ke|log|A|

αKB
+

(1 + θ) log|A|
α

+
α|Ke|C2

5

2
+

2θ|Ke|C5

KB
+ 2θC5 + 2C5

)
.

Finally, by Eg and Lemma 18, we have C5 = Õ(H3/γ). Furthermore, by Lemma 34, the number
of epochs is at most Õ(dH). Then, by taking

∑
e∈E to the above inequality, it follows that

∑
e∈E

∑
k∈Ke

EP̄ke ,π∗

 ∑
h∈[H]

⟨Q̂k
f,h(sh, ·) + YkQ̂

k
g,h(sh, ·), π̂k

h(· | sh)− π∗
h(· | sh)⟩


= Õ

(
dH3K3/4 +

H6

γ2
K1/4 +

dH5

γ

)
.

The next lemma claims that the regret terms associated with optimism are nonpositive, highlighting
the effectiveness of our bonus terms. We closely follow the proof of Lemma 4 of Cassel & Rosenberg
(2024).
Lemma 20. Let H2 ≤ K. Suppose that Eg and the statement of Lemma 18 hold. For all
(s, a, h, k, ℓ) ∈ S ×A× [H]× [K]× {f, g},

Q̂k
ℓ,h(s, a)− ϕ̄

ke

h (s, a)⊤(θkℓ,h + ψhV̂
k
ℓ,h+1) ≤ 0

Proof. By definition, we have

Q̂k
ℓ,h(s, a)− ϕ̄

ke

h (s, a)⊤(θkℓ,h + ψhV̂
k
ℓ,h+1)

= ϕ̄ke

h (s, a)⊤(θ̂kℓ,h − θkℓ,h) + ϕ̄ke

h (s, a)⊤(ψ̂k
h − ψh)V̂

k
ℓ,h+1 − βb∥ϕ̄

ke

h (s, a)∥(Λke
h )−1

≤ ∥θ̂kℓ,h − θkℓ,h∥Λke
h
∥ϕ̄ke

h (s, a)∥(Λke
h )−1+∥(ψ̂k

h − ψh)V̂
k
ℓ,h+1∥Λke

h
∥ϕ̄ke

h (s, a)∥(Λke
h )−1−βb∥ϕ̄ke

h (s, a)∥(Λke
h )−1

≤ ∥θ̂kℓ,h − θkℓ,h∥Λk
h
∥ϕ̄ke

h (s, a)∥(Λke
h )−1+∥(ψ̂k

h − ψh)V̂
k
ℓ,h+1∥Λk

h
∥ϕ̄ke

h (s, a)∥(Λke
h )−1−βb∥ϕ̄ke

h (s, a)∥(Λke
h )−1

≤ βr∥ϕ̄ke

h (s, a)∥(Λke
h )−1+βp∥ϕ̄ke

h (s, a)∥(Λke
h )−1−βb∥ϕ̄ke

h (s, a)∥(Λke
h )−1

= 0

where the first inequality is due to the Cauchy-Schwarz inequality, the second inequality follows
from Λke

h ⪯ Λk
h, and the last equality is because βb = βr + βp.
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Proof of Lemma 3 By Lemma 8,

V πk

ℓ,1 (s1)− V̂ k
ℓ,1(s1) = EP,π̂k

 ∑
h∈[H]

ϕ(skh, a
k
h)

⊤(θkℓ,h + ψhV̂
k
ℓ,h+1)− Q̂k

ℓ,h(s
k
h, a

k
h)


= EP,π̂k

 ∑
h∈[H]

ϕ̄ke

h (skh, a
k
h)

⊤(θkℓ,h + ψhV̂
k
ℓ,h+1)− Q̂k

ℓ,h(s
k
h, a

k
h)


︸ ︷︷ ︸

(I)

+ EP,π̂k

 ∑
h∈[H]

(ϕ(skh, a
k
h)− ϕ̄

ke

h (skh, a
k
h))

⊤(θkℓ,h + ψhV̂
k
ℓ,h+1)


︸ ︷︷ ︸

(II)

.

To bound (I), we have

ϕ̄ke

h (skh, a
k
h)

⊤(θkℓ,h + ψhV̂
k
ℓ,h+1)− Q̂k

ℓ,h(s
k
h, a

k
h)

= ϕ̄ke

h (skh, a
k
h)

⊤(θkℓ,h − θ̂kℓ,h) + ϕ̄ke

h (skh, a
k
h)

⊤(ψh − ψ̂k
h)V̂

k
ℓ,h+1 + βb∥ϕ̄ke

h (skh, a
k
h)∥(Λke

h )−1

≤ βb∥ϕ̄ke

h (skh, a
k
h)∥(Λk

h)
−1+βb∥ϕ̄ke

h (skh, a
k
h)∥(Λke

h )−1

where the inequality is due to the Cauchy-Schwarz inequality. Furthermore, since k ∈ Ke, it must
hold det(Λk

h) ≤ 2 det(Λke

h ), otherwise k would belong to epoch e + 1. As it is obvious that
(Λk

h)
−1 ⪯ (Λke

h )−1, we can apply Lemma 35 for nonzero ϕ̄ke

h (skh, a
k
h) as follows.

∥ϕ̄ke

h (skh, a
k
h)∥2(Λke

h )−1

∥ϕ̄ke

h (skh, a
k
h)∥2(Λk

h)
−1

≤
det((Λke

h )−1)

det((Λk
h)

−1)
≤ 2.

This implies that βb∥ϕ̄ke

h (skh, a
k
h)∥(Λke

h )−1≤ 2βb∥ϕ̄ke

h (skh, a
k
h)∥(Λk

h)
−1 for nonzero ϕ̄ke

h (skh, a
k
h). If

ϕ̄ke

h (skh, a
k
h) = 0, then the inequality is trivial. Then it follows that

(I) ≤ EP,π̂k

 ∑
h∈[H]

3βb∥ϕ̄ke

h (skh, a
k
h)∥(Λk

h)
−1

 ≤ EP,π̂k

 ∑
h∈[H]

3βb∥ϕ(skh, akh)∥(Λk
h)

−1

 .
where the second inequality is due to ∥ϕ̄ke

h (skh, a
k
h)∥(Λk

h)
−1≤ ∥ϕ(skh, akh)∥(Λk

h)
−1 . To bound (II), by

Lemma 33, we have

(ϕ(skh, a
k
h)− ϕ̄

ke

h (skh, a
k
h))

⊤(θkℓ,h + ψhV̂
k
ℓ,h+1)

≤ (4β2
w∥ϕ(skh, akh)∥2(Λk

h)
−1+2K−1)|ϕ(skh, akh)⊤(θkℓ,h + ψhV̂

k
ℓ,h+1)|

≤ 16Hβ2
w∥ϕ(skh, akh)∥2(Λk

h)
−1+8HK−1

where the second inequality follows from the fact that for any ℓ ∈ {f, g},

ϕ(skh, a
k
h)

⊤(θkℓ,h+ψhV̂
k
ℓ,h+1) = ℓkh(s

k
h, a

k
h)+

∑
s′∈S

Ph(s
′ | skh, akh)V̂ k

ℓ,h+1(s
′) ≤ 1+∥V̂ k

ℓ,h+1∥∞≤ 4H.

This implies that (II)≤ 16Hβ2
w∥ϕ(skh, akh)∥2(Λk

h)
−1+8HK−1. Finally, we have

V πk

ℓ,1 (s1)− V̂ k
ℓ,1(s1) ≤ EP,π̂k

 ∑
h∈[H]

3βb∥ϕ(skh, akh)∥(Λk
h)

−1+16Hβ2
w∥ϕ(skh, akh)∥2(Λk

h)
−1

+ 8H2K−1.
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Taking
∑K

k=1 on both sides,
K∑

k=1

(V πk

ℓ,1 (s1)− V̂ k
ℓ,1(s1)) ≤

K∑
k=1

EP,π̂k

 ∑
h∈[H]

3βb∥ϕ(skh, akh)∥(Λk
h)

−1+16Hβ2
w∥ϕ(skh, akh)∥2(Λk

h)
−1

+ 8H2

≤
K∑

k=1

∑
h∈[H]

(
6βb∥ϕ(skh, akh)∥(Λk

h)
−1+32Hβ2

w∥ϕ(skh, akh)∥2(Λk
h)

−1

)
+ 8H(3βb + 16Hβ2

w) log
6K

δ
+ 8H2

where the second inequality follows from Eg . By Lemma 36, we have∑
k∈[K]

∥ϕ(skh, akh)∥2(Λk
h)

−1≤ 2 log
det(ΛK+1

h )

det(Λ1
h)
≤ 2d log(K + 1)

where the second inequality follows from ∥Λk+1
h ∥2= ∥I +

∑
τ∈[k] ϕ(s

τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤∥2≤ 1 +

k, and thus det(ΛK+1
h ) ≤ (K + 1)d. Furthermore, the Cauchy-Schwarz inequality implies that∑

k∈[K]∥ϕ(skh, akh)∥(Λk
h)

−1≤
√
2dK log(K + 1). Then we deduce that

K∑
k=1

(V πk

ℓ,1 (s1)− V̂ k
ℓ,1(s1)) ≤ 6βbH

√
2dK log(K + 1) + 64dH2β2

w log(K + 1)

+ 8H(3βb + 16Hβ2
w) log

6K

δ
+ 8H2

= Õ
(√

d3H4K3/4 + d3H4K1/2
)

where the last equality follows from βb, βw = Õ
(
K1/4dH

)
.

Proof of Lemma 4 Given e ∈ E, for any k ∈ Ke, the dual variable Yk is updated as

Yk+1 =

{
0 if k + 1 = ke,[
(1− 4αηH3)Yk + η

(
V̂ k
g,1(s1)− b− 4αH3 − 4θH2

)]
+

otherwise.

Then it follows that
0 ≤ Y 2

ke+1−1

=

ke+1−2∑
k=ke

(
Y 2
k+1 − Y 2

k

)
=

ke+1−2∑
k=ke

([
(1− 4αηH3)Yk + η

(
V̂ k
g,1(s1)− b− 4αH3 − 4θH2

)]2
+
− Y 2

k

)

=

ke+1−2∑
k=ke

([
Yk + η

(
V̂ k
g,1(s1)− b− 4αH3 − 4θH2 − 4αH3Yk

)]2
+
− Y 2

k

)

≤
ke+1−2∑
k=ke

(
2Ykη

(
V̂ k
g,1(s1)− b− 4αH3 − 4θH2 − 4αH3Yk

)
+ η2

(
V̂ k
g,1(s1)− b− 4αH3 − 4θH2 − 4αH3Yk

)2)
where the first equality is due to Yke

= 0, and the last inequality is due to the fact that max{0, z}2 ≤
z2 for any z ∈ R. This can be rewritten as
ke+1−2∑
k=ke

Yk(b− V̂ k
g,1(s1))

≤
ke+1−2∑
k=ke

Yk(−4αH3 − 4θH2 − 4αH3Yk) +
η

2

ke+1−2∑
k=ke

(
V̂ k
g,1(s1)− b− 4αH3 − 4θH2 − 4αH3Yk

)2
.

(34)
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Note that the first term is nonpositive. Furthermore, the second term can be bounded as

|V̂ k
g,1(s1)− b− 4αH3 − 4θH2 − 4αH3Yk| ≤ |V̂ k

g,1(s1)− b|+4αH3 + 4θH2 + 4αH3Yk

≤ 3H + 4H2K−3/4 + 4H2K−1 + 4H2K−3/4Yk

≤ 3H + 4H1/2 + 4 + 4H2K−3/4Yk

≤ 11H + 4H2K−3/4Yk

where the second inequality follows from Eg , the third inequality is because we assumed that H2 ≤
K. Thus, (34) is bounded as

ke+1−2∑
k=ke

Yk(b− V̂ k
g,1(s1)) ≤

η

2

ke+1−2∑
k=ke

(
11H + 4H2K−3/4Yk

)2
≤ η

2

ke+1−2∑
k=ke

2(121H2 + 16H4K−3/2Y 2
k )

where the second inequality is due to the Cauchy-Schwarz inequality. Then we have

∑
k∈Ke

Yk(b− V̂ k
g,1(s1)) =

ke+1−2∑
k=ke

Yk(b− V̂ k
g,1(s1)) + Yke+1−1(b− V̂ ke+1−1

g,1 (s1))

≤ η

2

ke+1−2∑
k=ke

2(121H2 + 16H4K−3/2Y 2
k ) + 3HYke+1−1

≤ 121ηH2|Ke|+16ηH4K−3/2

ke+1−2∑
k=ke

Y 2
k + 3HYke+1−1.

By Lemma 18, we have Yk = Õ(H2/γ) for all k ∈ [K]. Furthermore, by Lemma 34, the number
of epochs is at most Õ(dH). By taking

∑
e∈E , it follows that

∑
k∈[K]

Yk(b− V̂ k
g,1(s1)) =

∑
e∈E

∑
k∈Ke

Yk(b− V̂ k
g,1(s1))

= Õ
(
K1/4 +

dH6

γ2

)
.

Proof of Lemma 5 Note that

K∑
k=1

(
V̂ k
f,1(s1) + YkV̂

k
g,1(s1)− V π∗

fk,1(s1)− YkV
π∗

g,1 (s1)
)

≤
∑
e∈E

∑
k∈Ke

(
V̂ k
f,1(s1) + YkV̂

k
g,1(s1)− V̄ π∗

fk,1(s1)− YkV̄
π∗

g,1 (s1)
)
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where V̄ π∗

fk,1, V̄
π∗

g,1 are the value functions with respect to a contracted MDP. Furthermore, by
Lemma 8, it follows that∑
e∈E

∑
k∈Ke

(
V̂ k
f,1(s1) + YkV̂

k
g,1(s1)− V̄ π∗

fk,1(s1)− YkV̄
π∗

g,1 (s1)
)

=
∑
e∈E

∑
k∈Ke

EP̄ke ,π∗

 ∑
h∈[H]

∑
a∈A

(Q̂k
f,h(s

k
h, a) + YkQ̂

k
g,h(s

k
h, a))(π̂

k
h(a | skh)− π∗

h(a | skh))


+
∑
e∈E

∑
k∈Ke

EP̄ke ,π∗

 ∑
h∈[H]

Q̂k
f,h(s

k
h, a

k
h)− f̄kh (skh, akh)−

∑
s′∈S

P̄ke

h (s′ | skh, akh)V̂ k
f,h+1(s

′)


+
∑
e∈E

∑
k∈Ke

EP̄ke ,π∗

 ∑
h∈[H]

Yk

(
Q̂k

g,h(s
k
h, a

k
h)− ḡh(skh, akh)−

∑
s′∈S

P̄ke

h (s′ | skh, akh)V̂ k
g,h+1(s

′)

) .
Note that by the definition of the contracted MDP, we have f̄kh (s, a) = ϕ̄ke

h (s, a)⊤θkf,h, ḡh(s, a) =

ϕ̄ke

h (s, a)⊤θg,h, and P̄ke

h (s′ | s, a) = ϕ̄ke

h (s, a)⊤ψh(s
′). Then it follows that

f̄h(s
k
h, a

k
h) +

∑
s′∈S

P̄ke

h (s′ | skh, akh)V̂ k
f,h+1(s

′) = ϕ̄ke

h (skh, a
k
h)

⊤(θkf,h + ψhV̂
k
f,h+1),

ḡh(s
k
h, a

k
h) +

∑
s′∈S

P̄ke

h (s′ | skh, akh)V̂ k
g,h+1(s

′) = ϕ̄ke

h (skh, a
k
h)

⊤(θg,h + ψhV̂
k
g,h+1).

We deduce that
K∑

k=1

(
V̂ k
f,1(s1) + YkV̂

k
g,1(s1)− V π∗

fk,1(s1)− YkV
π∗

g,1 (s1)
)

≤
∑
e∈E

∑
k∈Ke

(
V̂ k
f,1(s1) + YkV̂

k
g,1(s1)− V̄ π∗

fk,1(s1)− YkV̄
π∗

g,1 (s1)
)

=
∑
e∈E

∑
k∈Ke

EP̄ke ,π∗

 ∑
h∈[H]

∑
a∈A

(Q̂k
f,h(s

k
h, a) + YkQ̂

k
g,h(s

k
h, a))(π̂

k
h(a | skh)− π∗

h(a | skh))


︸ ︷︷ ︸

(I)

+
∑
e∈E

∑
k∈Ke

EP̄ke ,π∗

 ∑
h∈[H]

Q̂k
f,h(s

k
h, a

k
h)− ϕ̄

ke

h (skh, a
k
h)

⊤(θkf,h + ψhV̂
k
f,h+1)


︸ ︷︷ ︸

(II)

+
∑
e∈E

∑
k∈Ke

EP̄ke ,π∗

 ∑
h∈[H]

Yk

(
Q̂k

g,h(s
k
h, a

k
h)− ϕ̄

ke

h (skh, a
k
h)

⊤(θg,h + ψhV̂
k
g,h+1)

)
︸ ︷︷ ︸

(III)

.

By Lemma 19,

(I) = Õ
(
dH3K3/4 +

H6

γ2
K1/4 +

dH5

γ

)
.

Note that Yk ≥ 0 for all k. Then, by Lemma 20, for any (s, a, h, k) ∈ S ×A× [H]× [K], we have

Q̂k
f,h(s, a)− ϕ̄

ke

h (s, a)⊤(θkf,h + ψhV̂
k
f,h+1) ≤ 0,

Yk

(
Q̂k

g,h(s, a)− ϕ̄
ke

h (s, a)⊤(θg,h + ψhV̂
k
g,h+1)

)
≤ 0.

This implies that

(II), (III) ≤ 0.
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Finally, we have

K∑
k=1

(
V̂ k
f,1(s1) + YkV̂

k
g,1(s1)− V π∗

fk,1(s1)− YkV
π∗

g,1 (s1)
)
= Õ

(
dH3K3/4 +

H6

γ2
K1/4 +

dH5

γ

)
.

Proof of Lemma 6 Note that the dual update is

Yk+1 =

{
0 if k + 1 = ke,[
(1− 4αηH3)Yk + η

(
V̂ k
g,1(s1)− b− 4αH3 − 4θH2

)]
+

otherwise.

Then it follows that for any e ∈ E,

Yke+1−1 =
[
(1− 4αηH3)Yke+1−2 + η

(
V̂

ke+1−2
g,1 (s1)− b− 4αH3 − 4θH2

)]
+

≥ (1− 4αηH3)Yke+1−2 + η
(
V̂

ke+1−2
g,1 (s1)− b− 4αH3 − 4θH2

)
= Yke+1−2 + η

(
V̂

ke+1−2
g,1 (s1)− b− 4αH3(1 + Yke+1−2)− 4θH2

)
...

≥ Yke
+ η

ke+1−2∑
k=ke

(
V̂ k
g,1(s1)− b− 4αH3(1 + Yk)− 4θH2

)
.

Note that Yke = 0. Then we have

ke+1−1∑
k=ke

(
V̂ k
g,1(s1)− b

)
=

ke+1−2∑
k=ke

(
V̂ k
g,1(s1)− b

)
+
(
V̂

ke+1−1
g,1 (s1)− b

)

≤
Yke+1−1

η
+

ke+1−2∑
k=ke

(
4αH3(1 + Yk) + 4θH2

)
+ 3H.

By Lemma 18, we have Yk = Õ(H2/γ) for all k ∈ [K]. Then it follows that

4αH3(1 + Yk) + 4θH2 = 4H2K−3/4(1 + Yk) + 4H2K−1 = Õ
(
H4

γ
K−3/4 +H2K−1

)
.

Furthermore, by Lemma 34, the number of epochs is at most Õ(dH). By taking
∑

e∈E , it follows
that ∑

e∈E

∑
k∈Ke

(
V̂ k
g,1(s1)− b

)
= Õ

(
dH5

γ
K3/4 +

H4

γ
K1/4

)
.

Proof of Theorem 1 If K < βw, we cannot use Lemma 16. Nevertheless, in this case, we have
the following upper bounds for regret and violation.

Regret(K) ≤ HK < Hβw = Õ
(
dH2K1/4

)
,

Violation(K) ≤ HK < Hβw = Õ
(
dH2K1/4

)
.

Otherwise, it is trivial that the conditions of Lemma 16 hold, i.e., Eg holds with probability at least
1 − δ. Furthermore, under Eg , we have the upper bound on Yk as in Lemma 18 with probability at
least 1− δ, i.e.,

Yk = Õ
(
H2

γ

)
(35)

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Thus, with probability at least 1− 2δ, Eg and (35) hold, which can be shown by union bound.

Now, we begin with the proof of the regret upper bound. Note that an optimal policy π∗ satisfies
V π∗

g,1 (s1) ≤ b. Since Yk ≥ 0 for all k, it follows that

Regret(K)

=

K∑
k=1

(
V πk

fk,1(s1)− V̂
k
f,1(s1)

)
+

K∑
k=1

Yk(b− V̂ k
g,1(s1)) +

K∑
k=1

(
V̂ k
f,1(s1) + YkV̂

k
g,1(s1)− V π∗

fk,1(s1)− Ykb
)

≤
K∑

k=1

(
V πk

fk,1(s1)− V̂
k
f,1(s1)

)
︸ ︷︷ ︸

(I)

+

K∑
k=1

Yk(b− V̂ k
g,1(s1))︸ ︷︷ ︸

(II)

+

K∑
k=1

(
V̂ k
f,1(s1) + YkV̂

k
g,1(s1)− V π∗

fk,1(s1)− YkV
π∗

g,1 (s1)
)

︸ ︷︷ ︸
(III)

By Lemma 3,

(I) = Õ
(√

d3H4K3/4 + d3H4K1/2
)
.

By Lemma 4,

(II) = Õ
(
K1/4 +

dH6

γ2

)
.

By Lemma 5,

(III) = Õ
(
dH3K3/4 +

H6

γ2
K1/4 +

dH5

γ

)
.

Thus, we have the following regret upper bound.

Regret(K) = Õ
(√

d3H4K3/4 + dH3K3/4 + d3H4K1/2 +
H6

γ2
K1/4 +

dH6

γ2

)
.

Next, we show the violation upper bound. If constraint violation is 0, the statement is trivial. Other-
wise, we decompose it as

Violation(K) ≤
K∑

k=1

(
V πk

g,1 (s1)− V̂ k
g,1(s1)

)
︸ ︷︷ ︸

(IV)

+

K∑
k=1

(
V̂ k
g,1(s1)− b

)
︸ ︷︷ ︸

(V)

.

By Lemma 3,

(IV) = Õ
(√

d3H4K3/4 + d3H4K1/2
)
.

By Lemma 6,

(V) = Õ
(
dH5

γ
K3/4 +

H4

γ
K1/4

)
.

Thus, we have the following violation upper bound.

Violation(K) = Õ
(
dH5

γ
K3/4 +

√
d3H4K3/4 + d3H4K1/2

)
.

K AUXILIARY LEMMAS

Lemma 21. Let c > 0. For x ∈ [c,∞)d, let log x = (log x1, . . . , log xd)
⊤. For any x, y ∈ [c,∞)d,

we have

∥log x− log y∥∞≤
1

c
∥x− y∥1
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Proof. Fix x, y ∈ [c,∞)d and i ∈ {1, . . . , d}. Consider the scalar function pi : [0, 1] → R defined
as

pi(t) := log(yi + t(xi − yi)).
Since [c,∞)d is convex, we have yi + t(xi − yi) ≥ min{xi, yi} ≥ c for all t ∈ [0, 1], so pi is
continuously differentiable and

p′i(t) =
xi − yi

yi + t(xi − yi)
.

Hence, for all t ∈ [0, 1],

|p′i(t)| =
|xi − yi|

yi + t(xi − yi)
≤ |xi − yi|

c
.

By the fundamental theorem of calculus,

|log xi − log yi| = |pi(1)− pi(0)| = |
∫ 1

0

p′i(t) dt| ≤
∫ 1

0

|p′i(t)| dt ≤
|xi − yi|

c
.

Taking the maximum over i and using ∥z∥∞≤ ∥z∥1 for all z ∈ Rd yields

∥log x− log y∥∞= max
1≤i≤d

|log xi − log yi|≤
1

c
max
1≤i≤d

|xi − yi|≤
1

c

d∑
i=1

|xi − yi|=
1

c
∥x− y∥1.

Lemma 22. Let π̂k
h : S → ∆(A) be any policies. For θ ∈ [0, 1], let π̃k

h(·|s) = (1 − θ)π̂k
h(·|s) +

θπunif(·|s). For Q̂k
f,h, Q̂

k
g,h : S × A → [−2H, 2H], Yk ∈ R+, and α > 0, let π̂k+1(· | s) ∝ π̃k(· |

s) exp(−α(Q̂k
f,h(s, ·) + YkQ̂

k
g,h(s, ·)). For any s ∈ S, we have

1. ∥π̂k+1
h (· | s)− π̃k

h(· | s)∥1≤ 2αH(1 + Yk),

2.
∣∣∣⟨π̂k+1

h (·|s)− π̂k
h(·|s), Q̂k

g,h(s, ·)⟩
∣∣∣ ≤ 4αH2(1 + Yk) + 4θH.

3. ⟨π̂k
h(·|s)− π̂

k+1
h (·|s), Q̂k

f,h(s, ·)⟩ − 1
αD(π̂k+1

h (·|s)||π̃k
h(·|s)) ≤ 2αH2 + 4Hθ.

Proof. (Proof of the first statement) We show the first statement. Given s ∈ S, we omit (· | s) in
notation for simplicity. Note that π̂k+1

h can be viewed as an optimal solution for minπ ⟨π, Q̂k
f,h +

YkQ̂
k
g,h⟩+ (1/α)D(π||π̃k

h). Due to the pushback lemma (Lemma 23), by taking z = π̃k,

⟨π̂k+1
h , Q̂k

f,h + YkQ̂
k
g,h⟩+

1

α
D(π̂k+1

h ||π̃k
h) ≤ ⟨π̃k

h, Q̂
k
f,h + YkQ̂

k
g,h⟩+

1

α
D(π̃k

h||π̃k
h)−

1

α
D(π̃k

h||π̂k+1
h ).

Note that D(π̃k
h||π̃k

h) = 0. This can be rewritten as

1

α
D(π̂k+1

h ||π̃k
h) +

1

α
D(π̃k

h||π̂k+1
h ) ≤ ⟨π̃k

h − π̂k+1
h , Q̂k

f,h + YkQ̂
k
g,h⟩.

To lower bound the left-hand side, Pinsker’s inequality implies that

1

2
∥π̂k+1

h − π̃k
h∥21≤ D(π̂k+1

h ||π̃k
h),

1

2
∥π̂k+1

h − π̃k
h∥21≤ D(π̃k

h||π̂k+1
h ).

To upper bound the right-hand side, Hölder’s inequality implies that

⟨π̃k
h − π̂k+1

h , Q̂k
f,h + YkQ̂

k
g,h⟩ ≤ ∥π̃k

h − π̂k+1
h ∥1∥Q̂k

f,h + YkQ̂
k
g,h∥∞.

As a result, we deduce that

1

α
∥π̂k+1

h − π̃k
h∥21≤ ∥π̃k

h − π̂k+1
h ∥1∥Q̂k

f,h + YkQ̂
k
g,h∥∞.
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If ∥π̂k+1
h − π̃k

h∥1= 0, then the statement is trivial. Otherwise, it follows that

∥π̂k+1
h − π̃k

h∥1≤ α∥Q̂k
f,h + YkQ̂

k
g,h∥∞.

Since ∥Q̂k
f,h∥∞, ∥Q̂k

g,h∥∞≤ 2H and Yk ≥ 0, we have

∥π̂k+1
h − π̃k

h∥1≤ 2αH(1 + Yk).

(Proof of the second statement) Now, we show the second statement. By Hölder’s inequality and
the triangle inequality,∣∣∣⟨π̂k+1

h − π̂k
h, Q̂

k
g,h⟩
∣∣∣ ≤ ∥π̂k+1

h − π̂k
h∥1∥Q̂k

g,h∥∞≤ ∥π̂k+1
h − π̃k

h∥1∥Q̂k
g,h∥∞+∥π̃k

h − π̂k
h∥1∥Q̂k

g,h∥∞.

By the first statement,

∥π̂k+1
h − π̃k

h∥1≤ α∥Q̂k
f,h(s, ·) + YkQ̂

k
g,h(s, ·)∥∞.

Furthermore, we have

∥π̃k
h − π̂k

h∥1= ∥(1− θ)π̂k
h + θπunif − π̂k

h∥1= θ∥−π̂k
h + πunif∥1≤ 2θ.

Finally, we have∣∣∣⟨π̂k+1
h − π̂k

h, Q̂
k
g,h⟩
∣∣∣ ≤ α∥Q̂k

f,h(s, ·) + YkQ̂
k
g,h(s, ·)∥∞∥Q̂k

g,h∥∞+2θ∥Q̂k
g,h∥∞.

Since ∥Q̂k
f,h∥∞, ∥Q̂k

g,h∥∞≤ 2H and Yk ≥ 0,∣∣∣⟨π̂k+1
h − π̂k

h, Q̂
k
g,h⟩
∣∣∣ ≤ 4αH2(1 + Yk) + 4θH.

(Proof of the third statement) Note that

⟨π̂k
h − π̂k+1

h , Q̂k
f,h⟩ −

1

α
D(π̂k+1

h ||π̃k
h) ≤ ∥π̂k+1

h − π̂k
h∥1∥Q̂k

f,h∥∞−
1

2α
∥π̂k+1

h − π̃k
h∥21

≤ 2H∥π̂k+1
h − π̂k

h∥1−
1

2α
∥π̂k+1

h − π̃k
h∥21

≤ 2H∥π̂k+1
h − π̃k

h∥1−
1

2α
∥π̂k+1

h − π̃k
h∥21+2H∥π̃k

h − π̂k
h∥1

≤ 2αH2 + 2H∥π̂k
h − π̃k

h∥1
where the first inequality is due to Hölder’s inequality and Pinsker’s inequality, the third inequality is
due to the triangle inequality, and the last inequality follows from the fact that−ax2+bx ≤ b2/(4a)
for a, b, x > 0, i.e., a = 1/(2α), b = 2H, x = ∥π̂k+1

h − π̃k
h∥1. The following is true.

∥π̂k
h − π̃k

h∥1≤ θ∥π̂k
h − πunif∥1≤ θ(∥π̂k

h∥1+∥πunif∥1) ≤ 2θ.

Finally, we have

⟨π̂k
h − π̂k+1

h , Q̂k
f,h⟩ −

1

α
D(π̂k+1

h ||π̃k
h) ≤ 2αH2 + 4Hθ

as desired.

Lemma 23 (Lemma 1 of Wei et al. (2020), Lemma C.3 of Qiu et al. (2020) ). Let ∆, int(∆) be
the probability simplex and its interior, respectively, and let f : C → R be a convex function. Fix
α > 0, y ∈ int(∆). Suppose x∗ ∈ argminx∈∆ f(x) + (1/α)D(x||y) and x∗ ∈ int(∆), then, for
any z ∈ ∆,

f(x∗) +
1

α
D(x∗||y) ≤ f(z) + 1

α
D(z||y)− 1

α
D(z||x∗).

Lemma 24 (Lemma 33 of Kitamura et al. (2025)). Let Q1, Q2 : A → R be two functions. For
α > 0, let π1 ∝ exp(αQ1), π2 ∝ exp(αQ2). Then we have

∥π1 − π2∥1≤ 8α∥Q1 −Q2∥∞.
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Lemma 25 (Lemma 5 of Yu et al. (2017)). Let {Zn}n≥0 be a discrete time stochastic process
adapted to a filtration {Fn}n≥0 with Z0 = 0 and F0 = {∅,Ω}. Suppose that there exists an integer
n0 > 0, real constants ρ > 0, δmax > 0, and 0 < ζ ≤ δmax such that

|Zn+1 − Zn|≤ δmax,

E[Zn+n0
− Zn | Fn] ≤

{
n0δmax, if Zn < ρ

−n0ζ, if Zn ≥ ρ

hold for all n ∈ {1, 2, . . .}. Then the following holds:

E[Zn] ≤ ρ+ n0δmax + n0
4δ2max

ζ
log

8δ2max

ζ2
, ∀n ∈ {1, 2, . . .}.

Moreover, with probability at least 1− δ,

Zn ≤ ρ+ n0δmax + n0
4δ2max

ζ
log

8δ2max

ζ2
+ n0

4δ2max

ζ
log

1

δ
∀n ∈ {1, 2, . . .}.

Lemma 26 (Lemma 31 of Wei et al. (2020)). Let π1, π2 be two probability distributions in ∆(A).
Let π̃2 = (1− θ)π2 + θ/|A| where θ ∈ (0, 1). Then,

D(π1∥π̃2)−D(π1∥π2) ≤ θ log|A|, D(π1∥π̃2) ≤ log(|A|/θ).

Lemma 27 (Lemma 24 of Cassel & Rosenberg (2024)). Let V = {V (·; θ) : ∥θ∥≤ W} denote a
class of functions V : S → R. Suppose that any V ∈ V is L-Lipschitz with respect to θ and the
supremum distance, i.e.,

∥V (·; θ1)− V (·; θ2)∥∞≤ L∥θ1 − θ2∥1, ∥θ1∥2, ∥θ2∥2≤W.

Let Nϵ be the ϵ-covering number of V with respect to the supremum distance. Then

logNϵ ≤ d log(1 + 2WL/ϵ).

Lemma 28 (Lemma 18 of Cassel & Rosenberg (2024)). For any K ≥ 1, β > 0, we have that

max
y≥0

[y · σ(−βy + logK)] ≤ 2 logK

β
.

Lemma 29 (Lemma D.4 of Rosenberg et al. (2020)). Let {Xt}t≥1 be a sequence of random vari-
ables with expectation adapted to a filtration Ft. Suppose that 0 ≤ Xt ≤ C almost surely. Then
with probability at least 1− δ,

T∑
t=1

E[Xt | Ft−1] ≤ 2

T∑
t=1

Xt + 4C log
2T

δ
.

Lemma 30 (Lemma 21 of Cassel & Rosenberg (2024)). Let θ̂kg,h be as in line 14 of Algorithm 1.
With probability at least 1− δ, for all k ≥ 1, h ∈ [H],

∥θg,h − θ̂kg,h∥Λk
h
≤ 2
√

2d log(2KH/δ).

Lemma 31 (Lemma 22 of Cassel & Rosenberg (2024)). Let ψ̂k
h : R|S| → Rd be the linear operator

defined in line 16 of Algorithm 1. For all h ∈ [H], let V̂h ⊂ R|S| be a set of mappings V̂ : S → R
such that ∥V̂ ∥∞≤ βQ and βQ ≥ 1. With probability at least 1− δ, for all h ∈ [H], V̂ ∈ V̂h+1, and
k ≥ 1,

∥(ψh − ψ̂k
h)V̂ ∥Λk

h
≤ 4βQ

√
d log(K + 1) + 2 log(HNϵ/δ),

where ϵ ≤ β
√
d/(2K), Nϵ =

∑
h∈[H]Nϵ(V̂h), and Nϵ(V̂h) is the ϵ-covering number of V̂h with

respect to the ℓ∞-norm.
Lemma 32 (Lemma 17 of Cassel & Rosenberg (2024)). For any λ > 0 and matrices Λ,Λ′ ∈ Rd×d

satisfying Λ,Λ′ ⪰ λI , we have that

∥Λ1/2 − (Λ′)1/2∥2≤
1

2
√
λ
∥Λ− Λ′∥2.
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Lemma 33 (Lemma 3 of Cassel & Rosenberg (2024)). For any e ∈ [E] and v ∈ Rd, we have that(
ϕ(sh, ah)− ϕ̄ke

h (sh, ah)
)⊤

v ≤
(
4β2

w∥ϕ(sh, ah)∥2(Λk
h)

−1+2K−1
) ∣∣ϕ(sh, ah)⊤v∣∣ .

Lemma 34 (Lemma 8 of Cassel & Rosenberg (2024)). The number of epochs |E| is bounded by
(3/2)dH log(2K).

Lemma 35 (Lemma 12 of Abbasi-Yadkori et al. (2011)). Let A,B,C be positive semi-definite
matrices such that A = B + C. Then, we have that

sup
x ̸=0

x⊤Ax

x⊤Bx
≤ det(A)

det(B)
.

Lemma 36 (Lemma D.2 of Jin et al. (2020)). Let {ϕt}t≥0 be a bounded sequence in Rd satisfying
supt≥0∥ϕt∥≤ 1. Let Λ0 ∈ Rd×d be a positive definite matrix. For any t ≥ 0, define

Λt = Λ0 +

t∑
j=1

ϕjϕ
⊤
j .

Then, if the smallest eigenvalue of Λ0 satisfies λmin(Λ0) ≥ 1, we have

log

[
det(Λt)

det(Λ0)

]
≤

t∑
j=1

ϕ⊤j Λ
−1
j−1ϕj ≤ 2 log

[
det(Λt)

det(Λ0)

]
.

L NUMERICAL EXPERIMENT

We evaluate Algorithm 1 on a finite-horizon job-scheduling CMDP closely following the setup of
Ghosh et al. (2022) with modifications to incorporate adversarial losses. The number of episodes
and the horizon are set to K = 100,000 and H = 10, respectively, and the state space is S =
{0, 1, . . . , 9}. At step h, sh denotes the number of remaining jobs in the stack, and each episode
begins with the initial state s1 = 9. The agent chooses ah ∈ A = {0, 1}, where ah = 1 corresponds
to processing the current job and ah = 0 corresponds to idling. Specifically, if ah = 1, then
sh+1 = max{sh − 2, 0} with probability 0.8, sh+1 = max{sh − 1, 0} with probability 0.1, and
sh+1 = sh otherwise. If ah = 0, then sh+1 = sh.

The loss and cost functions are defined as follows. To simulate an adversarial setting, in each episode
k, the loss is chosen between two functions, f (1) and f (2), with probabilities 0.9− (k− 1)/(K− 1)
and 0.1 + (k − 1)/(K − 1), respectively. These functions are defined as

f
(1)
h (ah) =


1 ah = 0,

0.55 ah = 1 and h ∈ {3, 4, 5, 6},
0.2 ah = 1 and h /∈ {3, 4, 5, 6},

f
(2)
h (ah) =


1 ah = 0,

0.6 ah = 1 and h ∈ {4, 5, 6},
0.2 ah = 1 and h /∈ {4, 5, 6}.

The cost is defined as gh(sh, ah, sh+1) = 1− (sh − sh+1)/2 for all h, and the cost budget is set to
b = 5.6.

Figure 1 summarizes the results of running Algorithm 1 for K = 100,000 episodes. To promote
learning, we set the parameters as α = 0.1, βb = K1/4, and βw = βb logK, while keeping the
other parameters same as in the setup of Algorithm 1. As shown in Figure 1a, the regret grows sub-
linearly in K, despite the fact that the losses are not sampled from a fixed distribution. Furthermore,
Figure 1b shows that while the constraint violation grows rapidly in the early phase, it eventually
converges to 0 approximately after episode 45,000. These results support our main claim that both
regret and constraint violation are bounded by sublinear terms.

M THE USE OF LARGE LANGUAGE MODELS

Portions of the text were polished using ChatGPT-5, which was employed for grammar checking
and sentence refinement.
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