Under review as a conference paper at ICLR 2025

ROBOTIC PROGRAMMER: VIDEO INSTRUCTED POLICY
CODE GENERATION FOR ROBOTIC MANIPULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Zero-shot generalization across various robots, tasks and environments remains
a significant challenge in robotic manipulation. Policy code generation methods
use executable code to connect high-level task descriptions and low-level action
sequences, leveraging the generalization capabilities of large language models and
atomic skill libraries. In this work, we propose Robotic Programmer (RoboPro), a
robotic foundation model, enabling the capability of perceiving visual information
and following free-form instructions to perform robotic manipulation with policy
code in a zero-shot manner. To address low efficiency and high cost in collecting
runtime code data for robotic tasks, we devise Video2Code to synthesize executable
code from extensive videos in-the-wild with off-the-shelf vision-language model
and code-domain large language model. Extensive experiments show that RoboPro
achieves the state-of-the-art zero-shot performance on robotic manipulation in both
simulators and real-world environments. Specifically, the zero-shot success rate
of RoboPro on RLBench surpasses the state-of-the-art model GPT-40 by 11.6%,
which is even comparable to a strong supervised training baseline. Furthermore,
RoboPro is robust to different robotic configurations, and demonstrates broad visual
understanding in general VQA tasks.

1 INTRODUCTION

A long-term goal of embodied intelligence research is to develop a single model capable of solving
any task defined by the user. Recent years have witnessed a trend towards large-scale foundation
models on natural language processing tasks (Achiam et al., 2023 Touvron et al.| |2023). Scaling
up these language models in terms of model size and training tokens significantly improves the
few-shot performance on a range of end tasks, even achieving performance comparable to previous
state-of-the-art fine-tuning methods. However, for robotic tasks, we have yet to see large-scale
pre-trained models that can directly transfer across different robots, tasks and environments without
additional fine-tuning.

To improve the zero-shot generalization ability of robotic models, one common approach is to unify
different tasks as the next action prediction. This paradigm requires the model to directly generate
low-level action sequences. |[Brohan et al.| (2023al); [Padalkar et al.| (2023)); Kim et al.|(2024); Niu et al.
(2024) collected large amount of trajectories across various robots, tasks and environments. They
trained vision-language-action (VLA) models derived from LLMs to map images and task instructions
into discrete action tokens. Despite these models achieve better performance and show the capacity
to transfer on novel objects and different tasks, fine-tuning is still required when deploying on new
robots and environments. Besides, it is extremely expensive to collect trajectories through real-world
robots, while using human-built simulators often leads to lack of diversity and introduces additional
gap between simulation platform and real-world usages.

Another line of research aims to use code as compromise solution for bridging high-level instructions
and low-level robot execution, leveraging the generalization capabilities of Large Language Models
(LLMs) and atomic skill libraries. RoboCodeX (Mu et al.,2024) utilizes large vision-language model
(VLM) to generate tree-of-thought plans and grasp preference. However, it also relies on manually-
built simulation environment and human-annotated code for data curation, which is expensive and
not friendly for scaling up in terms of training data.

Under review as a conference paper at ICLR 2025

“sweep dirt to the “stack 2 marron “open the top “push the navy “screw in the silver
tall dustpan” blocks” drawer” button” light bulb”

“put the white mug on the ~ “pick up the book and “turn on the stove and “put both the cream “close the top drawer
left plate and put...” place it in the back...” put the moka pot on it” cheese box and...” of the cabinet”

| i

()

“wipe the desk” “say yes” “stack the other block ~ “put the watermelon into “put both the carrot and the
on the yellow block” the basket and the bread...” watermelon into the basket”

Figure 1: Visualization of evaluation tasks and execution results. RoboPro shows impressive zero-shot
performance on novel and compositional tasks in RLBench (a), long-termed manipulation tasks in
LIBERO (b), and real-world tasks (c). Video demos can be found in our supplementary materials.

In this work, we introduce Robotic Programmer (RoboPro), a robotic foundation model, enabling
the capability of perceiving visual information and following free-form user instructions to perform
manipulation tasks without additional fine-tuning. RoboPro generates the executable code to connect
high-level instructions and low-level action sequences. To address low efficiency and high cost in
collecting runtime code data for robotic tasks, we devise Video2Code, an automatic data curation
pipeline for multimodal code generation.

We draw our inspiration from the extensive amount of operational videos in-the-wild that implicitly
contain necessary procedural knowledge about how to finish operational tasks. Previous research
has focused on utilizing videos for large-scale supervised learning (Brohan et al., [2023a} [Kim|
let al., [2024; Niu et al.| [2024) or extracting relevant knowledge (e.g., affordance (Bahl et al.| 2023)),
while extracting executable policy code from videos is still under-explored. Our data curation
pipeline uses the off-the-shelf VLM and Code LLM to synthesize code execution data from videos,
which is much more efficient and scalable compared with generating code data from manually-built
simulation environments. With Video2Code, we synthesize 115k robot execution code data along
with the corresponding scene information and task descriptions from DROID
[2024). Extensive experiments (examples depicted in Figure[T)) show that RoboPro achieves the state-
of-the-art zero-shot performance on robotic manipulation tasks in both simulators and real-world
environments. Specifically, the zero-shot success rate of RoboPro on RLBench outperforms the
state-of-the-art model GPT-40 by a gain of 11.6%. It is even comparable to a strong supervised
training method PerAct (Shridhar et al., 2023)). Furthermore, RoboPro is robust to different robotic
configurations, and shows broad visual understanding on general VQA tasks.

2 RELATED WORKS

Language-guided robot manipulation. Language-conditioned robot manipulation refers to the
use of natural language instructions to guide robotic actions. Natural language instructions allow
non-experts to interact with robots through intuitive commands and enable robots to generalize to

various tasks based on natural language input (Winograd, [1971). Recent advancements in language-
conditioned embodied agents have leveraged Transformers (Vaswani et al.}[2017) to enhance perfor-

Under review as a conference paper at ICLR 2025

mance on multi-task settings. One category of recent approaches is language-conditioned behavior
cloning (BC), where models learn to mimic demonstrated language-conditioned actions and output
dense action sequences directly. 3D BC methods (Shridhar et al., [2023; [Zhang et al., [2024) trained
from scratch perform well on specific environment, while lacking of generalization ability across
environments. Vision-language-action (VLA) models (Brohan et al., [2023a}; [Kim et al.| 2024} [Niu
et al.l 2024) built on pre-trained large language models (LLMSs) show capacity to transfer on novel
objects and task settings, but need additional fine-tuning when being deployed on new environments
and robots. Another line is to create high-level planners based on LLMs (Huang et al.,2022; Brohan
et al.,2023b; |Driess et al.,2023; |Huang et al., |2023c)), which output step-by-step natural language
plans according to human instructions and environmental information. These methods show better
generalization ability across environments, leveraging the reasoning and generalization ability of
LLMs on language instructions and environments. However, there is still a gap between generated
natural language plans and low-level robotic execution, requiring an extra step to score potential
actions or decompose plans into relevant policies (Singh et al., [2023)).

Robot-centric policy code generation. Code-as-Policies (Liang et al.,|2023) proposes that exe-
cutable code can serve as a more expressive way to bridge high-level task descriptions and low-level
execution. Atomic skills to perceive 3D environments and plan primitive tasks are provided in prede-
fined API libraries. LLMs process textual inputs and generate executable policy code conditioned on
the API libraries (Liang et al., 2023} |Huang et al.| 2023ajb; Xu et al., [2023; [Vemprala et al., [2024;
Singh et al.| 2023)). RoboScript (Chen et al.| 2024)) further suggests that unified interface facilitates
LLM’s adaptability across different environments and hardware platforms. However, these methods
rely solely on linguistic inputs, requiring detailed descriptions of environments and instructions as
textual inputs, which limits their generalization and visual reasoning ability across environments.
RoboCodeX (Mu et al., 2024) utilizes large vision-language model (VLM) to decompose multimodal
information into object-centric units in a tree-of-thought format. Nevertheless, it relies on manually-
built simulation environments and human-annotated data, which lacks environmental richness and is
expensive for scaling up. Different from previous works using language-only LLMs, RoboPro enables
visual reasoning ability and follows free-form instructions in a zero-shot manner. Furthermore, an
automatic and scalable data curation pipeline Video2Code is developed to synthesize runtime code
data from extensive videos in-the-wild in a quite efficient and low-cost fashion.

3 METHOD

3.1 PROBLEM STATEMENT

We consider language-guided robotic manipulation where each task is described with a free-form
language instruction /. Given RGBD data from the wrist camera as the observation space O, and
robot low-dimension state s; (e.g., gripper pose at current time t), the central problem investigated
in this work is how to generate motion trajectories 7', where T' denotes a sequence of end-effector
waypoints to be executed by an Operational Space Controller (Khatibj |1987). However, generating
dense motion trajectories at once according to the free-form instruction [is quite challenging, as
can be arbitrarily long-horizon and would require comprehensive contextual understanding. Policy
code generation methods map long-horizon instructions to a diverse set of atomic skills, leading
to rapid adaptation capabilities across various robotic platforms. With comprehensive contextual
understanding and advanced visual grounding capabilities, large vision-language models can function
as intelligent planners, translating the task execution process into generated programs due to their
robust emergent capabilities.

To prompt vision-language models (VLMs) to generate policy code, we assume a set of parameterized
skills with unified interface, which is defined as the API library Lap;. Lap; can be categorized into
perception module Ly, and control module L., based on the API’s role in task execution process.
Lyper is tasked with segmenting the task-relevant part point cloud II; and predicting the physical
property ¢ of relevant objects, while L., predicts the contact pose of the gripper and generates the
motion trajectory 7" based on the output of Ly, and the current robot state s;:

LAPI :{Lpera Lcon}
{H1a¢l} :Lper(Otal) (1)
T= LCOn(Sta {Hh ¢I})

Under review as a conference paper at ICLR 2025

Stage 1: Plan Extraction
EEEEnNSSEEEREN

4. 00040 44

EEEEESESESESESEESEEEEEEEEEEEER
Instruction: “Stack the cups together”

v
a0
=
i

By

Natural Language Plan

Draft

Instruction

Step1: Pick the red cup

VLM

Step2: Place the red cup on top of the blue cup

Step3: Pick the yellow cup

Demonstration

y

Stage 2: Policy Code Generation

Executable Code

Get bounding boxes of the cups
blue_bbox=get_obj_bbox('blue cup’)[0]
yellow_bbox=get_obj_bbox('yellow cup’)[0]
red_bbox=get_obj_bbox(red cup’)[0]

Get best grasp poses for the cups
red_cup_grasp_pose=get_best _grasp_pos(red_bbox)
yellow_cup_grasp_pose = get_best_grasp_pos(yellow_bbox
#Place pose for the red cup on the blue cup
blue_cup_place_pose =get _place _pos(blue_bbox)

Pick up the red cup

move_to_pose(red_cup_grasp_pose)

&

Code LLM
Perception Control
Modules Modules

def get_obj_bbox()
def get_joint_axis()
def plane_norm()

def get_place_pos()
def get_press_path()

def move_to_pose()
def rotate() &

close_gripper() 7 A °
API Library

Figure 2: The data curation pipeline of Video2Code. We first use the Draft VLM to extract a brief
natural language plan for execution of the user instruction. After that, the Code LLM generates
robot-centric code using the provided API library and natural language plan from the first stage.

With the visual observation and the language instruction, VLMs generate executable policy code
{mi, pz} , conditioned on the API library Lap;, where 7; denotes the i-th Lpe or Lo, calls and p;
represents corresponding parameters for API calls. Each API call generates a sub-trajectory sequence
7; of arbitrary length (the length is > 0). All sub-trajectory sequences {7; }Y ; are then concatenated
to form the final complete motion trajectory 7'. The whole generation process is formulated as:

(0n. 1) 22 {mi i}l = {mil @)
Explainable API calls generated by VLMs connect the observation and high-level instructions to low-
level execution, enabling the capacity of zero-shot generalization in free-form language instructions
and across different environments. Obviously, training such VLMs to perceive environments, follow
instructions and generate executable code will inevitably require a vast amount of diverse and
well-aligned robot-centric multimodal runtime code data, which poses a significant challenge.

3.2 VIDEO2CODE: SYNTHESIZE ROBOTIC RUNTIME CODE FROM VIDEOS

Videos are widely available raw data sources for runtime code data synthesis. Extensive operational
videos naturally provide low-level details of performing tasks such as "how fo pour tea into a cup”,
which inherently contain necessary procedural knowledge for runtime code data. Despite their
favorable diversity and considerable quantity, it is still an under-explored and challenging problem
how to collect executable policy code from demonstration videos efficiently. To this end, we devise
Video2Code, a low-cost and automatic data curation pipeline to synthesize high-quality runtime
code data from videos in an efficient way. Although open-source or lightweight vision-language
models exhibit promising performance on video understanding tasks, a performance gap remains
when compared to code-domain large language models in handling complex code generation tasks.

Under review as a conference paper at ICLR 2025

]

l(‘ \
RoboPro desk_bbox = get_obj_bbox("desk")[0]
o)/ OO0 sponge_bbox = get_obj_bbox("sponge”)[0]

grasp_pose_sponge =

get_best grasp_pos(sponge_bbox)

move to_pose(grasp_pose_sponge)
close_gripper()

wipe_path = generate_wipe_path("desk")

CodeQwen-1.5 7B

Input Image -
t ot tot 1 t 1 tot t follow_way(wipe_path)
“Wipe the desk” MLP Adapter Tokenizer RRERIGUEEE) Policy Code

- SigLIP B A ‘

Language Instruction f Prefix You're a vision language model ! -
1 controlling a gripper ..., You have access
Perception ontrc | to the following tools: i

Modules M(?dules

\ {API Library}

J | Suffix Rules you have to follow: ...
| Instruction Begin to execute the task:
| #Instruction: {Instruction}

API Library Robot Execution Sequence

Figure 3: The overview of RoboPro. RoboPro utilizes environmental observation and natural language
instruction as multimodal input, then outputs executable policy code. Extendable API library plays a
role in mapping policy code into low-level execution sequences.

As depicted in Figure[2] to combine the visual reasoning ability of VLM and coding proficiency of
code-domain LLM, Video2Code adopts a two-stage strategy.

Plan extraction. The first stage is to extract robot-centric plans in natural language from in-
structional videos. These instructional videos are filtered from DROID (Khazatsky et al.,[2024), a
large-scale robot manipulation dataset with 350 hours of interaction data across 564 scenes, 86 tasks,
and 52 buildings. We extract 50k independent instructional videos with at least one free-form human
instruction and further clip each video into 16 key frames. After that, we use Gemini-1.5-Flash
as the Draft VLM to generate a brief list of actions for human instruction with these key
frames as reference. As shown in Figure[2] the Draft VLM generates a step-by-step robot-centric
plan from an instructional video to "stack the cups together". The generated natural language plans
contain knowledge and habit of human to follow free-form embodied instructions, and key visual
information is extracted automatically from the instructional video.

Policy code generation. After plan extraction, we use Code LLM DeepSeek-Coder-V2
[2024) to "translate" these natural language plans into executable code. A complete prompt fed into
the Code LLM includes API definitions, the natural language plan, and auxiliary part containing rules
to follow. In the API definitions part, parameterized API functions are classified into two categories
as formulated in Sec. @ perception module, and control module. For each of these API functions,
we provide API definitions and descriptions to demonstrate their usage. Auxiliary part contains prefix,
third party tools, and rules to follow, similar to previous practices in RoboCodeX 2024).
Natural language plans accompanied with original human instructions are attached at the end of the
prompt. As shown in Figure[2] step-by-step decomposed natural language plan guides the Code LLM
to generate high-quality policy code in a Chain-of-Thought format. As for API implementation, we
use GroundingDINO 2023) and AnyGrasp [2023) to get the bounding boxes and
grasp preferences, respectively. Besides, we provide heuristic implementation for compositional skills.
We finally collect 115k runtime code data with task descriptions and environmental observations
using Video2Code for supervised fine-tuning.

3.3 ROBOPRO: ROBOTIC FOUNDATION MODEL

Model architecture. As shown in Figure[3] RoboPro has a vision encoder and a pre-trained LLM.
They are connected with a lightweight adaptor layer consisting of a two-layer MLP. Specifically, the
vision backbone first encodes the image into a sequence of visual tokens. After that, the lightweight
adaptor is designed to project visual tokens onto embedding space of the LLM. In addition, we
provide the API definitions and the user instruction as the text inputs. The visual and text tokens are
directly concatenated and then fed into the LLM, as similarly done in (2024b). The LLM
are trained to generate the runtime code based on the visual inputs and task description.

Under review as a conference paper at ICLR 2025

RoboPro is designed to reason on multimodal inputs and generate executable policy code for robotic
manipulation. Thus, two key factors for the choice of its components are the ability of visual
reasoning and the quality of policy code generation. RoboPro adopts SigLIP-L (Zhai et al.| [2023)
as the vision encoder, which yields favorable performance on general visual reasoning tasks. For
the base LLM, a code-domain LLM, CodeQwen-1.5 (Bai et al.| [2023)), is utilized, which shows
state-of-the-art performance among open-source code models. The model architecture and working
process of RoboPro are illustrated in Figure 3]

Training. The training procedure of RoboPro consists of three stages: visual alignment, pre-training,
and supervised fine-tuning (SFT). We first train a lightweight adaptor layer while freezing the vision
encoder and LLM with LLaVA-Pretrain (Liu et al.l [2024b). Then we pre-train the lightweight
adaptor and the LLM on a corpus of high-quality image-text pairs (Chen et al.,[2023). For supervised
fine-tuning, the 115k runtime code data generated by Video2Code (as noted in Sec. [3.2)) are used. To
avoid overfitting and enhance visual reasoning ability, a general vision language fine-tuning dataset
(LLaVA-1.5 (Liu et al., 2024b))) is also involved during the SFT process. Thus, RoboPro is trained to
follow free-form language instructions and perceive visual information to generate executable policy
code for robotic manipulation. Meanwhile, it exhibits broad visual understanding to perform general
VQA tasks. Our code and model will be released to the public.

4 EXPERIMENTS

4.1 ZERO-SHOT ROBOTIC MANIPULATION

Setup. Following PerAct (Shridhar et al., [2023)), we select 9 tasks with the requirement of novel
instruction understanding or long-horizon reasoning in RLBench (James et al., 2020) for evaluation.
Each task is evaluated with 25 episodes scored either 0 or 100 for failure or success in task execution.
Detailed experiment settings and task information in RLBench can be found in Appendix [A.T]

Baselines. The baselines can be categorized into two groups. One common approach requires super-
vised training on the simulation platform, e.g., behavior cloning methods, including PerAct (Shridhar
et al.,|2023) and LLARVA (Niu et al.,2024). They are either trained from scratch or fine-tuned with
hundreds of episodes from RLBench. PerAct is trained on 100 episodes, and LLARVA is fine-tuned
on 800 episodes per task in RLBench. The methods from another group do not require additional
training. They first output robot-centric policy code, then execute it with provided APIs. We evaluate
their zero-shot performance on RLBench. CaP (Liang et al.,[2023)) equips large language model with
the ground-truth textual scene descriptions, containing object names, attributes, and instructions, to
generate executable code. Following their paper, we implement CaP with GPT-3.5-Turbo (gpt-3.5-
turbo-0125). GPT-40 (OpenAll (2024), gpt-40-2024-05-13) is the state-of-the-art multimodal model
for various vision-language tasks. For RoboPro and GPT-40, we require the model to directly generate
the executable code given the image from the wrist camera, user instructions and API definitions. We
also analyze the generalization ability of RoboPro on the formation of API libraries, which is further
elaborated in Sec.[d.2] For a fair comparison, we adopt the same API library for these methods (i.e.,
CaP, GPT-40, and RoboPro). Our API library shares similar design formulation as RoboCodeX (Mu
et al., 2024 with detailed implementation in Appendix

Results. We report the average success rate on 25

episodes for each task. As shown in Table(l} the zero- Success Logical Error = Grounding Error
shot result of RoboPro surpasses language-only pol- Functional Error_ Execution Error

. . . oboPro

icy code generation method (CaP) by 19.1%. Besides, GPT-40
our model significantly outperforms the state-of-the- CaP : ‘ ‘ ‘
art VLM GPT-40 by 11.6% on average success rate. R N
More importantly, the zero-shot success rate of Robo-

Pro is even comparable with a strong behavior-cloning ~ Figure 4: Error breakdown on RLBench.
baseline PerAct that requires supervised training. It

demonstrates the effectiveness of our model for manipulation tasks. To thoroughly analyze the factors

'RoboCodeX was not compared in our experiments as this work has not released its model checkpoints and
its original evaluations were not conducted on publicly available simulation platforms.

Under review as a conference paper at ICLR 2025

Table 1: Success rate (%) on RLBench Multi-Task setting. Methods greyed on need supervised
training on the simulation platform.

Push Stack Open Close Stack Sweep Slide Screw Put in
Buttons Blocks Drawer Jar Cups Dirt Block Bulb Board

Specialists, w/ training on RLBench

Models Avg.

Generalists, w/o training on RLBench

CaP (Liang et al., 2023) 72 4 24 40 O 36 4 20 12 236
GPT-40 (OpenAl,2024) 72 20 56 36 4 40 20 20 12 31.1
RoboPro (ours) 68 48 68 44 4 48 60 32 12 427
w/ API Renaming 68 40 60 448 4 48 68 36 12 427
w/ API Refactoring 68 36 72 44 8 16 8 28 12 404

Table 2: Success rate (%) on 8 tasks in LIBERO. The result of PerAct is a zero-shot transfer from
RLBench to LIBERO.

Turnon Close Putin Putin Putin Place Boil Identify A
Stove Cabinet Sauce Butter Cheese Book Water Plate v

Specialists, RLBench — LIBERO

Models

Generalists

CaP (Liang et al., 2023) 0 37 17 13 7 30 7 7 14.8
GPT-40 (OpenAl, 2024) 37 17 63 43 57 43 17 3 35.0
RoboPro (ours) \ 97 60 67 53 63 43 23 13 524

contributing to the performance gap between different methods, we conducted an error breakdown for
the policy code generation approaches. In the context of policy code generation methods, the success-
ful execution of manipulation tasks relies on both the accuracy of the policy code and the capabilities
of the API library. The main types of errors impacting the quality of robot-centric policy code are
logical errors, functional errors, and grounding errors. These errors are associated with challenges in
the appropriate selection and utility of APIs, as well as issues related to visual grounding. As depicted
in Figure [the results show that all these methods perform well on following functional definition of
API library, causing a low occupancy of functional error. Compared with linguistic only method CaP,
GPT-40 and RoboPro show a noticeable improvement in target object grounding. The main failure
cases of CaP and GPT-4o fall in logical error, including API selection and proper order of API calls.
In contrast, RoboPro effectively reduces this margin, mainly owing to the procedural knowledge about
long-term execution learned in Video2Code. Execution errors maintain a consistent proportional
relationship with successful cases, which result from API limitations rather than inaccuracies in the
policy code. Detailed illustration of error cases can be found at Appendix[A.4]

4.2 ZERO-SHOT GENERALIZATION

In supervised training methods, outstanding performance is often achieved in familiar environments.
However, due to data scarcity, challenges arise in terms of generalizing across different environments
and robot configurations in a zero-shot manner. Different environments mainly introduce variations
in tasks, context, and objects, while robot configurations refer to changes of degrees of freedom,
action spaces in different robotic embodiments. For policy code generation methods, different robot
configurations are mainly reflected in variations in the formats of APIs (e.g. input-output format).
Additionally, users may have their own preferences when customizing API libraries for similar
functions. We believe that a robust policy code generation model should also demonstrate strong

Under review as a conference paper at ICLR 2025

adaptability to these variations. To evaluate the zero-shot generalization ability of RoboPro, we
conduct experiments in two aspects: across different environments and across different API libraries.

Generalization across different environments. We use LIBERO (Liu et al.,[2024a) as an extra
simulator to evaluate the zero-shot generalization across different environments. We choose 8
representative tasks from LIBERO-100 as the evaluation set. Each task is evaluated with 30 episodes.
These tasks include short-horizon tasks which need scene understanding, and long-horizon tasks
which require multi-step implementation. Detailed task descriptions and corresponding examples
can be found in Appendix[A.2] For behavior cloning method PerAct, we evaluate its model trained
on RLBench as described in Sec. .1} which will be tested on LIBERO without further fine-tuning.
For CaP, GPT-40 and RoboPro, we evaluate their zero-shot performance. As reported in Table [2}
PerAct trained on RLBench struggles on the tasks from LIBERO. It indicates that PerAct is difficult
to generalize across different environments without additional fine-tuning. Furthermore, RoboPro
significantly outperforms GPT-40 by a gain of 17.4% average success rate on 8 LIBERO tasks,
which is aligned with the observations from the experiments on RLBench. Compared with GPT-40,
RoboPro executes more accurate sequences of actions to complete various manipulation tasks. For
instance, when given the task "Turn on the stove"”, RoboPro consistently approaches the stove knob,
grasps it, and rotates it clockwise. In contrast, GPT-40 sometimes misinterprets the knob’s affordance,
attempting to press it rather than rotate.

Generalization across different API libraries. The formation and definition of pre-defined API
library is a key factor that affects the performance of general robotic models, since they are usually
deployed across different types of robots. Robustness to the changes of API library implies that
the model can understand and internalize the atomic skills under the API interface. To assess
the generalization of RoboPro under different level of changes in API library, we designed two
representative sets of experiments: the API Renaming set and the API Refactoring set. For renamed
APIs, we only change in their names and keep consistent in functional structure (e.g., the type of
return values and arguments). For refactored APIs, we change in functional structure but keep their
names. Take the control APl "get_best_grasp_pose ()" as an example. In the API Renaming
set, it is renamed as "generate_obj_grasp_pos ()" without changes on functionality, and in
the API Refactoring set, the inputs, outputs and comments are all changed (e.g., the input format
changes from "bbox" to "np.ndarray"). As shown in Table([T] the performance of RoboPro on
RLBench is robust to the changes in API formation. The detailed implementations of renamed and
refactored APIs can be found in Appendix

4.3 REAL-WORLD EXPERIMENTS

To evaluate the performance of RoboPro in real-world
scenarios, we conduct realistic experiments on a Franka Typle 3: The zero-shot success rate of Robo-
Emika robot arm equipped with an Intel RealSense pro across 8 real-world manipulation tasks.
D435i wrist camera. As emphasized in Sec.[3.1] long-

horizon task decomposition and visual understanding Task |#Var #Test Succ. %
capabilities are crucial for zero-shot generalization in

language-guided robotic manipulation. To assess Robo- ~ Move in Direction | = 2 10 80
Pro’s performance in these aspects, we carefully de- ~ Setup Food % 18 98
signed 8 tasks, ranging from short-horizon to long- Distinct Base ! !

. . . Prepare Meal 2 10 60
horizon tasks, as well as tasks that require visual com- Tidy Table 2 10 70
prghensiqn. lior.ins"tance, RoboPro is required to se}ect Express Words 4 10 60
pbject Wlth wipe" affordance frpm the scene given giack on Color 5 10 50
instruction "wipe the desk". Additionally, to rigorously Wipe Desk 2 10 100

validate RoboPro’s generalization capability across dif-
ferent real-world scenarios, we ensure that each task
consists of at least two variations (denoted as "# Var") in terms of object categories and physical
properties (10 tests are run for each task). As shown in Table |3} RoboPro is able to achieve 72.5%
success rate on average among all 8 tasks, which verifies RoboPro’s strong generalization ability in
real-world scenarios without any specific fine-tuning. We also observe RoboPro exhibits impressive
emergent ability in visual reasoning. For example, as depicted in Figure[5] when asked to wipe the

Under review as a conference paper at ICLR 2025

(a) Instruction: say yes (b) Instruction: stack the other block on the red block

.

.

Figure 5: Illustration of execution on visual reasoning tasks in real-world environment. RoboPro
presses buttons to express words (a), stacks object in an appropriate order based on visual properties
(b), and chooses the best tool to wipe the desk (c).

desk, RoboPro will choose the appropriate tool (the sponge) among irrelevant objects, and grasp it to
wipe water on the desk. We also provide detailed real-world setup in Appendix [A.3]

4.4 EVALUATION ON GENERAL VQA TASKS

As mentioned in Sec. 3.3] RoboPro can meanwhile
exhibit broad visual understanding to perform general Taple 4: The zero-shot accuracy of RoboPro
visual question answering. To evaluate this ability, we and the baselines on general VQA tasks.

conduct experiments across a range of general VQA
tasks. We compare RoboPro with InstructBLIP based

v2 T
on Vicuna 7B v1.1 (Dai et al}, 2023), LLaVA-1.5 Models | VQA™ GQA VA
and ShareGPT4V 2023). We InstructBLIP - 492 50.1
evaluate the zero-shot performance of these models on ~ LLaVA-1.5 78.5 62.0 58.2
perception and reasoning tasks with VQAv2 ShareGPT4V | 806 633 604
et al, 2017), GQA (Hudson & Manning} 2019) and RoboPro | 80.9 63.9 62.9

TextVQA (Singh et al., 2019). As shown in Table F]
RoboPro can not only generate executable code for
robotic control, but perform well on multimodal perception and reasoning tasks. The results indi-
cate that our model demonstrates quite competitive performance on general VQA tasks compared
to ShareGPT4YV, which is the state-of-the-art vision-language model with similar model size. Ex-
periments on general VQA tasks further confirm RoboPro’s capability of comprehensive visual
understanding, which is a key factor in its success of manipulation tasks.

4.5 ABLATION STUDY

We conduct extensive ablations to evaluate the effectiveness of Video2Code and the contributions of
individual components in RoboPro and Video2Code framework. Specifically, we conduct ablation
studies on the base LLM in RoboPro, as well as the Draft VLM and Code LLM in Video2Code. We
provide detailed ablation results in Appendix [AZ3]

Effectiveness of Video2Code. We compare our model trained with and without Video2Code on
manipulation and general VQA tasks. For a fair comparison, we only remove Video2Code from
the fine-tuning stage for the baseline, that is, the 115k runtime code data are excluded and only the
general vision language fine-tuning dataset is used during the SFT process, as described in Sec.
The first two rows of Table[5]show the comparison of the two settings. It is found that the Video2Code
generated data have significantly improved the performance on both RLBench and LIBERO by a
gain of 42.3% and 45.4%, respectively, which indicate Video2Code’s efficacy in enhancing the ability
of skills utility and instruction following. Moreover, our model trained with such code data can also
bring slight improvement on general VQA tasks.

Under review as a conference paper at ICLR 2025

Table 5: Ablations of Video2Code and different base LLMs on manipulation and general VQA tasks.

LLM ‘ Video2Code

Manipulation General VQA
RLBench LIBERO | VQA” GQA VQAT

CodeQwen-1.5-7B X 0.4 7.0 80.5 63.8 62.1
CodeQwen-1.5-7B v 42.7 524 80.9 63.9 62.9
DeepSeek-Coder-6.7B v 413 48.8 78.3 60.9 59.5

Table 6: The selection of the Draft VLM and Code LLM for Video2Code.

Method | RLBench LIBERO
MiniCPM-V + Gemini-1.5-Flash 8.0 21.7
Gemini-1.5-Flash + Gemini-1.5-Flash 22.7 31.7
Gemini-1.5-Flash + DeepSeek-Coder-V2 42.7 52.4

Choice of base LLM. We further compare the performance of RoboPro using different code-
domain base LLMs. Specifically, we choose DeepSeek-Coder-6.7B-Instruct (Guo et al., [2024) and
CodeQwen-1.5-7B-Chat (Bai et al., [2023)) for comparison. As shown in Table E} RoboPro trained on
CodeQwen-1.5-7B-Chat outperforms the version trained on DeepSeeK-Coder-6.7B-Instruct on both
manipulation and general VQA tasks. These results demonstrate that employing a more powerful
base LLM for code generation task can consequently enhance performance in both tasks.

Choice of Draft VLM and Code LLM. The Draft VLM and Code LLM are key components in
the design of Video2Code. As stated in Sec.[3.2] we choose Gemini-1.5-Flash as Draft VLM and
DeepSeek-Coder-V2 as Code LLM for default configurations. To analyze how the choice of Draft
VLM and Code LLM effects the quality of runtime code data, we set three different combinations
of Draft VLM and Code LLM for data curation. We choose Gemini-1.5-Flash and a light-weight
VLM MiniCPM-V (Yao et al.}[2024) for Draft VLM evaluation, while selecting a code domain LLM
DeepSeek-Coder-V2 and a general VLM Gemini-1.5-Flash for Code LLM evaluation. All other
settings are consistent with those in our main experiment. As shown in Table[6] enhanced visual
reasoning capabilities of the Draft VLM, along with stronger code synthesis abilities of the Code
LLM, both play a crucial role in curating high-quality runtime code data.

5 CONCLUSION AND FUTURE WORK

In this work, we propose RoboPro, a robotic foundation model, which perceives visual information
and follows free-form instructions to perform robotic manipulation in a zero-shot manner. To
address low efficiency and high cost for runtime code data synthesis, we propose Video2Code,
a scalable and automatic data curation pipeline. Through extensive experiments, with assistance
of Video2Code, RoboPro achieves impressive generalization capability compared with training-
based methods, and exhibits significant improvement on performance compared with other policy
code generation methods. These results indicate that incorporating procedural knowledge within
operational videos into training process will bring substantially enhanced understanding of skills (i.e.,
API libraries) and free-form instructions. Beyond the scope of robotic manipulation tasks, policy
code generation methods also show potential in many other robotic applications (e.g., navigation).
In the future, we would like to expand our method to more application scenarios to provide more
comprehensive support for complex real-world robotic deployments.

REFERENCES
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Iige Akkaya, Florencia Leoni Aleman,

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

10

Under review as a conference paper at ICLR 2025

Shikhar Bahl, Russell Mendonca, Lili Chen, Unnat Jain, and Deepak Pathak. Affordances from human
videos as a versatile representation for robotics. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 13778-13790, 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chenggiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuangi Tan,
Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin
Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng
Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou,
Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint arXiv:2309.16609,
2023.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023a.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho,
Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. Do as i can, not as i say: Grounding language
in robotic affordances. In Conference on robot learning, pp. 287-318. PMLR, 2023b.

Junting Chen, Yao Mu, Qiaojun Yu, Tianming Wei, Silang Wu, Zhecheng Yuan, Zhixuan Liang, Chao
Yang, Kaipeng Zhang, Wenqi Shao, et al. Roboscript: Code generation for free-form manipulation
tasks across real and simulation. arXiv preprint arXiv:2402.14623, 2024.

Lin Chen, Jisong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua
Lin. Sharegpt4v: Improving large multi-modal models with better captions. arXiv preprint
arXiv:2311.12793, 2023.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven C. H. Hoi. Instructblip: Towards general-purpose vision-
language models with instruction tuning. In Advances in Neural Information Processing Systems,
2023.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multimodal
language model. In International Conference on Machine Learning, pp. 8469-8488. PMLR, 2023.

Hao-Shu Fang, Chenxi Wang, Hongjie Fang, Minghao Gou, Jirong Liu, Hengxu Yan, Wenhai Liu,
Yichen Xie, and Cewu Lu. Anygrasp: Robust and efficient grasp perception in spatial and temporal
domains. IEEE Transactions on Robotics, 2023.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
matter: Elevating the role of image understanding in visual question answering. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6904-6913, 2017.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Siyuan Huang, Zhengkai Jiang, Hao Dong, Yu Qiao, Peng Gao, and Hongsheng Li. Instruct2act:
Mapping multi-modality instructions to robotic actions with large language model. arXiv preprint
arXiv:2305.11176, 2023a.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International Conference on
Machine Learning, pp. 9118-9147. PMLR, 2022.

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:

Composable 3d value maps for robotic manipulation with language models. In Conference on
Robot Learning, pp. 540-562. PMLR, 2023b.

11

Under review as a conference paper at ICLR 2025

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. In Conference on Robot Learning, pp. 1769-1782. PMLR, 2023c.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6700-6709, 2019.

Stephen James, Marc Freese, and Andrew J. Davison. Pyrep: Bringing v-rep to deep robot learning.
arXiv preprint arXiv:1906.11176, 2019.

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J. Davison. Rlbench: The robot
learning benchmark & learning environment. /EEE Robotics and Automation Letters, 2020.

O. Khatib. A unified approach for motion and force control of robot manipulators: The operational
space formulation. IEEE Journal on Robotics and Automation, 3(1):43-53, 1987.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis,
et al. Droid: A large-scale in-the-wild robot manipulation dataset. arXiv preprint arXiv:2403.12945,
2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 9493-9500. IEEE, 2023.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning. Advances in Neural Information
Processing Systems, 36, 2024a.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp- 26296-26306, 2024b.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023.

Yao Mu, Junting Chen, Qinglong Zhang, Shoufa Chen, Qiaojun Yu, Chongjian Ge, Runjian Chen,
Zhixuan Liang, Mengkang Hu, Chaofan Tao, et al. Robocodex: Multimodal code generation for
robotic behavior synthesis. arXiv preprint arXiv:2402.16117, 2024.

Dantong Niu, Yuvan Sharma, Giscard Biamby, Jerome Quenum, Yutong Bai, Baifeng Shi, Trevor
Darrell, and Roei Herzig. Llarva: Vision-action instruction tuning enhances robot learning. arXiv
preprint arXiv:2406.11815, 2024.

OpenAl. Hello gpt-40, May 2024. URL https://openai.com/index/hello—gpt-40/l

Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Herzog, Alex Irpan, Alexander
Khazatsky, Anant Rai, Anikait Singh, Anthony Brohan, et al. Open x-embodiment: Robotic
learning datasets and rt-x models. arXiv preprint arXiv:2310.08864, 2023.

Eric Rohmer, Surya PN Singh, and Marc Freese. V-rep: A versatile and scalable robot simulation
framework. In 2013 IEEE/RSJ international conference on intelligent robots and systems, pp.
1321-1326. IEEE, 2013.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for
robotic manipulation. In Conference on Robot Learning, pp. 785-799. PMLR, 2023.

12

https://openai.com/index/hello-gpt-4o/

Under review as a conference paper at ICLR 2025

Amanpreet Singh, Vivek Natarjan, Meet Shah, Yu Jiang, Xinlei Chen, Devi Parikh, and Marcus
Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 8317-8326, 2019.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 11523-11530. IEEE, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing
Systems, 30, 2017.

Sai H Vemprala, Rogerio Bonatti, Arthur Bucker, and Ashish Kapoor. Chatgpt for robotics: Design
principles and model abilities. IEEE Access, 2024.

Terry Winograd. Procedures as a representation for data in a computer program for understanding
natural language. 1971.

Mengdi Xu, Peide Huang, Wenhao Yu, Shiqi Liu, Xilun Zhang, Yaru Niu, Tingnan Zhang, Fei Xia,
Jie Tan, and Ding Zhao. Creative robot tool use with large language models. arXiv preprint
arXiv:2310.13065, 2023.

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. arXiv preprint
arXiv:2408.01800, 2024.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp- 11975-11986, 2023.

Junjie Zhang, Chenjia Bai, Haoran He, Zhigang Wang, Bin Zhao, Xiu Li, and Xuelong Li. SAM-
E: leveraging visual foundation model with sequence imitation for embodied manipulation. In
International Conference on Machine Learning, 2024.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

A TASK DETAILS

A.1 TASKS IN RLBENCH

RLBench is a simulation platform set in CoppelaSim (Rohmer et al.,[2013)) and interfaced through
PyRep (James et al.,|2019)). Robotic models control a 7-dof Franka Panda robot with a parallel gripper
to complete language-conditioned tasks. RoboPro is evaluated on 9 tasks from RLBench (James
et al., 2020). Modification on these tasks is consistent with PerAct (Shridhar et al., 2023)). Each
task in RLBench is provided with several variations on language instructions describing the goal. In
order to validate RoboPro’s adaptation ability across various and vague instructions, we pop out an
instruction from the language template list for each episode during evaluation instead of just using
the first language template. Detailed descriptions and modification for each task in RLBench are
provided below.

13

Under review as a conference paper at ICLR 2025

Push Buttons. Push down colored buttons in a specific order. The task has 20 different variances
on the color of buttons, and three variances on the number of buttons to be manipulated. The success
metric of this task is to push down specific buttons in correct order.

Close Jar. Put the lid on the table onto the jar with specific color. This task also has 20 different
variations on the color of the jars. The success metric is that the lid is on the top of the target jar, and
the gripper doesn’t grasp anything.

Stack Blocks. Stack two to four blocks with specific color onto the green target area. There are
always two groups of four blocks with the same color, and this task has 20 variations on the color
of the blocks. The success metric has a further requirement that all stacked blocks inside the area
of a green platform beyond the original language instruction. We add target prompt to specify the
stacking area.

Open Drawer. Open specific drawer of a cabinet. there are three different variations on the position
of the drawer: top, middle, and bottom. The success metric is a full extension of the target drawer
joint. Before execution, we first adjust the gripper position to face the cabinet.

Stack Cups. Stack other two cups onto the cup with specific color. This task has 20 variations on
the color of the cups. The success metric of this task is that the other cups are inside the target cup.

Sweep Dirt. Sweep dirt particles to the target dustpan. There are two dustpans specified as a tall
dustpan and a short dustpan. The success metric of this task is that all 5 dirt particles are in the target
dustpan. This task is modified by PerAct.

Slide Block. Slide the red cube in the scene to the target colored area. There are four areas with
different color on each corner of the scene, and the cube cannot be picked up. The success metric is
that the cube is inside the area with the target color, which is modified by PerAct.

Screw Bulb. Screw light bulb with the specified base onto the lamp base. There are two bulbs in
the scene at once, and the color of the holders have 20 different variations. The success metric is that
the bulb is inside the lamp stand.

Put in Board. Pick up the specified object and place it into the cupboard above. There are always 9
different objects on the table. The success rate is that the target object is in the cupboard.

A.2 TASKS IN LIBERO

In this section, we provide a detailed description of 8 tasks selected from the LIBERO-100 dataset.
Each task is associated with a specific language instruction, with the task ID and corresponding
instruction shown in Table[7l The tasks "Turn on Stove" and "Close Cabinet" are taken from LIBERO-
90, which focuses on testing atomic skills and environmental understanding. The remaining tasks
are more complex, requiring multi-step execution, and are selected from LIBERO-10. These 8
tasks challenge RoboPro to comprehend diverse visual environments and follow extended language
instructions. As illustrated in Figure[6] the tasks encompass a wide range of robotic capabilities,
including object selection, spatial reasoning, scene comprehension, and long-term execution.

14

Under review as a conference paper at ICLR 2025

Table 7: The manipulation tasks selected for the evaluation of zero-shot generalization on LIBERO.

Task ID

Task Instruction

Turn on Stove
Close Cabinet
Put in Sauce
Put in Butter
Put in Cheese
Place Book
Boil Water
Identify Plate

turn on the stove

close the top drawer of the cabinet

put both the alphabet soup and the tomato sauce in the basket

put both the cream cheese box and the butter in the basket

put both the alphabet soup and the cream cheese box in the basket
pick up the book and place it in the back compartment of the caddy

turn on the stove and put the moka pot on it

put the white mug on the left plate and put the yellow and white mug on the right plate

close the top drawer of the

turn on the stove cabinet

put both the alphabet
soup and the tomato
sauce in the basket

put both the cream cheese

box and the butter in the
basket

put both the alphabet
soup and the cream
cheese box in the basket

pick up the book and
place it in the back
compartment of the caddy

turn on the stove and put
the moka pot on it

put the white mug on the
left plate and put the
yellow and white mug on
the right plate

Figure 6: Illustration of the selected tasks from LIBERO benchmark.

A.3 TASKS IN REAL-WORLD EXPERIMENTS

To validate the performance of RoboPro, the real-
world experiments are implemented on a Franka
Emika Panda robotic arm with a parallel jaw grip-
per, as shown in Figure[7| We use an Intel Re-
alSense D435i camera to provide RGB-D input
signals under the camera-in-hand setting. Easy-
handeye ROS package is used to calibrate the ex-
trinsics of the camera frame with respect to the
robot base frame. For robot control, we use the
open-source frankapy package to send real-time
position-control commands to robot after receiv-
ing the control signals from RoboPro. During test
time for each task, natural language instructions,
extrinsic matrix, intrinsic matrix, current environ-
ment observation in the form of RGB-D image,

Figure 7: The setup for real-world experiments.

and the low dimensional state of the robot are prepared for RoboPro to generate corresponding
6-DOF action trajectories. Examples of all 8 real-world tasks with natural language instructions are

illustrated in Figure 8]

15

Under review as a conference paper at ICLR 2025

Distinct Base: Put the watermelon on the white book

Y

Prepare Meal: Place both the watermelon and the carrot into the basket

e Sia /el

Wipe desk: Wipe the desk

Figure 8: Illustration of RoboPro on the real-world experiments.

16

Under review as a conference paper at ICLR 2025

A.4 ILLUSTRATION OF ERROR CASES

Task Instruction GPT-3.5 GPT-40
stove_bboxes = get_obj_bbox("stove") knob_bbox =
stove_bbox = stove_bboxes[0] get_obj_bbox('knob of stove')[0]
press_pose = press_pose =

generate_press_pose(knob_bbox)
move_to_pose(press_pose)
close_gripper()

generate_press_pose(stove_bbox)
move_to_pose(press_pose)
print("turn on the stove")

))

Turn on stove

bbox_alphabet_soup =
get_obj_bbox(‘alphabet soup')
grasp_pose_alphabet_soup =
get_best_grasp_pos(bbox_alphabet_soup)
bbox_tomato_sauce =
get_obj_bbox('tomato sauce’)
grasp_pose_tomato_sauce =
get_best_grasp_pos(bbox_tomato_sauce)
move_to_pose(grasp_pose_alphabet_soup)
close_gripper()
move_in_direction([0, 0, 1], 5.0)
move_to_pose(grasp_pose_tomato_sauce)
close_gripper()
direction([0, 0, 1], 5.0)
direction([0, 1, 0], 10.0)
direction([0, -1, 0], 10.0)

alphabet_soup_bbox =
get_obj_bbox("alphabet soup")[0]
tomato_sauce_bbox =
get_obj_bbox("tomato sauce")[0]
basket_bbox = get_obj_bbox("basket")[0]
alphabet_soup_grasp_pose =
get_best_grasp_pos(alphabet_soup_bbox)
move_to_pose(alphabet_soup_grasp_pose)
close_gripper()

basket_place_pose =
get_place_pos(basket_bbox)
move_to_pose(basket_place_pose)
open_gripper()
tomato_sauce_grasp_pose =
get_best_grasp_pos(tomato_sauce_bbox)

Put in Sauce bbox_basket = get_obj_bbox('basket’) move_to_pose(tomato_sauce_grasp_pose)
place_pose_basket = close_gripper()
get_place_pos(bbox_basket) move_to_pose(basket_place_pose)

LIBERO move_to_pose(place_pose_basket) 0 open_gripper()
open_gripper()

top_drawer_bbox =
get_obj_bbox("top drawer")
grasp_pose =
get_best_grasp_pos(top_drawer_bbox)

move_to_pose(grasp_pose)

top_drawer_bbox =
get_obj_bbox("top drawer")
grasp_pose =
get_best_grasp_pos(top_drawer_bbox)

move_to_pose(grasp_pose)

open_gripper() open_gripper()

blue_cup_bbox =
get_obj_bbox("blue cup")[0]
black_cup_bbox =
get_obj_bbox("black cup")[0]
orange_cup_bbox =
get_obj_bbox("orange cup")[0]
blue_cup_grasp_pos =
get_best_grasp_pos(blue_cup_bbox)
orange_cup_grasp_pos =
get_best_grasp_pos(orange_cup_bbox)
black_cup_place_pos =
get_place_pos(black_cup_bbox)
move_to_pose(blue_cup_grasp_pos)
close_gripper()
move_in_direction([0, 0, 1], 0.1)
move_to_pose(black_cup_place_pos)
open_gripper()
move_to_pose(orange_cup_grasp_pos)
close_gripper()
move_in_direction([0, 0, 1], 0.1)
move_to_pose(black_cup_place_pos)
open_gripper()

cups_bbox = get_obj_bbox("cups”)
grasp_pose =
get_best_grasp_pos(cups_bbox)
move_to_pose(grasp_pose)
close_gripper()

black_cup_bbox =
get_obj_bbox("black cup")
place_pose =
get_place_pos(black_cup_bbox)
move_to_pose(place_pose)
open_gripper()

cups
down into the black cup

RLBench

)

RoboPro

stove_knob_bbox = get_obj_bbox("knob of
stove")[0]

grasp_pose =
get_best_grasp_pos(stove_knob_bbox)
move_to_pose(grasp_pose)

close_gripper()

rotate(45)

open_gripper()

alphabet_soup_bbox =
get_obj_bbox("alphabet soup")[0]
tomato_sauce_bbox =
get_obj_bbox("tomato sauce")[0]
basket_bbox = get_obj_bbox("basket")[0]
alphabet_soup_grasp_pose =
get_best_grasp_pos(alphabet_soup_bbox)
tomato_sauce_grasp_pose =
get_best_grasp_pos(tomato_sauce_bbox)
basket_place_pose =
get_place_pos(basket_bbox)
move_to_pose(alphabet_soup_grasp_pose)
close_gripper()

move_in_direction([0, 0, 1], 0.1)
move_to_pose(basket_place_pose)
open_gripper()
move_to_pose(tomato_sauce_grasp_pose)
close_gripper()

move_in_direction([0, 0, 1], 0.1)
move_to_pose(basket_place_pose)
open_gripper()

drawer_handle_bbox =
get_obj_bbox('handle of top drawer')[0]
grasp_pose =
get_best_grasp_pos(drawer_handle_bbox)
move_to_pose(grasp_pose)
close_gripper()

joint_axis = get_joint_axis('top drawer')
open_drawer_path =
generate_joint_path(joint_axis, open=True)
follow_way(open_drawer_path)
open_gripper()

orange_cup_bbox =
get_obj_bbox("orange cup”)[0]
blue_cup_bbox =

get_obj_bbox("blue cup")[0]
black_cup_bbox =
get_obj_bbox("black cup")[0]
orange_cup_grasp_pose =
get_best_grasp_pos(orange_cup_bbox)
blue_cup_grasp_pose =
get_best_grasp_pos(blue_cup_bbox)
black_cup_place_pose =
get_place_pos(black_cup_bbox)
move_to_pose(orange_cup_grasp_pose)
close_gripper()
move_to_pose(black_cup_place_pose)
open_gripper()
move_to_pose(blue_cup_grasp_pose)
close_gripper()
move_to_pose(black_cup_place_pose)
open_gripper()

Figure 9: Illustration of failure and success cases of different policy code generation methods in

LIBERO and RLBench.

A.5 ADDITIONAL EXPERIMENT RESULTS

Table 8: Detailed success rate (%) of ablation study on the RLBench tasks.

LLM ‘ Video2Code

Buttons Blocks Drawer Jar Cups

Push Stack Open Close Stack Sweep Slide Screw Putin

CodeQwen-1.5-7B
CodeQwen-1.5-7B
DeepSeek-Coder-6.7B

X 0 0 0 0 0 0
v 68 48 68 44 4
4 72 32 68 48 0

48
24

Dirt Block Bulb Board Avg.
0 4 0 04
60 32 12 427
84 32 12 413

17

Under review as a conference paper at ICLR 2025

Table 9: Detailed success rate (%) of ablation study on the LIBERO tasks.

Turnon Close Putin Putin Putin Place Boil Identify Av

LLM ‘VideoZCode Stove Cabinet Sauce Butter Cheese Book Water Plate

CodeQwen-1.5-7B X 0 43 0 0 13 0 0 0 7.0
CodeQwen-1.5-7B v 97 60 67 53 63 43 23 13 524
DeepSeek-Coder-6.7B v 97 60 47 53 60 53 0 20 48.8

B PROMPT AND API IMPLEMENTATIONS

Listing 1: An example of a full prompt in RoboPro

"""You're a vision language model controlling a gripper to complete manipulation tasks.
Combine the images you see with the text instructions to generate detailed and workable
code for the current scene.

You have access to the following tools:
nun

import numpy as np
import torch
import math

#Perception Modules

def get_obj_bbox(description: str)->list[bbox]:

"""get the 2D boundingbox of all objects match description. When it comes to the specific
parts or orientation of objects, the description should be detailed. Like 'handle of
microwave', 'left side of shelf'.

Return: list[bbox: np.ndarray]"""

def get_best_grasp_pos(grasp_bbox: bbox):
"""get best grasp pose to grasp specific object.
Return: grasp_pose: Pose"""

def get_place_pos(holder_bbox: bbox):

"""Predict the place pose for an object relative to a holder
Args: holder_bbox: bbox of target region of the holder.
Return: place_pose: Pose"""

def get_joint_axis(joint_object_name: str):

"""Get the joint direction of an object

Args: joint_object_name: the name of object have joint axis.
Return: joint_axis: np.ndarray"""

def generate_joint_path(joint_axis: np.ndarray, open: bool):

"""Generate a gripper path of poses around the joint. open is True when need open container
around joint, False when close container.

Return: path: list[Pose]

wun

def generate_slide_path(target: Optional[str] = None, direction: Optional[np.ndarray] = None):

"""Generate path of poses to slide or push object to target or in specific direction.

Args:

target: The target location. If provided, 'direction' must be None.

direction: The direction vector to slide the object along. If provided, 'target' must be None.

Return: path: list[Posel

def generate_sweep_path(object: Optional[str] = None, target: Optional[str] = None, direction:
Optional [np.ndarray] = None):

"""This function is designed to generate movement paths for sweeping actions using tools such
as sweepers, brooms. Grasp the tool before sweeping.

Args:

object: The object to be swept. If set to None, the function will perform a general sweeping.

target: The target area or location to sweep towards. If provided, 'direction' must be None.

direction: The direction vector for the sweeping motion. If provided, 'target' must be None.

Return: path: list[Posel

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

def generate_wipe_path(region: str):

"""This function is designed to generate movement paths for wiping actions using tools such
as towel, sponge. Grasp the tool before wiping.

Args:

region (str): region to be wiped or cleaned.

Return: path: list[Posel

def generate_pour_path(grasped object: str, target: str):
"""Generate gripper path of poses to pour liquid in grasped object to target.
Return: path: list[Posel

def generate_press_pose(bbox) :

"""Get best pose to press or push buttons."""
#Action Modules

def move_to_pose(Pose):

"""Move the gripper to pose."""

def move_in_direction(direction: np.ndarray, distance: float):
"""Move the gripper in the given direction in a straight line by certain distance.

def follow_way(path: List[Pose]):

"""Move the gripper to follow a path of poses."""

def rotate(angle: float)

"""Rotate the gripper clockwise at certain degree while maintaining the original position."""

def open_gripper():
"""Open the gripper to release the object, no args"""

def close_gripper():

"""Close the gripper to grasp object, no args. Move to best grasp pose before close gripper.
nnn

Rules you have to follow:

#Directions: right: [0,1,0], left: [0,-1,0], upward or lift object: [0,0,1], forward or move
away: [1,0,0]

#Please solve the following instruction step—by—step.

#You should ONLY implement the main() function and output in the Python—code style. Except
the code block, output fewer lines.

Begin to excecute the task:

#Instruction:

Listing 2: An example of a full prompt in RoboPro with API renaming

"""You're a vision language model controlling a gripper to complete manipulation tasks.
Combine the images you see with the text instructions to generate detailed and workable
code for the current scene.

You have access to the following tools:

nnn

import numpy as np
import torch
import math

#Perception Modules

def detect_bbox(description: str)->list[bbox]:

"""get the 2D boundingbox of all objects match description. When it comes to the specific
parts or orientation of objects, the description should be detailed. Like 'handle of
microwave', 'left side of shelf'.

Return: list[bbox: np.ndarray]"""

def generate_obj_grasp_pos(grasp_bbox: bbox):
"""get best grasp pose to grasp specific object.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Return: grasp_pose: Pose"""

def best_place_locator(holder_bbox: bbox):

"""Predict the place pose for an object relative to a holder
Args: holder_bbox: bbox of target region of the holder.
Return: place_pose: Pose"""

def find_axis_of_joint(joint_object_name: str):

"""Get the joint direction of an object

Args: joint_object_name: the name of object have joint axis.
Return: joint_axis: np.ndarray"""

def map_joint_path(joint_axis: np.ndarray, open: bool):

"""Generate a gripper path of poses around the joint. open is True when need open container
around joint, False when close container.

Return: path: list[Posel

def build_slide_path(target: Optional[str] = None, direction: Optional[np.ndarray] = None):
"""Generate path of poses to slide or push object to target or in specific direction.

Args:

target: The target location. If provided, 'direction' must be None.

direction: The direction vector to slide the object along. If provided, 'target' must be None.

Return: path: list[Pose]

def sweep_motion_path(object: Optional[str] = None, target: Optional[str] = None, direction:
Optional [np.ndarray] = None):

"""This function is designed to generate movement paths for sweeping actions using tools such
as sweepers, brooms. Grasp the tool before sweeping.

Args:

object: The object to be swept. If set to None, the function will perform a general sweeping.

target: The target area or location to sweep towards. If provided, 'direction' must be None.

direction: The direction vector for the sweeping motion. If provided, 'target' must be None.

Return: path: list[Pose]

def create_wipe_path(region: str):

"""This function is designed to generate movement paths for wiping actions using tools such
as towel, sponge. Grasp the tool before wiping.

Args:

region (str): region to be wiped or cleaned.

Return: path: list[Posel

def pour_path_mapper(grasped object: str, target: str):
"""Generate gripper path of poses to pour liquid in grasped object to target.
Return: path: list[Posel

def best_press_pos(bbox) :
"""Get best pose to press or push buttons."""

#Action Modules
def relocate_to_pose(Pose):
"""Move the gripper to pose."""

def reach_in_direction(direction: np.ndarray, distance: float):
"""Move the gripper in the given direction in a straight line by certain distance.

def follow_path(path: List[Posel):
"""Move the gripper to follow a path of poses."""

def spin_gripper(angle: float)

"""Rotate the gripper clockwise at certain degree while maintaining the original position."""

def open_claw():
"""Open the gripper to release the object, no args

def clamp_gripper():

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

"""Close the gripper to grasp object, no args. Move to best grasp pose before close gripper.
nnn

Rules you have to follow:

#Directions: right: [0,1,0], left: [0,-1,0], upward or lift object: [0,0,1], forward or move
awvay: [1,0,0]

#Please solve the following instruction step—by—step.

#You should ONLY implement the main() function and output in the Python—code style. Except
the code block, output fewer lines.

Begin to excecute the task:

#Instruction:

Listing 3: An example of a full prompt in RoboPro with API refactoring

"""You're a vision language model controlling a gripper to complete manipulation tasks.
Combine the images you see with the text instructions to generate detailed and workable
code for the current scene.

You have access to the following tools:
Wi

import numpy as np
import torch
import math

#Perception APIs

def get_obj_bbox(description: str) -> list[np.ndarray]:

"""Get the 2D bounding box of all objects that match the description. The description should
be detailed when it comes to specific parts or orientations of objects, such as 'handle
of microwave' or 'left side of shelf'.

Args:description (str): The description of the objects to find.

Returns:list[np.ndarray]: A list of bounding boxes for the objects matching the description.

def get_joint_axis(joint_object_bbox: np.ndarray):

"""Get the joint direction of an object

Args: joint_object_name: the name of object have joint axis.
Return: joint_axis: np.ndarray"""

#Control APIs

def get_best_grasp_pos(grasp_bbox: np.ndarray):

"""Calculate the best grasp pose to grasp a specific object.

Parameters: grasp_bbox (np.ndarray): The bounding box of the object to grasp.
Return: Pose: The best grasp pose for the given object."""

def get_place_pos(holder_bbox: np.ndarray):

"""Predict the place pose for an object relative to a holder.

Parameters: holder_bbox (np.ndarray): The bounding box of the target region of the holder.
Return: Pose: The predicted place pose for the given object."""

def generate_joint_path(joint_axis: np.ndarray, open: bool) -> list[Pose]:

"""Generate a gripper path of poses around the joint.

Parameters: joint_axis (np.ndarray): The axis of the joint. open (bool): True if the
container needs to be opened around the joint, False if it needs to be closed.

Returns: list[Pose]: The generated path of poses around the joint."""

def generate_slide_path(target_bbox: np.ndarray) -> List[Pose]:
"""Generate a path of poses to slide or push an object to a target or in a specific direction.

Parameters: target_bbox (np.ndarray): bbox of the target location.
Returns: List[Posel: The generated path of poses."""

def generate_sweep_path(target_bbox: np.ndarray) -> List[Pose]:

"""Generate movement paths for sweeping actions using tools such as sweepers or brooms. Grasp
the tool before sweeping.

Parameters: target_bbox (np.ndarray): The target area or location to sweep towards.

Returns: List[Posel: The generated path of poses for the sweeping action."""

def generate_wipe_path(region_bbox: np.ndarray) -> List[Pose]:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

"""Generate movement paths for wiping actions using tools such as towels or sponges. Grasp
the tool before wiping.

Parameters: region_bbox (np.ndarray): The region to be wiped or cleaned.

Return: List[Pose]: The generated path of poses for the wiping action."""

def generate_pour_path(grasped_object: str, target_bbox: np.ndarray) —> List[Posel:

"""Generate a gripper path of poses to pour liquid from a grasped object to a target.

Parameters: grasped_object (str): The object being grasped that contains the liquid.
target_bbox (np.ndarray): The bounding box of the target area where the liquid will be
poured.

Returns: List[Pose]: The generated path of poses for the pouring action."""

def generate_press_pose(bbox: np.ndarray) -> Pose:

"""Get the best pose to press or push buttons.

Parameters: bbox (BBox): The bounding box of the button or area to be pressed.

Return: Pose: The best pose for pressing or pushing the button."""

def move_to_pose(pose: Pose):
"""Move the gripper to the specified pose.
Parameters: pose (Pose): The target pose to move the gripper to."""

def move_in_direction(direction: np.ndarray, distance: float):

"""Move the gripper in the given direction in a straight line by a certain distance.

Parameters: direction (np.ndarray): The direction vector to move the gripper along. distance
(float): The distance to move the gripper."""

def follow_way(path: List[Pose]) -> None:
"""Move the gripper to follow a path of poses.
Parameters: path (List[Pose]): The list of poses that defines the path to follow."""

def rotate(angle: float) —> Nome:
""" Rotate the gripper clockwise by a certain angle while maintaining the original position.
Parameters: angle (float): The angle in degrees to rotate the gripper."""

def open_gripper() -> None:

"""Open the gripper to release the object.
Parameters: None

Returns: None"""

def close_gripper() -> None:

"""Close the gripper to grasp an object. Move to the best grasp pose before closing the
gripper.

Parameters: None

Returns: None"""

Rules you have to follow:

#Directions: right: [0,1,0], left: [0,-1,0], upward or lift object: [0,0,1], forward or move
away: [1,0,0]

#Please solve the following instruction step—by—step.

#You should ONLY implement the main() function and output in the Python—code style. Except
the code block, output fewer lines.

Begin to excecute the task:

#Instruction:

22

	Introduction
	Related Works
	Method
	Problem Statement
	Video2Code: Synthesize Robotic Runtime Code From Videos
	RoboPro: Robotic Foundation Model

	Experiments
	Zero-shot Robotic Manipulation
	Zero-shot Generalization
	Real-World Experiments
	Evaluation on General VQA Tasks
	Ablation Study

	Conclusion and Future work
	Task Details
	Tasks in RLBench
	Tasks in LIBERO
	Tasks in Real-world Experiments
	Illustration of Error Cases
	Additional Experiment Results

	Prompt and API Implementations

