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ABSTRACT

Topic modeling has been an important tool for text analysis. Originally, topics
discovered by a model are usually assumed to be independent. However, as a
semantic representation of a concept, a topic is naturally related to others, which
motivates the development of learning hierarchical topic structure. Most existing
Bayesian models are designed to learn hierarchical structure, but they need non-
trivial posterior inference. Although the recent transport-based topic models bypass
the posterior inference, none of them considers deep topic structures. In this
paper, we interpret the document as its word embeddings and propose a novel
bidirectional transport chain to discover multi-level topic structures, where each
layer learns a set of topic embeddings and the document hierarchical representations
are defined as a series of empirical distributions according to the topic proportions
and corresponding topic embeddings. To fit such hierarchies, we develop an
upward-downward optimizing strategy under the recent conditional transport theory,
where document information is first transported via the upward path, and then its
hierarchical representations are refined according to the adjacent upper and lower
layers in a layer-wise manner via the downward path. Extensive experiments
on text corpora show that our approach enjoys superior modeling accuracy and
interpretability. Moreover, we also conduct experiments on learning hierarchical
visual topics from images, which demonstrate the adaptability and flexibility of
our method.

1 INTRODUCTION

Topic models (TMs) like latent Dirichlet allocation (LDA) (Blei et al., 2003), Poisson factor analysis
(PFA) (Zhou et al., 2012), and their various extensions (Teh et al., 2006; Hoffman et al., 2010; Blei,
2012; Zhou et al., 2016) are a family of popular techniques for discovering the hidden semantic
structure from a collection of documents in an unsupervised manner. In addition to learning shallow
topics, mining the potential hierarchical topic structures has obtained much research effort since the
hierarchies are ubiquitous in big text corpora (Meng et al., 2020; Lee et al., 2022) and can be applied
to a wide range of applications (Grimmer, 2010; Zhang et al.; Guo et al., 2020).

Hierarchical Bayesian probabilistic models have been commonly used to learn topic structures (Blei
et al., 2010; Paisley et al., 2014; Gan et al., 2015; Henao et al., 2015; Zhou et al., 2016), where a
hierarchy of topics are learned and the topics in the higher layers serve as the priors of the topics in the
lower layers. Despite the success of Bayesian models in topic structure mining, most of them employ
Bayesian posterior inference to optimize their parameters (e.g., Markov Chain Monte Carlo (MCMC)
and Variational Inference (VI)), which is usually non-trivial to derive and can be less flexible and
efficient for big text corpora (Zhang et al., 2018). Recent developments in Autoencoding Variational
Inference (AVI) (Kingma & Welling, 2013; Rezende et al., 2014) provide stronger inference tools
for Bayesian models and have inspired several neural topic models (Zhang et al., 2018; Duan et al.,
2021a), resulting in improved efficiency and flexibility. However, applying AVI to neural topic
models still has some limitations or concerns. First, the estimation of variational posterior always
needs a trade-off between accuracy and efficiency as an asymptotically exact method (Salimans et al.,
2015). Besides, the latent distributions are required to be reparameterizable and KL divergence is
expected to be analytical, both of which are hard to meet for topic models since they usually depend
on Dirichlet distribution or the Gamma distribution (Blei et al., 2003; Zhou et al., 2015). Another
concern comes from likelihood maximization, in which the inference of topic structure relies on word
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co-occurrence patterns within a document. This has been recently found to give poor quality topics
in case of little evidence of co-occurrences, such as corpus with a small number of documents or
containing short context (Huynh et al., 2020; Wang et al., 2022). This concern is even more acute in
hierarchies learning where more topics and their correlations need to be inferred (Meng et al., 2020).
Several existing studies have targeted to incorporate meta knowledge to improve topic representation.
The source of side information may come from various fields, including knowledge graph (Xie et al.,
2015; Duan et al., 2021b), pre-trained language model (Bianchi et al., 2021; Meng et al., 2022) and
word embeddings (Wang et al., 2022; Duan et al., 2021a).

Another notable tendency developed recently is the conditional transport (CT) theory (Zheng & Zhou,
2021a). It provides an efficient tool to measure the distance between two probability distributions and
has been employed in numerous machine learning problems, such as domain adaptation, generative
model, and document representation (Zheng et al., 2021; Tanwisuth et al., 2021; Wang et al., 2022).
The CT distance is defined by the bidirectional (forward and backward) transport cost between the
source and target distributions, allowing the two distributions not to share the same support. Moreover,
the CT distance can be unbiasedly approximated with the discrete empirical distributions, making it
amenable to stochastic gradient descent-based optimization. Wang et al. (2022) first introduced CT
into topic modeling by minimizing the transport cost between the word and topic space, resulting
in better topic quality and document representation. The similar idea is shared with recent optimal
transport-based methods (Kusner et al., 2015; Huynh et al., 2020; Zhao et al., 2021). However, they
all focus on single-layer topic discovery, ignoring multi-level topic dependencies.

This paper goes beyond hierarchical Bayesian models for topic structure learning and aims to discover
topic hierarchies based on the conditional transport between distributions. To formulate topic structure
learning as a transport problem, we first provide a hierarchical, distributional view of topic modeling,
where each layer of a topic hierarchy learns a set of topics presented as embedding vectors. Moreover,
the to-be-learned topics share the same word embedding space and are organized in a taxonomy
where the upper-level topics are more general while the lower-level topics are more specific (Zhang
et al., 2018). In detail, we view each document as an empirical distribution of word embeddings
and consider that a document can also be presented by the topic embeddings (Wang et al., 2022)
at each layer. Those hierarchical empirical distributions have different supports but share semantic
consistency across topical levels. With this view, we propose to learn topic hierarchies with a
Bidirectional Transport chain (BT-chain) where a document’s topic distributions in two adjacent
layers are learned by being pushed close to each other in terms of the CT loss. This results in a more
flexible and efficient method than VAI-based NTMs, while keeping the interpretability of Bayesian
models.

With a different mechanism from previous hierarchical topic models, the proposed BT-chain is a
straightforward and novel approach for topic structure learning, which can be flexibly integrated
with deep neural networks. To achieve an efficient and end-to-end training algorithm, an upward-
downward optimizing strategy is developed carefully, which first warms up the empirical distributions
by transporting the input via the bottom-to-top path, and then applies the backward layer-wise
refinement by considering the bidirectional information stream from the Bayesian perspective. The
main contributions in this paper are as follows: (1) We view the hierarchical topic modeling from a new
perspective of multi-layer conditional transport, which facilities us to develop a novel bidirectional
transport chain for topic structure learning. (2) To effectively and efficiently implement the proposed
method, we propose an upward-downward training algorithm for BT-chain with proper amortizations
and strategy. (3) We conduct extensive experiments on text corpora to show that our approach enjoys
superior modeling accuracy and interpretability compared with the state-of-the-art hierarchical topic
models. To extend the application of topic modeling, we also apply it on learning hierarchical visual
topics from images, which shows interesting visualizations.

2 BACKGROUND

In this section, we recap the background of transport distance between two discrete distributions.
Let us consider two discrete probability distributions p and q ∈ P(X) on space X ∈ RH : p =∑n
i=1 uiδxi , and q =

∑m
j=1 vjδyj , where xi and yj are two points in the arbitrary same space X .

u ∈ Σn and v ∈ Σm, the simplex of Rn and Rm, denotes two probability values of the discrete
states satisfying

∑n
i=1 ui = 1 and

∑m
j=1 vj = 1. δx refers to a point mass located at coordinate

x ∈ RH .
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To measure a distance between such two discrete distributions, the optimal transport (OT) dis-
tance (Villani, 2009) between p and q is formulated as an optimization problem: OT(p, q) =
minT∈Π(u,v)

∑
i,j tijcij , s.t. T1m = u, TT1n = v. The minimum of the transport plan

T ∈ Rn×m>0 is taken over Π(u,v) with element tij , defined as the set of all possible joint probability
measures π on the whole space Rn × Rm, with the marginals constraints. 1m is the m dimensional
vector of ones. cij = c(xi, yj) ≥ 0 is the transport cost between the two points xi and yj defined by
an arbitrary cost function c(·).
More recently, the demand on efficient computation and bidirectional asymmetric transport promote
the development of conditional transport (CT) (Zheng & Zhou, 2021b), which can be applied to
quantify the difference between discrete empirical distributions in various applications (Zheng et al.,
2021; Tanwisuth et al., 2021; Wang et al., 2022). Specifically, given the above source and target
distributions p and q, the CT cost is defined with a bidirectional distribution-to-distribution transport,
where a forward CT measures the transport cost from the source to the target and a backward CT
reverses the transport direction. Therefore, the CT problem can be defined as:

CT(p, q) = min−→
T
←−
T

(
∑
i,j

−→
t ijcij +

∑
j,i

←−
t jicji),

where
−→
t ij in

−→
T acts as the transport probability (the navigator) from the source point xi to the target

point yj :
−→
t ij = ui

vje
−dψ(xi,yj)∑m

j′=1
vj′e

−dψ(xi,yj′ )
, hence

−→
T1m = u. Similarly, we have the reversed transport

probability:
←−
t ji = vj

uie
−dψ(yj,xi)∑n

i′=1
ui′e

−dψ(yj,xi′ )
, and

←−
T1n = v. The distance function dψ(xi, yj)

parameterized with ψ can be implemented by deep neural networks to measure the semantic similarity
between two points, making CT amenable to stochastic gradient descent-based optimization.

3 BT-CHAIN: BIDIRECTIONAL TRANSPORT CHAIN

We introduce the details of the proposed method, including a distributional view of multi-layer
document representation, construction of BT-chain, and its upward-downward training algorithm.

3.1 HIERARCHICAL, DISCRETE DISTRIBUTIONAL REPRESENTATIONS OF DOCUMENTS

Given a collection of corpora with J documents and V distinct tokens, conventional TMs usually
represent the jth document as a V dimensional Bag-of-Word vector xj ∈ RV+ , where xjv indicates
the frequency of the v-th word in document j (Blei et al., 2003; Dieng et al., 2020). With xj and
the word embedding matrix E ∈ RH×V , where H is the embedding dimension, we represent each
document as an empirical distribution Pj in the word embedding space:

Pj =

V∑
v=1

x̂jvδev , with ev ∈ RH , (1)

where x̂j ∈ ΣV is the normalization of xj and ev is the embedding of the v-th word in the vocabulary,
i.e., the v-th column of E. Notably that Pj in Eq. 1 not only contains the word co-occurrence patterns
but also considers word semantic information, which has been proven useful for high-quality topic
learning (Dieng et al., 2020; Meng et al., 2022) but is often ignored by conventional TMs.

This paper aims to learn L layers of topics in a topic hierarchy, each of which contains Kl topics for
satisfying Kl+1 < Kl < Kl−1. It means that in the higher layers, there are fewer yet more abstract
topics. Different from conventional TMs that assume a topic as the distribution over words, we view
topics as the continuous vectors that lie in the same semantic space of words. Thus, each layer in
BT-chain is associated with a set of topic embeddings {α(l)

k }
Kl
k=1, l = 1, ..., L. Together with the

topic proportion of j-th document θ(l)
j ∈ RKl+ that denotes the topical weights over the Kl topics, we

derive the topical distributional representation of the j-th document in layer l as:

Q
(l)
j =

Kl∑
k=1

θ̂
(l)
kj δα(l)

k

, with α
(l)
k ∈ RH , l = 1, ...L, (2)
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Forward CT

Backward CT

Figure 1: The directed graphical model of BT-chain. The adjacent layers are connected via the bidirectional CT,
and L(l) of BT-chain links Q(l−1), Q(l), Q(l+1) via the upward-downward training strategy, guaranteeing their
semantic consistency. The solid dots and triangles denote word and topic embeddings in the embedding space,
and different color means different layers.

where θ̂
(l)
j := θ

(l)
j /

∑Kl
k=1 θ

(l)
kj is the normalized topic proportions of document j at l-th layer that

ensures the simplex constraint. We follow previous hierarchical topic models (Duan et al., 2021a)
and employ an encoder network fω parameterized by ω to infer the multi-layer topic proportions:
{θ(l)

j }Ll=1 = fω(xj). fω is implemented by several stacked fully connected layers and the details can
be found in Appendix. B.

To summarize, the proposed BT-chain views the j-th document as a series of empirical distributions
over the word and topic embeddings: {Q(l)

j }Ll=0. With α(0) = E,θ
(0)
j = xj ,K0 = V , we have

Q
(0)
j = Pj which denotes the word-level observed data. Note that those empirical distributions are

all defined by the word/topic weights together with the corresponding semantic vectors. They are
formulated in a similar form and share semantic consistency but with different topical supports.

3.2 LINK {Q(l)
j }Ll=0 VIA BT-CHAIN

Given the above distributional view of documents, we develop BT-chain to learn hierarchical doc-
ument distributions {Q(l)

j }Ll=1, where each layer in BT-chain is linked with its adjacent layers via
the conditional transport and corresponds to learning of topic embeddings and topic proportions.
Fig. 1 shows the overview of BT-chain. Specifically, in the topic hierarchy l = 1, ...L− 1, the current
layer l is connected with its lower layer l − 1 and higher layer l + 1 (the uppermost layer L is only
connected to the lower layer L − 1). Note that Q(l−1)

j , Q(l)
j , Q(l+1)

j capture the semantics of the

same document, where Q(l−1)
j focuses on more detailed semantics while Q(l+1)

j attends to more

general concepts. Q(l)
j thus acts here as an intermediate node that integrates information from both

directions and learns semantically smooth topics. To meet such properties, it is natural to push Q(l)
j

to Q(l−1)
j and Q(l+1)

j as close as possible. It poses a question on how to define the closeness between
two discrete distributions with different supports. Although recent studies have provided several
transport-based alternatives to measure such distance (Cuturi, 2013; Yurochkin et al., 2019; Hu et al.,
2021; Zhao et al., 2021), most of them focus on shallow transport problems and ignore the deep case.
To this end, our proposed BT-chain derives a layer-wise distance with the recent CT technique and
expresses the transport loss in l-th layer as:

L(l)
(
Q

(l−1)
j , Q

(l)
j , Q

(l+1)
j

)
= CT

(
Q

(l−1)
j , Q

(l)
j

)
+ CT

(
Q

(l)
j , Q

(l+1)
j

)
. (3)

L(l) links the adjacent three layers via the two CT costs to guarantee the current layerQ(l)
j semantically

close to Q(l−1)
j and Q(l+1)

j . Thus for a hierarchy with L layers, we have {L(l)}L−1l=1 , each of which

strengthens the learning of its local Q(l)
j by considering the neighborhood information and they

together ensure the semantic consistency of the transport chain. Moreover, we minimize the above loss
in terms of Q(l)

j , which by definition consists of θ̂(l)
j and {α(l)

k }
Kl
k=1. The detailed parameterizations

and implementations are shown in Section A of the Appendix and our designed training strategy for
the transport chain is described in Section 3.3.
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Algorithm 1 Training algorithm for our proposed BT-chain.

Input: documents, pre-trained word embeddings E, topic list {Kl}Ll=1, hyperparameter β.
Initialize: topic embeddings {α(l)

k }
Kl,L
k=1,l=1, ω of the inference network.

for iter = 1,2,3,... do
Sample a batch of B documents and get {Q(0)

j }
B
j=1 with Eq. (1)

Get {θ(l)
j }

B,L
j=1,l=1 by the encoder network fω

# Upward warming-up
for l = 1, 2, · · · , L do

Fix Q
(l−1)
1:B and compute Lup =

∑B
j=1 CTreg

(
Q

(l−1)
j , Q

(l)
j

)
Update {α(l)

k }
Kl
k=1 and ω with stochastic gradients of Lup

end for
# Downward refining
for l = L− 1, · · · , 1 do

Fix Q
(l+1)
1:B and Q

(l−1)
1:B

Compute Ldown =
∑B

j=1 CTreg
(
Q

(l−1)
j , Q

(l)
j

)
+ CTreg

(
Q

(l)
j , Q

(l+1)
j

)
Update {α(l)

k }
Kl
k=1 and ω with stochastic gradients of Ldown

end for
end for

As suggested in the previous works (Zhao et al., 2021), we add a regularization term based on the
cross entropy for the CT loss in Eq. 3:

CTreg
(
Q

(l)
j , Q

(l+1)
j

)
= CT

(
Q

(l)
j , Q

(l+1)
j

)
− βθ̂(l)

j log
(
Φ(l+1)θ

(l+1)
j

)
, (4)

where Φ
(l+1)
k = Softmax(Ψ(l)α

(l+1)
k ); Ψ(l) ∈ RKl×H each row of which is α(l)

k ; β is the trade-off
hyperparameter that balances the weight of the cross entropy regularization. Φ(l+1) acts as the
“decoder” that decodes θ(l+1)

j to layer l and the cross entropy measures how close the decoded one to

its “target” θ
(l)
j . In the training, we replace the CT distances in Eq. (3) with the regularized ones.

3.3 UPWARD-DOWNWARD TRAINING ALGORITHM FOR BT-CHAIN

Given the training documents and pre-trained word embeddings E, we aim to learn topic embeddings
{α(l)

k }
Kl,L
k=1,l=1 and the encoder network that infers the topic proportions {θ(l)}Ll=1. At layer l, the

loss in Eq. (3) consists of two CT distances that connect layer l with the lower and higher layers.
Simultaneously minimizing such two CT distances can be difficult, so we propose a layer-wise
upward-downward training algorithm, which consists of two steps in each training iteration.

Upward Warming-up In this step, we start with the learning of Q(1)
j given the data Q(0)

j in word

embedding space, by minimizing CTreg
(
Q

(0)
j , Q

(1)
j

)
, i.e., the first CT distance in Eq. (3). After Q(1)

j

is learned, we fix it and then learn Q(2)
j by minimizing CTreg

(
Q

(1)
j , Q

(2)
j

)
. In this way, we transport

the raw information from the observed word layer to the uppermost topic layer Q(L)
j step by step.

Downward refining In the upward training step, the lower layer l− 1 is fixed and treated as the data
for its higher layer l, i.e., the message flows in the bottom-up direction. This does not consider how
the higher layer l affects its lower layer l − 1. Therefore, after the upward step, we further introduce
the downward step, where we start with the second uppermost layer L− 1. To learn Q(L−1)

j , we fix

its two adjacent layers Q(L)
j and Q(L−2)

j and minimize L(l), i.e., both terms in Eq. (3). Similarly, we
can update the distributions until we reach layer 1. In this way, the message of both layers l + 1 and
l − 1 will flow to layer l. The training algorithm is outlined in Algorithm 1.

3.4 DISCUSSIONS

Topic hierarchies learned by BT-chain BT-chain aims to learn a topic hierarchy where the topics in
the higher layers are more general and abstract than those in the lower layers. How BT-chain achieves
this can be interpreted from an information compression or abstraction perspective. Specifically, in
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layer 0, the dataQ(0)
j lies in aK0-dimensional word embedding space, which is a sparse representation

of the semantics of document j. Q
(1)
j lies in a K1-dimensional topic embedding space, where

K1 < K0. By pushing Q(1)
j to Q(0)

j as close as possible in terms of the CT cost, BT-chain forces

Q
(1)
j to compress or abstract the information in Q(0)

j with a denser representation. Similar things
happen in the higher layers, as K1 > K2 > · · · > KL. Moreover, as all the topics are presented
as embeddings, the topic correlations between the topics of two layers can be simply obtained by
the distances between the topic embeddings, i.e., Φ(l) in Eq. (4). Therefore, the topic correlations
in BT-chain can be interpreted in the same way as conventional hierarchical TMs (Blei et al., 2010;
Zhou et al., 2016).

Bayesian Flavor of BT-chain Many deep topic models are implemented based on hierarchical
Bayesian probabilistic models (Blei et al., 2010; Paisley et al., 2014; Gan et al., 2015; Henao et al.,
2015; Zhou et al., 2016; Zhao et al., 2018), where the topics in the higher layers serve as the priors
of the topics in the lower layers. In these Bayesian models, according to Bayes’ theorem, a topic’s
posterior distribution consists of two terms: the data distribution (i.e., the word information in a
document) and prior distribution (i.e., the topics in the higher layer). Although BT-chain is not a
Bayesian model, it is interesting to interpret our method with a Bayesian flavor. For example, the
value of Q(1)

j is learned according to Q(0)
j and Q(2)

j , where Q(0)
j and Q(2)

j can be viewed as data and
prior, respectively. Instead of learning the model with Bayes’ theorem, we optimize BT-chain by
minimizing the CT costs between the distributions, avoiding non-trivial Bayesian posterior inference.

4 RELATED WORK

Topic structure learning There is a surge of research interest in capturing the correlations among
topics and generating topic structures. For example, there are many models based on hierarchical
Bayesian prior such as the Dirichlet process (DP) and Chinese Restaurant Process (CRP), including
hLDA (Griffiths et al., 2003), nCRP (Blei et al., 2010) and nHDP (Paisley et al., 2014). Li &
McCallum (2006) propose the Pachinko Allocation Model (PAM) to model the co-occurrences of
topics via a directed acyclic graph. hPAM (Mimno et al., 2007) is built on PAM and represents
the topic hierarchical structure through the Dirichlet-multinomial parameters of the internal node
distributions. More recently, various hierarchical extensions of Poisson factor analysis (PFA) (Zhou
et al., 2012) have been proposed, including DPFA (Gan et al., 2015), DPFM (Henao et al., 2015),
GBN (Zhou et al., 2016), and DirBN (Zhao et al., 2018). Zhang et al. (2018) develop Weibull hybrid
autoencoding inference (WHAI) for GBN and Duan et al. (2021a) introduce word embedding into
GBN and design the SawETM Connection (SC) to explore the relationship between topics. Although
both WHAI and SawETM are the most related works to ours, which are Bayesian generative models
and learned by maximizing the evidence lower bound (ELBO), our proposed model views deep topic
modeling as a cross-layer transport problem.

Topic models based on transport Using transport between distributions is a recent trend in topic
modeling. Xu et al. (2018) propose distilled Wasserstein learning (DWL) where the distance between
topics is achieved by the OT between their word distributions built on the embedding-based underlying
distance. The OT based LDA (OTLDA) (Huynh et al., 2020) shares a similar idea but aims to minimize
the OT distance between documents and topics in the vocabulary space. Yurochkin et al. (2019) view
the documents as the distributions over topics, those topics themselves are modeled as the distribution
over words and introduce the hierarchical OT as the meta-distance between documents. However, it
is not a topic model but a method using topic models to compute document distances. Based on topic
embeddings, Zhao et al. (2021) propose the Neural Sinkhorn Topic Model (NSTM) that optimizes
the OT distance between the normalized BoW vector and the topic proportions, where the cost matrix
is calculated by the word and topic embeddings. In Wang et al. (2022), WeTe views each document
as a set of mixtures of word embeddings and a set of mixtures of topic embeddings and employs the
conditional transport (CT) cost to quantify the difference between those two sets. Compared with the
above shallow topic models, our proposed model aims to learn hierarchical document representations
and topic structures.

5 EXPERIMENTS

We in this section conduct comprehensive experiments on various datasets and compare the proposed
BT-chain with different baseline methods to illustrate its superior performance.
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Figure 2: Topic Coherence (TC) and Topic Diversity (TD) of hierarchical topic models on the four datasets.

Table 1: Comparison of K-Means clustering purity (km-Purity) and NMI (km-NMI) for various methods. The
number in brackets after the method indicates the total number of topic layers L. The best and second best
scores of each dataset are highlighted in boldface and with an underline, respectively.

Method km-Purity(%) km-NMI(%)
WS RCV2 DP 20NG(6) WS RCV2 DP 20NG(6)

LDA-Gibbs 46.4±0.6 52.4±0.4 60.8 ±0.5 59.2±0.6 25.1±0.4 38.2±0.5 54.7 ±0.3 32.4 ±0.4
DVAE 26.6±1.5 52.6±1.2 67.2 ±1.1 64.6 ±1.0 3.7 ±0.8 31.3±0.9 50.8 ±0.6 29.8 ±0.6
ETM 32.9±2.3 50.2±0.6 63.1 ±1.5 62.6 ±2.2 12.3±2.3 30.3±1.0 53.2 ±0.7 29.3 ±1.5

NSTM 42.1±0.6 53.8±1.0 20.2 ±0.7 62.6±1.2 17.4 ±0.6 36.8±0.3 6.63±0.11 31.1 ±1.2
WeTe 60.8±0.2 62.9±0.5 77.1 ±1.0 68.5 ±0.2 34.9±0.4 42.8±0.3 63.7±0.4 36.3 ±0.2

WHAI(1) 50.8 ±0.2 59.0 ±0.1 65.1 ±0.1 60.4 ±0.3 25.8 ±0.2 40.0 ±0.1 53.0 ±0.3 29.6 ±0.1
SawETM(1) 34.4 ±0.4 62.7 ±0.4 65.9 ±0.2 70.1 ±0.2 10.7 ±0.6 44.4 ±0.3 54.0 ±0.3 38.4 ±0.2

BT-chain(1)(Ours) 61.2 ±0.2 62.4 ±0.3 77.5 ±0.3 70.4 ±0.1 35.4 ±0.4 44.3 ±0.2 66.2 ±0.2 39.7 ±0.1

WHAI(3) 52.1 ±0.4 60.5 ±0.2 66.9 ±0.1 60.8 ±0.1 29.9 ±0.5 40.0 ±0.2 55.2 ±0.3 30.2 ±0.1
SawETM(3) 43.7 ±0.8 64.2 ±0.5 70.1 ±0.1 72.1 ±0.3 21.9 ±0.7 45.2 ±0.4 58.9 ±0.2 42.7 ±0.1

BT-chain(3)(Ours) 62.7±0.3 63.7 ±0.3 78.0 ±0.2 73.3 ±0.1 35.9 ±0.4 44.6 ±0.3 66.6 ±0.1 43.9 ±0.1

Datasets We conduct the experiments on four widely used benchmark corpus: 20 News Group
(20NG), Web Snippets (WS) (Phan et al., 2008), DBpedia (DP) (Lehmann et al., 2015) and Reuters
Corpus Volume 2 (RCV2) (Lewis et al., 2004). These datasets have very different characteristics in
terms of document length, the number of documents, and vocabulary size, where DP and RCV2 are
large-scale datasets, WS and DP consist of short documents. We pre-process those datasets following
WeTe (Wang et al., 2022), e.g., we tokenize and clean text by excluding standard stop words and
low-frequency words. The statistics of the datasets are summarized at Table. C. 1 of Appendix.

Baselines and settings We compare BT-chain against conventional and advanced topic models,
including (1) Single-layer baselines: Collapsed Gibbs Sampling LDA (LDA-Gibbs) as described
in (Griffiths & Steyvers, 2004); Neural topic models, such as Dirichlet VAE (DVAE) (Burkhardt &
Kramer, 2019) and embedded topic model (ETM) (Dieng et al., 2020), the former is a VAE based
topic model and ETM is the first NTM that introduces word embeddings; NTMs with transport,
Neural Sinkhorn Topic model (NSTM) (Zhao et al., 2021) and (WeTe) (Wang et al., 2022), both
of them use transport distance as the loss function; (2) Hierarchical topic models: WHAI (Zhang
et al., 2018) and SawETM (Duan et al., 2021a), they are hierarchical generative model based on
Gamma belief network and are compared as our multi-layer baselines. Besides the above baselines,
we also propose a variant of BT-chain that only uses the upward warming-up path to train the topic
embeddings and the encoder, which we name BT-chain-U. For all baselines, we use the default
parameters given with the source code or the best settings reported in their paper. For the models
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Table 2: Topic coherence (TC) and topic diversity (TD) results of single-layer methods on four datasets.

Corpus metrics LDA-Gibbs DVAE ETM NSTM WeTe BT-chain

20NG(6) TC 0.058 0.013 0.019 0.103 0.101 0.103
TD 0.631 0.661 0.551 0.647 0.591 0.664

RCV2 TC 0.097 -0.032 0.067 0.118 0.143 0.152
TD 0.641 0.730 0.502 0.639 0.760 0.743

DP TC 0.074 0.065 0.053 0.104 0.108 0.125
TD 0.684 0.645 0.583 0.715 0.763 0.790

WS TC 0.071 0.078 0.003 0.122 0.123 0.135
TD 0.760 0.540 0.585 0.940 0.764 0.904

that work with word embeddings, including ETM, NSTM, WeTe, and our BT-chain, we use the
pre-trained GloVe vectors for a fair comparison. We summarize those baselines at Table. C. 2.

Evaluation metrics Notably, our work aims to mine high-quality topic structures, where evaluation
metrics about topics are our main focus. Though perplexity is a common-used metric for generative
topic model, recent studies suggest that it might not be an appropriate measure of the topic quality
(Chang et al., 2009). Besides, CT based topic models (e.g., NSTM and WeTe) are learned by
minimizing the transport cost instead of maximizing the log-likelihood, which is important to achieve
better perplexity results. Therefore, we put more attention on following metrics. We use Topic
Coherence (TC) and Topic Diversity (TD) to evaluate the learned topics from both the interpretability
and diversity aspects. In detail, TC is the average Normalized Pointwise Mutual Information (NPMI)
over the top 10 words of each topic which is highly correlated to human judgment. TD is calculated
by the average percentage of unique words in the top 25 words of all topics. The higher the better
for both TC and TD. Besides the topic quality, we also report Purity and Normalized Mutual
Information (NMI) (Schütze et al., 2008) on clustering tasks to measure the performance of document
representation. We first train the model on the training datasets and infer the topic proportions on
the testing documents. Given the collection of topic proportions, we apply KMeans to predict the
document label. The clustering number is set as 20 for 20NG, WS, and DP, while 52 for the RCV2
dataset. For 20NG dataset, we follow WeTe and use its six super categories at the first level as the
ground truth, and denote it as 20NG(6).

Implementation details of BT-chain As discussed above, the proposed model takes the bag of
features Q(0)

j =
∑K0

k=1 θ̂
(0)
kj δα(0)

k

as its input. For corpus, α(0)
k is the word embeddings in the

vocabulary, θ̂(0)
j is the normalized TF-IDF vector. We set L as 3 and the topic numbers at each layer

for HTMs in the baselines and BT-chain K = [100, 64, 32] for a fair comparison. We set K = 100
for all the single-layer models. We use the Adam optimizer with learning rate 0.001, batch size 500.
All experiments are performed on the same machine and our model is implemented in PyTorch.

Quantitative results For all the methods, we run the algorithm five times with different random seeds,
and report the mean and standard deviation on the clustering task, while choosing the best results
for topic quality. We fix the hyperparameter β = 50 for all the datasets and also report the effect
of various settings on the document clustering in the Appendix. C.4. Table 1 reports the km-Purity
and km-NMI on four corpora. The first group is the single-layer topic models, including LDA,
NTMs, and transport based models, and the last two groups are hierarchical topic models (HTMs)
with a single layer and three layers respectively. We find that i) In general, our proposed BT-chain
outperforms the others in most cases, especially on the short WS and DP corpus. We attribute this to
the empirical distribution representation with word/topic embeddings. ii) The deep models achieve
better performance on both Purity and NMI than the shallow models. This is mainly because their
hierarchical document representations can provide more comprehensive information which is one of
our motivations. iii) Our single-layer BT-chain achieves better scores than WeTe, which shows the
efficiency of introducing the word weights at layer 0, e.g., the normalized TF-IDF vector, rather than
treating them according to the word frequency in WeTe.

To fully compare the qualities of learned topics, Table 2 and Figure 2 (where x-axis denotes the topic
layers.) report the topic coherence (TC) and topic diversity (TD) for single-layer models and deep
models respectively. Overall, we observe that the topics learned from our BT-chain has a better TC
and TD, especially for the short corpora. This meets with the observation on the clustering task and

8
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Figure 3: Topic hierarchies learned from 20NG (left) and miniImageNet (right). The links between two adjacent
layers are obtained according to the semantic similarities of topics (e.g. Φ in Eq. 4)

again proves the efficiency of the introduced word/topic semantics. Besides, our three-layer BT-chain
outperforms all the other HTMs in most cases, which benefits from the new view of topic hierarchies
discovery from the transport theory. The proposed BT-chain guarantees semantic consistency by
minimizing the total transport cost via L(l), l = 1, ..., L− 1, resulting in high-quality topic structures.
Finally, our BT-chain consistently achieves higher scores than BT-chain-U on all datasets at high
layers. Note that BT-chain-U only uses the upward path to transport messages from word space to
higher-level topic space. This demonstrates the efficiency of our downward training strategy.

Qualitative results To visualize the learned topic structures, we show the topic hierarchies on 20NG
in Fig. 3 (left), where it can be observed that topics in higher layers are mixtures of semantically close
topics in the lower levels. Recalling that BT-chain receives a set of feature embeddings as its input,
this broadens the scope of application of BT-chain beyond text corpora. Here we conduct experiments
on miniImageNet and visualize the learned concept hierarchy in Fig. 3 (right). MiniImageNet contains
a total number of 100 classes with 600 images in each class, which are extracted from the ImageNet
dataset (Russakovsky et al., 2015). To obtain the empirical distribution for image data, we adopt
ConceptTransformer (Rigotti et al., 2022) to obtain the bag of features for images, where the j-th
image is first divided evenly intoN patches xj =

∑N
n=1

1
N δenj , and each patch aligns toM concepts

via the cross-attention en =
∑M
m=1 αnmδcm , where en ∈ Rd is the patch embeddings, and αnm is

the attention weights, C ∈ Rd×M is the concept embedding matrix. We average all patches and thus
the final Q(0)

j for image can be expressed as: Q(0)
j =

∑M
m=1(

1
N

∑N
n=1 αnm)δcm . Once trained on

image data, we visualize the images assigned to the learned visual topics (Fig. 3 right), where we
can observe interesting semantic relations between visual concepts. For example, the bottom layer
contains the clear and concrete concepts, e.g., the regular textures, animal eyes, small objects in pure
background, and so on. The second layer contains more complex semantics: the facial part of animal,
and the small objects in textured background. It is interesting to see that the topic of warships in the
second layer is closely related to the topic of oceans and the topic of missiles in the bottom layer.
Similar observation can be found in the topic hierarchy of documents (Fig. 3 left), where we list the
most related words of each topic. We report more qualitative results and time complexity analysis in
Appendix C.3 and D.

6 CONCLUSION

In this paper, we present a bidirectional transport chain (BT-chain) for hierarchical representation.
BT-chain views each document as a series of empirical distributions over word/topic embeddings,
each of which consists of topic proportions and the corresponding embedding vectors. With the
fact that those multi-layer representations share semantic consistency of the same document, we
propose an effective upward-downward layer-wise training algorithm to learn topic hierarchies and
document representations based on the conditional transport theory. Our framework can be viewed as
a hierarchical extension to the recently developed topic models based on transport. Extensive experi-
ments on text corpora show that our approach enjoys superior modeling accuracy and interpretability.
Moreover, we also have conducted experiments on learning hierarchical visual topics from images,
which demonstrate the adaptability and flexibility of our method.
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A DETAILED DERIVATION OF CT IN BT-CHAIN

CT(Q(l)
j , Q

(l+1)
j ) measures the transport cost of two discrete empirical distributions (Zheng & Zhou,

2021b), which consists of a forward CT that constructs a navigator to transport P (l)
j to P (l+1)

j and a
backward CT that reverse the transport direction:

CT
(
Q

(l)
j , Q

(l+1)
j

)
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Q
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j , Q

(l+1)
j
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Specifically, the forward CT tries to minimize the expected transport cost from a set ofKl embeddings
to a set of Kl+1 embeddings:
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where we specify transport cost c(·) of two embedding vectors with the inner product:

c(α
(l)
k ,α

(l+1)
k ) = exp(−α(l)

k

T
α

(l+1)
k ), e.g., the closer the two vectors are, the smaller the point-to-

point transport cost. The navigator π(·) is the conditional probability of a given embedding α
(l)
k

being transported to embedding α
(l+1)
k , which is determined by both the topic weights θ(l+1)

kj and the

similarity score s(·) of the source and target topics. Therefore, it would be easier to transport α(l)
k to

α
(l+1)
k , if α(l+1)

k describes a more popular topic that is semantically closer to α
(l)
kl

in the embedding

space. We here also use the inner product to define s(α(l)
k ,α

(l+1)
k )=exp(α

(l)
k

T
α

(l+1)
k ) to reduce

the computational cost, although other possible choices.

Similarly, we can derive the backward CT by exchanging the source set and the target set:
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B INFERENCE NETWORK FOR TOPIC PROPORTIONS

To guarantee the sparse property of the topic proportion θ
(l)
j and as suggested in Wang et al. (2022),

we leverage a Hierarchical Weibull Reparameterization Encoder (HWRE) to infer θ(l)
j from the

information of the previous layers:

θ
(l)
j ∼Weibull

(
k
(l)
j ,λ

(l)
j

)
,k

(l)
j ,λ

(l)
j = SoftPlus

(
g(h

(l)
j )

)
, h

(l)
j = f

(
h
(l−1)
j

)
, (5)

where h
(0)
j = xj , f and g are implemented with neural network, Weibull(k, l) is the Weibull

distribution, which is reparameterizable (Zhang et al., 2018): Drawing s ∼Weibull(k, l) is equivalent
to maping s := l(− log(1 − ϵ))1/k, ϵ ∼ Uniform(0, 1). The SoftPlus applies log(1 + exp(·))
nonlinearity to ensure the positive Weibull shape and scale parameters.

C DATASETS AND FURTHER EXPERIMENTS

C.1 DATASETS

Our experiments are conducted on four widely-used benchmark text datasets including 20 News Group
(20NG), Web Snippets (WS) (Phan et al., 2008), DBpedia (DP) (Lehmann et al., 2015), Reuters
Corpus Volume 2 (RCV2) (Lewis et al., 2004) and one additional image dataset miniImageNet
(Vinyals et al., 2016). For the text datasets, WS and DP are short documents, RCV2 and DP are large
scale datasets. Since RCV2 owns multiple labels for one document, we follow the previous work and
remove documents containing multiple labels in the second level, resulting in 0.15M documents. For
the image dataset, miniImageNet is a subset of ImageNet (Russakovsky et al., 2015) dataset.
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• 20NG1: 20 Newsgroups consists of newsgroups post including 18,846 articles. We remove
stop words and words with document frequency less than 100 times. We also ignore
documents that contain only one word from the corpus. We follow WeTe of (Wang et al.,
2022) and use the 6 super-categories as 20NG’s ground truth and denote it as 20NG(6) in
the clustering task.

• WS: Web Snippets is a short corpus that contains 12,237 web search snippets with 8
categories. There are 10,052 words in the vocabulary and the average length of a snippet is
15.

• DP2: DBpedia is extracted from Wikipedia pages. We follow the pre-processing process in
Zhang et al. (2015), where the fields we used for this dataset contain title and abstract of
each Wikipedia article.

• RCV23: The original Reuters Corpus Volume 2 dataset consists of 804,414 documents. We
here left documents that only contains single label at the second topic level, resulting in
0.15M documents totally, whose vocabulary size is 7282 and average length is 85.

• miniImageNet 4: miniImageNet is a subset randomly sampled from ImageNet. In total,
there are 100 classes with 600 samples of 84× 84 color images per class. These 100 classes
are divided into 64, 16 and 20 classes respectively for training, validation and testing.

A summary of text corpora statistics is shown in Table C. 1.

Table C. 1: Statistics of the datasets

Number of docs Vocabulary size(V) average length Number of labels

20NG 18,864 22,636 108 6
DP 449,665 9,835 22 14
WS 12,337 10,052 15 8

RCV2 150,737 7,282 85 52

C.2 BASELINES

We summary the baseline methods at Table. C. 2

Model VAE-based HTM transport-based Word embedding
LDA (Griffiths & Steyvers, 2004)

DVAE (Burkhardt & Kramer, 2019) ✔
ETM (Dieng et al., 2020) ✔ ✔
NSTM (Zhao et al., 2021) ✔ ✔
WeTe (Wang et al., 2022) ✔ ✔

WHAI (Zhang et al., 2018) ✔ ✔
SawETM (Duan et al., 2021a) ✔ ✔ ✔

BT-chain ✔ ✔ ✔

Table C. 2: Summaries of baseline models. HTM denotes the hierarchical topic model.

C.3 MORE VISUALIZATIONS ON TEXT AND IMAGES

Similar to the main paper, we provide more visualizations of the learned topic hierarchies in Fig. C. 1
and Fig. C. 2.

1http://qwone.com/ jason/20Newsgroups
2https://en.wikipedia.org/wiki/Main_Page
3https://trec.nist.gov/data/reuters/reuters.html
4https://github.com/yaoyao-liu/mini-imagenet-tools
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Figure C. 1: Topic hierarchies learned from miniImageNet (left) and DP (right).

Figure C. 2: Topic hierarchies learned from miniImageNet (left) and WS (right).

Figure C. 3: Clustering results with various β.

C.4 HYPERPARAMETER SENSITIVITY

We fixed the hyperparameter β = 50.0 in all previous experiments for fair comparison. Here we
report the document clustering results (Purity and NMI) with different hyperparameter settings on
the four corpus in Fig. C. 3. Note that β controls the weight of the cross entropy in Eq.6 in the
mainscript. The regularized loss degenerates to the CT loss when β = 0. From Fig. C. 3 we find
that the regularization term helps the document representations, as there is a significant improvement
from β = 0 to β = 10; Besides, one can get better results than those reported in our experiments by
fine-tuning β for each dataset.

D TIME COMPLEXITY ANALYSIS

The core computational module in BT-chain is the regularized CT loss between two adjacent layers
CTreg(Q

(l)
j , Q

(l+1)
j ). It mainly contains the cost matrix, which has a time complexity of O(KlKl+1)

(Kl is the number of topics at layer l), the bidirectional transport plan π, which has a time complexity
of O(6KlKl+1). We note that both of them have a linear complexity over the product of the number
topics at two adjacent layers. For layer 0, we compute words within the target document rather than

15



Under review as a conference paper at ICLR 2023

all words in vocabulary, e.g. K0 = Nj , Nj is the number of words in document j, Nj ≪ V . Thus
the proposed BT-chain has an acceptable time complexity.

E METRICS

In our experiment, we report Topic Coherence (TC) and Topic Diversity (TD) to evaluate the learned
topics from both the interpretability and diversity aspects. Given a reference corpus, TC measures
the semantic relevance in the most significant words (top 10 words in our case) of a topic, which is
computed by the Normalized Pointwise Mutual Information (NPMI) over the selected words of each
topic Dieng et al. (2020):

f(wi, wj) =

[
log

p(wi, wj)

p(wi)p(wj)

]
/ [−logp(wi, wj)] ,

where p(wi, wj) is the probability of words wi and wj co-occurring in a document and p(wi) is the
marginal probability of word wi, and both of them are estimated with empirical counts. Those models
owing higher topic coherence are more interpretable topic models. TD measures how diverse the
learned topics are. We define TD with the percentage of the unique word in the top 25 words of all
topics Zhao et al. (2021). TD that closes to 0 indicates redundant topics; that closes to 1 means more
diverse topics.

We also report Purity and Normalized Mutual Information (NMI) (Schütze et al., 2008) on clustering
tasks to measure the performance of document representation. To compute Purity, each cluster is
assigned to the class which is most frequent in the cluster, and then the accuracy of this assignment is
measured by counting the number of correctly assigned documents and dividing by the total number
of documents:

Purity(S,C) =
1

N

∑
k

max
j

(sk
⋂
cj)

where S = {s1, ..., sK} is the set of clusters, and C = {c1, ..., cJ} is the set of classes. sk and cj
are sets of documents in cluster k and class j, respectively. Higher purity means higher matching
between S and C. NMI is related to the information theory, which can be calculated as:

NMI(S,C) =
2I(S,C)

H(S) +H(C)

where I(S,C) is the mutual information of S and C, H(S) is the entropy of S.
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