
Published in Transactions on Machine Learning Research (03/2025)

Stabilizing the Kumaraswamy Distribution

Max Wasserman mwasser6@cs.rochester.edu
Department of Computer Science
University of Rochester

Gonzalo Mateos gmateosb@ece.rochester.edu
Department of Electrical and Computer Engineering
University of Rochester

Reviewed on OpenReview: https: // openreview. net/ forum? id= XXXX

Abstract

Large-scale latent variable models require expressive continuous distributions that support
efficient sampling and low-variance differentiation, achievable through the reparameteri-
zation trick. The Kumaraswamy (KS) distribution is both expressive and supports the
reparameterization trick with a simple closed-form inverse CDF. Yet, its adoption remains
limited. We identify and resolve numerical instabilities in the log-pdf, CDF, and inverse CDF,
exposing issues in libraries like PyTorch and TensorFlow. We then introduce simple and
scalable latent variable models to address exploration-exploitation trade-offs in contextual
multi-armed bandits and facilitate uncertainty quantification for link prediction with graph
neural networks. We find these models to be most performant when paired with the stable
KS. Our results support the stabilized KS distribution as a core component in scalable
variational models for bounded latent variables.

1 Introduction

Probabilistic models use probability distributions as building blocks to model complex joint distributions
between random variables. Such distributions can model unobserved ‘latent’ variables z, or observed ‘data’
variables x. Bounded interval-supported latent variables are central to many key applications, such as
unobserved probabilities (e.g., user clicks in recommendation systems or links between network nodes),
missing measurements in control systems (e.g., joint angles in [0, 2π]), and stochastic policies over bounded
actions in reinforcement learning (e.g., motor torque in [−10, 10]).

To meet the demands of large-scale latent variable models, distributions supported on bounded intervals must
satisfy the following criteria: (i) support the reparameterization trick through an explicit reparameterization
function, such as a closed-form inverse CDF, enabling low-variance gradient estimation and efficient sampling;
(ii) provide sufficient expressiveness to capture complex latent spaces; and (iii) offer simple distribution-related
functions (log-pdf, explicit reparameterization function, and gradients) that allow fast and accurate evaluation.
In Section 2, we argue that the Kumaraswamy (KS) distribution uniquely meets these criteria, yet remains
surprisingly underused. In Section 3, we demonstrate that the KS distribution-related functions exhibit
numerical instabilities concealed by standard parameterizations and exacerbated in large-scale latent variable
models.

In this paper, we make the following technical contributions:

• We introduce an unconstrained logarithmic parameterization of the KS’s log-pdf, CDF, inverse CDF, and
gradients, which isolate the dominant numerical instabilities, allowing application of recently developed
stabilization techniques (Section 3).

• We illustrate how the KS can be used as an integral component of latent variable models and demonstrate
its benefits over alternative distributions. In addition to the workhorse variational autoencoder (VAE),
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Figure 1: Comparison of relevant bounded interval-supported distributions. Left: Time for sampling and
differentiating through samples. The Beta lacks explicit reparameterization, and has slower sampling and
gradients. Right: Expressiveness in terms of attainable prototypical shapes.

our experiments showcase: (i) the Variational Bandit Encoder (VBE), addressing exploration-exploitation
trade-offs in contextual Bernoulli multi-armed bandits (Section 4.2); and (ii) the Variational Edge Encoder
(VEE), facilitating uncertainty quantification in link prediction with graph neural networks (Section 4.3).

The VBE and VEE are scalable latent variable models with bounded interval-supported latent variables.
Unlike traditional methods which tend to model global latent variables (Section 5), such as the parameters of
a shared neural network (NN), the VBE and VEE define local latent variables per bandit arm or network
link. This allows the models to incorporate prior knowledge precisely where domain expertise tends to
reside—at a granular level, such as the expected reward of a specific arm or the probability of a particular
link’s existence. Our numerical experiments demonstrate that both models tend to perform best when paired
with the stabilized KS distribution in their variational posterior, reinforcing its role as a core component in
large-scale bounded latent variable modeling. Our experiments in Sections 4.2-4.3 provide evidence toward
the benefits of adopting the KS in timely application domains — enabled by our stable parameterization —
without making claims on improvements over state-of-the-art models, which future work may investigate.

2 Background

The KS distribution (Jones, 2009; Kumaraswamy, 1980) has pdf f(x) = abxa−1(1− xa)b−1, CDF F (x) =
1− (1− xa)b, and inverse CDF F −1(u) = (1− ub−1)a−1 , all defined for x, u ∈ (0, 1) and parameterized by
a, b > 0. The differential entropy of a KS with parameters a, b is

H(KS) := −
∫ 1

0
f(x) log f(x)dx

= 1− b + (1− a)
(

ϕ(0) (
b−1 + 1

)
+ γ

)
− log a− log b,

where ϕ(0) is the digamma function and γ ≈ 0.577 is the Euler-Mascheroni constant. The digamma function
and its gradient, the trigamma function ϕ(1)(x), can be represented as infinite series which converge rapidly
and thus can be used effectively in numerical applications. They are included as standard functions in
common auto-differentiation frameworks.

Continuous distributions with bounded interval support. Among distributions with bounded interval
support, the KS uniquely satisfies desiderata (i)–(iii) in Section 1. It supports the reparameterization
trick through its closed-form, differentiable inverse CDF, providing efficient sampling and low-variance
gradients. The KS supports four distinct prototypical shapes — bell, U, increasing, and decreasing (Figure 1,
right) — providing expressivity for diverse modeling tasks. Its log-pdf, CDF, and inverse CDF, along
with their gradients, are composed only of affine transformations, exponentials, and logarithms, and can be
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Property / Distribs. CB tanhN Beta KS
Relative Expressiveness low high high high
Gradient Reparam. explicit explicit implicit explicit
Contains Uniform ✓ ✗ ✓ ✓
Closed-form CDF ✓ ✗ ✗ ✓
Closed-form inverse CDF ✓ ✗ ✗ ✓
Numerical Issues mild high low low
Complex Functions tanh−1 log(1- tanh2(x)) β, I None
Parameterization R R2 R2

+ R2

Analytical Moments ✓ ✗ ✓ ✓
Closed-form KL Exp. Family tanhN Exp. Family Beta
Entropy H ✓ ✗ ✓ ✓

Table 1: Comparison of bounded interval-supported distribution families.

parameterized directly in terms of unconstrained logarithmic values; see Section 3. This enables straightforward
implementation with minimal dependencies and keeps most computation in log-space, enhancing stability
and accuracy. The unconstrained logarithmic parameterization makes it well-suited for NNs, eliminating the
need for positivity-enforcing link functions. Additionally, the KS has differentiable, closed-form expressions
for moments, median, differential entropy H(KS), and the Kullback-Leibler (KL) divergence to the Beta
distribution, facilitating efficient incorporation of prior information.

We briefly introduce workhorse bounded-interval supported distribution families, namely the the Continuous
Bernoulli, the Beta, and the tanh-squashed-Gaussian. The Continuous Bernoulli (CB) (Loaiza-Ganem &
Cunningham, 2019) arises in deep learning for modeling continuous [0, 1]-valued pixel intensities in natural
images. It provides a normalized probabilistic counterpart to the commonly used binary cross-entropy loss, with
density p(x; λ) = C(λ)λx(1 − λ)1−x, x ∈ [0, 1], λ ∈ (0, 1), where C(λ) = {2 if λ = 1

2 , else 2 tanh−1(1−2λ)
1−2λ }

is the normalizing constant. The Beta distribution is a flexible two-parameter family, widely used for
modeling probabilities and proportions. Its density, parameterized by a, b > 0, is given by: p(x; a, b) =
B(a, b)−1xa−1(1− x)b−1, x ∈ (0, 1), where B(a, b) is the Beta function. The tanh-squashed-Gaussian (tanhN )
maps Gaussian samples through the tanh function to produce outputs in [−1, 1]: y = tanh(z), z ∼ N (µ, σ2).
It is widely used in reinforcement learning over continuous bounded action spaces (Haarnoja et al., 2018) due
to its support for the reparameterization trick.

Table 1 compares these bounded-interval supported distribution families across important properties for latent
variable modeling. Relative expressiveness measures the variety of prototypical shapes a distribution can
represent. All distributions except CB exhibit four prototypical shapes; CB is limited to two. Admittedly, none
of these offer support for multimodal distributions over bounded intervals. Appendix H discusses other flexible
alternatives (which have their own limitations), e.g., copulas (Tran et al., 2015) or normalising flows (Rezende
& Mohamed, 2015). Contains uniform refers to the ability to represent the uniform distribution, critical for
modeling complete uncertainty. All distributions except tanhN can express the uniform. Closed-form CDF
indicates whether a closed-form CDF is available, which could be a desirable feature for use in copula-based
modeling, simplifying the representation of complex dependencies (Tran et al., 2015). Only CB and KS
provide such expressions. Similarly, closed-form inverse CDF indicates the availability of a closed-form
inverse CDF, with only CB and KS satisfying this criterion. Numerical issues capture challenges in stable
evaluation. For example, the CB log-pdf requires a Taylor expansion to handle singularities as λ→ 0.5. The
tanhN distribution requires log-pdf clipping and parameter regularization to maintain stability, as appears
in various implementations (Haarnoja et al., 2018). Complex functions highlight reliance on non-affine,
non-logarithmic, or non-exponential operations. The tanhN log-pdf involves computing log

(
1− tanh2(x)

)
,

which is numerically unstable (Björck et al., 2021). The Beta distribution relies on the Beta function and
the regularized incomplete Beta function in its log-pdf and CDF, respectively, both requiring numerical
approximations. In contrast, our novel parameterization of the KS distribution (Section 3) avoids complex
functions in the log-pdf, CDF, and inverse CDF; note a−1 is computed via exp(− log a), avoiding division.
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The KS differential entropy contains the digamma function ϕ(0) and the trigamma function ϕ(1), but because
there exist rapidly converging polynomial expansions, they can be evaluated with very high accuracy in a fast,
efficient, and numerically stable manner. Parameterization examines whether a distribution can be effectively
expressed with unconstrained parameters. Both CB (via log λ ∈ R) and tanhN (via (µ, log σ) ∈ R2) support
unconstrained parameterization. We introduce the first unconstrained parameterization for KS in Section 3,
using (log a, log b) ∈ R2. The Beta distribution, due to its dependence on the Beta function, resists effective
unconstrained parameterization. Closed-form KL functions refer to analytical KL divergence expressions.
The CB and Beta distributions, as members of the exponential family, admit closed-form KL expressions
with other exponential family members. The KS also has closed-form KL expressions with Beta family
members, while tanhN is restricted to closed-form KL expressions within its own family. Entropy considers
the availability of closed-form expressions for differential entropy. This property is present for all distributions
except tanhN .

Latent variable modeling with stochastic variational inference (SVI). The primary method for fitting
large-scale latent variable models is SVI (Hoffman et al., 2013). Consider a model pθ(x) =

∫
pθ(x | z)p(z)dz,

where x ∈ RM is the observation, z ∈ RD is a vector-valued latent variable, pθ(x | z) is the likelihood
function with parameters θ, and p(z) is the prior distribution. Except for a few special cases, maximum
likelihood learning in such models is intractable because of the difficulty of the integrals involved. Variational
inference (Jaakkola & Jordan, 2000) provides a tractable alternative by introducing a variational posterior
distribution qϕ(z) and maximizing a lower bound on the marginal log-likelihood called the ELBO:

L(x, θ, ϕ) = Eqϕ(z) [log pθ(x | z)]−DKL (qϕ(z) ∥ p(z)) ≤ log pθ(x). (1)

Training models with modern SVI (Kingma & Welling, 2014; Rezende et al., 2014) involves gradient-based
optimization of this bound w.r.t. both the model parameters θ and the variational parameters ϕ. The first
term in (1) encourages the model to assign high likelihood to the data, but its exact evaluation and gradients
are typically intractable and so the expectation is often approximated with samples from qϕ(z). The KL
divergence term incorporates prior information by penalizing deviations of the variational posterior from
the prior p(z). Closed-form expressions of DKL (qϕ (z) ∥ p (z)) allow efficient encoding of prior information;
otherwise, sample-based approximations are required. In the common setting of i.i.d. data with per-datapoint
latent variables, amortized inference introduces a shared NN, parameterized by ‘inference parameters’ ϕ, to
map observations to variational parameters, approximating their individual posteriors as qϕ(z | x). Modifying
the ELBO by scaling the KL term with a parameter βKL > 0 is often necessary to balance the trade-off between
data likelihood and prior regularization (Alemi et al., 2018). We denote the sample-based approximation of
this modified ELBO as L̂βKL .

Gradient reparameterization: explicit and implicit. A distribution qϕ(z) is said to be explicitly
reparameterizable, or amenable to the ‘reparameterization trick’, if it can be expressed as a deterministic,
differentiable transformation z = g(ϵ, ϕ) of a base distribution ϵ ∼ p(ϵ). This base distribution is typically
simple, such as Uniform or standard Normal, enabling fast sample generation by first sampling from the base
and then applying g. This enables the use of backpropagation to estimate gradients of the form [cf. (1)]

∇ϕEqϕ(z)[f(z)] = Ep(ϵ)[∇ϕf(g(ϵ, ϕ))] = Ep(ϵ)[∇zf(z)|z=g(ϵ,ϕ)∇ϕg(ϵ, ϕ)], (2)

an expectation with form encompassing the ELBO. Explicit reparameterization is compatible with distributions
in the location-scale family (e.g., Gaussian, Laplace, Cauchy), distributions with tractable inverse CDFs
(e.g., exponential, KS, CB), or those expressible as deterministic transformations of such distributions (e.g.,
tanhN ). When explicit reparameterization is not available, implicit reparameterization (Figurnov et al., 2018)
is commonly used for distributions with numerically tractable CDFs, such as truncated, mixture, Gamma,
Beta, Dirichlet, or von Mises distributions. This method expresses the parameter gradient through the sample
∇ϕz as a function only of the CDF gradients, not its inverse. Such CDF gradients are commonly found using
numerical methods, e.g., forward mode auto-differentiation on truncated iterations to estimate the CDF, as
in the Gamma and Beta distributions. Such numerical methods introduce approximation error, and thus
potentially higher variance and numerical stability issues in the estimation of (2) (Mohamed et al., 2020),
and tend to introduce significantly more complexity than explicit reparameterization which only require
implementing g(ϵ, ϕ).
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Figure 2: Naive computation of log (1− exp (x)) (red) becomes unstable as x → 0 due to catastrophic
cancellation, while log1mexp(x) (blue) ensures accurate computation. Relative error is the absolute difference
between single-precision and 1024-decimal-place evaluations, normalized by the 1024-decimal-place result.

3 Stabilizing the Kumaraswamy

The KS distribution’s utility relies on stable computation of its log-pdf, CDF, inverse CDF, and their gradients.
In the standard parameterization, these functions contain instabilities from hidden log(1− exp(x)) terms.
We address this by introducing an unconstrained logarithmic parameterization that isolates these unstable
terms, enabling their straightforward replacement with the stable log1mexp function. Finally, we show why
naive stabilization techniques, such as parameter clipping, fail in high-dimensional applications.

Identifying the instability: log (1− exp (x)). Naive computation of log (1− exp (x)) for x < 0 leads to
significant numerical errors as x approaches 0 (Figure 2, red). These errors grow so large that they can
cause numerical instability, i.e., an irrecoverable error such as -inf. These errors result from catastrophic
cancellation, which occurs when subtracting nearly equal numbers — here, 1− exp(x). As x→ 0, exp(x) ≈ 1,
so 1 - exp(x) results in the cancellation of leading significant bits, leaving only a few less significant, less
accurate bits to represent the result. This causes large relative errors in 1 - exp(x), which are amplified
when input to the logarithm as its magnitude grows sharply near zero. If the cancellation is complete, 1 -
exp(x) underflows to 0 and the logarithm returns -inf, as seen in Figure 2 (red) when log2 |x| < −24.

Numerical building blocks for accurate log (1− exp (x)) computation. When |x| ≪ 1, both log(1 + x)
and exp(x)−1 can suffer from severe cancellation: the former between 1 and x, the latter between exp(x) and
−1. In both cases, a simple solution for accurate computation is to use a few terms of the Taylor series, as

log1p(x) := log(1 + x) = x− x2

2 + x3

3 − . . . , for |x| < 1,

expm1(x) := exp(x)− 1 = x + x2

2! + x3

3! + . . . , for |x| < 1,

where n! denotes the factorial. Standard single-precision log1p and expm1 implementations typically use
∼ 4 terms in their Taylor series, which we found sufficient for our needs. These functions form the basis for
two common methods to compute log (1− exp(x)): log(-expm1(x)) and log1p(-exp(x)). Mächler (2012)
showed that neither method alone provides sufficient accuracy across the domain, but each is accurate in
complementary regions. To address this, Mächler (2012) introduced

log1mexp(x) :=
{

log(-expm1(x)) − log 2 ≤ x < 0
log1p(-exp(x)) x < − log 2,

(3)

which computes log (1− exp (x)) accurately throughout single precision, shown in Figure 2 (blue).

A stable Kumaraswamy. The direct implementation of the KS’s log-pdf, CDF, and inverse CDF — as
found in all core auto-differentiation libraries — produces numerical instabilities. Here, we introduce a novel
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parameterization in terms of unconstrained logarithmic parameter values, which isolates and makes explicit
the unstable terms

wb−1(u) = log(1− ub−1
) = log(1− exp(b−1 log u))

wa(x) = log(1− xa) = log(1− exp(a log x)),

eliminates the need for positivity-enforcing link functions, and whose expressions involve only affine, ex-
ponential, and logarithmic transformations. This allows the log-pdf and its gradients to be expressed
as

log f(x) = log a + log b + (a− 1) log x + (b− 1)wa(x) (4)
∇log x log f(x) = (a− 1)− (b− 1) · exp(a log x− wa(x) + log a) (5)
∇log a log f(x) = 1 + a log x · {1− (b− 1) · exp(a log x− wa(x))} (6)
∇log b log f(x) = 1 + b · wa(x). (7)

Likewise for the CDF

F (x) = 1− (1− xa)b = 1− exp(b · wa(x)) (8)
∇xF (x) = exp(log a + log b + (a− 1) · log x + (b− 1) · wa(x)) (9)

∇log aF (x) = exp(log a + log b + a · log x + (b− 1) · wa(x)) · log x (10)
∇log bF (x) = exp(log b + b · wa(x)) · (−wa(x)), (11)

and the inverse CDF

F −1(u) = (1− ub−1
)a−1

= exp(a−1wb−1(u)) (12)
∇log aF −1(u) = exp(− log a + a−1wb−1(u)) · (−wb−1(u)) (13)
∇log bF −1(u) = exp(− log a− log b + b−1 log u + (a−1 − 1)wb−1(u)) · log u. (14)

This parameterization’s algebraic form allows direct replacement of the dominant unstable terms, substituting
wb−1(u) with log1mexp

(
b−1 log u

)
and wa(x) with log1mexp(a log x). Access to log a and log b avoids errors

from unnecessary transitions in-and-out of log-space. We also avoid the error prone expressions produced in
backpropogation’s direct application of the chain rule, e.g.,

∇log bF −1 = 1
a
· exp

(
1
a

log
(

1- exp
(

1
b

log u

)))
· -

(
1- exp

(
1
b

log u

))−1
· exp

(
1
b

log u

)
· log u · −1

b2 · b

and (14) are equivalent expressions for ∇log bF −1, but their computed values can differ greatly for extreme
parameter values. Desirable KS distributions can obtain such problematic extreme parameter values, e.g.,
the KS distributions in Figure 3 have b ≈ 106. See Section A for further discussion on how instability in the
unmodified KS can worsen with increasing evidence.

Both PyTorch and TensorFlow implement the KS distribution similarly and fail to address the log1mexp
instabilities we highlight. Here, we use PyTorch as a representative example, though our results and methods
apply equally to TensorFlow. Figure 3 compares the PDF, inverse CDF, and histograms of reparameterized
samples for KS distributions which are typical to real-world modeling scenarios. The PyTorch implementation
(top row) shows jaggedness in both the PDF and inverse CDF, caused by catastrophic cancellation in the
unstable terms wa(x) and wb−1(u). Additionally, the PyTorch inverse CDF underflows beyond u ≈ 1− 39.3:
here, wb−1(u) = −∞, and F −1(u) = exp(a−1 · −∞) = 0. This underflow results in a point mass at x = 0 (a
point outside of the KS support) with probability ≈ 39.3 in each of the reparameterized sampling distributions,
and produces infinite gradients via ∇log aF −1 =∞ [cf. (13)]. This infinite gradient triggers a cascade: infinite
parameter values after the optimizer step and NaN activations in the next forward pass, which is what users
ultimately observe when training fails.
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Figure 3: Stabilizing log(1− exp(x)) terms eliminates numerical instabilities in the KS log-pdf and inverse
CDF. We compare the unstable PyTorch KS implementation (top row) and our stable KS (bottom row) for
realistic KS distributions (log2 b = 24, varying a). Catastrophic cancellation in the log(1 − exp(x)) terms
in the PyTorch KS causes jagged curves and inverse CDF underflow beyond u ≈ 1 − 39.3, resulting in a
point mass of ≈ 39.3 at x = 0 in the sampling distribution. Our stable KS removes the instability by using
log1mexp.

3.1 The inadequacy of parameter clipping in large-scale settings

Numerical instability in the KS is inherently stochastic, and in high-dimensional settings, the compounded
probability of failure across multiple variables makes program failure almost certain. As the program goes
unstable if any single KS goes unstable, the overall instability probability can be modeled as the probability
of at least one failure in D independent Bernoulli trials: 1− p(KS stable)D, for D KS latent variables. In
practical large-scale settings, e.g., recommendation systems with 107 users and D = 107 recommendation
items, the probability of instability approaches 1 across all reasonable parameter clipping values, rendering
clipping an ineffective stabilization strategy.

Quantitative illustration. Consider the stochastic instability arising from the term log(1 − exp(b−1 log u)),
where catastrophic cancellation occurs if 1− exp(b−1 log u) becomes too small. To avoid logarithmic domain
errors in single precision, we enforce −b−1 log u > 2−24 (Figure 2). We aim to select a bmax to satisfy this
constraint: a larger bmax expands the variational family allowing improved posterior approximation, but
worsens stability. Consider the moderate entropy KS distributions in Figure 3 which use b = 224. Using
bmax = 224, only u < 0.6321 satisfies the stability condition, i.e., p(KS stable) ≈ 0.6321 per sample. With
D = 107, the overall probability of instability becomes 1−0.6321107 ≈ 1. Now consider aggressively restricting
bmax = 24, as done in (Nalisnick et al., 2016). Now u < 0.9999 satisfies the stability condition. Even then,
introducing D = 107 variables, we still have the overall probability of instability is 1− 0.9999107 ≈ 1. Thus,
even extreme clipping fails to stabilize KS distributions at scale. Further, this analysis considers only a single
posterior sample. In practice, training with SVI requires T ∼ 103 optimization steps, each requiring posterior
samples for gradient estimation. This compounds the instability probability to 1− p(KS stable)T D, making
clipping ineffective in realistic large-scale scenarios.

4 Experiments

Using the well established VAE framework on MNIST and CIFAR-10 datasets, we show that the stabilized
KS enables reliable training as both a variational posterior [Eqns. (12)–(14)] and likelihood function
[Eqns. (4)–(7)]. We then introduce two new deep variational architectures that leverage bounded interval-
supported latent variables: the Variational Bandit Encoder (VBE) for addressing exploration-exploitation
trade-offs in contextual multi-armed bandits (Section 4.2), and the Variational Edge Encoder (VEE) for
facilitating uncertainty quantification in link-prediction with graph neural networks (Section 4.3). Across
the experimental domains, our stable KS is performant and often easier to use than alternative variational
distributions supported on bounded intervals. For instance, tanhN models require log-pdf clipping for stability,
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Table 2: VAE on MNIST and CIFAR-10.

Prior qϕ(z|x) pθ(x|z) MNIST CIFAR-10
LL Acc. LL Acc.

N(0,1) N CB 1860 97.3 1191 37.9
U(0,1) KS CB 1855 97.4 1194 41.5
U(0,1) Beta CB 1856 97.5 1189 40.3
N(0,1) N Beta 4209 92.1 3648 48.5
U(0,1) KS Beta 4160 91.3 3579 50.1
U(0,1) Beta Beta 4198 90.1 N/A N/A
N(0,1) N KS 3393 96.4 1875 47.1
U(0,1) KS KS 3401 96.8 1939 48.8
U(0,1) Beta KS 3405 97.1 N/A N/A

Table 3: MNIST test digit VAE reconstructions.

while Beta models show significant performance variability based on the chosen positivity-enforcing link
function and often fail to converge, e.g., on CIFAR-10 in Section 4.1. Finally, our new variational models are
fast: the VBEs in Section 4.2 are 8− 22× faster than the state-of-the-art baseline.
Remark. Across all three experimental settings, models using the unstable KS produce NaN errors in training
and are therefore excluded. Prior work using the KS in low-dimensional latent variable models (Nalisnick
et al., 2016; Nalisnick & Smyth, 2017; Stirn et al., 2019) similarly find NaN errors, and rely on parameter
clipping to avoid instability. See Section 3.1 for why this is approach does not work in large-scale settings.
Our stabilization approach directly resolves these numerical issues, enabling stable training at scale.

4.1 Image variational auto-encoders

The VAE (Kingma & Welling, 2014) is a generative latent variable model trained using amortized variational
inference. Both the variational posterior qϕ(z|x) and the conditional likelihood pθ(z | x) are parameterized
using NNs, known as the encoder eϕ(x) : RM 7→ RD and decoder dθ(z) : RD 7→ RM , respectively. VAEs
typically use the standard Normal distribution as the prior and a factorized Normal as the variational
posterior. The use of alternative variational distributions allows incorporating different prior assumptions
about the latent factors of the data, such as bounded support or periodicity (Figurnov et al., 2018).

Experimental setup and metrics. Inspired by (Loaiza-Ganem & Cunningham, 2019), we train VAEs with
fully factorized priors and variational posteriors on MNIST and CIFAR-10 without pixel binarization, using
an unmodified ELBO (βKL = 1). We adopt the most effective likelihoods from their work (Beta and CB),
identical latent dimension D (MNIST: D = 20, CIFAR-10: D = 50), and the same standard NN architectures,
which are detailed in Appendix B, along with the training hyperparameters. For each variational posterior
factor, we choose the canonical prior: N(0,1) for N , and U(0,1) for KS and Beta. We evaluate the models
with an importance weighted estimator (Burda et al., 2016) of the marginal Log Likelihood (LL) using 200
samples. To assess usefulness of the learned latent representations, we encode test data xn, compute the
mean of qϕ(zn | xn), and classify the test labels using a 15-nearest neighbor classifier; the classifier accuracy
(%) is denoted "Acc." For subjective evaluation, we display the mean decoded likelihood of a single sample
from the encoded posterior of random test digits in Figure 3.

Discussion of results. Rather than introducing a more performant VAE architecture, the sole purpose
of this experiment is to provide evidence toward the stabilization of the KS. Notably, stable KS VAEs
maintain numerical stability while all VAEs with the unstable KS produce unstable training. VAEs with
Beta-distributed variational posteriors often do not converge; indeed, (Figurnov et al., 2018) reported strong
performance on binarized MNIST using a softplus link function, but did not present results on CIFAR-10,
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nor could we find other works that did. We suspect this is due to similar instability issues, with the higher
gradient variance of the Beta’s implicit reparameterization a likely explanation. In an attempt to overcome
this instability in Beta VAEs we report the best metrics across softplus or exp link functions in Table 2. When
neither converges, we report N/A. The results in Table 2 show that across datasets, VAEs with KS-distributed
variational posteriors consistently produce useful latent spaces, evidenced by strong latent nearest neighbor
classifier accuracy, and yield reconstructions with competitive LLs and visual quality.

When paired with any variational posterior, a KS likelihood yields stronger MNIST reconstructions than
Beta likelihoods: compare rows ∗-Beta to ∗-KS in Table 3. As in (Loaiza-Ganem & Cunningham, 2019),
we find CB likelihoods produce the most subjectively performant VAEs on MNIST, unsurprising as CB was
introduced specifically for the approximately binary MNIST pixel data.

4.2 Contextual Bernoulli multi-armed bandits

The contextual Bernoulli multi-armed bandit (MAB) problem involves a decision maker who, at each time
step t = 1, . . . , T , selects one arm from a finite set of K options. Each arm has an associated context xk ∈ Rd,
and pulling an arm yields a binary reward rk ∼ Bernoulli(µk), where µk ∈ [0, 1] is the unknown mean reward.
MABs originate by analogy to casino slot machines, where each machine (arm) has a different payout rate,
and the challenge lies in deciding which arms to pull in order to maximize total winnings while learning about
their payout rates, a situation called the exploration-exploitation dilemma. MABs have found applications
in modern recommendation systems (Li et al., 2010), clinical trials design (Villar et al., 2015), and mobile
health (Tewari & Murphy, 2017). Thompson Sampling (TS) is a simple, empirically effective (Chapelle &
Li, 2011), and scalable (Jun et al., 2017) arm selection heuristic. It selects the arm corresponding to the
highest value drawn from the posterior distributions over the latent zk’s. This approach naturally balances
exploration and exploitation: the uncertainty in the posteriors promote exploration, while concentration of
probability mass on large mean rewards drive exploitation. See Section 5 for further discussion on TS-based
Bernoulli MAB approaches.

Variational Bandit Encoder (VBE). Consider K arms, each with context xk ∈ Rd and an associated
latent variable zk ∈ [0, 1] representing its mean reward. Define X = [x1, . . . , xK ]. Let Tk be the set of time
indices at which arm k is chosen, resulting in binary rewards {rk,t}t∈Tk

. The joint distribution factorizes as

pθ(z, r | X) =
K∏

k=1

[
pθ(zk | xk)

∏
t∈Tk

Bernoulli(rk,t | zk)
]
, (15)

where pθ(zk | xk) is a conditional prior on the latent mean reward zk; see Appendix F for strategies to
incorporate prior knowledge into this distribution. In the following, we take pθ(zk | xk) to be uniform, and
so θ = ∅. Each reward rk,t ∈ {0, 1} is drawn from Bernoulli(µk), so if an arm is never pulled (Tk = ∅), it
simply yields no observed rewards.

With regards to variational approximations and learning, VBE’s posit a fully factorized KS variational
posterior

∏
k qϕ(zk | xk). Similar to VAEs, we employ amortized inference using a shared NN encoder eϕ(xk),

which defines a reparameterizable variational distribution qϕ(zk | xk). However, unlike VAEs, VBEs omit the
decoder; samples z̃k ∼ qϕ(zk | xk) directly parameterize the likelihood function. The arm selection at step
t follows TS: a = argmaxk{z̃k}. We then draw reward r ∼ Bernoulli(µa) and record it in the replay buffer
D ← D ∪ {(xa, a, r)}. We construct a sample approximation of the modified ELBO over the subset of arms
Kt ⊂ {1, . . . , K} that have been pulled by time t as

L̂βKL,t(D, ϕ) =
∑

(xa,a,r)∈D

log p(r | z̃a) + βKL
∑

k∈Kt

H[qϕ(zk | xk)], (16)

see Appendix E for the derivation. The second term promotes exploration by penalizing overconfidence with
the exploration effect proportional to βKL. We maximize (16) w.r.t. ϕ via gradient ascent, enabled by the
reparameterizable KS. VBE execution is summarized in Algorithm 1.

VBE advantages. VBEs provide four primary advantages over alternative TS-based Bernoulli MAB
approaches, discussed in Section 5
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Algorithm 1 Variational Bandit Encoder
Require: {xk}K

k=1, {µk}K
k=1, η, βKL

1: Variation posterior q ← KS
2: Replay buffer D ← ∅
3: for t = 1 . . . T do
4: Encode: (ak, bk) = eϕ(xk)
5: Sample: z̃k ∼ q(zk; ak, bk)
6: TS: a = argmaxk{z̃k}
7: Reward: r ∼ Bernoulli(µa)
8: D ← D ∪ {(xa, a, r)}
9: Construct L̂βKL as in (16)

10: ϕ← ϕ + η∇ϕL̂βKL

11: end for

Figure 4: Synthetic bandit performance over 5 runs. VBE-
KS best handles exploration-exploitation trade-offs.

• Scalability and Compatibility. VBE training consists of a forward pass through a NN, sampling an explicitly
reparameterized distribution, and a backward pass for gradient-based updates. This process is scalable
and fully compatible with existing gradient-based infrastructure.

• Prior Knowledge Incorporation. When prior knowledge exists on an arm k we can encode it as pθ(zk |
xk) = Beta(ak, bk), replacing H[qϕ(zk | xk)] with −DKL (qϕ(zk | xk) ∥ pθ(zk | xk)); see Appendix F.

• Interpretability and Independence. Encoding xk with eϕ produces KS distribution parameters, fully
encapsulating the model’s beliefs about µk. This is independent of other arms and past data.

• Simplicity. VBEs lack numerous hyperparameters and complex architectural components.

Alternative methods lack some or all of these properties because they do not directly model the mean rewards
nor differentiate through reparameterized samples from a variational mean reward posterior; instead, they
tend to model parameters of a context-to-mean reward function.

Figure 5: High arm reward probabilities
are reduced via a power 5 exponentiation,
encouraging exploration.

Experimental setup. We construct synthetic data with
K = 104 arms by first sampling a weight vector w and features
{xk}K

k=1 from N (0, I5). We then compute {w⊤xk}K
k=1 and

apply min-max normalization to produce probabilities (referred
to as “Original probabilities" in Figure 5). To introduce non-
linearity, we raise these probabilities to the power 5 (shown
as “Power (5) transformed probabilities" in Figure 5). Expo-
nentiating the probabilities not only makes the mapping from
features to mean rewards more challenging to learn, but it also
significantly reduces the number of arms with high probabil-
ities, forcing the agent to explore more. For instance, when
raising the probabilities to the power of 5, the number of arms
with large probabilities drops from 167 to just 7. We consider
T = 2 · 103 steps.

We evaluate VBEs with either a KS (VBE-KS), Beta (VBE-
Beta), or tanhN (VBE-tanhN ) all using βKL = |Kt|−1, which
makes the second term in (16) a mean. Gaussian variational
posteriors are not used as their support RK does not match
the posterior support [0, 1]K . VBE-tanhN ’s performance is
sensitive to the number of samples used in its entropy estimate: we found degraded performance beyond 10
samples. The learning rate is set to η = 10−2. As a baseline, we use LMC-TS, which employs Langevin Monte
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Carlo (LMC) to sample posterior parameters of a NN, known for state-of-the-art performance across various
tasks (Xu et al., 2022). All models use an MLP with 3 hidden layers of width 32. LMC-TS hyperparameters
(inverse temperature, LMC steps, weight decay) are set or tuned based on the authors’ code. We repeat
experiments 5 times on an Apple M2 CPU and report the mean and standard deviation across these runs in
Figure 4.

Metrics and evaluation. The optimal policy always selects the arm with the highest mean reward r∗.
Our objective is to minimize regret, defined as the cumulative difference between the expected reward of
the chosen action and the optimal action (accessible in the synthetic setting), i.e.,

∑T
t=1(r∗ − rat

). VBE-KS
achieves lower regret and higher cumulative reward than all baselines. VBE-Beta performs significantly
worse than VBE-KS and VBE-tanhN , highlighting the importance of explicit reparameterization. LMC-TS
is performant but 8–22× slower than VBEs: VBEs avoid the computational overhead of LMC.

4.3 Variational link prediction with Graph Neural Networks

Graph Neural Networks (GNNs) have become a powerful tool for learning from graph-structured data, with
applications in critical areas like drug discovery (Zhang et al., 2022) and finance (Wang et al., 2022). A
key task is link prediction, where the goal is to infer unobserved edges between nodes. However, real-world
deployment of graph learning models is often hindered by a lack of reliable uncertainty estimates and limited
capacity to incorporate prior knowledge (Wasserman & Mateos, 2024). To address these challenges, we propose
a variational approach where the GNN encodes a fully factorized (across the edge set) KS variational posterior
to model the unobserved probabilities of each network link’s existence, enabling uncertainty quantification
and prior knowledge integration with minimal computational overhead.

In a typical link prediction setup, the GNN has access to the features X ∈ RN×d of all N nodes, but only
a subset of positive edges in the training Dtr and validation Dval sets. Edge (u, v) takes value lu,v = 1
when present, or lu,v = 0 when absent. The GNN generates edge embeddings through message passing and
neighborhood aggregation, outputting probabilities zu,v ∈ (0, 1) that parameterize a Bernoulli likelihood. The
seminal work of (Kipf & Welling, 2016) proposed Variational Graph Auto-encoders (VGAEs), which posits
a Gaussian variational posterior over the final node embeddings. When used for link prediction it samples
final node embeddings from the variational posterior and decodes them to produce edge probabilities. In
contrast, our approach directly models the probability of an edge using the KS. An advantage of directly
modeling edge probabilities is interpretability; deep nodal embeddings are often difficult to interpret, and
priors are typically selected for computational tractability rather than their ability to incorporate meaningful
prior information. However, the probability of an edge (u, v) existing between two nodes is an interpretable
quantity that can often be informed by domain expertise , and incorporated into the conditional edge prior
pθ(zu,v | x,Dtr). For example, in gene regulatory networks, epidemiological networks, and social networks
experts often have prior knowledge about the likelihood of specific interactions, transmissions, or friendships,
respectively. We believe the limited exploration of variational modeling for edge probabilities is due to the
previous lack of an expressive, stable, explicitly reparameterizable bounded-interval distributions.

Variational Edge Encoder (VEE). Let Etr be the edges included in the training set, which consist of
positive edges Dtr and a set of sampled negative edges D−

tr. The joint distribution factorizes as

pθ(z, Etr | x) =
∏

(u,v)∈Etr

pθ(zu,v | x, Etr) Bernoulli(lu,v | zu,v). (17)

Here, we take pθ(zu,v | x, Etr) to be uniform, and so θ = ∅. Variational approximations and learning.
We propose a fully factorized KS variational posterior

∏
(u,v)∈Etr

qϕ(zu,v | X, Etr). The GNN encoder eϕ

parameterizes a KS distribution for each possible edge (u, v) ∈ Etr. The remaining structure is highly similar
to VBEs: a single sample z̃u,v ∼ qϕ(zu,v | X, Etr) directly parameterizes the Bernoulli likelihood, and we
maximize a sample approximation of the modified ELBO

L̂βKL((X, Etr), ϕ) =
∑

(u,v)∈Etr

log p(lu,v | z̃u,v) + βKL
∑

(u,v)∈Etr

H[qϕ(zu,v |X, Etr)]. (18)

From their similarity with VBEs, VEEs inherit the same advantages outlined in Section 4.2.
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Figure 6: VEE-KS produces high predictive accuracy (↑ AUC), informative uncertainty estimates (↑ ρ), and
improved calibration (↓ Brier Score) across graph datasets.

Models, metrics, and datasets. All models use a 2-layer GNN with Graph Convolutional Network
(GCN) layers and a hidden/output nodal dimension of 32. In Base-GNN, an MLP decodes the final nodal
embeddings into link probabilities. In VEE-KS/Beta/tanhN an MLP parameterizes the KS/Beta/tanhN
variational distributions; all take βKL = .05|Dtr|−1. We use 10 samples in tanhN ’s entropy estimate; more
did not produce significant performance differences. We train for 300 epochs, with a learning rate of
.01, averaging results over 5 runs with different seeds. The posterior predictive distribution over binary
links p(A | X, Etr) =

∫
p(A|z)qϕ(z | X, Etr)dz is estimated by using a single sample from each KS/Beta

distribution, parameterizing each edge Bernoulli distribution with such samples, followed by sampling binary
edges. For Base-GNN we directly sample binary edges from the likelihood. Using 30 posterior predictive
samples, we compute the edge-wise posterior predictive mean (pred. mean) and standard deviation (pred.
stdv.). We measure predictive accuracy using the area under the ROC curve (AUC) (higher is better), treating
pred. mean as the predictor. To assess uncertainty estimation quality, we report the Pearson correlation ρ
(higher is better) between the predictive uncertainty (pred. stdv.) and error (the ℓ1 difference between pred.
mean and the true label). A strong positive correlation indicates that higher uncertainty corresponds to
greater predictive error, signifying informative uncertainty estimates. Finally, we evaluate model calibration
using the Brier Score (lower is better), defined as the squared difference between the predicted probability
and the true label. Figure 6 presents results across three standard citation networks: Cora, Citeseer, and
Pubmed.

Discussion of results. On all datasets and all metrics, VEE-KS outperforms or is comparable to the most
performant baselines, often providing higher predictive accuracy, better uncertainty estimation, and improved
calibration. Similar to Section 4.2, we find Beta distributed variational posteriors perform significantly worse
than those using KS or tanhN , further underlining the importance of explicit reparameterization. Moreover,
models using explicitly reparameterizable latents are faster: on the largest dataset (Pubmed), the average time
(ms) per epoch for VEE-KS, VEE-tanhN , and VEE-Beta was 381± 61, 301± 26, and 447± 86 respectively,
on an Apple M2 CPU.

5 Related Work

VBEs in context: TS-based Bernoulli MAB approaches. Existing TS-based approaches for Bernoulli
MABs assume a prior over model parameters p(ϕ), which map contexts to rewards through eϕ. At each
round, parameters are sampled from the posterior, ϕ̃t ∼ p(ϕ | D), and used to compute mean reward
posterior samples {eϕ̃t

(xk)}K
k=1. However, the Bernoulli likelihood often leads to intractable posteriors,

making parameter sampling difficult. Common methods use either variational approximations (Chapelle &
Li, 2011; Urteaga & Wiggins, 2018; Clavier et al., 2024), primarily Laplace, or MCMC approaches like Gibbs
sampling (Dumitrascu et al., 2018) or LMC (Xu et al., 2022). These approaches face several limitations.
First, incorporating prior knowledge is challenging since the relationship between a parameter’s value and its
effect on rewards is often unclear, except in the simplest models. Second, scalability is a concern: Laplace
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approximations become inefficient with large context dimensions or model sizes, while MCMC-based methods
are compute and memory intensive, requiring long burn-in periods (typically 102 iterations) and large machine
memory to store the buffer D. Third, interpreting model beliefs over mean rewards requires drawing numerous
posterior samples, adding further computational cost. Finally, these methods often introduce significant
complexity through intricate algorithms, architectures, optimization steps, and hyperparameters, particularly
MCMC parameters (e.g., burn-in iterations, chain length, LMC inverse temperature/weight decay and their
respective schedules). By directly modeling mean rewards with a KS, instead of the parameters ϕ, VBEs
offer a simple, scalable, and interpretable approach to Bernoulli MABs.

Kumaraswamy as a Beta surrogate. A simple approach to overcome the Beta distribution’s lack of
explicit reparameterization is to use the KS as a surrogate. This surrogate approach is feasible due to
their significant similarities when defined by the same two parameters and the availability of a high-fidelity
closed-form approximation of the KL divergence between Beta and KS distributions. (Nalisnick et al., 2016;
Nalisnick & Smyth, 2017) use KSs as surrogates for Betas in the Dirichlet Process stick-breaking construction
to allow for stochastic latent dimensionality in a VAE. However, both require parameter clipping for numerical
stability. In their published code (Nalisnick et al., 2016) constrains KS parameters log a, log b ∈ [−2.3, 2.9],
significantly limiting the expressiveness of latent KS distributions. Also, (Nalisnick & Smyth, 2017) comments
under a Computational Issues section that ‘If NaNs are encountered...clipping the parameters of the variational
Kumaraswamys usually solve the problem.’ (Stirn et al., 2019) improved upon (Nalisnick et al., 2016) by
resolving the order-dependence issue in approximating a Beta with a KS. Similarly, (Singh et al., 2017) followed
a comparable process using an Indian Buffet Process. Both works maintained numerical stability by restricting
the uniform base distribution’s support from the unit interval to a narrower interval, before passing the
samples through the inverse CDF producing a distortion of the reparameterized sampling distribution. This
work eliminates the need for such distortions, enabling more accurate Beta approximations and simplifying
the use of the KS distribution by ensuring numerical stability without additional interventions.

6 Conclusion, Limitations, and Future Work

We identified and resolved key numerical instabilities in the KS distribution, a uniquely attractive option in
variational models for bounded latent variables. Our work demonstrates that the stabilized KS can tackle
a wide range of large-scale machine learning challenges by powering simple deep variational models. We
introduce the Variational Bandit Encoder, which enhances exploration-exploitation trade-offs in contextual
Bernoulli MABs, and the Variational Edge Encoder, which improves uncertainty quantification in link
prediction using GNNs. Our empirical results show these models are both performant and fast, achieving
their best performance with the KS while avoiding the instability and complexity seen in alternatives like the
Beta or tanhN distributions. These models open avenues for addressing other large-scale challenges, including
in recommendation systems, reinforcement learning with continuous bounded action spaces, network analysis,
and uncertainty quantification in deep learning, such as modeling per-parameter dropout probabilities using
a Concrete distribution (Gal et al., 2017).

KS generalizations (Usman & ul Haq, 2020) inherit log(1 − exp(x)) instabilities, which future work can
resolve by building on our stabilization technique. A limitation of the current models is their inability to
capture multimodal posteriors. Future work could explore KS mixtures or hierarchical latent spaces to bridge
this gap. Further, optimizing the βKL parameter with techniques like warm-up schedules could yield further
performance gains (Alemi et al., 2018). Applications of our stable KS distribution to non-parametric models
like the Dirichlet Processes follows directly from prior work (Nalisnick & Smyth, 2017; Stirn et al., 2019).
Lastly, a theoretical analysis of the VBE, particularly in proving regret bounds and asymptotic results, could
extend its applicability to critical areas like clinical trials, where robust decision-making under uncertainty is
essential.
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Figure 7: Differential entropy and mean of Kumaraswamy distributions across a wide range of parameter
values. Low-entropy distributions are concentrated near the origin, where log a = log b = 1 corresponds to the
uniform distribution. Distributions with a log differential entropy of 1 and mean of 0.5 are marked in black.
Small changes in parameter magnitudes rapidly yield extremely high-entropy distributions — essentially
delta functions at 0 or 1 — except in the narrow region around the black curve representing distributions
with mean 0.5.

A Counter Intuitive Stability Properties of the Unstable Kumaraswamy

When using the unstable KS to model latent variables with SVI, the instability of the KS distribution
can paradoxically worsen as evidence increases. Here, evidence refers to observed data that sharpens
the posterior distribution and reduces uncertainty. Representing sharper, high-entropy bell-shaped KS
distributions — indicative of reduced posterior uncertainty — requires extremely large b values. Figure 7
illustrates this: a bell-shaped KS distribution with mean 0.5 and differential entropy H ≈ exp(2) necessitates
log b = 24, and thus b = exp(24) in the unstable KS implementation which lacks logarithmic parameterization;
see Figure 3 for examples of such moderate entropy distributions with log b = 24. SVI will leverage
the inverse CDF and its gradient expressions (12)–(14), which critically depend on b through the term
wb−1(u) = log(1 − exp(b−1 log u)). Large b values will act to worsen instability by driving exp(b−1 log u)
closer to 1, increasing the risk of catastrophic cancellation. We believe this counter-intuitive behavior likely
frustrated modelers, but is no longer an issue in the stabilized KS.

As an illustrative example, consider modeling the latent probability of heads in a Bernoulli coin-flipping
experiment using a KS distribution as the variational posterior, where the true probability of heads is
0.5. With a uniform prior and a small number of observed flips, the posterior is well-approximated by a
mild-entropy, bell-shaped KS distribution, characterized by low-magnitude parameters a, b > 1. In this
regime, b−1 remains sufficiently far from zero, minimizing the risk of catastrophic cancellation in the term
1 − exp(b−1 log u), as exp(b−1 log u) stays safely away from 1. However, as the number of observed flips
increases, the posterior sharpens to reflect reduced uncertainty, demanding larger values of b to represent the
corresponding higher entropy KS distribution. This drives exp(b−1 log u) closer to 1, increasing the risk of
catastrophic cancellation and numerical instability.

B VAE Architectural and Training Choices

The following is almost identical to that used in (Loaiza-Ganem & Cunningham, 2019), but provided here for
completeness. For both experiments (MNIST and CIFAR-10) we use a learning rate of 0.001, batch size of
500, and optimize with Adam for 200 epochs.
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Table 4: VAE on MNIST and CIFAR-10.
Prior qϕ(z|x) pθ(x|z) MNIST CIFAR-10

LL Acc. LL Acc.
N(0,1) N CB 1860± 15 97.3 1191± 907 37.9
U(0,1) KS CB 1855± 14 97.4 1194± 914 41.5
U(0,1) Beta CB 1856± 15 97.5 1189± 914 40.3
N(0,1) N Beta 4209± 323 92.1 3648± 1210 48.5
U(0,1) KS Beta 4160± 331 91.3 3579± 1154 50.1
U(0,1) Beta Beta 4198± 126 90.1 N/A N/A
N(0,1) N KS 3393± 44 96.4 1875± 890 47.1
U(0,1) KS KS 3401± 32 96.8 1939± 889 48.8
U(0,1) Beta KS 3405± 40 97.1 N/A N/A

Enforcing positive variational parameters.

• Gaussian. When the variational posterior is Normal, the output layer of the encoder uses a softplus
nonlinearity for the positive standard deviation.

• KS. As we parameterize the KS by unconstrained log values, any required exponentiation occurs internally,
so we require no nonlinearity on the output of the encoder.

• Beta. The core software libraries do not implement the Beta distribution’s reparameterized sampling with
unconstrained log parameter values, so we use an exponential nonlinearity on the output of the encoder to
enforce positivity. A softplus nonlinearity was attempted which was found to be less stable likely due to
the model seeing very large latent parameter values, which is more stably accessible via an exp.

Enforcing positive likelihood parameters.

• CB. When the likelihood is a CB, the output of the decoder has a sigmoid non-linearity to enforce its
parameter λ ∈ (0, 1).

• KS. As we parameterize the KS by unconstrained log values, any required exponentiation occurs internally,
so we require no further transformation on the output of the decoder.

• Beta. The core software libraries do not implement the Beta distribution’s log-pdf with unconstrained log
parameter values, so we use a softplus nonlinearity on the output of the decoder to enforce positivity. An
exponential nonlinearity was attempted which was found to be less stable.

Data augmentation for (0, 1) likelihood functions. The CB has support [0, 1] and handles data on the
support boundaries without issue. When the likelihood function is a Beta or KS, which have support (0, 1),
we clamp pixel intensities to [ 1

2×255 , 1− 1
2×255 ] to prevent non-finite gradient values.

For all our MNIST experiments we use a latent dimension of D = 20, an encoder with two hidden layers
with 500 units each, with leaky-ReLU non-linearities, followed by a dropout layer (with parameter 0.9).
The decoder also has two hidden layers with 500 units, leaky-ReLU non-linearities and dropout. For all
our CIFAR-10 experiments we use a latent dimension of D = 40, an encoder with four convolutional layers,
followed by two fully connected ones. The convolutions have respectively, 3, 32, 32 and 32 features, kernel size
2, 2, 3 and 3, strides 1, 2, 1, 1 and are followed by leaky-ReLU non-linearities. The fully connected hidden
layer has 128 units and a leaky-ReLU non linearity. The decoder has an analogous “reversed” architecture.

Expanded experimental results.

Table 4 includes data from the image VAE experiments in Table 2 from Section 4.1, but now including
standard deviations of LL values across test samples.
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C Kumaraswamy-Beta KL Divergence

The KL divergence between the Kumaraswamy distribution q(v) with parameters a, b and the Beta distribution
p(v) with parameters α, β is given by

Eq

[
log q(v)

p(v)

]
=a− α

a

(
−γ −Ψ(b)− 1

b

)
+ log ab + logB(α, β)− b− 1

b

+ (β − 1)b
∞∑

m=1

1
m + ab

B
(m

a
, b

)
where γ is Euler’s constant, Ψ(·) is the Digamma function, and B(·) is the Beta function. The infinite sum in
the KL divergence arises from the Taylor expansion required to represent Eq[log(1− vk)]; it is generally well
approximated by the first few terms.

D Kumaraswamy Moments

The Kumaraswamy distribution’s n-th moment is expressed as:

mn = bΓ(1 + n/a)Γ(b)
Γ(1 + b + n/a) = bB(1 + n/a, b).

Here, B(·) represents the Beta function, and Γ(·) denotes the Gamma function. Using these raw moments,
one can compute the variance, skewness, and excess kurtosis. As an example, the variance is given by
σ2 = m2 −m2

1.

E VBE Modified ELBO Derivation

Let X = [x1, . . . , xK ] be a matrix where the k-th column corresponds to the context feature xk. Assuming
independence between arms and within-arm rewards, the data likelihood can be factorized as p(D | z) =∏

(xa,a,r)∈D p(r | za). We adopt a fully factorized variational posterior of the form qϕ(z |X) =
∏K

k=1 qϕ(zk |
xk). We set the conditional prior as a uniform distribution: pθ(z |X) = UK

(0,1). Recall that Kt ⊂ {1, . . . , K}
represents the subset of arms that have been pulled, and thus for which we have reward data. The modified
ELBO is derived as follows:

LβKL,t(D, θ, ϕ) = Eqϕ(z|X)[log p(D | z)]− βKLDKL (qϕ(z |X) ∥ pθ(z |X))
= Eqϕ(z|X)[log p(D | z)] + βKLH [qϕ(z |X)] , pθ(z |X) = UK

(0,1) (by design)

= Eqϕ(z|X)[log p(D | z)] + βKL
∑

k∈Kt

H [qϕ(za | xa)]

= Eqϕ(z|x)

 ∑
(xa,a,r)∈D

log p(r | za)

 + βKL
∑

k∈Kt

H [qϕ(za | xa)]

≈
∑

(xa,a,r)∈D

log p(r | z̃a) + βKL
∑

k∈Kt

H [qϕ(za | xa)] , z̃a ∼ qϕ(za | xa)

where in the final step, we use a single sample approximation of the expectation.

F VBE Prior Knowledge Incorporation

A key advantage of the VBE framework is its capacity to integrate prior knowledge about the latent variable
z directly into the model. Traditional approaches often impose priors on the weights or parameters of
neural networks or logistic regression models — parameters that are difficult to interpret and for which prior
information is scarce. In contrast, VBEs explicitly model the latent mean rewards, making it natural to
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incorporate prior information where it exists. In many multi-armed bandit applications, such as personalized
recommendation systems or content curation, practitioners frequently have prior information on the probability
of user engagement (e.g., the likelihood of a click or purchase). Instead of embedding this knowledge indirectly
in network weights, VBEs allow one to encode it directly through the prior pθ(zk | xk). For example, suppose
historical data or domain expertise indicates that a particular arm generally yields low rewards. In such a
case, one can specify a Beta prior, pθ(zk | xk) = Beta(ak, bk), with parameters chosen to concentrate the
probability mass on lower values. This approach is particularly useful for large-scale commercial platforms
like Amazon.com or Walmart. Users can be segmented by demographics such as age, gender, and geographic
region, while items can be segmented into categories such as baby care products (e.g., diapers, wipes), power
tools (e.g., circular saws, drills, screw guns), and gardening supplies. The Cartesian product of these user and
item segments yields a set of user–item segments. We may not hold strong prior beliefs over the majority of
the user-item segments, and so assigning the user-item segment a a uniform prior is appropriate. Conversely,
for segments where robust prior information exists — for example, females aged 35–45 in New York City
purchasing baby care products — a Beta prior with parameters biased toward higher probabilities is justified.

When ample historical data is available, the prior can be learned by including θ in the KL divergence term of
the ELBO, rather than the uniform distribution used in Section 4.2. By parameterizing pθ(zk | xk) using
a neural network or a conditional normalizing flow for enhanced expressiveness, gradients can effectively
propagate to θ.

G Additional Results for Variational Link Prediction with GNNs

For clarity, we present Table 5, which provides the exact numerical values corresponding to the results shown
in Figure 6.

Table 5: Numerical results corresponding to Figure 6. The values represent mean ± standard deviation.
Higher values are better for AUC and ρ, while lower values are better for Brier Score. The best value for
each dataset-metric pair is highlighted in bold.

Dataset Model AUC ↑ Brier Score ↓ ρ ↑

Cora

VEE-KS 0.897± 0.015 0.082± 0.010 0.440± 0.045
VEE-Beta 0.857± 0.023 0.117± 0.014 0.340± 0.021
VEE-tanhN 0.853± 0.066 0.115± 0.045 0.440± 0.043
Base-GNN 0.870± 0.012 0.115± 0.045 0.302± 0.047

Citeseer

VEE-KS 0.851± 0.010 0.104± 0.008 0.304± 0.035
VEE-Beta 0.789± 0.021 0.140± 0.018 0.124± 0.045
VEE-tanhN 0.850± 0.015 0.111± 0.004 0.288± 0.053
Base-GNN 0.815± 0.006 0.110± 0.004 0.132± 0.025

Pubmed

VEE-KS 0.970± 0.004 0.061± 0.004 0.654± 0.015
VEE-Beta 0.966± 0.002 0.069± 0.002 0.590± 0.014
VEE-tanhN 0.935± 0.030 0.120± 0.042 0.623± 0.015
Base-GNN 0.970± 0.003 0.121± 0.042 0.590± 0.019

H Trade-offs in Alternative Variational Approximations

The KS distribution is a compelling choice for modeling bounded latent variables, as it satisfies the key
desiderata outlined in Section 1, including support for the reparameterization trick, efficient sampling,
expressiveness, and simple distribution-related functions. However, when a KS distribution is insufficiently
flexible to approximate the true posterior, alternatives such as normalizing flows and copula-based variational
inference (Copula VI) can offer greater expressivity, but with significant trade-offs.
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Normalizing flows (Rezende & Mohamed, 2015) transform a simple base distribution through a sequence
of invertible mappings, enabling rich, multimodal approximations. However, they introduce additional
computational overhead, can be sensitive to hyperparameters, and may suffer from numerical instabilities.
Copula VI (Tran et al., 2015) instead models dependencies between latent variables while maintaining flexible
marginal distributions, but this added structure increases computational cost and can lead to higher-variance
gradient estimates.
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