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Abstract

Existing models of human visual attention are generally unable to incorporate
direct task guidance and therefore cannot model an intent or goal when exploring
a scene. To integrate guidance of any downstream visual task into attention
modeling, we propose the Neural Visual Attention (NeVA) algorithm. To this end,
we impose to neural networks the biological constraint of foveated vision and
train an attention mechanism to generate visual explorations that maximize the
performance with respect to the downstream task. We observe that biologically
constrained neural networks generate human-like scanpaths without being trained
for this objective. Extensive experiments on three common benchmark datasets
show that our method outperforms state-of-the-art unsupervised human attention
models in generating human-like scanpaths.

Full paper available at TMLR:
https://openreview.net/forum?id=7iSYW1FRWA.

1 Introduction

Computational modeling of human visual attention lies at the intersection of many disciplines, such
as neuroscience, cognitive psychology, and computer vision. Despite eye-tracking technologies be-
coming increasingly cost-efficient, collecting human expert gaze data in domain-specific applications,
e.g., medical or higher education fields, remains expensive. Therefore, models simulating plausible
task-specific scanpaths are highly required both for understanding the biological mechanism [14, 21],
as well as in applications [19, 10, 18, 7].

Most eye-tracking datasets and related methods are designed for saliency prediction [2, 23]. However,
saliency maps are static and cannot describe the temporal aspect of visual exploration. On the other
end, scanpath models have been proposed that can generate fixation sequences. The circuitry of
winner-take-all [14] can be combined with any saliency estimation method, such as Itti’s saliency
map [11], to generate scanpaths in an unsupervised manner. Boccignone et al. [3] generate gaze
trajectories based on non-local transition probabilities defined in a saliency field. Recently, [22]
described attention by mean of gravitational laws of motion, where visual features are considered
as masses attracting the focus of attention. However, existing approaches tacitly assume perfect
vision by processing the input in its full resolution all at once, and do not provide a flexible way to
incorporate task guidance to the generated scanpaths.

We propose a Neural Visual Attention (NeVA) algorithm to generate purely task-driven gaze trajecto-
ries. The algorithm consists of three major components. First, a differentiable foveation layer that,
given a fixation position and an input image, simulates biologically plausible foveated vision. Second,
a task model that gets passed a foveated image by the foveation layer and produces a loss signal
with respect to its downstream task (e.g., classifying the original class or reconstructing the original
image). Lastly, an attention mechanism determining the next fixation position in order to minimize
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Figure 1: The Neural Visual Attention (NeVA) algorithm.

the loss with respect to the task model (see Figure 1 for an illustration). The resulting architecture
is fully differentiable. We use neural networks to model both the attention and the task model and
backpropagation to train the attention mechanism. The task model is only used to generate the loss
during training and can be discarded at inference time. The flexibility of the framework allows
us to analyze the contribution of different tasks and hence generate task-specific gaze trajectories.
To validate the proposed approach, we compare it to three well-established unsupervised models
of visual attention and three baseline approaches. The plausibility of the models is measured as
the similarity of the generated scanpath with human eye-tracking data. Results demonstrate the
superiority of the proposed approach.

2 Neural Visual Attention (NeVA)

We propose an algorithm for Neural Visual Attention (NeVA) which enables to generate scanpaths
of visual attention under the guidance of any differentiable task model. As previously mentioned,
this is made by three main components: a task model, a foveation layer, and an attention mechanism.
In what follows, we formally define each component of the model. The approach is illustrated in
Figure 1.

Task model. Let S = {S1, ..., SN} be a collection of input stimuli, and Y = {y1, ..., yN} be a set of
corresponding targets (i.e., they correspond to class labels in the case of a classification task). A task
model τ is trained to map input stimuli to their corresponding targets, such that

τ(Si) = yi,∀i ∈ {1, ..., N}.

Foveation layer. A fully differentiable foveation layer is defined to simulate human vision, con-
strained by its structure to fine vision in corresponding to the fovea, and coarse vision in the periphery.
Given a stimulus S, the foveation mechanism computes the perceived stimulus π (S, ξt) as a foveated
rendering of S centered at the current focus of attention ξt. In particular, let S̃ be a coarse version
of S, obtained by applying a convolution to the original stimulus S to suppress any high frequency
components. Then, the foveated stimulus is obtained as a linear combination of the original stimulus
and its coarse version,

π (S, ξt) = Gσξ
(t) · S + (1−Gσξ

(t)) · S̃,
where Gσξ

(t) is a Gaussian blob, with mean ξt and standard deviation σξ, centered at ξt.

To incorporate past information, we define the internal agent’s state ht ∼ h (S, ξt) to express the
cumulative perceived information, or memory of the system, such that

h (S, ξt) = GΣ(t) · S + (Jd −GΣ(t)) · S̃,
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with

GΣ(t) =

[ ∞∑
i=0

γiGσξ
(t− i)

]0:1

,

where [...]0:1 is an element-wise clipping operator with minimum 0 and maximum 1, and Jd is a d×d
dimensional unit matrix (matrix only filled with ones). The parameter γ ∈ [0, 1] can be regarded as a
forgetting coefficient.

Attention mechanism. A mechanism of attention is trained to generate the next location of focus of
attention, based on the current internal representation, i.e.,

α (h (S, ξt)) 7→ ξt+1.

Since we aim at developing a purely task-driven mechanism of attention, parameters of the attention
model are optimized to minimize the loss function

L(τ (h (S, ξt)) , y).

The optimal attention mechanism would unblur the regions that lead to the best performance with
respect to the underlying vision task.

Inference with NeVA. The task model is only used to generate the loss during training, and can
be discarded at inference time. The attention mechanism can be used iteratively, to infer the next
position of the focus of attention, based on the updated agent’s state.

3 Experiments

The NeVA algorithm is used to generate scanpath of visual attention. The plausibility of these
scanpaths is measured through similarity metrics with human eye-tracking data. We stress out that
eye-tracking data is not used during the training of NeVA, but only for evaluation. The performance
of NeVA is compared with that of three unsupervised human attention models and three baselines.

Datasets. A collection of three well-established eye-tracking dataset is used in our study:
MIT1003 [12] (1003 images, 15 subjects, free viewing condition), TORONTO [6] (120 images,
20 subjects, free viewing condition), and KOOTSTRA [15] (99 images, 31 subjects, free viewing
condition).

Metrics. Similarity with respect of human eye-tracking data is measured using two metrics. The
string-edit distance (SED) [13] has been adapted in the domain of visual attention analysis to compare
visual scanpaths [5, 9], after being properly converted to strings. Additionally, we define string-based
time-delay embeddings (SBTDE) that computes the time delay embedding [1] in the string domain.
This metric better take into account the stochastic component of the attention process [17], and
making the results more robust with respect to changes in both stimulus resolution and scanpath
length. Metrics are presented in two versions: Mean metrics are computed by simply averaging the
scores with respect to all available subjects for a given image, while ScanPath Plausibility (SPP)
metrics only considers the scanpath of minimal distance [8].

Competitors and baselines. For our experimental comparison, we restrict our comparison to
unsupervised approaches, i.e., existing approaches that similarly to us do not use any eye-tracking
data to train their models. In particular, we include Constrained Levy Exploration (CLE) [3],
Gravitational Eye Movements Laws (G-EYMOL) [22], Winner-take-all (WTA) [14]. CLE and WTA
are based on saliency maps by [11]. For all competitors, we use the python implementation provided
by the authors in the original paper. Additionally, we define three baselines which help in better
positioning the results. For the Random baseline, scanpaths are generated as sequences of random
fixation points. For the Center baseline, subsequent fixations are sampled according to a center blob,
as described in [12]. We finally regard the Human baseline as the gold standard, where we measure
as each human is a good predictor for the remaining population on certain image.

NeVA versions. We test two different NeVA configurations. NeVAC is based on a classification task.
A ResNet that was trained on the CIFAR10 dataset [16] from the RobustBench library. NeVAR is
based on a reconstruction-task model. In this case, we train a denoising autoencoder on the CIFAR10
dataset using the implementation proposed in [24]. For both cases, attention models is based on wide
ResNets [20].
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Table 1: Similarity of scanpaths generated by the proposed NeVA method and other competitors to
those of humans for several metrics. A lower score in each metric corresponds to a higher similarity
to human scanpaths. The best results are shown in bold and the second best results are underlined.
The human column denotes the intra-scanpath distance between humans.

Datasets NeVAC NeVAR G-Eymol CLE WTA Center Random Human

MIT1003
Mean SED 4.3 4.49 4.48 4.60 4.90 4.99 5.09 3.74
SPP SED 3.15 3.49 3.39 3.41 4.15 4.26 4.44 1.65
Mean SBTDE 0.62 0.67 0.68 0.72 0.76 0.78 0.81 0.57
SPP SBTDE 0.51 0.57 0.59 0.60 0.67 0.71 0.74 0.23

TORONTO
Mean SED 4.22 4.42 4.52 4.56 4.74 5.05 5.19 3.72
SPP SED 3.35 3.71 3.79 3.74 4.17 4.51 4.71 2.28
Mean SBTDE 0.58 0.64 0.69 0.72 0.73 0.82 0.85 0.64
SPP SBTDE 0.58 0.64 0.68 0.72 0.73 0.82 0.84 0.30

KOOTSTRA
Mean SED 4.66 4.75 4.67 4.89 4.99 4.99 5.08 4.26
SPP SED 2.98 3.26 3.12 3.12 3.66 3.75 3.88 1.16
Mean SBTDE 0.71 0.73 0.74 0.76 0.77 0.78 0.80 0.68
SPP SBTDE 0.43 0.48 0.51 0.41 0.53 0.58 0.60 0.20

Results. For each model and baseline, we generated scanpaths of length 10, i.e., a sequence of 10
fixations. Table 1 summarizes the results for all metrics and datasets. NeVAC is the best performing
method in 11/12 metrics and the second-best in the remaining 1. NeVAR is the second best method
in 7/12 metrics. G-Eymol is the second-best method in 4 metrics, while CLE is the best method
in 1 metric and the second-best method in 1 metric (same score as G-Eymol). Unlike competitors,
NeVA-based approaches are merely driven by their top-down signal (purely task-driven), and this
allows us to directly compare the tasks involved. In fact, we notice that classification tasks better
explain human behavior over all three datasets. Moreover, for scanpath of length 10, the NeVA
top-down approach produces better results than bottom-up counterparts, supporting the hypothesis
that task guidance already emerges in the first phases (within 3 seconds) of visual explorations. The
Center baseline did not perform much better than Random. This is a surprising result if we consider
that a center blob can predict saliency very well [12, 4]. Human baseline, instead, outperforms all
approaches by a large margin. This is particularly true in the case of the SPP versions of the metrics,
where only the closest human scanpath is considered for the metric calculation. This result suggests
that there is still large margin of improvement, especially in the development of personalized models
of attention, which can take into account the large intra-population differences.

4 Discussion

In an empirical study, we demonstrate that neural network models pre-trained for image classification
or reconstruction can provide effective guidance for generating biologically-plausible visual scanpaths.
Such scanpaths resemble human scanpaths, although they were neither explicitly trained for this
purpose nor did we use eye movement data during training.

A future study should examine whether the similarity between human and artificial scanpaths can be
improved by adding further biological constraints to neural networks. Furthermore, the scanpaths
generated by more complex task models need to be analyzed. More complex task models could
include object detectors, segmentation models, and visual transformers. Lastly, further work should
investigate if NeVA can create highly task-specific scanpaths that resemble those of a human experts
(i.e., by using a network trained to detect tumors to generate scanpaths for a medical application).
These scanpaths could be used to constrain the attention of neural networks to relevant image regions
and thus improve the computational load.
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A Example scanpaths

To provide a better intution about the outcome of the NeVA algorithm, here we provide some
illustrations. Figure 2 shows example scanpaths generated by the NeVA algorithm.The first row
shows the original stimulus, the second row shows the foveation heatmaps and fixations, and the last
row shows the internal representation after the last fixation.

Figure 2: Example scanpaths generated by NeVA.
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