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ABSTRACT

Multi-modality brain tumor images are widely used for clinical diagnosis since
they can provide complementary information. Yet, due to considerations such as
time, cost, and artifacts, it is difficult to get fully paired multi-modality images.
Therefore, most of the brain tumor images are modality-missing in practice and
only a few are labeled, due to a large amount of expert knowledge required. To
tackle this problem, multi-modality brain tumor image translation has been ex-
tensively studied. However, existing works often lead to tumor deformation or
distortion because they only focus on the whole image. In this paper, we pro-
pose a semi-supervised segmentation-guided tumor-aware generative adversarial
network called S3TAGAN , which utilizes unpaired brain tumor images with few
paired and labeled ones to learn an end-to-end mapping from source modality to
target modality. Specifically, we train a semi-supervised segmentation network to
get pseudo labels, which aims to help the model focus on the local brain tumor
areas. The model can synthesize more realistic images using pseudo tumor labels
as additional information to help the global translation. Experiments show that
our model achieves competitive results on both quantitative and qualitative evalua-
tions. We also verify the effectiveness of the generated images via the downstream
segmentation tasks.

1 INTRODUCTION

Multi-modality medical images are widely used in various tasks such as clinical detection. There
are different kinds of imaging technologies in practice. For example, magnetic resonance imaging
(MRI) is a common and noninvasive imaging technique. With the help of an additional magnetic
field, MRI can determine the nucleus types of a certain part of the human body and then generate
structural images with high resolution.

MRI is further divided into several modalities, such as T1-weighted (T1), T1-with-contrast-
enhanced (T1ce), T2-weighted (T2), and T2-fluid-attenuated inversion recovery (Flair). Each
modality of imaging can show complement lesion information from different angles. In Flair im-
ages, the cerebrospinal fluid shows hypointense signals while the lesions containing water appear as
hyperintense signals. In T1 images, the cerebrospinal fluid is hypointense which tends to be black,
while the gray matter is gray and the white matter is bright. Therefore, T1 images can present the
anatomical structure, which is convenient for diagnoses. T1ce can show the structures and the edges
of the tumors, which is convenient to observe the morphology of different types of tumors. T2 can
better display the lesions because the brightness in the edema site is higher. Obviously, fully paired
multi-modality images help doctors to make diagnoses more accurately.

The benefits of using multi-modality images to assist medical analysis have been widely recognized.
However, due to the consideration of time, cost, artifacts, and other practical factors, physicians
often get some of the modalities for examination in practice. In other words, most of the images are
modality-missing, which has an adverse impact on the accuracy of physicians’ diagnoses. If we can
generate the corresponding missing modalities of given images by image translation, physicians can
get more comprehensive information for diagnoses.
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Many existing methods for multi-modality image translation based on deep learning have achieved
good results in natural images. However, when applied to medical images, especially brain tumor
images, the results are often unsatisfactory. Compared with two-dimensional natural images, three-
dimensional medical images have more structural information. Moreover, due to the privacy of
patients, a large number of medical images collected by different institutions are private, which
increases the difficulty of model training. In addition, the hierarchical structures of brain tumors
are complex and irregular, which leads to blur or deformation in image translation. Therefore,
the translation of brain tumor images has always been a challenge in the field of medical image
translation.

To solve the problem of local distortion or blur in brain tumor image translation, we propose to use
pseudo-labels generated by a segmentation network to guide the translation. The model contains a
global branch and a local branch. For a given source image of arbitrary modality, we first put it into
the segmentation network to get pseudo labels of three kinds of tumors, whole tumor, tumor core
and enhancing tumor. Then the source image is inputted into the global branch and the dot product
of it and the three pseudo labels are inputted into the local branch. In this way, the translation
network can focus on the different parts of tumors. Since the training data are mostly unpaired and
only few of them are labeled and paired, we train the segmentation network by the semi-supervised
method proposed in CPS(Chen et al., 2021b). For paired images with Ground Truth, we use L1
loss for further constraint. The segmentation network and the translation network are trained at the
same time to promote each other. Furthermore, in order to make our model applicable to images
of arbitrary modality, similar to StarGAN(Choi et al., 2018), the discriminator tries to not only
distinguish whether the images are real or fake, but also judge the modality which they belong to. In
this way, we do not need to train a segmentation network for each modality, but only need to train a
unified model to solve all cases.

In this way, we achieve an end-to-end translation, which means that given brain tumor images of
arbitrary modality with both the source and target modality vectors, the model can directly output the
final target images without any other manual intervention. We name our model as Semi-Supervised
Segmentation-guided Tumor-Aware Generative Adversarial Network(S3TAGAN ).

In summary, the main contributions of this paper are as follows:

• We propose a Semi-Supervised Segmentation-Guided Tumor-Aware Generative Adversar-
ial Network, named S3TAGAN , which is guided by different parts of tumors and improves
the translation effectiveness using unpaired brain tumor images with few paired and labeled
ones. We also propose a local consistency loss to preserve the anatomical structure of the
tumors.

• We show qualitative and quantitative results in the multi-modality translation task on the
BRATS 2020 dataset. Our model achieves better results compared with the state-of-the-art
methods. We also verify the quality of the generated images through downstream segmen-
tation tasks.

2 RELATED WORKS

Cross-modality image translation has been intensively studied in recent years. For instance,
Pix2pix(Isola et al., 2017) provides a solution to generate images from the given source modality
to the given target modality based on cGAN(Mirza & Osindero, 2014). However, it requires paired
data for training, which is hard to realize. Therefore, how to achieve unsupervised image transla-
tion by utilizing unpaired data has attracted the interest of many researchers. CycleGAN(Zhu et al.,
2017) and DiscoGAN(Kim et al., 2017) propose a cycle consistency loss, which attempts to preserve
the crucial information of the images. By constraining the reconstructed image and the source im-
age, the model is available to translate images between the two given modalities with unpaired data.
UNIT(Liu et al., 2017) believes that the essence of image translation tasks lies in calculating the joint
distribution by utilizing the edge distribution of images in two known domains. Since there may be
infinite joint distributions corresponding to two marginal distributions, some additional assumptions
must be added. UNIT assumes that the two modalities share the same latent space, and proposes to
combine VAE and GAN to form a more robust generative model. The encoder maps the images of
different domains to the same distribution to obtain the latent code, and then the decoder maps the
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Figure 1: Overview of the proposed S3TAGAN framework. Given the source image and its corre-
sponding modality vector, we get three pseudo labels by the segmentation network and calculate the
tumor images for the local branch. The generator contains two branches, one is the global branch
which aims to generate the whole image from the source whole image and the given modality vector,
while the other one is the local branch which aims to generate the local tumor images from the source
tumor images and the given modality vector. Then the generator tries to reconstruct the whole image
and tumor images. The global discriminator tries to determine whether the whole image is real or
fake and classify its modality while the local discriminator responds to the local tumor images.

latent code back to the image domain. However, the images generated by the above models do not
have style diversity. For a given image, the generated target modal image is unique. In order to solve
this problem, MUNIT(Huang et al., 2018) and DRIT(Lee et al., 2018) disentangle the latent code
into the content code which is shared by different modalities and the style code which is unique for
different modalities and restricted to normal distribution. In this way, the style code can be obtained
by style encoder or sampling, so that the image of the target modalities can be various.

However, the above models can only translate images between two modalities. If we want to trans-
late images between n modalities, we need to train the model for n(n − 1)/2 times. In order to
perform in a unified model to translate multi-modality images, StarGAN(Choi et al., 2018) pro-
posed a single generator to learn the mapping between any two given modalities. The source images
and mask vectors are inputted to the generator which then outputs the generated target images. The
discriminator needs to not only distinguish whether the images are real or false, but also classified
the domain they belong to. Since every mask vector is corresponding to a given condition, the gener-
ated images are simplex without style diversity. StarGAN v2(Choi et al., 2020) uses a variable style
code to replace the mask vectors on this basis, and the generated target images of each modality
have different styles. DRTI++(Lee et al., 2020) also adds domain code for translation so that any
target modality images can be generated by a unified generator.

Although the above model can achieve multi-modality translation, it can not focus on local targets
but only on the whole image. (Zhang et al., 2018b) propose that for unsupervised learning, cycle
consistency loss will easily lead to local deformation of the image if there are no other constraints.
InstaGAN(Mo et al., 2018) proposed to add segmentation labels of local instances as additional in-
put information so that the network will pay more attention to the shape of the local instances in the
training process and reduces the deformation. DUNIT(Bhattacharjee et al., 2020) and INIT(Shen
et al., 2019) respectively propose to use object detection and segmentation to assist translation. Ea-
GANs(Yu et al., 2019) proposes to integrate edge maps that contain critical textural information to
boost synthesis quality. TC-MGAN(Xin et al., 2020) introduces a multi-modality tumor consistency
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loss to preserve the critical tumor information in the target-generated images but it can only trans-
late the images from the T2 modality to other MR modalities. TarGAN(Chen et al., 2021a) can
focus on the target area by using a segmentation network but it gets dissatisfactory results on brain
tumor datasets. While these models can translate images more effectively, they also require more
supervised information.

Some of the above methods can only translate images between two given modalities, and some
require paired and labeled data for training, which is not completely consistent with the practical
application scenarios that most data are unpaired. We propose S3TAGAN to learn an end-to-end
mapping from an arbitrary source modality to the given target modality, which can focus on the local
tumor areas and translate better by using unpaired images with few paired and labeled ones.

3 METHOD

In this section, we first describe our framework and the pipeline of our approach, then we define the
training objective functions.

3.1 FRAMEWORK AND PIPELINE

Given an image Is from the source modality, we first put it into the segmentation network to get
three pseudo labels, whole tumor, tumor core and enhancing tumor. Then we multiply the source
image with three pseudo labels respectively to get the source tumor images Ts which only contains
different tumor areas. Given the source modality vector s and an arbitrary target modality vector
t, we aim to train a generator that can translate the source whole image Is and the source tumor
images Ts to the target whole image It and the target tumor images Tt. The mapping is denoted as:
(It, Tt) = G(Is, Ts, s, t). Note that the segmentation network is only required during the training
process, only Is,s and t are used during the inference process, which is denoted as: It = G(Is, s, t).
The framework of the model is shown in Figure 1.

Generator. The generator is comprised of two encoder-decoder pairs, one for the global branch and
the other for the local branch. The global decoder receives the feature encoded by the global encoder
and generates the target whole image It while the local decoder receives the features from both the
global encoder and the local encoder to generate the target tumor images Tt. The generator translates
the target whole image It and its corresponding tumor images T ′

t to the reconstructed whole image
I ′s and tumor images T ′

s. In this way, a cycle training process is accomplished.

Discriminator. We use two discriminators to distinguish the reality of images and the modality they
belong to. The discriminator Dg is responsible for the whole images in the global branch and the
discriminator Dl is responsible for the tumor images in the local branch respectively.
Segmentation network. Given the image and its corresponding modality vector, the segmentation
network generates three pseudo labels of the three kinds of tumors, which are binary masks that
represent the foreground and background of the tumors. Then we calculate the tumor images by the
dot product of the whole image and three pseudo labels. Taking source image Is and its modality
vector s for example, the mapping is denoted as: Ts = Is ∗ S(Is, s). On account of the poor pro-
portion of labeled data, we train the segmentation network by a semi-supervised method proposed
in CPS(Chen et al., 2021b). The generated target image It is also inputted into the segmentation
network similar to Is, which is denoted as T ′

t = It ∗ S(It, t).

3.2 TRAINING OBJECTIVE FUNCTIONS

Adversarial loss. Adversarial loss can make the images generated by the generator more realistic
to confuse the discriminator. The traditional adversarial losses for the global branch and the local
branch are defined as follows:

Ladv
g = EIs [logD

src
g (Is)] + EIt [log(1−Dsrc

g (It))], (1)

Ladv
l = ETs [logD

src
l (Ts)] + ETt [log(1−Dsrc

l (Tt))]. (2)
Taking the global branch for example to explain, Dsrc

g (Is) represents the probability that the dis-
criminator considers the images Is as real, and Dsrc

g (It) represents the probability that the discrim-
inator considers the generated images as real. In order to correctly distinguish the reality of the
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images, the discriminator aims to minimize Dsrc
g (It) and Dsrc

l (Tt), while the generator, on the
other hand, aims to maximize these terms to confuse the discriminator.

Since the traditional adversarial loss may lead to unstable adversarial learning, WGAN(Arjovsky
et al., 2017) proposes a new adversarial loss, which solves the problem of instability of the training
process in GAN, reduces the problem of mode collapse to a large extent, and ensures the diversity
of generated samples. WGAN-GP(Gulrajani et al., 2017) proposes to use a gradient penalty strategy
instead of the weight clipping strategy in WGAN, which makes the training process in GAN more
stable and improves the quality of generated images. The final adversarial losses are shown as
follows:

Ladv
Dg

=λgpEα,s,Is [(∥∇Dsrc
g (αIs + (1− α)It)∥2 − 1)2]

− EIs [D
src
g (Is)], (3)

Ladv
Dl

=λgpEα,s,Ts
[(∥∇Dsrc

l (αTs + (1− α)Tt)∥2 − 1)2]

− ETs [D
src
l (Ts)], (4)

Ladv
Gg

= EIs,s[D
src
g (It)], (5)

Ladv
Gl

= ETs,s[D
src
l (Tt)], (6)

where λgp is set as 1, α is set as a random number whose range is between [0, 1] and subject to a
uniform distribution in this paper.

Modality classification loss. Given an image and its target modality vector, we hope the generator
can generate images that are as close to the target modality as possible. Similar to StarGAN, the dis-
criminator aims to judge the modality they belong to. The difference is we add an extra discriminator
for the local branch. For real images, we define the modality classification loss as follows:

Lr cls
Dg

= EIs [−logDcls
g (s|Is)], (7)

Lr cls
Dl

= ETs
[−logDcls

l (s|Ts)], (8)

where the term Dcls
g (s|Is) represents a probability distribution over the modality vector for the

whole images and the term Dcls
l (s|Ts) represents the one for the tumor images. Similarly, we define

the modality classification loss for fake images as follows:

Lf cls
Dg

= EIs,s[−logDcls
g (t|It)], (9)

Lf cls
Dl

= ETs,s[−logDcls
l (t|Tt)]. (10)

Local consistency loss. Tt represents the generated tumor images and T ′
t represents the tumor areas

of the generated whole image It. Since we hope the segmentation network can better guide the
translation of the global branch, we constrain the similarity of these two to alleviate the problem
of distortion in brain tumor image translation. Similarly, the reconstructed tumor image T ′

s and the
source tumor images Ts are supposed to be similar. We propose a local consistency loss as an extra
constraint to improve the translation effect, which is defined as follows:

Llocal = E([∥Tt − T ′
t∥1]) + E([∥Ts − T ′

s∥1]). (11)

Reconstruct loss. The model can translate the source image Is to the image It of any modality.
However, this does not guarantee that the generated image It just simply changes the image style
information and still contains all the content information of the source image Is. To solve this
problem, we input It into the translation network for cycle translation to obtain the reconstructed
image I ′s. If I ′s is consistent with Is, the content information is not missed during translation. The
reconstruct loss is defined as follows:

Lrec = E[∥Is − I ′s∥1]. (12)

Identity mapping loss. Given an image of arbitrary modality, if the target modality happens to be
its source modality, we denote the mapping as Iidt, Tidt = G(Is, Ts, s, s). We hope the generated
images to be as consistent as possible with the source images. We use identity mapping loss to
enforce the generated image not to lose origin information, which is defined as follows:

Lidt = E[∥Is − Iidt∥1 + E[∥Ts − Tidt∥1]. (13)
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Semi-supervised loss. For images that are paired and labeled, we further use ground truth to con-
strain the generated tumor images to alleviate the problem of local image deformation. We defined
the semi-supervised loss as follows:

Lss = E[∥Tt −GT∥1], (14)
where GT represents the ground truth of the target tumor images.

Total loss.Combining all the losses mentioned above, we finally defined the objective function as
follows:

LD =λadv
Dg

Ladv
Dg

+ λadv
Dl

Ladv
Dl

+ λcls
Dg

Lr cls
Dg

+ λcls
Dl

Lr cls
Dl

, (15)

LG =λadv
Gg

Ladv
Gg

+ λadv
Gl

Ladv
Gl

+ λcls
Dg

Lfcls
Dg

+ λcls
Dl

Lfcls
Dl

+ λrecLrec + λlocalLlocal

+ λidtLidt + λssLss, (16)
where λadv

Dg
,λadv

Dl
,λcls

Dg
,λcls

Dl
,λrec, λlocal, λidt,λss are hyper-parameters to balance to losses. We set

λadv
Dg

,λadv
Dl

,λcls
Dg

,λcls
Dl

to be 1.0 and λrec, λlocal, λidt,λss to be 10.0 in this paper.

4 EXPERIMENTS

4.1 SETTINGS

Datasets. We conduct all our experiments on BRATS2020(Menze et al., 2014)(Bakas et al.,
2017)(Bakas et al., 2018) dataset. BRATS2020 provides brain tumor images of four modalities:
T1-weighted (T1), T1-with-contrast-enhanced (T1ce), T2-weighted (T2) and T2-fluid-attenuated
inversion recovery (Flair). Three kinds of tumors which are named Whole Tumor(WT), Tumor
Core(TC) and Enhancing Tumor(ET), are labeled for segmentation. We use 150 patients’ images as
the training samples and 20 percent of them are treated as labeled and paired ones. We resize the
images to 128*128. Details are shown in the supplementary material.

Evaluation metrics. For the translation task, we use structural similarity index measure(SSIM),
peak-signal-noise ratio(PSNR) and learned perceptual image patch similarity(LPIPS)(Zhang et al.,
2018a) to measure the similarity between the generated images and ground truth. For the down-
stream segmentation task, we use DICE to measure the integrity of the predicted pseudo labels
which are generated by nnU-Net(Isensee et al., 2021). That’s because nnU-Net is an acknowledged
method that achieves state-of-the-art performances for medical image segmentation.

Baselines. We compare our translation results with StarGAN(Choi et al., 2018), DRIT++(Lee et al.,
2018), Targan(Chen et al., 2021a) and ReMIC(Shen et al., 2020). StarGAN proposes to use a unified
model to translate images to arbitrary modalities. DRIT++ disentangles an image to the content
code and the attribute code during the training process and generates images by using the content
code extracted from the input images and the attribute code sampled from the standard normal
distribution. TarGAN alleviates the problem of image deformation on the target area by utilizing an
extra shape controller. ReMIC generates images by using multi-modality paired images. Note that
we implement a semi-supervised ReMIC for comparison.

Implementation details. We implement PatchGAN(Isola et al., 2017) as the backbone for both the
global discriminator and local discriminator. And we use U-net as the backbone for the generator and
the segmentation network. We train our model for 100 epochs with a learning rate of 10−4 for the
generator and both the discriminators for the first 50 epochs and linearly decay the learning rate to
10−6 at the final epoch. Adam(Kingma & Ba, 2014) optimizer is used with momentum parameters
β1 = 0.9 and β2 = 0.999. We also adopt data augmentation and normalization for the training
samples. Details are shown in the supplementary material. All the experiments are conducted on
PyTorch with NVIDIA RTX 3090.

4.2 RESULTS

In this section, we demonstrate our translation results compared with other baseline methods. Then
we verify the effectiveness of the generated images via the downstream segmentation tasks.
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Figure 2: qualitative results of our model and the other baselines on the BRATS2020 dataset. The
source image is denoted as Input. The four columns show the images of various mappings and the
rows represent different methods. Red boxes show that our method generates images with clearer
textures and more structural information. The results demonstrate that our method achieves better
translation effectiveness.

4.2.1 TRANSLATION RESULTS

Qualitative evaluation. Figure 2 shows the qualitative results of our model and the other baselines.
StarGAN and DRIT++ generate images with checkerboard artifacts in some cases, while ReMIC
and TarGAN may lead to blur or deformation in the tumor areas. Our method generates images with
clearer textures and more structural information.

Quantitative evaluation. We use SSIM, PSNR and LPIPS to measure the similarity between the
generated images and ground truth.

As shown in Table 1, our method gets higher SSIM and PSNR than the other baselines. The value
is the average of all the cases for the mapping of any source modality to an arbitrary target modal-
ity. We also use the smallest rectangle to frame the tumor areas for every generated image and
calculate the SSIM and PSNR of the framed images with their corresponding ground truth, which
is denoted as local SSIM and local PSNR. These two metrics represent the translation effectiveness
in the tumor areas. S3TAGAN get higher scores of them, which means that our method preserves
more information in the tumor areas. LPIPS is also a metric to measure perceptual similarity. The
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Table 1: Quantitative evaluation of the images generated by our method and the baselines. We
report the mean value for translation between any two modalities here. The symbol ↑ denotes higher
is better while the symbol ↓ denotes lower is better.

Method SSIM↑ PSNR↑ local SSIM↑ local PSNR↑ LPIPS↓
StarGAN 83.35 25.99 56.26 18.55 9.79
DRIT++ 86.57 30.86 60.94 19.76 8.66
TarGAN 84.66 28.74 58.79 18.36 9.76
ReMIC 84.59 28.70 57.68 18.28 9.12

S3TAGAN 88.37 34.36 61.51 22.51 5.96

Table 2: The quantitative evaluation for downstream segmentation task conducted by nnU-Net. We
use DICE as the metric. Our method achieves better results than the baselines on all three kinds of
tumors.

Method DICE (%)
WT TC ETC

StarGAN 73.56 59.76 35.65
DRIT++ 77.96 65.81 42.36
Targan 77.37 64.41 42.84
Remic 77.10 63.56 42.12

S3TAGAN 79.07 66.69 43.37

lower value of this metric means higher similarity which represents that our model achieves better
translation effectiveness.

4.2.2 DOWNSTREAM SEGMENTATION RESULTS

Given an image from an arbitrary modality, we translate it to the other three modalities by our
model and all the baselines respectively. Then we put the fully multi-modality images generated
by the above methods into nnU-Net to compare their segmentation effectiveness. We use DICE of
whole tumor(WT), tumor core(TC) and enhancing tumor(ET) to measure the results. As shown in
Table 2, our method achieves better performance than all the baselines, which also represents that
we generate more accurate information on the tumor areas.

4.3 EFFECTIVENESS OF LOCAL BRANCH

In this section, we conduct an ablation study to validate the effectiveness of the local branch which is
guided by the segmentation network in our proposed S3TAGAN . We replace the predicted pseudo
labels with the following three situations: (a)ground truth labels. (b) full-zeros maps. (c) random
maps that each value is either zero or one. As shown in Table 3, the performance of S3TAGAN
with labels is the upper bound in theory, which represents the best guidance for local tumor trans-
lation. Note that the performance of segmentation guidance is close to this situation, which demon-
strates the effectiveness of our model. While S3TAGAN with zeros maps is the lower bound in
theory, which represents no segmentation-guided learning. S3TAGAN with random maps repre-
sents learning with guidance for random areas but not the tumor areas. Translation effectiveness is
improved slightly in this situation. The results show the robustness of our model.

4.4 RATIO OF PAIRED AND LABELED DATA

In order to test the effect of the ratio of paired and labeled data for semi-supervised learning on our
model, we adjust the ratio to 10 percent and 100 percent. As shown in Table 4, more paired and
labeled data for supervision can improve translation effectiveness. Note that the effectiveness of 20
percent supervision which is our default setting is close to 100 percent supervision.
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Table 3: Ablation study for the effectiveness of local branch. The results demonstrate the effective-
ness and robustness of our model.

SSIM PSNR local SSIM local PSNR LPIPS
S3TAGAN 88.37 34.36 61.51 22.51 5.96

S3TAGAN w ground truth labels 88.42 34.56 61.71 22.58 5.91
S3TAGAN w zeros maps 88.03 33.10 61.26 22.19 6.02
S3TAGAN w random maps 88.15 33.85 61.38 22.40 6.01

Table 4: Sensitive analysis for the ratio of paired and labeled data for training. The results show that
few paired multi-modality data can also benefit the translation.

SSIM PSNR local SSIM local PSNR LPIPS
S3TAGAN(10%) 88.25 32.96 61.73 22.28 6.01

S3TAGAN(20% by default) 88.37 34.36 61.51 22.51 5.96
S3TAGAN(100%) 88.46 34.39 61.60 22.71 5.94

5 CONCLUSION

In this paper, we propose a semi-supervised segmentation-guided method called S3TAGAN to
translate brain tumor images, which learns a mapping between any two modalities. We use unpaired
images for training with only few paired and labeled ones, which is in agreement with the practical
situation. With the guidance of the segmentation network, the local branch focuses on the brain
tumor areas and alleviates the problem of deformation in the tumor areas, which benefits the quality
of both the generated whole images and tumor images. Experiments demonstrate that our model
achieves better translation effectiveness with strong robustness. The results of the downstream seg-
mentation task also verify the effectiveness of our model.
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