Under review as a conference paper at ICLR 2024

ADJUSTING THE INDUCTIVE BIAS OF DIFFUSION MOD-
ELS

Anonymous authors
Paper under double-blind review

ABSTRACT

It has been found empirically that diffusion-based generative models strongly ben-
efit from weighting the score-matching objective in the training process and from
redirecting trajectories in the sampling process to closer match the training dis-
tribution. Here we show that a beneficial loss weight arises naturally when the
training objective is derived from first principles by enforcing detailed balance
between the forward and the reverse diffusion trajectories. We find that deter-
ministic sampling by diffusion models induces a strong bias, favoring features of
some training examples while ignoring others. To correct for the strong sampling
bias, we introduce an efficient and controllable rejection sampling approach. We
achieve a new state-of-the-art FID of 1.42 for CIFAR-10 in a class-conditional
setting.

1 INTRODUCTION

Diffusion models have emerged as powerful generators of images (Sohl-Dickstein et al.,|2015; [Ho
et al., 2020; Karras et al., 2022; Song et al., [2021} |Kingma et al., 2023)), audio signals (Kong et al.,
2021), video sequences (Ho et al.l[2022)), and text (Popov et al.,|2021). Despite their longer training
times and slower sampling rates in comparison to generative adversarial networks (GANs), they
often show superior results with respect to image quality and sample distribution, at least when
using FID (Heusel et al.| [2018) as performance measure, which is a debatable performance score
(Chong & Forsyth| [2020; Kynkédanniemi et al.l 2023} Betzalel et al.| 2022)). Recent advances to
improve the performance of diffusion-based generative models have often been based on extensive
empirical optimizations, such as finding a suitable weighting of the score-matching objective as a
function of the noise level (Karras et al., [2022)) or forcing the denoising trajectories to more closely
follow the training set examples (Kim et al.,2023)). Although empirical optimization is central to the
rapid advances in deep learning, a better theoretical understanding of the limitations of an approach
often helps to find strategies for further improvements.

Our first contribution is to show that a loss weight for diffusion models — which results significant
performance gain — arises naturally when the denoising diffusion objective is derived from first
principles. The starting point for our derivation is the detailed balance condition, which ensures that
the noising process and the denoising process take the same trajectory with the same probability
density during training. That a loss weight was not an integral part of previously derived objectives
is a consequence of matching the score instead of matching noising and denoising trajectories, where
the latter implies score-matching.

Our second contribution focuses on the well-known fact of diffusion models — and perhaps all gen-
erative models — that the distribution of generated images differs significantly from the training set
in feature space. As a consequence, the higher-level features for a significant fraction of training
examples are almost never sampled by diffusion models (Fig. 1).

2 DENOISING SCORE-MATCHING OBJECTIVE SHOULD BE WEIGHTED

Diffusion-based generative models learn to follow trajectories that connect noise samples, ~
Droise(€), with data points, Yy ~ pgate (). This is achieved by continuously adding noise to data-

Under review as a conference paper at ICLR 2024

Generated Training

Figure 1: 50k-means clustering of 1M generated samples for CIFAR-10 in Inception feature space,
with training set images as cluster centers. Examples of training set images (first row) with random
images from the corresponding clusters (second row) and cluster sizes (third row). Diffusion models
favor the generation of samples with simple structured backgrounds. More than 7% of the training
set images have a cluster size of zero.

points, using a Wiener process, W (),

dX(t) = 2D)dW(t) 5 X(0) ~ paaa(y)

Here, X (t), W(t) denote random Variablesﬂ that are indexed by real number ¢ € [0, 7] — with ¢ > 0
interpreted as time — and D(¢) is a time-dependent diffusion constant. A reverse process X g(t) can
be learned from realisations of the random variable X (¢),

dXgr(t) = F(Xg(t),t)dt + \/2Dg(t)dW (t) i XR(0) ~ Doise ()

with F a parameterized denoising flow field that drives noisy data points towards the data distribu-
tion. The corresponding conditional probability density function for sampling noisy data points is
normal distributed as a consequence of the Wiener process, X (t) ~ N (z|y, o (t)?) = px (z, t|y,0).
The noise scale o (t) increases over time in the forward process and is related to the diffusion con-
stant by D(t) = o(t)do(t)/dt. The highest noise scale o(T) is chosen such that px (x, T'|y,0) ~
N(2]0,0(T)?) =: proise (). Training of F at sufficiently high noise levels is necessary to allow the
generation of new data points from X i (0) ~ ppoise () by the reverse process.

2.1 SCORE-MATCHING BY DETAILED BALANCE

For a given forward process with marginal p(z,t) = Egympu. N (x|T0,07)], a unique reverse
process can be found from the detailed balance condition

pX(:Bt,ﬂa?nT)p(a’nT) = pXR(wT7T|wtat)p(wtvt) Vi, T € [O,T},t >T

with Xg(T — 1) ~ px,(x;, 7|2+, t) under the initial condition X (T — t) = x;. The marginals at
the boundaries are given by p(x,0) = pyan(x) and p(x, T') = phoise(x). Using the time discretiza-
tiont = kAt, with k € {0,.., N} and At := T'/N, together with iterative application of the detailed
balance condition, gives the relation

px (&N, tN|EN_1,tN-1)
Prnoise(ZN) = p(EN,IN) = plen_1,tN-1
noise () (@, ty) Pxp(TN—1,tN-1]ZN,IN) (’)

N
_ H Px (T, th|Trp—1,th—1)
Pt} PXp(Th—1,tp—1|Tk, T

)pdata(wo)

The continuous flow field F is chosen such that the probability of moving along a given trajectory
under the forward process equals the probability of moving the same trajectory backwards under the
reverse process. In the limit N — oo, F can be uniquely determined (Appendix A) from minimizing

'If X () is a random variable indexed by real number then the set {X (£)};c(q,5) is a stochastic process on
the interval [a, b].

Under review as a conference paper at ICLR 2024

the right-hand-side of the inequality

Pdata(Y) H]kvzl Px (T, te|Tr—1,tk—1)

0< lim Ey. amE T~ Th ot er_1,te—1) 1

Nooo Y Paa={@p~px (@k,tr|Tr—1,tk—1) 12, [pnoise(mN) HivzleR(xk—htk—l‘mk,tk)
T

- /0 EypuBanpy (@ ily) [0F (@, 8) D(t) ™ 6F (x,1)] dt (1)
T 2

Y [N (,t) — (z—y)|

:9/ Ele)damEmNN(m\yJ(t)?) [o (0)? w(t)dt 2)
0
(@ N(z,0)— (x—1y)|*] 1

B N (LI ECEIE P N
0 g o

with N (z, t) a parameterised predictor for the noise n := x —y and p(t) = d1n o (t)/d¢ the entropy
production rate (Table 1). Note that equality holds between Eq. and Eq. if the gradient with
respect to parameters is taken, which we denote by Vg above the equality sign. In this case, the
relation between the noise predictor and the flow field is given by

OF (x,t) == —F(x,t)/2+ D(t)Vy logp(x, t)
f(a: t) = —2u(t)N(x,t) 4

The r1ght -hand-side of Eq. (I)) is minimal for § F = 0, which implies that the optimal noise predic-
tor is given by N*(x,t) := —o(t)>V log p(z,t). From Eq. (3) follows that o can be interpreted
as alternative time scale (Karras et al., [2022). From a physical viewpoint, the denoising function
—N(a,t) should be interpreted as force, o*(t) as temperature, and /(%) as mobility coefficient (Ta-
ble 1). As a consequence of detailed balance, D(t) and p(¢) are related by the fluctuation-dissipation
theorem. The training objective Eq.(3), differs from previous denoising score-matching objectives
(Karras et al.,[2022; Kingma et al., 2023;|Song et al.,2021) by the functional form of the loss weight.
Our loss weight is the consequence of matching the probability densities for the forward and reverse
processes using the Kullback-Leibler divergence, which is different from learning F directly by a
denoising score-matching objective (Vincent, 2011).

Table 1: Relation of diffusion models to stochastic thermodynamics

Physical Systems Diffusion Models Comment

Energy scale o(t)? temperature (kg1

Energy function E:=|x—y|*/2 x € RY

Internal Energy (per dim) U/d= (E)/d=0c(t)?/2 (.) := equilibrium average
Entropy (per dim) S/d=1/2lno(t)? + const 3S/OU = (kgT)™*

Force F=—(x—y) F:=-V,E

Diffusion coefficient (per dim) D(t) = (1/2)do(t)?/dt energy absorption rate
Mobility coefficient (per dim) u(t) = (1/2)dIno?/dt entropy production rate
Fluct. Diss. Theorem wu(t) = D(t)/o(t)? conseq. of detailed balance

Equilibrium distribution N(z|y,o(t)?) quasi-static equilibrium
Free Energy (rel. to equilibrium) 02Dy (P(z)|N (z|y, o(t)?)) P(zx) : some distribution

2.2 ASYMPTOTIC BEHAVIOR OF NOISE PREDICTOR

In can be shown that the optimal noise predictor has the asymptotic behavior (Appendix B)
N*(z,0) = O(0) outside the data distribution, pg () = 0
N*(z,0) = O(c?) inside the data distribution, o — 0

As the underlying data distribution from which the training set was sampled is unknown, it is un-
clear how to incorporate the correct asymptotic behavior for N (i, o) into the training objective. Our
current objective, Eq. (3), implies that N (x, 0) = O(0) as a consequence of z — y = O(o) for all
noise scales ¢ > 0. Consequently, the objective Eq. is only valid outside the data distribution.

Under review as a conference paper at ICLR 2024

We therefore introduce with o, a cutoff value, above which Eq. (3) remains valid. We emphasize
that characterizing the thickness of the data hyperplane by a single scalar value o, is a strong over-
simplification that leaves room for further improvements. To realize the cutoff we multiply the
score-matching loss by a sigmoid function, using the substitution

1 1. . o1

—do — —sigmoid(yIn(c /o)) do = ——— do

o o o7 + o
where the hyperparameter y characterizes the sharpness of the cutoff. We set v = 6, as lower values
showed reduced performance and higher values resulted in training instabilities. For computational
efficiency, we normalize the loss weight and introduce the probability distribution

1. of+o) ot
q(o) = L In pg } pp do

which allows us to substitute the loss weight by sampling over noise levels

||Uf(w70);2(w -yl 5)

L = Eypa(v)Eong(o)Eann (a]y,02) {

We enforce the correct noise scaling for noise predictor by normalizing the neural network output,
f(x,0) = O(1) and defining N(x,0) := of(x, o), using the preconditioning pipeline of |[Karras
et al.| (2022)). It has been found empirically that training the score-matching objective with higher
loss weight on intermediate noise levels improves the FID score (Kynkiddnniemi et al., [2023)). Our
analysis shows that the loss weight is determined by the choice of how to quantify the statistical
differences between forward and reverse trajectories and by accounting for the denoising asymp-
totics near ¢ — (. After coarse-grained optimization of the hyperparameter o. (Fig. 3a) our loss
weight achieves comparatively good results as the empirically found loss weights (Table 2), despite
significant differences in their functional forms (Fig. 2).

—— Karras loss —— Our loss
----- Karras o-distribution «===+ Our o-distribution
—— Karras eff. loss ~—— Our eff. loss

0=0.005 0.02 0.1 05 1 2 5 10 20 50 0=0.005 0.02 0.1 05 1 2 5 10 20 50

(a) EDM (b) Ours

Figure 2: Comparison of the score-matching loss terms (square bracket of Eq., blue lines) and loss
weight g(o) (dashed lines) between our approach with o, = 0.05 (right) and (Karras et al., 2022)
(left) for CIFAR-10. The loss function seen by the optimizer is shown in purple. The distributions
(dotted lines) are normalized but ours appears smaller due to the heavier tail for large 0. We have
taken the hyperparameters for the EDM loss weight (log-normal distribution) from the original code
repository and used these to reproduce the reported FID scores.

Model EDM Ours Ours
Sampler Vanilla EDM Vanilla EDM Tuned EDM
FID 1.8 1.88 1.83

Table 2: Our training results on conditional CIFAR-10, compared to [Karras et al.| (2022) EDM
Model. Vanilla EDM refers to using the EDM sampling settings which were optimized for the EDM
model on CIFAR-10. The second FID shows our result when using this sampler out of the box.
Tuning p and ngeps, as shown in Fig. E], results in an FID score comparable to the EDM model.

ZKarras et al.| (2022) reported the minimum of three FID runs, resulting in a score of 1.79, which we
reproduced. We show the mean of the three runs reported, which included the reproduction.

Under review as a conference paper at ICLR 2024

3 SAMPLING BIAS IN FEATURE SPACE

An optimal generative model samples from the same data distribution as used to build the training
set. Practically, we expect from a generative model that it produces samples that (i) generalize well
across the training set, (ii) show similar high variation in feature space as the training examples,
and (iii) are not recognizable as out-of-distribution (OOD). However, the trade-off (i)-(iii) is hard to
achieve as increasing the variation almost certainly increases the chance to generate OOD samples,
and generalization is not possible across outliers in the training set. To quantify the bias in the
sampling process for diffusion models, we counted the number of generated examples that share
the same training data point as nearest neighbour in feature space. If the model generalizes with
respect to both higher-level features and lower-level features, we expect the sampled data points
to be close to the training set in this space, assigning each training example the same number of
nearest neighbor samples up to stochastic fluctuations. However, after sampling 106 data points we
found strong differences in the densities of generated samples and training samples in feature space
(Fig. 4b), which indicates a strong sampling bias.

5000

e Training ~—— EDM
° ® Generated EDM G++
A ted —— Ours
Q = 4000 —— Optimal
L] L]
° O oﬂ; . . 3000
o ® ® °
M ° :. :‘ 2000
L] L]
L[] 1000
L]
0
1 2 5 10 20 50 100 log(cluster size + 1)
(a) Feature space rejection (b) CIFAR-10 sampling bias

Figure 3: (a) Illustration of the rejection rule of the N3-rejection sampler. A generated sample
is accepted if it is at least as close to a training example as the corresponding nearest neighbor
from a pre-selected set of samples and if it shares the same shaded region. The shaded regions are
the result of k-means clustering, with k the size of the training set and training examples taken as
cluster centers. Distances are defined by the cosine similarity in feature space. (b) Visualization of
the sampling bias for diffusion models on CIFAR-10, using DINO ViT-B/16 (Caron et al., [2021)
as feature extractor. Shown is the distribution of cluster sizes — how often each training image is
targeted by generated samples (number of red points in the shaded regions of (a)). An optimal
sampler targets all training examples with the same probability (green). Our model is slightly less
biased in comparison to EDM and EDM G++.

3.1 BIAS CORRECTING BY REJECTION SAMPLING

To correct for the sampling bias, we assign each training example a non-overlapping, surrounding
region in feature space (Fig. 4a). The regions are taken to be small for training examples that have
a disproportionally high number of nearest neighbor samples and large in the opposite case. The
nearest neighbor regions are determined by Algorithm 1, which finds the next nearest neighbor to
each training example across a sufficiently large set of generated examples. The boundaries of the
regions are defined by cosine similarity between the next nearest neighbor and its training exam-
ples. Samples that fall in these regions are accepted — and rejected if they lie outside these regions.
As a consequence, the accepted samples follow more closely the distribution of the training set in
feature space. To find a suitable feature space, we tested different feature extractors. As network
architectures, we tried ConvNeXt and Vision transformers in combination with class-supervised,
language-supervised (CLIP), and self-supervised pretraining. The reason for this choice was the
strong OOD prediction performance for these settings (Michels et al.,[2023; Ming et al., [2022).

3.2 FEATURE EXTRACTOR COMPARISON

Algorithm 1 assigns only sampling regions around training examples if there is at least one nearest
neighbor assigned to them. After the generation of 1 Mio. samples, approximately 7% of the

Under review as a conference paper at ICLR 2024

FID FID
—— Inception —— Inception
17511.71 DINO ViT-B/16 175 DINO ViT-B/16
—— ConvNeXt-B —— ConvNeXt-B

1.70 170
—— ConvNeXt-B CLIP —— ConvNeXt-B CLIP
1.65 1.62 — vitBaecLp | 1.65 —— Vit-B/16 CLIP

1.60 1.60

1.55 1.55

1.50 1.50

1.45 1.45

1.45
1.40 1.40

1.35 135 1.59
100k 200k 300k 400k 500k 600k 700k 800k 900k Mimgs 100k 200k 300k 400k 500k 600k 700k 800k 900k Mimgs

(a) EDM (b) EDM-G++

Figure 4: Finding the optimal set size 14, Of generated samples to determine the acceptance
threshold (nearest neighbor distance) using Algorithm 1. Surprisingly, CLIP features perform worst
and DINO features perform best. (a) Generated samples from EDM. (b) Generated samples from
EDM G++.

50k training examples of CIFAR-10 lack a nearest neighbour. Training examples without nearest
neighbors frequently look atypical (Fig. 1) and seem to represent outliers over which the model is not
generalizing well. If we increase the number of generated examples from which Algorithm 1 can
select, we increase the likelihood that training set outliers get assigned a nearest neighbor, which
is then accepted as the next nearest neighbor. Consequently, the distribution of accepted samples
spreads over the training set but image quality drops by producing samples that are far from every
training sample in feature space, using cosine similarity as a distance measure. The combined effect
is that FID declines with increasing the number of samples to select the next nearest neighbors but
eventually rises again. We take the generated sample set size with minimum FID as an optimal point
to determine the regions for rejection sampling (Fig.[d). It is somewhat surprising to see that among
the models for feature extraction an unsupervised method (DINO) results in the lowest FID.

— NFE3S
196 NFE 41

184 1.831

1.825

3 4 5 6 7 8 o 5 7 9 11 13 15 17 19 21 23 p 29 35 41 47 53 59 NFE

(a) o comparison (b) p comparison (c) NFE comparison

Figure 5: Hyperparameter tuning for our model in the class conditional setting for CIFAR-10. All
points are averages of three runs and the shaded area reflects the minimum and maximum values for
these runs. The hyperparameter p has been introduced by Karras et al.|(2022])) to allow adjustment of
the denoising step size. NFE is the number of network calls needed for sampling. Training details
can be found in Appendix @

Our rejection sampling approach could be criticized for simply selecting generated examples that
are closer in cosine similarity to training examples in the Inception feature space, as this would
naturally lower the FID. However, the distribution of cosine similarities in this space is unchanged
after rejection sampling, even with the best-performing feature extractor with respect to FID (Fig.[6).
This shows that reducing the distance between generated samples and training examples in DINO
feature space does not change their distance in Inception feature space. Similar behavior is observed
for discriminator-guided diffusion, which brings generated examples and training examples closer
in real space (Kim et al., |2023). Also here, no significant shift of Inception features is observed

(Fig.[6).

Under review as a conference paper at ICLR 2024

Algorithm 1 PyTorch-like pseudocode of the N3-rejection sampler.

train_features [n, f_.dim] - normalized features of the train set

feature_model — Feature extraction model, e.g. ConvNeXt

all_seeds [n_seeds] — Seeds for reproducible image generation

best_seeds [n_train] — Empty tensor. Save the best seed for each training image
best_scores [n_train] — Empty tensor. Save the best score for each training image

Loop through all seeds batch-wise
for batch_seeds in all_seeds:
Generate images and extract features
x = edm_sampler(batch_seeds) # [bs, C, H, W]

feats = get_features (x, feature_model) # [bs, f_dim]
feats = torch.nn.functional.normalize (feats)

Compute cosine similarity to all training images
score = feats @ train_features.t() # [bs,n]|

Only keep score for best matching training image

best_score , best_matches = score.max(l, keepdim=True)
scores = torch.zeros_like (score)
scores = torch.scatter (updates, 1, best-matches, best_score) # [bs.n]

Select the closest match for each training image among best matches
max.scores , max-idx = scores.max(dim=0) # [n]

If there is a better match than before, keep it

condition = max_scores > best_scores

best_seeds = torch.where(condition, batch_seeds[max_idx], best_seeds)
return best_seeds

The rejection sampling results are summarised in Table[3] The combination of Discriminator Guided
Diffusion (EDM-G++) and rejection sampling in DINO feature spaces results in the lowest FID. This
result indicates that these two methods for improving FID are to some extent complementary. We
admit that have tested only a very limited amount of feature extractors, given the wide spectrum of
pre-trained models currently available. It is therefore almost certain that a even better feature extrac-
tor can be constructed. However, the question is if FID is the right measure for both the quality and
the distribution of generated samples. We share the concerns of using FID for benchmarking gener-
ative models (Chong & Forsyth| 2020} [Kynkédanniemi et al.l 2023} [Betzalel et al},[2022)), especially
because we have no explanation for why the CLIP models behave worse despite the fact that they
are excellent OOD detectors.

1600 cos-sim

« Testset
- EDM
EDM-G++
. N3-Rejection Inception
0.9 + N3-Rejection DINO

Test set
EDM
EDM-G++
N3-Rejection Inception
N3-Rejection DINO

1400 0.95

1200

1000
0.85

200 .!’u-""
%.’65 0.7 0.75 0.8 0.85 0.9 0.95 cos-sim 0.7 0.75 0.8 0.85 0'9 0.95 cos-sim
(a) Histogram of cosine similarities. (b) QQ-plot of cosine similarities

Figure 6: Statistical evaluation of cosine similarities in Inception v3 (Szegedy et al., [2015)) feature
space for 50k samples on CIFAR-10 . Each cosine similarity is between a generated image and
its closest training image in feature space. (a) Histogram of cosine similarities showing that N3-
rejection on Inception features induces the expected distribution shift towards higher overlap with
the training set, indicating a direct manipulation of FID. (b) QQ-plot illustrates the absence of a
distribution shift if N3-Rejection is carried out in DINO feature space and the resulting accepted
images are evaluated in Inception feature space.

Under review as a conference paper at ICLR 2024

Sampling Method Feature Model FID Rel. time|
EDM Sampler (Karras et al., [2022)) - I.S(E] 1x
EDM-G++ (Kim et al.|[2023) - 1.64 2
N3-rejection ConvNeXt-B (CLIP) 1.71 2x
N3-rejection ViT-B/16 (CLIP) 1.62 8%
N3-rejection ConvNeXt-B 1.55 10x
N3-rejection ViT-B/16 (DINO) 1.52 8%
EDM-G++ & N3-rejection ConvNeXt-B (CLIP) 1.57 4x
EDM-G++ & N3-rejection ViT-B/16 (CLIP) 1.52 12x
EDM-G++ & N3-rejection ConvNeXt-B 1.45 20x
EDM-G++ & N3-rejection ViT-B/16 (DINO) 1.42 20x
N3-rejection Inception 1.45 8%
EDM-G++ & N3-rejection Inception 1.39 16x

Table 3: Performance comparison for different sampling methods with |Karras et al.| (2022) EDM
model on class conditional CIFAR-10.

4 CONCLUSION

In this work, we show that the bias of diffusion models can be attenuated if the denoising score-
matching objective is correctly weighted during training and the generated samples cover more
closely the training set in feature space. Our results demonstrate that the proposed rejection sampling
approach for reducing the sampling bias achieves new SOTA FIDs on CIFAR-10. In particular, we
find that the combination of a discriminator guided diffusion model in combination with our rejection
sampling approach leads to FID of 1.42 for class conditional CIFAR-10. The disadvantage of our
approach is the slower sampling speed, as roughly one out of ten examples are rejected. Negative
societal effects arise from increased energy consumption per generated image as a consequence of
rejection sampling and increasing the image quality increases the quality of deepfakes and their
potential risks.

3 Approximations on our hardware. The speed differences for feature models are mainly due to them reach-
ing their optimal FID for different amounts of total samples, not the evaluation speed of the feature models
themselves.

YKarras et al| (2022) reported the minimum of three FID runs, resulting in a score of 1.79, which we
reproduced. We show the mean of the three runs reported, which included the reproduction.

Under review as a conference paper at ICLR 2024

AUTHOR CONTRIBUTIONS

If you’d like to, you may include a section for author contributions as is done in many journals. This
is optional and at the discretion of the authors.

ACKNOWLEDGMENTS

Use unnumbered third level headings for the acknowledgments. All acknowledgments, including
those to funding agencies, go at the end of the paper.

REFERENCES

Eyal Betzalel, Coby Penso, Aviv Navon, and Ethan Fetaya. A study on the evaluation of generative
models, 2022.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers, 2021.

Min Jin Chong and David Forsyth. Effectively unbiased fid and inception score and where to find
them, 2020.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium, 2018.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J.
Fleet. Video diffusion models, 2022.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models, 2022.

Dongjun Kim, Yeongmin Kim, Se Jung Kwon, Wanmo Kang, and I1-Chul Moon. Refining genera-
tive process with discriminator guidance in score-based diffusion models, 2023.

Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models,
2023.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis, 2021.

Tuomas Kynkéédnniemi, Tero Karras, Miika Aittala, Timo Aila, and Jaakko Lehtinen. The role of
imagenet classes in fréchet inception distance, 2023.

Felix Michels, Nikolas Adaloglou, Tim Kaiser, and Markus Kollmann. Contrastive language-
image pretrained (clip) models are powerful out-of-distribution detectors. arXiv preprint
arXiv:2303.05828, 2023.

Yifei Ming, Ziyang Cai, Jiuxiang Gu, Yiyou Sun, Wei Li, and Yixuan Li. Delving into out-of-
distribution detection with vision-language representations. Advances in Neural Information Pro-
cessing Systems, 35:35087-35102, 2022.

Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and Mikhail Kudinov. Grad-tts:
A diffusion probabilistic model for text-to-speech, 2021.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations, 2021.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision, 2015.

Under review as a conference paper at ICLR 2024

Pascal Vincent. A connection between score matching and denoising autoencoders, 2011.

Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial training,
2020.

10

Under review as a conference paper at ICLR 2024

A FIRST-PRINCIPLES DERIVATION OF THE DIFFUSION OBJECTIVE

The stochastic differential equation (SDE) for the forward (noising) process is given by

dX(t) = v2D()dW(t) 5 X(0) ~ Paua(y)

and the SDE for the reverse (denoising) process is given by

dXgr(t) = F(XRr(t),t)dt + \/2Dg(t)dW (t) i XRr(0) ~ Pooise()

with 0 < ¢t < T and W (¢) the standard Wiener process that injects Gaussian noise. If the for-

ward and the reverse process produce identical trajectories, their stochastic variables are related by
X(t) = Xgr(T —1t).

The SDEs defined above are meaningless unless a rule for their integration is defined. Here, we
use the midpoint (or Stratonovich or Heun) rule E} For discrete update steps, t, = nAt withn €
{0, .., N'}, application of the midpoint rule results in

XR,n = XR,n—l + %[f(XR,nytn) + f(XR,nytn—l)]At + vV 2l)R,nA En

with Z,, ~ N(0,I) and X ,, := Xg(t,). The midpoint rule has the advantage that rules from or-
dinary calculus can be applied to transform stochastic variables. Consequently, the joint probability
density p(Z4,..,En) = H,]Ll N (E,]0, I) can be transformed into the joint probability density for
the discrete realizations x,, of the stochastic variable X, using the Jacobian J,;; = d=,, /dx; and the
identity pr(xy,..,xy) = det(J)p(E1, .., En). The probability density for a trajectory generated by
the discrete reverse process that passes through the points &, 1, .., v is given up to order O(At?)
by

pR(mN7"aml|mO) = xnatn)At‘|

! oxp |13 e, ~ LS v, A
Xp Y n Y n :
Hfj:l VAndet(Dg At 2 ot "2 ot “

with
Lp — Lp—1 — %[‘}—(wnatn) +]:(wn71»tn71)]At

2D At

In the limit, At — 0, N — oo, NAt = T, we arrive at the path integral representation

En =

T T
prl()[2(0)] exp H | = Fa 0 D) e - Fa) - 5 [Ve Fla, t)dt]

where we omitted to write out the normalization. Here, pg|[.] indicates that joint probability density
is now a functional of the continuous trajectory x(t). A path integral representation for the forward
process, p[x(t)|x(0)], can be obtained by simply setting F = 0 and subsituting D — D.

We now set Dg(t) = D(t) and introduce F, := —F/2. We now express the path integral for
reverse process by integrating along the forward trajectories. This can be achieved by reversing the
time arrow for the reverse trajectories, which amounts in the substitution x(¢) — x(7" —t) and as a
consequence &(t) — —&(t). The log ratio of the probability densities is then given by

plele] [T T v, F
RO — = [() = Fule)] DO Fu(w(0). 0}t = [Vo Fu(at)ar

The Fokker-Planck (or Smoluchowski) equation d;p(x,t) = —V - Fp(x,t)p(x,t) describes the
time evolution of the probability density, p(z,t), at position x for a forward process with F' = 0.

For z(t) a stochastic process we have dz? oc dt and get fttf W;ﬁ(t)dt = f(x2) — f(z1) —

% ttf %dt. The second term only vanishes when taking the midpoint rule in the discrete case.

SNote that fOT flx(T —t))dt = fOT f(z(u))du.

11

Under review as a conference paper at ICLR 2024

Here, Fp(x,t) := —D(t)VInp(x,t) is the Brownian force. Together with the total differential
dP(x(t),t) = [0:P(x(t),t) + V. P(x(t), t)a(t)]dt we obtain

dt

T -V, Fp(z(t),t)p(z(t)
t

t) + Vap(z(t),t)2(t)
p(z(t),t

OT)7) .
:/0 [a’:(t)—FB(m(t),t)}TD(t)*l[—FB(:c(t),t)]dt—/ V- Fp(x(t),t)dt

0
Detailed Balance of trajectories can be achieved for F,, = Fp. Combining results we get with

OF (x(t),t) == Fo(z(t),t) — Fp(x(t),t)
plx(t)|xo]p(xo) }

0 < Egpg prlx(T — t)|@r]p(®r)

r 1
—_—
=
=]

T T T T
=Ey) —/ [a’:—FB}TD_lé}'dt—i—/ 5fTD—1FBdt+/ 6}'TD‘15}‘dt—/ Vm-6}‘dt]
0 0 0 0

T T
=Egq) |~ / [& — Fp)"D™'6Fdt + / SFID s Fdt
0 0

0

[T
= Egpr) / 5]-'TD15]—'dt] (6)

where E;;)[.] denotes the expectation over the forward paths, z(t) ~ p[z(t)|zo]p(zo). In going
from the second to the third line we have used the relation

Ea)[Va - 6F (x(t), 1)] = /Oo p(x(t),t)Va - 0F (x(t), t)d(t)

— 00

—_ / h §F (x(t),)" Vap(a(t), t)da(t)

= Bo([0F(2(?), t)TD‘l(t)FB< ())] @)
In going from the third to the fourth line, we write out the expectation E = [p(x dx(t)

and use
p@(t), B(t — At), t]mo) o exp {— (z(t) = 9”((;)&”)) } exp [_ (“”(;0__2 é’? ;tm)O)

around the midpoint Z(t) = (z(t) + x(t — At))/2. Defining € = (z(t) — z(t — At))/2 we get for

any non-stochastic field G (:c, t) in the limit At — 0
= Eq, /p(w(), (t — At), tlao) [&(t) G((t), 1)] dw(t)d(t — At)
_ 1 (2¢) (#(t) — 20 — € .
= Eq, / 7 &P [D0)At} exp [— 502t 0 { } d(2€)dz(t)
— E., / e [— <x(2,2_(30) }) ;QZ§>D(t)G(w<t)7t>dx(t)

= Bz [FB(2(1), 1)G(2(1),)]
with Z the associated normalisation ﬂThus we are left with training objective
plz(t)|zolp(x0) } / -1
0<Egq |In O0F (x)" 0F (x(t), t)dt
(t) [p[I(Tft)‘CCT} (() (())

Note that this objective is equivalent to the score-matching objective used for diffusion models by
design.

"Note that E¢ [G(2)Ve Inp(z, t)] = [p(z, t)G(x)Ve Inp(x, t)dx = Eqy [G(2)Vap(z, t|zo)].

12

Under review as a conference paper at ICLR 2024

B NOISE LEVEL ASYMPTOTICS OF THE NOISE PREDICTOR

The starting point of our analysis is Eq. (3] of the main text, from which we first drop all irrele-
vant multiplicative constants. We apply the gradient with respect to parameters, 6, to simplify the
calculation by instantaneously removing all parameter-independent loss contributions. We want to
investigate the behavior of term

J(0,0) = VoEy~pyu(v)Ean(aly.o) [N (2,0) = (z — y)|°]
inside and outside the data distribution. Outside the the data distribution we have pg,, () = 0 and
the optimal noise predictor follows the asymptotic N*(x,0) = * —y = on = O(0), with n
standard normal distributed. Inside the data distribution, we have to evaluate the term

liny 7(0,60) = 1, [[pass(@)N aly,0*) V@) - (@ -~ y))" VoN(@,0)dyde (8)

In the limit ¢ — 0 the distribution A/ (x|y, 02) is more peaked than the data distribution and we can
expand the data distribution around x

pdala(g's - (:B - y)) = pdata(w) - (33 - y)TVdeam(ﬂﬂ) + O(HCE - y||2)
Carrying out the integral over y, and collecting terms up to order o we arrive at

lim /(0 6) = / [Pesa(@) N (2, 0) + 0>V opia()]” VoN (2, 0)de ©)

— lim | poa(@) [N(@,0) + 0°Va It paaa(@)]” VoN(z,0)da (10)

o—0

= Vol [paas(w) [N(9.0) + 09y 1 ()| dy (an

This result shows that the optimal noise predictor is given by
N*(x,0) = —0°Vg In pgaa(x) = O(c?)
which drives the denoising trajectories towards local maxima in the data hyperplane.

C THICKNESS OF THE DATA HYPERPLANE

Loosely speaking, o, can be interpreted as the average “’thickness” of the data hyperplane. Together
with ~, it is the only hyperparameter of the derived diffusion objective in Eq. (3), determining the
sampling distribution p,, ~ (o) and thus how the noise levels o relate to the data hyperplane during
training: o, determines at what point the distribution goes towards 0 and determines how fast this
happens.

There are two reasons why we want to avoid learning in the in-distribution domain. Firstly, the
asymptotic denoising behavior is unknown inside of the data distribution and secondly, learning
in the in-distribution domain promotes overfitting, since we are fitting data points with an accuracy
beyond the natural variation of the data distribution. The parameter o, functions as a lower bound on
the true variation of the data distribution across dimensions here. Changes on pixel level below this
bound do not move the image outside of the data distribution. It can be empirically approximated
by finding the direction with minimal variation at any point of the data distribution.

Using the exact “thickness” of the data hyperplane for o, and v — oo allows o ~ p, (o) to
approach the hyperplane infinitely close, but then drops the probability to 0. Since this is unknowable
in practice, without knowing the true data distribution, we settle for smaller values for , yielding a
smoother transition from high to low sample probability.

The true data distribution is unknown and we usually have a very limited number of true data samples
available to us, which don’t tightly cover the entire distribution. To get a better grasp on the full shape
of the data distribution, we can employ methods that produce unlimited numbers of samples that still
lie approximately within the data distribution, like data augmentation and adversarial examples. We
are looking to determine the average “’thickness” of the data hyperplane, i.e. its width in the direction
of lowest variance in pixel-space.

A straightforward approach to find a good starting point for tuning o, is to use the radius of adver-
sarial examples for a data set, e.g. € = 8/255 for CIFAR-10 and € = 2/255 for Image-Net (Wong
et al., [2020).

13

Under review as a conference paper at ICLR 2024

D IMPLEMENTATIONAL DETAILS

All of our results were produced with our official code, which is based on the implementation of
Karras et al.| (2022) [l The code has been left unaltered in some places, mostly the organization
of data and the fundamental setup of training runs, and has been modified in other places, like the
training logic, image generation, data processing, experimental analysis, and network conditioning.
When we refer to the EDM model for CIFAR-10, we refer to the ”SongUNet” in the ”ddpmpp” setup
with "EDMPrecond” preconditioning. All necessary specifications to reproduce our results with our
code can be found in[d] The result of 1.79 FID on conditional CIFAR-10 of [Karras et al.|(2022)) has
been reproduced using this code. All experiments were run using Python 3.9 and PyTorch 1.21.1
with CUDA toolkit 11.3.1 on 4 NVIDIA A-100 GPUs.

FID calculation The FID implementation was left untouched, see [Karras et al.| (2022) code for
details. Fig. E] used a mean of three FID runs with different random seeds, not the minimum.
These random seeds were always chosen to be 0-49999, 50000-99999, and 100000-149999, for

reproducibility.

Number of GPUs 4
Duration (Mimg) 200
Data Batch size 1024
Seed 1948593099
Shuffle False
.. Augment probabilities 12%
Training - —3
Learning Rate x10 1
Optimizer LR ramp-up (Mimg) 10
EMA Half-life (Mimg) 0.5
Model type DDPM++
Architecture Channel Multiplie.r 128
Channels per resolution 222
Dropout Probability 13%
Ngteps | NFE 21/41
Parameters P 13 _3
Omin 2.0 x 10
Omazx 80
o 5.0 x1072
vy 6
Sampling | Parameters o9b 1.0 x 1073
T 90
seeds 100000-149999

Table 4: Training and sampling specifications for our model to reproduce results in table

8https://github.com/NVlabs/edm

14

Under review as a conference paper at ICLR 2024

E SAMPLES

(b) The corresponding nearest neighbors in the train set (70/50k).

Figure 7: Random 50k subset of CIFAR-10 conditional samples of the N3-rejection sampler, using
DINO ViT-B/16 (Caron et al.|(2021)) as a feature model, achieving an FID of 1.52.

15

Under review as a conference paper at ICLR 2024

216

211

A2 uilall e

LA i

169

159

149

142

142

139

Training Image Generated Images

Figure 8: Training images with the highest amount of nearest neighbors in feature space from Sthe
N3-rejection sampler run, using the EDM model and DINO ViT-B/16 (Caron et al, (2021)) as a
feature model, achieving an FID of 1.52. The left column shows training images with the amount
of nearest neighbors denoted next to it. The other columns show random subsets of these nearest
neighbors. The model is particularly biased towards these images, generating them far too often.

16

Under review as a conference paper at ICLR 2024

Figure 9: Training images without nearest neighbors in feature space from the N3-rejection sampler
run, using the EDM model and DINO ViT-B/16 (Caron et al. (2021))) as a feature model, achieving
an FID of 1.52.

17

Under review as a conference paper at ICLR 2024

F CHOICE OF TRAINING PARAMETERS

- Karras o-distribution ----- Karras o-distribution ----- Karras o-distribution
=== Qur g-distribution :" % === Our o-distribution :'. % === Qur g-distribution
t —— Our eff. loss : L —— our eff. loss : t —— Our eff. loss

e T AL B A s B o T T T T - u
o=0.005 0.02 0.1 051 2 5 1020 50 o=0.005 0.02 0.1 051 2 5 1020 50 o=0.005 0.02

Figure 10: Comparison between different values for o, with v = 4 with Karras et al.| (2022) EDM
model on CIFAR-10. (a) o.ps = 5e — 2, (b) 0¢ps = 7.5¢ — 2, (b) 0¢ps = 1le — 1.

- Karras o-distribution ----- Karras o-distribution ----- Karras o-distribution
* === Our o-distribution S % —-- ouro-distribution S % ==- ouro-distribution
* —— oOur eff. loss : * —— oureff. loss : * —— oOur eff. loss
3 P
v
" 1
A} \

o=0.005 0.02 0.1 051 2 5 1020 50 0=0.005 0.02 0.1 051 2 5 1020 50 o=0.005 0.02 0.1 051 2 5 1020 50

Figure 11: Comparison between different values for v with o.,s = 5e — 2 with Karras et al.|(2022)
EDM model on CIFAR-10. (a) v = 2, (b) v =4, (b) v = 6.

2.5 v 10° v 10° ;
H — ours H : — ours
N —— kKarras
2.04 10* 1o :
10! 4 :
154 102 4
10—1 4
104 10°
lo—] 4
0.5 -2 4
10 1075 4
0.0 T -2 . T -7 T

T — T 1 T T Trr— T T
0=0.005 0.02 01 051 2 5 1020 50 0=0.005 0.02 01 051 2 51020 50 0=0.005 0.02 01 051 2 5 1020 50

Figure 12: Comparison between Karras et al.| (2022) EDM model and our (a) o-distributions, (b)

loss weight and (b) effective weight for v = 6 and o,s = 5e — 2 with |[Karras et al.| (2022) EDM
model on CIFAR-10.

18

	Introduction
	Denoising score-matching objective should be weighted
	score-matching by detailed balance
	Asymptotic behavior of noise predictor

	Sampling bias in feature space
	Bias correcting by rejection sampling
	Feature extractor comparison

	Conclusion
	First-principles derivation of the diffusion objective
	Noise level asymptotics of the noise predictor
	Thickness of the data hyperplane
	Implementational details
	Samples
	Choice of training parameters

