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ABSTRACT

With remarkable advancements, large language models (LLMs) have attracted
significant efforts to develop LLM-based agents capable of executing intricate
multi-step decision-making tasks. Existing approaches predominantly build upon
the external performance measure to guide the decision-making process but the
reliance on the external performance measure as prior is problematic in real-world
scenarios, where such prior may be unavailable, flawed, or even erroneous. For
genuine autonomous decision-making for LLM-based agents, it is imperative to
develop rationality from their posterior experiences to judge the utility of each
decision independently. In this work, we propose RaDAgent (Rational Decision-
Making Agent), which fosters the development of its rationality through an iterative
framework involving Experience Exploration and Utility Learning. Within this
framework, Elo-based Utility Learning is devised to assign Elo scores to individual
decision steps to judge their utilities via pairwise comparisons. Consequently,
these Elo scores guide the decision-making process to derive optimal outcomes.
Experimental results on the Game of 24, WebShop, ToolBench and RestBench
datasets demonstrate RaDAgent’s superiority over baselines, achieving about 7.8%
improvement on average. Besides, RaDAgent can also reduce costs (ChatGPT API
calls), highlighting its effectiveness and efficiency.

1 INTRODUCTION

The autonomous agent (Searle, 1969; Wooldridge & Jennings, 1995; Maes, 1994; Hendler, 1999),
as the long-standing pursuit of artificial intelligence (AI), is expected to possess the ability to plan,
make decisions, and take actions to accomplish complex tasks autonomously. As large language
models (LLMs) have undergone rapid development, showcasing remarkable capabilities (OpenAI,
2022; 2023; Touvron et al., 2023a;b; Dubey et al., 2024), many efforts have been devoted to devel-
oping LLM-based agent (Richards, 2023; Nakajima, 2023; AgentGPT, 2023; Wu et al., 2023b) to
accomplish intricate multi-step decision-making tasks beyond traditional natural language process-
ing (NLP) applications (Yao et al., 2022b; Hao et al., 2023a; Yao et al., 2023; Qin et al., 2023c;
Chen et al., 2023; Qian et al., 2024). Even with these strides, existing LLM-based agents require
external performance measures as prior to guide their decision-making process (Yao et al., 2023;
Hao et al., 2023a; Sel et al., 2023; Lv et al., 2024). For instance, in Game of 24, which uses four
numbers and basic arithmetic operations to obtain 24, Yao et al. (2023) heuristically design a prompt
to assess the possibility of each decision to reach 24 and then choose the higher one as decisions
accordingly. However, this manual-designed prompt may not provide accurate possibility, causing
unreliable decision-making guidance. The reliance on the external performance measure restricts
the adaptability in real-world scenarios as it may be unavailable, flawed, or even erroneous.

When individuals make decisions, they not only rely on external measures but also draw upon
their practical experience as posterior to form a sense of internal rationality. Human rational
decision-making evolves through a dynamic process of experiential learning, encompassing trial-and-
error, reflection, and reinforcement Kahneman & Tversky (2013). By experimenting with different
decisions and observing their outcomes, individuals learn to reinforce behaviors that yield favorable
results. This learning process involves reflective analysis, during which individuals critically evaluate
their decision-making processes to identify biases and rectify mistakes. Through these iterations,
individuals progressively enhance their decision-making by reinforcing behaviors that produce
positive outcomes, thereby refining their judgment of the utility of each decision. Finally, individuals
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derive internal utility judgment which serves as the basis for evaluating the effectiveness of decisions
and identifying optimal solutions (Arrow, 1959; Plott, 1973; Kahneman & Tversky, 2000).

To this end, we propose RaDAgent (Rational Decision-Making Agent) which learns internal utility
judgment ability to achieve rationality for the agent. In RaDAgent, the internal utility judgment is
constructed based on an iterative framework: (1) Experience Exploration: Due to the complexity
of real-world tasks, the solution space may be infinite, and it is challenging to find the optimal
solution efficiently. Hence, working in the Monte Carlo Tree Search (Kocsis & Szepesvári, 2006;
Coulom, 2006) fashion, RaDAgent would explore potential decisions with higher utilities to find
better solutions as many as possible for the following utility learning. (2) Utility Learning: Given a
series of solutions, RaDAgent should make comparisons between them to learn their utilities. Due
to the challenge of LLMs in directly providing accurate numerical utilities without prior, we design
Elo-based Utility Learning which employs the Elo Rating system (Elo, 1967) to estimate the utilities
through posterior comparison among explored solutions. After multiple comparisons, the Elo scores
would converge to an accurate value representing its actual utility in achieving the task. Using the
learned utilities as guidance, the exploration process focuses on discovering decisions with higher
utilities. Consequently, the exploration of these enhanced decisions aids in further refining the utilities
associated with each decision. Through the iterative utility judgment learning, RaDAgent can assess
the numerical utility of explored decisions and then can judge the highest utility to derive the best
solution with the superior outcome.

To validate the effectiveness of our RaDAgent, we implement it based on ChatGPT (OpenAI, 2022)
and conduct extensive experiments on Game of 24 (Yao et al., 2023), WebShop (Yao et al., 2022a),
ToolBench (Qin et al., 2023c) and RestBench (Song et al., 2023), which contains intricate multi-step
decision tasks involving diverse scenarios. Experimental results demonstrate the superiority of our
approach against several baselines by achieving about 7.8% improvements on average to accomplish
complex tasks. Moreover, extensive analyses show that our approach not only delivers superior
solutions but also achieves greater efficiency by reducing the number of ChatGPT API calls.

Our contributions are threefold:

• We propose RaDAgent, a rational decision-making agent that can construct its internal rationality
to accomplish diverse real-world tasks, not relying on external performance measures.

• We devise Elo-based Utility Learning which can learn internal utility judgment for the agent by
learning Elo scores for each decision, selecting the optimal solution with the highest utilities.

• Extensive experiments on the Game of 24, WebShop, ToolBench, and RestBench datasets demon-
strate the effectiveness and efficiency of our proposed method against representative methods.

Our source code will be released after acceptance to promote the following research.

2 RELATED WORK

Decision-Making Methods for LLM-based Agents Efficient and effective decision-making ability
is fundamental for LLM-based agents to the attainment of specific objectives (Yao et al., 2022b;
2023; Hao et al., 2023a; Besta et al., 2023; Sel et al., 2023). Although LLMs are pre-trained on a
large-scale corpus which equips them with substantial common sense and knowledge to solve several
problems, due to the complexity and diversity of realistic tasks, LLM-based agents still struggle
to make multi-step decisions to solve realistic tasks. Recently, as Chain-of-Thought (Wei et al.,
2023) demonstrates its capability to decompose complex questions into sequential intermediate steps,
several LLM-based decision-making methods have been proposed to enhance the decision-making
ability of agents. ReACT (Yao et al., 2022b) develops a variant of CoT to leverage the reasoning
ability of LLMs in decision-making scenarios. Reflexion (Shinn et al., 2023) further offers a remedial
approach to make LLMs reflect their failure and summarize the reason in the decision process,
and then correct their mistake in the second attempt. Based on these methods, some tree-based
decision-making methods are proposed to adapt the decision-making ability of LLMs into specific
tasks. Tree-of-Thought (Yao et al., 2023) proposes BFS and DFS decision-making algorithms in
Game of 24, Creative Writing, and Mini Crosswords tasks. RAP (Hao et al., 2023a) applies the Monte
Carlo Tree search algorithm to find a good solution in Blocksworld, Math Reasoning, and Logical
Reasoning tasks. DFSDT (Qin et al., 2023c), following a similar tree search algorithm, proposes an
efficient version of DFS to make decisions. However, the aforementioned methods need external
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performance measures to guide the decision-making process, which limits their scope of application.
In this paper, we propose RaDAgent which learns the internal utility judgment ability with the Elo
rating system to achieve rationality for agents to provide optimal solutions.

Tool Learning Recent investigations have cast illumination upon the burgeoning proficiencies
exhibited by LLM-based agents in the mastery of instruments and the execution of decision-making
processes within intricate contextual milieus (Qin et al., 2023b; Vemprala et al., 2023; Nakano et al.,
2021; Qin et al., 2023a; Shen et al., 2023; Wu et al., 2023a; Schick et al., 2023; Hao et al., 2023b;
Qian et al., 2023; Song et al., 2023; Qin et al., 2023c; Guo et al., 2024). The incorporation of external
tools into the operational framework of LLM-based agents confers upon them immediate access to
contemporaneous factual knowledge (Yang et al., 2023), imbues them with versatile multimodal
capabilities (Gupta & Kembhavi, 2023), and empowers them with specialized proficiencies tailored
to vertical domains (Jin et al., 2023). However, when confronted with real-world tasks that often
require the utilization of multiple tools, LLM-based agents must engage in multi-step decision-
making processes to select tools and determine their sequencing. Consequently, the ability for
decision-making in tool learning scenarios becomes imperative to effectively tackle practical tasks.

3 PRELIMINARIES

Markov Decision Process We formulate the decision-making process within the agent as a finite-
horizon Markov Decision Process (MDP) denoted byM = {S,A,R, T } with state space S , action
spaceA, reward functionR, and transition function T . Given a human instruction Q, the agent acting
as the policy model π are tasked with generating a decision sequence to accomplish Q. The agent π
starts from the initial state s0 and take an action ai based on the current state and subsequently arrive
at the next state si+1 decided by the transition function T . This process terminates utill the agent
accomplishes the task or exceed the limitations of action number, resulting in a decision sequence or
trajectory τ = {s0, a1, s1, · · · , sN} where N is the number of actions. A reward of 1 is assigned by
the reward functionR at the end if the agent successfully accomplishes the task, otherwise a reward
of 0 is assigned. To make sequential decisions toward accomplishing Q autonomously, we argue
that the agent need to identify the utility vi of each decision ai and select those decisions with a
higher value that holds the promise of yielding the most promising outcomes (i.e., reward), ultimately
leading to the derivation of the final decision sequence that fulfills the requirements of Q.

Elo Rating System The Elo rating system (Elo, 1967), commonly used in competitive contexts
offers a numerical estimation of the skill levels of players. It represents the skill levels of players by
Elo scores and assesses the Elo scores through a series of one-to-one competitions. It assumes that
each player’s performance follows a Gaussian distribution (x ∼ N (µ, σ)) and each comparison of
two players is actually comparing between two samples from their Gaussian distributions. Through
multiple comparisons, we can approximate their real skill levels by estimating their Elo scores.

Given two players x and y, their Elo scores are denoted as vx and vy, respectively. The expected
superiority of x against y is calculated as:

Ex>y =
1

1 + e−
vx−vy

r

(1)

where r is the Elo coefficient.

Next, we run a competition between them to find the actual winner. We denote the result as Rx>y:

Rx>y =


1, if x win,
0, if y win,
0.5, otherwise

(2)

We then update their Elo scores accordingly:

vx = vx +K ∗ (Rx>y − Ex>y)

vy = vy +K ∗ (Ry>x − Ey>x)
(3)

where K > 0 is the update step size. After multiple comparisons, the Elo score will progressively
converge to their expected skill levels.

3
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Algorithm 1 RaDAgent
1: function RaDAgent
2: root← initialize an empty decision node
3: while within computational budget do
4: # Experience Exploration
5: node← root
6: while node is not new-explored do
7: node← sample node based on Equation 5
8: end while
9: trace← generate new decision trace from node based on ReAct

10:
11: # Utility Learning
12: while within comparison limitation do
13: candidata← sample an existing trace randomly
14: result← compare new trace with candidate based on Equation 6
15: update Elo scores based on result according to Equation 3
16: update exploration temperature T based on Equation 8
17: end while
18: return the best trace based on Equation 9
19: end function

4 METHODOLOGY

Our RaDAgent aims to find the decision sequence with the highest utility to accomplish complex
instructions autonomously. It contains two principal phases to learn the internal utility judgment:

• Experience Exploration: The agent takes actions sequentially to form a decision sequence toward a
feasible solution.

• Utility Learning: The agent makes judgments among decision sequences to assess the utility (i.e.,
Elo scores) of existing decision steps.

These two phases work in an iterative fashion, reinforcing each other’s outcomes (as shown in
Algorithm 1). In the experience exploration phase, the agent explores more potential decision
sequences to find better solutions, which can encourage agents to learn the actual and accurate utility
of each decision step. In the utility learning phase, the agent re-calculates the Elo score of each
decision step with the newly explored decision sequence to learn the utility of each decision, and the
learned utilities serve as a dynamic guide, steering subsequent experience exploration toward more
promising and superior solutions. By iteratively cycling through these phases, the agent progressively
evolves toward an optimal decision sequence with the highest utility to address instructions.

4.1 EXPERIENCE EXPLORATION

In RaDAgent, each experience exploration benefits from the previous exploration history based on
Elo-based Utility Learning (§ 4.2). When exploring a new decision sequence, agents will select a
decision step with a higher Elo score to explore further. Specifically, in RaDAgent, each decision step
is assigned an Elo score explicitly. A decision step with higher Elo scores means that it is more likely
to accomplish the instruction and thus Elo scores are used to guide the decision exploration process.
Given an intermediate decision step a, its subsequent decision steps are denoted as {a1, a2, · · · , an}.
Given their learned Elo scores {vi}ni=1, the probability of choosing to explore can be modified as:

P (ai) =
exp(viT )∑
j exp(

vj
T )

, ai ∈ {a1, a2, · · · , an} (4)

where T refers to the temperature. Note that only exploring the known decisions may cause the
local optimal solution. Therefore, we define a rejection decision step â with an initial Elo score v̂ to
represent that “The agent decides to explore a new decision”. We add this rejection decision step into
the subsequent decision steps as {a1, a2, · · · , an, â} when selecting:

P (ai) =
exp(viT )∑
j exp(

vj
T )

, ai ∈ {a1, a2, · · · , an, â} (5)

4
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The complete experience exploration process begins from the initial state s0 and chooses the sub-
sequent decision steps iteratively based on Equation 5 in a top-down manner. When it chooses
the rejection decision step â, the agent will generate a new decision sequence starting from the
intermediate step a. In the iterative experience exploration process, those potential decision steps will
be explored thoroughly, until finding the optimal solution.

4.2 UTILITY LEARNING

As external performance measures may be unavailable, flawed, or even erroneous, the agent should
resort to their internal utility judgment ability to solve diverse tasks. To this end, we design an
Elo-based Utility Learning, equipping the agent with the Elo rating system to provide a numerical
utility to each decision step to guide the decision-making process.

The utility learning process (i.e., the Elo score estimation process) is conducted in a bottom-up
manner. It first adjusts the Elo scores of the final decision steps of each decision sequence via
pairwise comparison and then updates the Elo scores of the intermediate decision steps gradually.
Once a new decision sequence is generated in the experience exploration phase, the agent will self-
judge the Elo scores of existing decision steps via pairwise comparison. Given the newly generated
decision sequence τn, we first assign all decision steps of τn with an initial Elo score. Then, we
randomly select a decision sequence τi from existing decision sequences T = {τ1, τ2, · · · , τn−1}
and use agents to compare τn with τi to judge which one has the superior performance. Since the
LLM-based comparison is sensitive to the candidate order (Qin et al., 2023d; Chiang & Lee, 2023;
Wang et al., 2023a), we conduct comparisons twice with different orders.

Rtn>ti =


1, if τn win twice,
0, if τi win twice,
0.5, otherwise

(6)

Getting the comparison result, we update the Elo scores of the final decision steps of τn and τi
based on Equation 3. Next, we calculate the Elo scores of intermediate decision steps based on their
subsequent decision steps. Specifically, given an intermediate decision step ai, we calculate its Elo
scores as follows:

vi =
∑

aj∈Child(ai)

(αj ∗ vj), (7)

where Child(ai) refers to the set of the subsequent decision steps of ai, αj =
exp(vj/T )∑
k exp(vk/T ) is the

normalized weight and T is from Equation 5. By repeating the comparison via randomly sampling
decision sequences, the Elo score of each decision step will converge to its expected value.

When guiding the experience exploration process, the Elo score of a decision step with a few number
of Elo updates may not represent its real value accurately. Such a decision step cannot be fully trusted
for exhaustive exploration. Hence, we adjust the temperature T in Equation 5 based on the number of
the Elo update. Let Ma be the number of the Elo update of the decision step a. The temperature of a
is annealed as follows:

Ta = T0 ∗
1

1 +
√
ln(Ma + 1)

(8)

where T0 is the default temperature. With the growth of the number of Elo updates, the approximated
Elo score converges to its real value. At this time, we tend to explore the most possible decision.

After engaging in extensive experience exploration and utility learning, the agent learns the internal
utility judgment to construct rationality that allows it to select the best-performed one as the final
solution. Specifically, given all existing decision sequences T = {τ1, τ2, · · · , τn}, the one which
final decision with the highest utility is selected as the final solution.

t = argmax
τ∈T

{V (aN )} (9)

where aN refers to the final decision step.

5
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets We conduct extensive experiments on Game of 24 (Yao et al., 2023), WebShop (Yao et al.,
2022a), and ToolBench (Qin et al., 2023c) datasets. Game of 24 aims to use 4 numbers and four
fundamental arithmetic operations (+− ∗/) to reach 24. WebShop focuses on simulating the process
of searching, browsing, and selecting items on an online shopping platform in order to obtain desired
items. ToolBench has thoughtfully constructed a diverse and intricate collection of human instructions
of over 16K APIs from 49 categories. We focused on the intra-category multi-tool instruction scenario
which accurately reflects the complexities involved in real-world tasks, necessitating the use of various
tools and requiring multi-step decision-making processes. We use 100, 500, and 500 instances for
Game of 24, WebShop, and ToolBench to evaluate the decision-making ability respectively. Details
of each task (including task description, action space, etc) can refer to Appendix A.3.

Baselines We compare RaDAgent with the following decision-making methods: (1) CoT (Wei
et al., 2023; Yao et al., 2022b) decomposes reasoning into explicit intermediate steps and we adapt
ReAct (Yao et al., 2022b) to make sequential decisions. (2) CoT@3 extends CoT by running the
decision-making process three times independently for an instruction and finally generates a total of
three decision sequences. (3) Reflexion (Shinn et al., 2023) builds upon CoT@3 and allows LLMs
to engage in self-reflection on their previous decision sequences. (4) ToT-BFS (Yao et al., 2023)
constructs a decision tree in a top-down manner to search for a feasible solution. (5) ToT-DFS (Yao
et al., 2023) constructs a decision tree by going as deep as possible along each branch and exploring
the most recently visited states. (6) DFSDT (Qin et al., 2023c) is an improved version of DFS, which
allows agents to dynamically assess different decision states and choose to either proceed along a
promising path or abandon an existing state and expand another one.

Evaluation Metrics To ensure a rigorous and accurate evaluation of the performance of our proposed
decision-making approach, we adopt three evaluation metrics for each dataset respectively: (1)
Success Rate (Yao et al., 2023) measures the proportion of valid equations generated by the agent’s
arithmetic operations that yield a result of 24, using the given input numbers. (2) Reward (Yao et al.,
2022a) evaluates the similarity (a value between 0 and 1) between the attributes of the items chosen
by the agent and the attributes of the items actually purchased by human. (3) Pass Rate (Qin et al.,
2023c) assesses the ability of agents to successfully accomplish complex real-world tasks by using
tools sequentially. It calculates the proportion of instructions that an agent completes.

Implementation Details

We use OpenAI ChatGPT gpt-3.5-turbo-0613-16k to implement our approach (our designed
prompt can refer to Appendix A). Our approach involves conducting a decision-exploration process
20 times and finally selecting the decision sequence with the highest Elo score as the final decision.
For Elo-based Utility Learning, the initial Elo score of the decision step is set as 0.0 and the Elo
coefficient r is set as 173.72 according to the vanilla Elo rating system (Elo, 1967). The Elo score of d̂
in Equation 5 is set as 0.0. K in Equation 3 is set as 50. To manage the computational cost of ChatGPT
API calls, we set a maximum limit of 12 steps for each decision sequence for a decision-searching
process. Detailed analyses of each hyperparameter are discussed in Appendix B.

5.2 OVERALL RESULTS

To validate the effectiveness of our proposed RaDAgent approach, we first study whether our approach
can accomplish more complex tasks. The results are shown in Table 1 and we can observe that: (1)
Across all datasets, RaDAgent consistently outperforms all baselines, indicating that incorporating
the utility judgment internally empowers agents to accomplish a broader range of tasks effectively.
(2) In Game of 241 and ToolBench domains, RaDAgent exhibits the capability to assign lower
elo scores to decision steps that lead to failure. Consequently, these Elo scores serve as guidance
for agents to avoid such decisions and achieve success. (3) For Webshop, while our method still
outperforms all baselines, it only achieves only marginal gains. This is attributed to the fact that
Webshop provides only one “golden answer” for each instruction, while several other items actually

1Note that the performance of Game of 24 is reproduced based on the gpt-3.5-turbo-0613-16k
which is inconsistent with the reported results in the official paper.
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Table 1: Main experimental results on Game of 24,
WebShop, and ToolBench dataset. Bold marks the
best performance.

Model Game of 24 WebShop ToolBench

CoT 6.00 56.23 16.60
CoT@3 7.00 56.45 31.20
Reflexion 7.00 57.21 26.60
ToT-BFS 11.00 50.20 38.00
ToT-DFS 14.00 55.60 45.58
DFSDT 29.00 57.25 50.20

RaDAgent 43.00 59.36 61.92

Table 2: Results on the real-world RestBench
dataset. Baselines are reported from Song et al.
(2023). Bold marks the best performance.

Model TMDB Spotify

Offline 33.0 36.4
DEPS 43.0 43.8
ReAct 57.0 49.1
Reflexion 59.0 61.4
RestGPT 79.0 74.5
RestGPT(ChatGPT) 65.0 72.3

RaDAgent 84.0 80.7

meet the requirements. Consequently, these alternative items receive lower rewards as they deviate
from the golden answer, resulting in an underestimation of the performance.

6 ANALYSIS

6.1 GENERALIZATION TO REAL-WORLD ENVIRONMENT

To verify that our method is robust and applicable to real-world environments, we expand our
evaluation to the RestBench dataset (Song et al., 2023), which features restful APIs from two
prominent real-world applications: TMDB and Spotify. All APIs in RestBench will be authentically
called and get the real-time, dynamic, and unpredictable responses from the TMDB and Spotify
platform, revealing a more challenging scenario for decision-making. This dataset includes human-
annotated real-world tasks with ground truth decision sequences. We compare our method with
Offline (Qin et al., 2023b), DEPS (Wang et al., 2023b), ReAct (Yao et al., 2022b), Reflection (Shinn
et al., 2023), RestGPT (Song et al., 2023) and its ChatGPT version. Following RestGPT (Song et al.,
2023), we report the Correct Path Rate which calculates the proportion of the correct decision
sequences. Experimental results are shown in Table 2, which have demonstrated that our approach
outperforms the baselines and achieves the best Correct Path Rate (84.0% and 80.7% for TMDB and
Spotify respectively). This result underscores the effectiveness of our method in making decisions in
real-world environments with real-time, dynamic, and unpredictable features.

6.2 SOLUTION RANKING

Table 3: Solution ranking experimen-
tal results on ToolBench dataset. Bold
marks the best (the smaller, the better).

Model Pref. Rank

CoT@3 3.45
Reflexion 3.48
ToT-BFS 3.25
DFSDT 2.91

RaDAgent
w/ RandSelect 3.24
w/ EloSelect 2.19

In addition to validating the effectiveness of our approach
to reach feasible solutions, we seek to investigate whether
RaDAgent can further provide solutions with higher qual-
ity. We adopt Win Rate in ToolEval from ToolBench to
compare the decision sequences produced by different
methods for a given instruction. Based Win Rate, we uti-
lize PRP (Qin et al., 2023d) to rank decision sequences of
all methods to report their rank to measure the superiority
of each decision sequence. We further develop a variant of
our model named RandSelect which selects the final deci-
sion sequence randomly while EloSelect selects based on
the highest Elo score. We then select representative base-
lines (CoT@3, Reflexion, ToT-BFS, ToT-DFS, DFSDT)
and conduct a comprehensive comparison of the decision
sequences produced by each method. The experimental results are summarized in Table 3, and it
reveals that RaDAgent consistently achieves the top rank (2.19 on average) among all comparable
baselines. Especially, EloSelect obviously outperforms RandSelect, confirming the capability of our
Elo-based Utility Learning to assess the utility of each decision sequence to select superior solutions,
resulting in high-quality decision-making.
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Table 4: Success rate of different decision mea-
sures on Game of 24.

Method Success Rate

DFSDT 29.0
Handcrafted Measure 26.0
LLM Measure (RaDAgent) 43.0

Table 5: Comparison with MCTS vari-
ants on Game of 24.

Method Success Rate

MCTS@40 22.0
MCTS@100 40.0
RaDAgent 43.0

6.3 EFFICIENCY ANALYSIS

We further conducted the analyses to evaluate the efficiency of our proposed RaDAgent. As making a
decision step will involve a ChatGPT API call, the inefficient decision-making method would involve
more API calls to accomplish the same instruction, causing costly expenses. We thus conducted
experiments with varying ChatGPT API call limitations, ranging from 30 to 300, and measured
Pass Rate in ToolBench of each method under these varied limitations. The experimental results are
demonstrated in Figure 1. These results showcase that the ToT-BFS, ToT-DFS, and DFSDT heavily
rely on a large number of ChatGPT API calls to achieve a high Pass Rate. Once limiting the number
of API calls, their performance even cannot surpass CoT. In contrast, our approach achieves the
highest Pass Rate under all limitation settings, especially in low-resource settings. We attribute it to
the fact that our method can utilize Elo scores to dynamically select the promising decision steps,
avoiding those unpromising ones. Thus, our method illustrates superior efficiency against baselines
and the practical advantages of our approach in real-world scenarios. To validate our generalized
efficiency advantage, We have further conducted detailed efficiency analyses on Game of 24 and the
complete experimental results are presented in Appendix B.5.

6.4 CALIBRATION PROPERTY OF ELO-BASED UTILITY

To verify the effectiveness of our Elo-based Utility Learning in providing reliable utility assessments,
we conducted a comprehensive analysis using the ToolBench dataset. As the Elo score serves as
a metric to represent the utility of each decision, we seek to determine whether the Elo score is a
reliable indicator of decision utility. To this end, we partitioned the ToolBench dataset into several
subsets based on the Elo scores assigned to the decision sequences generated by RaDAgent. We
first collected the Elo scores for all decision sequences predicted by RaDAgent in ToolBench data
and then normalized them to scale within the range of 0 to 1. Next, we sorted the normalized Elo
scores and divided them into 10 intervals, getting 10 subsets of ToolBench data accordingly and
calculated the Pass Rate for each subset. Figure 2 illustrates the experimental results. A discernible
trend is observed: the Pass Rate consistently increases with higher Elo scores. A higher Elo score
indicates that the decision sequence is more likely to represent an accomplished solution to the
instruction, whereas a lower Elo score suggests that the instruction may be more challenging, and
the corresponding decision sequence may not effectively solve the instruction. This clear positive
correlation between the Elo score and the Pass Rate demonstrates the efficacy of the Elo-based Utility
Learning in providing reliable assessments of decision utility.
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Table 6: Success rate of different K in Elo
score update on Game of 24.

Value of K Success Rate

K = 10 34.0
K = 50 48.0
K = 100 43.0

Table 7: Success rate of different prompts of
the utility learning on Game of 24.

Method Success Rate

DFSDT 29.0
SimplePrompt 36.0
ElaboratePrompt(RaDAgent) 43.0

6.5 RELIABILITY OF LLM EVALUATION

As we utilize LLM itself to provide decision sequence comparisons instead of handcrafted external
measures, we have conducted additional experiments to validate if RaDAgent can provide more
reliable measures than handcrafted external measures. We heuristically design a decision measure
strategy, instead of LLM, for comparing decision sequences for Game of 24 to guide the decision-
making process. The strategy is to compare two decisions to decide which result is close to 24 (i.e.,
the difference between the final calculation result of four numbers and 24). The closer one wins.
If their difference are the same, they are tied. We replace the LLM comparison with the manual-
designed strategy to conduct the experiments. The results are shown in Table 4. The performance
of this handcrafted strategy (achieving only 26.0% Success Rate) is notably inferior to RaDAgent
even DFSDT. This handcrafted strategy does not reflect the real performance since the result of an
arithmetical expression is close to 24 numerically does not mean it is close to 24 operationally. The
inaccurate external measure will mislead the decision-making procedure to inferior performance.

6.6 RELIABILITY OF ELO RATING

As we utilize the Elo rating system to learn the internal utilities, it is essential to assess the reliability of
the Elo Rating system as a utility evaluation tool. To this end, we have implemented the Monte Carlo
Tree Search (MCTS) baseline with a value evaluation algorithm proposed by ToT (Yao et al., 2023)
for Game of 24. Different from our method utilizing the Elo rating system, this baseline calculates the
score at each decision step based on the value evaluation proposed by ToT and uses the standard Upper
Confidence Bounds for Trees algorithm (UCT) Kocsis & Szepesvári (2006) to guide the decision-
making process. We introduced two variants: MCTS@40 and MCTS@100, by conducting 40 and
100 simulations at each decision step, respectively. The outcomes of these experiments are presented
in Table 5. It is evident that none of these MCTS variants could outperform RaDAgent. Despite
MCTS@100 displaying a performance somewhat closer to RaDAgent, it necessitated 100 simulations
for each decision step, leading to a significant number of API calls. Conversely, RaDAgent required
only 20 exploratory steps to achieve superior performance, which can be attributed to the Elo scores’
ability to provide precise directions for exploration guidance, which can thereby enhance both the
effectiveness and efficiency of the decision-making process.

6.7 IMPACT OF ELO UPDATE STEP

To validate the impact of the Elo update step K in the Elo rating system, we conducted a series
of experiments with different values of K = {10, 50, 100} on the Game of 24 scenario. The
experimental results are listed in Table 6. Through these experiments, we observed that K = 50
yielded the most optimal performance for our RaDAgent. It is important to note that K in the
Elo update algorithm functions analogously to the learning rate in Stochastic Gradient Descent
optimization algorithms (Sra et al., 2011). The choice of K significantly influences the rate during
Elo scores converge to their accurate values. A larger K may lead to instability in the Elo scores, as it
causes larger adjustments, thereby potentially overshooting the optimal value. Conversely, a smaller
K can result in slower convergence, necessitating more comparisons to reach an accurate assessment.
Our experimental results have shown that setting K as 50 can derive the best performance.

6.8 IMPACT OF UTILITY LEARNING PROMPT

We have conducted additional experiments to validate the impact of the prompt design in the Elo-
based utility learning algorithm on the Game of 24 scenario. In this setting, we employed a more
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straightforward utility learning prompt to compare two decision sequences. This prompt is detailed in
Appendix A.4 and the experimental results are shown in Table 7. From the results, we can observe that
there was an obvious decrease in performance with the simpler prompt compared with our original
RaDAgent but it still outperforms the best baseline DFSDT. These results highlight a couple of key
points: (1) Impact of Prompt Design: The experiment demonstrated that the design of the utility
learning prompt does indeed impact the performance of the system. A more complex or carefully
crafted prompt contributes to better utility assessment, leading to more effective decision-making. (2)
Robustness of Utility Learning: Despite the reduced performance with a simpler prompt, the fact
that RaDAgent continued to outperform the baseline indicates the inherent robustness of our utility
learning approach. It suggests that while the prompt design is significant, the core mechanics of our
Elo-based utility learning algorithm are strong enough to maintain a competitive edge even under
suboptimal conditions. These findings unveil the need for further research into the optimal design of
utility learning prompts. We plan to explore a broader range of prompt complexities and styles to
fully understand their impact on the efficacy of the utility learning process in the future.

Additionally, to further verify the reliability of our Elo-based Utility Learning algorithm, we conduct
detailed hyperparameter analysis experiments in Appendix B including the initial Elo score, the
number of decision comparisons, initial decision solution, etc.

6.9 IMPACT OF LARGE LANGUAGE MODELS

Table 8: Success rate of GPT-3.5 and
GPT-4 on Game of 24. ToT is reported
from its original paper (Yao et al., 2023).

LLM Method Success Rate

GPT-3.5 ToT 19.0
RaDAgent 43.0

GPT-4 ToT 74.0
RaDAgent 82.0

To validate the effectiveness of different LLMs, we have
conducted additional experiments integrating GPT-4 into
our RaDAgent instead of GPT-3.5 on the Game of 24
scenario. The experimental results are shown in Table 8.
We found that RaDAgent, leveraging the enhanced capa-
bilities of GPT-4, demonstrates its superiority over its
GPT-3.5 version. This finding underscores the scalabil-
ity and adaptability of RaDAgent. These results suggest
the following: (1) As LLMs continue to evolve, our model
can capitalize on these advancements to further enhance
decision-making efficiency and accuracy. (2) Compared
with the GPT-4 version of ToT Yao et al. (2023), integrating our decision-making approach continues
to yield performance improvements, demonstrating the necessity of robust decision-making strategies
even when employing advanced LLMs. In summary, LLMs and decision-making approaches are
complementary, mutually enhancing each other to achieve superior performance outcomes.

7 CONCLUSION

In this work, we have introduced RaDAgent to learn the internal utility judgment ability for agents
to achieve rationality across a diverse range of real-world tasks. We design an iterative framework
involving Experience Exploration and Utility Learning to enhance agents to learn numeric utility for
each decision step and guide the decision-making process. Extensive experiments on the Game of
24, WebShop, ToolBench, and RestBench datasets have confirmed the effectiveness of RaDAgent,
outperforming baseline methods by achieving notable improvements and producing higher-quality
solutions. Moreover, the reduction in LLM API calls showcases the efficiency gains of our approach.
By empowering agents with rationality, our work paves the way for their broader utilization in
real-world scenarios, alleviating the reliance on external performance measures.

8 LIMITATIONS

Our approach still has several limitations: (1) Our method involves exploring new decision traces from
intermediate decision steps, necessitating the recovery of the state at each step. In practice, certain
decisions cannot be reversed once executed. In these instances, our method requires a sophisticated
rollback mechanism to function correctly. (2) Our utility learning method relies on the comparative
judgment capabilities of large language models (LLMs) to achieve Elo ratings. While GPT-3.5 and
GPT-4 can implement our method, it is uncertain if other LLMs, especially for open-source LLMs,
can achieve similar performance. We will explore these limitations in the future.
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A PROMPT DESIGN

A.1 UTILITY LEARNING PROMPT

Our utility learning prompt is designed as follows:

You are value-GPT, an expert in defining which trail is better and
closer to solving the task. Here is the task description:

*******************************
{{BEGIN_DESCRIPTION}}
your_task: {task_description}
your_query: {input_description}
{{END_DESCRIPTION}}
*******************************
Here are two candidates A and B. They both try to handle the task

with some function calls. Their trails are as follows.
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*******************************
{{CANDIDATE_A_START}}
{candidate_A}
{{CANDIDATE_A_END}}
*******************************
{{CANDIDATE_B_START}}
{candidate_B}
{{CANDIDATE_B_END}}
*******************************

Then, ChatGPT should call the following function2 to give the result.

{
"name": "choose_preference",
"description": "Choose the preferred answer for the query

within all given answers.",
"parameters": {

"type": "object",
"properties": {

"preference": {
"type": "number",
"description": "The index of the preferred answer

in all given answers."
},

},
},

}

A.2 DECISION-MAKING PROMPT

Our decision-making prompt is designed as follows:

You are the Decision-Making GPT and can perform any task using the
tree search method.

The search method is as follows:
1. First, I will provide you with the task description and input

details.
2. For each task, you need to call various functions through

multiple steps.
3. At each step, you need to give your thought to analyze the

status now and what to do next, with a function call to
actually execute your step.

After the call, you will get the call result, and you are now in a
new state.

4. Each (thought-function) pair mentioned above is considered a
tree node, and each trail is a tree path from the root to a
terminal node. Therefore, the Monte Carlo search tree contains
multiple trails.

5. Although you may not see previous trails, in each trail, I will
first place you in an intermediate state determined by the "

value" of the node, and then you make different choices from
there.

Remember:
1. Always make a function call at each step.
2. If you believe you have gathered enough information, call the

function "Finish: give_answer" to provide your answer for the
task.

2https://openai.com/blog/function-calling-and-other-api-updates
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3. If you feel unable to handle the task from this step, call the
function "Finish: give_up_and_restart".

Let’s begin!
Task description: {task_description}

A.3 TASK DESCRIPTION

The task description of Game of 24 is as follows:

Use numbers and basic arithmetic operations (+ - * /) to obtain
exactly one number 24. In each step, you are only allowed to
choose two of the left numbers to obtain a new number. For
example, 7 * 9 - 3 * 1 3 = 2 4.

Remember:
1. All of the numbers must be used and must be used ONCE. So Only

when the left number is exactly 24, you will win. So you don’t
succeed when the left number = [2 4, 5]. You succeed when the
left number = [2 4].

2. All the try takes exactly 3 steps, and the task ends when the
count of left numbers is 1, and check whether the only left
number equals 24.

3. When there are two numbers left, ALWAYS pre-compute and list
all the operations’ combined results( + - * / ), and find if
there is a way to combine them to 24 before you make the
function call.

3.1. If There is a way, use function "play_24" to combine it.
3.2. If not, use function "give_up" to restart.
4. The status changes ONLY when you call function "play_24". If

you only give thoughts, nothing happens.
5. "play_24" inputs only one step, if you want to combine many

numbers, split it into multiple calls.

The task description of Webshop is listed as follows:

You should use functions to help handle the web shopping task on a
webshop site.

We have 2 Pages: Product Selection Page & Product Details Page.
You have access to the following functions:
1. search: at any time, you can search a product by keywords. Then

you will go to the Product Selection Page which shows a list
of related products.

2. select: after searching keywords, you can select a product on
the Product Selection Page. Then you will go to the Product
Details Page, which shows the details of the product you
select.

3. buy: On the Product Details Page, you can buy a product. Then
the shopping task is completed.

The task description of ToolBench is listed as follows:

You should use functions to help handle real-time user queries.
Remember:

1. ALWAYS call "Finish" function at the end of the task. And the
final answer should contain enough information to show to the
user, If you can’t handle the task, or you find that function
calls always fail(the function is not valid now), use function
Finish->give_up_and_restart.

2. Do not use origin tool names, use only subfunctions’ names.
You have access to the following tools:
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A.4 SIMPLE PROMPT OF UTILITY LEARNING

Giving task description and candidate answers, I want you to
choose one preferred answer which is more close to success
.

*******************************
{{BEGIN_DESCRIPTION}}
your_task: {task_description}
your_query: {input_description}
{{END_DESCRIPTION}}
*******************************

*******************************
{{CANDIDATE_0_START}}
{candidate_A}
{{CANDIDATE_0_END}}
*******************************
{{CANDIDATE_1_START}}
{candidate_B}
{{CANDIDATE_1_END}}
*******************************

B HYPERPARAMETER ANALYSIS

B.1 SELECTION OF ELO COEFICIENT

The selection of r is based on the classic Elo rating algorithm. In the classic Elo rating system (Elo &
Sloan, 1978), the expected superiority is defined as:

Ex>y =
1

1 + 10−
vx−vy

400

(10)

In this paper, we employ the base to compute the expected superiority for computational implementa-
tion convenience:

Ex>y =
1

1 + e−
vx−vy

r

(11)

To achieve equivalence between them, we can set as approximately r = 400
ln 10 ≈ 173.72 to change the

base. In this way, our calculation of the expected superiority equals the classic Elo rating algorithm.

B.2 IMPACT OF INITIAL ELO SCORE

As Equation 1 shows, within the Elo rating algorithm, the decision-making process is influenced by
the relative difference between Elo scores of decision steps, rather than their absolute values. The
essence of the Elo rating system lies in its dynamic nature, where scores are adjusted based on pairwise
comparisons over time. This means that regardless of the initial score assigned to each decision step,
the subsequent adjustments made through pairwise comparisons are what determine the final, accurate
assessment of each decision’s utility. Therefore, the initial score primarily serves as a starting point,
and its specific value is not critical to the overall decision-making process. Consequently, the initial
Elo score assigned to decision steps does not fundamentally impact the outcome of the comparisons.

To validate the reliability of our Elo rating system, we further conducted two experiments. First,
we manualy initialize Elo score of all decision steps as 100 instead of 0 in our original settings.
Second, all Elo scores are initialized randomly so each decision step has different Elo scores in the
begining. We re-run our method in the Game of 24 scenario and assess the final performance. The
results are listed in Table 9 and it can find that different initialized Elo scores result in the similar
final performance of our method. The results show that despite the different initial values, the final
performance remains consistent. This consistency confirms that through multiple comparisons, Elo
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Value of Elo Success Rate

Elo= 0 62.0
Elo= 100 60.0
Random Elo 63.0

Table 9: Success rate of different Elo score on Game of 24.

scores converge to their true value regardless of their initialization, thus validating the robustness of
our approach. Note that we implement our method and baseline based on GPT-4o-mini to reduce the
API cost so the performance does not equal those reported in the main paper.

B.3 IMPACT OF THE CONVERGE OF ELO RATING

As the Elo score will converge after multiple comparisons, the number of comparisons may impact
the final performance. In our experiments, we set the number of comparison in the utility learning
as 2 per candidates, i.e., each candidate decision sequence should be compared twice. To validate
the impact of the number of comparison, we double it as 4 and re-run the experiments on Game
of 24. The results are listed in Table 10 and we find that doubling the number of the comparison
cannot bring improvement, revealing that Elo scores have converged to their true values. Note that
we implement our method based on GPT-4o-mini to reduce the API cost so the performance does not
equal those reported in the original paper.

Settings Success Rate

#.CMP = 2 62.0
#.CMP = 4 62.0

Table 10: Success rate of different the number of comparison on Game of 24.

B.4 IMPACT OF INITIAL DECISION SOLUTION

As the utility learning are conducted after exploring multiple decision sequences for comparisons,
the first explored decision sequence (i.e., initial deicision sequence) may impact the utility learning
effectiveness and further influence the exploration process. To validate the robustness of our method
on the initial decision sequence, we conducted additional experiments using the Game of 24 scenario.
Given that the Game of 24 requires three-step decisions, we manually initialized three different
decision sequences for each instance, where the first, second, and third decisions were deliberately
set as the incorrect decisions. This allowed us to test our method’s resilience across different initial
conditions. The experiment results are listed in Table 11, Despite the different initial decision

Settings Success Rate

Init. w/ Incorrect First Step 59.0
Init. w/ Incorrect Second Step 61.0
Init. w/ Incorrect Third Step 60.0

Table 11: Success rate of different initial decision solution on Game of 24.

sequences, our method consistently achieved similar success rates, demonstrating its robustness. Note
that we implement our method and baseline based on GPT-4o-mini to reduce the API cost so the
performance does not equal those reported in the main paper.

The Elo rating system is specifically designed to be resilient (Elo, 1967), even when initial decision
policies are suboptimal. This is achieved by continuously comparing and updating the Elo scores
accordingly, allowing the Elo scores to progressively converge to their true values. Adapting the
Elo rating system in our method, it can provide reliable measure the utility of each decision step.
Even if the initial decision sequence is suboptimal, through iteratively experience exploration and
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utility learning, each decision step would be measured accurately and our method would avoid
the suboptimal and even poor decisions. As a result, the effectiveness of our method does not
heavily depend on the quality of the initial decision sequences. Instead, it is capable of learning and
improving from its experiences, adapting to better strategies as it gains more insights through repeated
interactions. These results further confirm that our method can effectively adapt and converge to
optimal decision paths, even when starting from suboptimal sequences.

B.5 EFFICIENCY ANALYSIS ON GAME OF 24

To further validate the generalized efficiency of our method, we further conducted efficiency exper-
iments in the Game of 24 scenario. Similar to the settings in § 6.3, we manualy set different API
call budgets and assess the final performance of our method against the best baseline, DFSDT. The
results are listed in Table 12. Obviously, we can find that the similar efficiency results show in the
Game of 24. Our method still achieve Highest Performance for Same Cost and Lowest Cost for Same
Performance. Such results further validates the efficiency superiority of our method against baselines.
Note that we implement our method and baseline based on GPT-4o-mini to reduce the API cost so
the performance does not equal those reported in the main paper.

Model API call budget
50 100 150 200

DFSDT 16.0 32.0 35.0 42.0
RaDAgent 20.0 38.0 52.0 55.0

Table 12: Efficiency analysis of different methods on Game of 24.

B.6 ERROR ANALYSIS

In this section, we present comprehensive analysis to show the failure in decision-making in Tool-
Bench. We commence our analysis by categorizing the common reasons for failure encountered by
each model in ToolBench. These reasons encompass: (1) Tool Inaccessibility: Occurrences where a
subset of the designated tools is inaccessible, e.g., HTTP 404 or 500 error. (2) Parameter Error: Oc-
currences when call tools, including parameter format mismatching and missing mandatory parameter
fields. (3) Tool Hallucination: Instances where the model employs tools not provided, i.e., invoking
a non-existent tool. (4) Decision Failure: Instances where the model fails to accomplish although
none of the aforementioned problems occur. We present the incidence ratio of the aforementioned
categories. Specifically, the incidence ratios are calculated based on the entire exploration process.
If the error occurs in the explored decision tree (even not in the final decision sequence), it is still
counted. As Tool Hallucination and Parameter Error can be fixed during decision making, we further
report the fix ratio that agents successfully accomplish the instructions although errors occurred.

From Table 13, several noteworthy observations arise: (1) RaDAgent boasts the lowest incidence ratio
of decision failure, highlighting its adeptness in decision making. (2) As RaDAgent conducts a diverse
and extensive exploration, it will experience more parameter errors and tool hallucinations, causing
a higher incidence ratio. This diverse exploration is integral as it allows RaDAgent to thoroughly
evaluate a wide array of possible decision pathways, even those that are less conventional or more
prone to errors. Despite exploring riskier or more error-prone decisions, RaDAgent effectively utilizes
the Elo-based utility learning mechanism to learn from diverse explorations and subsequently pinpoint
the most efficient and error-free pathway. The high fix ratio underlines RaDAgent’s ability to rectify
potential errors encountered during the exploration phase, ultimately leading to a reliable and effective
decision-making process. (3) All methods own similar incident ratio of tool inaccessibility which
shows that there still exist some inoperative APIs in ToolBench, influencing the decision-making
process. (4) We examine cases that all methods fail and find certain cases remain unsolvable due to
the ambiguity of user-provided values (e.g., user ID, email address) or restrictions imposed by limited
tool chain lengths, which underscores the necessity for advanced decision-making proficiencies.
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Table 13: Incidence ratio and Fix ratio of common failure reasons in ToolBench dataset.

Method Tool Hallucination Parameter Error Tool Inaccessibility Decision Failure
Incidence Fix Incidence Fix

CoT@3 14.2 25.4 41.2 14.8 2.0 52.5
BFS 18.8 25.5 50.8 31.1 2.6 48.6
DFSDT 31.5 38.9 62.5 41.0 3.0 26.4
RaDAgent 42.1 53.3 62.3 54.0 3.0 14.8

C BROADER IMPACT

This paper presents work whose goal is to advance the field of Autonomous Decision-Making for
Large Language Models. There are many potential broader impacts of our work and we discuss some
aspects in the following: Firstly, our work explores the internal rationality for LLM-based agents, and
the proposed Elo-based Utility Learning could leverage Elo Rating system to construct quantitative
utilities for each decisions. This advancement could have profound implications for industries where
decision-making is critical, such as finance, healthcare, and law. However, this autonomy raises
ethical considerations regarding the extent to which LLMs should be allowed to make decisions
without human oversight, especially in high-stakes scenarios. Secondly, as RaDAgent demonstrates
improved efficiency and cost-effectiveness in decision-making tasks, there could be an increased
reliance on LLMs in various sectors. This dependence may lead to a reduction in human labor for
certain tasks and could influence the job market, necessitating a re-evaluation of workforce skills and
training. Thirdly, while RaDAgent learns from its posterior experiences, the quality and diversity of
these experiences are crucial. There is a potential risk of inheriting biases present in the training data
or developing new biases based on limited or skewed experiences. This aspect necessitates continuous
monitoring and updating of the model to ensure fairness and impartiality in decision-making.
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