
Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

PHYSICAL DERIVATIVES: COMPUTING POLICY GRA-
DIENTS BY PHYSICAL FORWARD-PROPAGATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Model-free and model-based reinforcement learning are two ends of a spectrum.
Learning a good policy without a dynamic model can be prohibitively expensive.
Learning the dynamic model of a system can reduce the cost of learning the pol-
icy, but it can also introduce bias if it is not accurate. We propose a middle ground
where instead of the transition model, the sensitivity of the trajectories with re-
spect to the perturbation of the parameters is learned. This allows us to predict
the local behavior of the physical system around a set of nominal policies without
knowing the actual model. We assay our method on a custom-built physical robot
in extensive experiments and show the feasibility of the approach in practice. We
investigate potential challenges when applying our method to physical systems
and propose solutions to each of them.

(a) (b) (c) (d)

Figure 1: Physical finger platform in action with different policies.

1 INTRODUCTION
Traditional reinforcement learning crucially relies on reward Sutton & Barto (2018). However,
reward binds the agent to a certain task for which the reward represents success. Aligned with
the recent surge of interest in unsupervised methods in reinforcement learning (Baranes & Oudeyer,
2013; Bellemare et al., 2016; Gregor et al., 2016; Houthooft et al., 2016; Gupta et al., 2018; Hausman
et al., 2018; Pong et al., 2019; Laskin et al., 2020; 2021; He et al., 2021) and previously proposed
ideas (Schmidhuber, 1991a; 2010), we argue that there exist properties of a dynamical system which
are not tied to any particular task, yet highly useful, leveraging them can help solve other tasks
more efficiently. This work focuses on the sensitivity of the produced trajectories of the system
with respect to the policy so-called Physical Derivatives. The term physical comes from the fact
that it uses the physics of the system rather than any idealized model. We learn a map from the
directions in which policy parameters change to the directions in which every state of the trajectory
changes. In general, our algorithm learns the Jacobian matrix of the system at every time step
through the trajectory. The training phase consists of physically calculating directional derivatives
by the finite difference after applying perturbed versions of a nominal policy (a.k.a. controller).
After training, the learned directional derivatives are used to guide the controller to achieve the
desired behaviour. Due to the difficulty of computing the Jacobian matrix by the finite difference in
higher dimensions, we use random controllers joint with probabilistic learning methods to obtain a
robust estimate of the Jacobian matrix at each instant of time along a trajectory. The generalization
to unseen perturbations is possible because the trajectories produced by physical systems live on
an intrinsically low-dimensional manifold and change slowly with respect to perturbations in the
system (Koopman, 1931). This assumption holds as long as the system is not chaotic or close to a
bifurcation condition (Khalil, 2002) (See Appendix A.4 for a detailed literature review).
Preliminaries. We consider a closed-loop dynamical system represented by the state vector
x ∈ X ⊆ Rd and the policy function u = π(x;θ) that emits the q−dimensional control signal

1

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

u ∈ U ⊆ Rq . Let r : X × U → R denote the reward function and R : Π(Θ) → R be the cumu-
lative reward (return). For parametric policies, the space of feasible parameters Θ has a one-to-one
correspondence to the policy space Π. The agent who takes on the policy π from state x0 produces
the trajectory T ∈ T where T is the space of possible trajectories. The expected return becomes
a function of the policy as J(πθ) = ET {R(T)} where the expectation is taken with respect to the
probability distribution P (T |πθ). Traditionally in reinforcement learning, the goal is to perturb the
policy to improve the expected return:

θt+1 = θt + α
∂J(πθ)

∂θ

∣∣∣∣
θ=θt

. (1)

The gradient ∂J(πθ)/∂θ can be written as an integral

∂J(πθ)

∂θ
=

∫
T

∂p(T |πθ)

∂θ
R(T) dT (2)

which is hard compute in practice. In model-free RL, the policy is updated so that the mode of
p(T |πθ) aligns with the modes of R(T). In model-based RL, the dynamical model that generates
the trajectory T is learned and then used to estimate ∂J(πθ)

∂θ . In this work, we take a middle-ground
approach to estimate an in-between quantity and show how the estimated map can guide the policy
towards desired behaviour.
What is Physical Derivative. In this paper, we investigate the feasibility of learning a less ex-
plored unsupervised quantity, the so-called Physical Derivative which is computed directly from
the physical system. In abstract terms, we perturb the policy and learn the effect of its perturba-
tion on the resulting trajectory. The difference from traditional RL, whose algorithms are based
on Equation (1), is the absence of a specified reward function. Instead, we generate samples from
∂p(T |πθ)/∂θ of Equation (2) that makes it possible to compute ∂J(πθ)/∂θ for an arbitrary return
function R. If the exact model of the system is known, control theory has a full set of tools to
intervene on the system with stability and performance guarantees. When the system is unknown,
one could identify the system as a preliminary step followed by a normal control synthesis process
from control theory (Ljung, 2001). Otherwise, the model and the policy can be learned together in
a model-based RL (Sutton, 1996) or in some cases adaptive control (Sastry & Bodson, 2011). We
argue that learning physical derivatives is a middle ground. It is not model-based in the sense that
it does not assume knowing the exact model of the system. For example, assume we are interested
in going from the current trajectory T (θ) to the target trajectory T ∗. The distance between these
trajectories is reduced by perturbing the policy parameters in the direction −∂∥T (θ) − T ∗∥/∂θ.
This direction is already available since we have direct access to ∂T (θ)/∂θ as a physical derivative.

Our contributions— In summary, the key contributions of the current paper are as follows:
• A method to generate training pairs to learn the map from the policy perturbations to the re-

sulting changes in the trajectories. Learning the mentioned map as a probabilistic function
and showing that it generalizes to unseen perturbations in the policy. Using the inverse of
the above map to perturb the policy in the desired direction to achieve certain goals without
conventional RL methods.

• Provide a detailed description of the use of physical derivatives in different applications,
i.e., adversarial system identification, safety, and robust control in Appendix A.3.

• Use a physical custom-built robotic platform to test the method and propose solutions to
deal with the inherent issues of the physical system to ensure the practicality of the method
(see Figure 1 for images of the platform and Appendix A.1 for technical details). The sup-
plementary materials for the paper, including code, and the videos of the robot in action, can
be found in https://sites.google.com/view/physicalderivatives/.

2 ESTIMATING PHYSICAL DERIVATIVES

We are interested in ∂T /∂θ which denotes how a small change in the parameters θ of the controller
results in a different trajectory produced by the system. We normally consider a finite period of time
[0, T] and the trajectory is an ordered list of states T = [x0,x1, . . . ,xT] where the subscript shows
the time step. Therefore, having ∂T /∂θ is equivalent to having ∂xt/∂θ for every t ∈ {1, . . . , T}.
Notice that the initial state x0 is chosen by us. Hence we can see it either as a constant or as a
changeable parameter in θ. We kept it fixed in our experiments.

2

https://sites.google.com/view/physicalderivatives/

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

Assume xt ∈ Rd and θ ∈ Rm. Hence,∇θxt = ∂xt/∂θ ∈ Rd×m where the tth row of this matrix is
∇θxit = (∂xit/∂θ)

T ∈ Rm showing how the ith dimension of the state vector changes in response
to a perturbation in θ. The directional derivative of xit in the direction δθ is defined as

∇δθ
θ xit = ⟨∇θxit,

δθ

|δθ| ⟩. (3)

If equation 3 is available for m linearly independent and orthonormal directions,
{δθ(1), δθ(2), . . . , δθ(m)}, the directional derivative along an arbitrary δθ can be approximated by

∇δθ
θ xit =

m∑
j=1

cj⟨∇θxit, δθ
(j)⟩ (4)

where cj = ⟨δθ, δθ(j)⟩ is the coordinates of the desired direction in the coordinate system formed
by the orthonormal bases.

In practice, m directions δθ(j) can be randomly chosen or can be along some pre-defined axes of
the coordinate system. To compute ⟨∇θxit, δθ

(j)⟩, the nominal policy parameters θ are perturbed
by δθ(j) as θ(j) ← θ + δθ(j) and the derivative is computed as

⟨∇θxit, δθ
(j)⟩ = lim

h→0

xit(θ + hδθ(j))− xit(θ)

h
. (5)

This quantity is often approximated by finite difference where h takes a small nonzero value. By per-
turbing the parameters θ along m orthonormal directions δθ(j) and computing the approximate di-
rectional derivative by equation 5,∇δθ

θ xit can be computed along every arbitrary direction δθ, mean-
ing that we can compute ∇θxit by evaluating it along any direction, which is the aim of this paper.
In the matrix form for x ∈ Rd, we can compute ∇δθ(j)

θ x = [∇δθ(j)

θ x1,∇δθ(j)

θ x1, . . . ,∇δθ(j)

θ xd]
T in

a single run by computing equation 5 for all d dimensions of the states. Let’s define

∆θx ≜ [∇δθ(1)

θ x,∇δθ(2)

θ x, . . . ,∇δθ(m)

θ x] (6)

where ∆θx ∈ Rd×m and let Λ = [δθ(1), δθ(2), . . . , δθ(m)]. Therefore, if ∆δθ
θ x shows the direc-

tional derivative of x along δθ, we can write it as:

∇δθ
θ x = ∆θx(Λ

Tδθ) (7)

which is a vectoral representation of Equation (3). Even though the linear formula of Equation (7)
requires only m directional derivatives, it has two major downsides. First, it does not give a clear
way to incorporate more than m training directional physical derivatives. Second, the linear ap-
proximation remains valid only for very small δθ. We propose to use Gaussian Process (GP) as a
nonlinear probabilistic function approximator (Rasmussen, 2003) to capture the maps ĝt defined as

ĝt : Θ→ X (8)
ĝt(δθ) = δx (9)

where subscript t shows the function that maps δθ to the change of the states δxt at time step t.
We considered distinct functions for every time step. Taking into account the commonality among
the function approximators corresponding to different time steps is deferred to future research. The
required training data to learn these maps is produced by perturbing the parameters of the controller
and recording the produced trajectories. We propose two perturbation methods called Gaussian
and Uniform as illustrated in Figure 12. The effect of each of these sampling strategies is presented
in Section 3. A major blockage against estimating physical derivatives is the inherent noise of
the physical systems that may be mixed with the intentional perturbations which are applied to
collect data to estimate physical derivatives. In Appendix A.5, we describe this issue concretely and
elaborate on our solution to deal with it.

3 EXPERIMENTS

In this section, we show how physical derivatives can be estimated in practice through several ex-
periments. Notice that our work is different from computing gradients around the working point
of a system by finite-difference. We aim to collect samples from such gradients by perturbing a

3

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

grid of nominal values of the policy parameters and then generalize to unseen perturbations by
Gaussian process as a probabilistic regression method. The experiments are designed to show each
challenge separately and the efficacy of our proposed solution to it. These experiments subsume
linear open-loop controller, Nonlinear open-loop controller, and Feedback controller elaborated
thoroughly in Appendix A.7. Lastly, in the following section, we propose a zero-shot planning task
and use our method to address it. Due to space constraints, details of the physical platform can be
found in Appendix A.1. See1 for videos of the robot while collecting data for different experiments
and more backup materials.

m1
1.3

1.4
1.5

1.6
1.7

1.8
1.9

m2
2.6

2.8
3.0

3.2
3.4

3.6
3.8

m
3

2.6

2.8

3.0

3.2

3.4

3.6

3.8

s

1
2

target state
source state

(a) Short distance target

m1
1.2

1.3
1.4

1.5
1.6

1.7
1.8

1.9
2.0

m2
2.4

2.6
2.8

3.0
3.2

3.4
3.6

3.8
4.0

m
3

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0
s

1
2

target state
source state

(b) Medium distance target

m1
1.2

1.3
1.4

1.5
1.6

1.7
1.8

1.9

m2

2.4
2.6

2.8
3.0

3.2
3.4

3.6
3.8

m
3

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

s

1
2

target state
source state

(c) Long distance target

Figure 2: Zero-shot planning with constraint satisfaction. The orange trajectory is the source pro-
duced by the nominal controller. The green and blue are two sampled trajectories produced by
perturbing kp to k∗p by Equation (10).

Zero-shot planning task Our previous experiments showed that learning the physical derivative
map is feasible for various types of controllers. In this section, we demonstrate an example of a
constraint satisfaction task by means of the physical derivative map. In this experiment, the su-
perscript (s) corresponds to the nominal trajectory, which is called source. Assume the system is
controlled by a PD controller to reach a target state x∗, i.e., the control torques are designed as
u = k

(s)
p (x − x∗) + k

(s)
d ẋ. The controller does a decent job of reaching the target state given

reasonable values for kp and kd. However, such a controller does not give us a clear way to shape
the trajectory that starts from x◦ and ends at x∗. Assume it is desired that the nominally con-
trolled trajectory T (s) passes through an intermediate state x∗

t at time t on its way towards the
target state x∗ (we can equally assume that the system must avoid some regions of the state space
because of safety reasons). The solution with physical derivatives is as follows . Assume k

(s)
d is

fixed and only k
(s)
p is changeable. If the physical derivatives map is available, we have access to

ĝt(k
∗
p − k

(s)
p) = (x∗

t − x
(s)
t)/(k∗p − k

(s)
p). By simple algebraic rearrangement, we have

k∗p =
x∗ − x

(s)
t

ĝt(k∗p − k
(s)
p)

+ k(s)p . (10)

The new parameter of the policy is supposed to push the source trajectory T (s) towards a target
trajectory T ∗ that passes through the desired state x∗

t at time t. The result of this experiment on our
physical finger platform is available in Figure 2.

4 CONCLUSIONS

In this paper, we present a method to learn how the trajectories of a physical real-world dynamical
system change with respect to a change in the policy parameters. We tested our method on a custom-
built platform called finger robot that allows testing a couple of controllers with various settings to
show the applicability of our method for linear, nonlinear, open-loop, and feedback controllers. By
estimating the physical derivative function, we showed that our method is able to push a controlled
trajectory towards a target intermediate state. We investigate the real-world challenges when doing
a fine sensitive task such as estimating physical derivatives on a real robot and proposed solutions
to make our algorithm robust to inherent imperfection and noise in physical systems. We focused
mainly on low-level issues of physical derivatives and showed the feasibility of estimating them
robustly. We expect that physical derivatives will contribute to the research areas such as safety,
control with constraint satisfaction and trajectory planning, robust, or safe control.

1https://sites.google.com/view/physicalderivatives/

4

https://sites.google.com/view/physicalderivatives/

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

REFERENCES

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martı́n Arjovsky, Alexander Pritzel, Andew Bolt, et al. Never
give up: Learning directed exploration strategies. arXiv preprint arXiv:2002.06038, 2020.

Akhil Bagaria, Jason K Senthil, and George Konidaris. Skill discovery for exploration and planning
using deep skill graphs. In International Conference on Machine Learning, pp. 521–531. PMLR,
2021.

Adrien Baranes and Pierre-Yves Oudeyer. Active learning of inverse models with intrinsically mo-
tivated goal exploration in robots. Robotics and Autonomous Systems, 61(1):49–73, 2013.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems, pp. 1471–1479, 2016.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differ-
ential equations. In Advances in neural information processing systems, pp. 6571–6583, 2018.

Adam Gaier and David Ha. Weight agnostic neural networks. CoRR, abs/1906.04358, 2019. URL
http://arxiv.org/abs/1906.04358.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

Michel Gevers, Alexandre S Bazanella, Xavier Bombois, and Ljubisa Miskovic. Identification and
the information matrix: how to get just sufficiently rich? IEEE Transactions on Automatic Con-
trol, 54(ARTICLE):2828–2840, 2009.

Will Grathwohl, Ricky TQ Chen, Jesse Betterncourt, Ilya Sutskever, and David Duvenaud. Ffjord:
Free-form continuous dynamics for scalable reversible generative models. arXiv preprint
arXiv:1810.01367, 2018.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv
preprint arXiv:1611.07507, 2016.

Abhishek Gupta, Benjamin Eysenbach, Chelsea Finn, and Sergey Levine. Unsupervised meta-
learning for reinforcement learning. arXiv preprint arXiv:1806.04640, 2018.

Jiequn Han, Qianxiao Li, et al. A mean-field optimal control formulation of deep learning. arXiv
preprint arXiv:1807.01083, 2018.

Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. In International Conference on Learn-
ing Representations, 2018.

Shuncheng He, Yuhang Jiang, Hongchang Zhang, Jianzhun Shao, and Xiangyang Ji. Wasserstein
unsupervised reinforcement learning. arXiv preprint arXiv:2110.07940, 2021.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. arXiv preprint arXiv:1605.09674, 2016.

Frederic Kaplan and Pierre-Yves Oudeyer. Motivational principles for visual know-how develop-
ment. 2003.

Hassan K Khalil. Nonlinear systems. Upper Saddle River, 2002.

Varun Raj Kompella, Marijn Stollenga, Matthew Luciw, and Juergen Schmidhuber. Continual
curiosity-driven skill acquisition from high-dimensional video inputs for humanoid robots. Arti-
ficial Intelligence, 247:313–335, 2017.

Bernard O Koopman. Hamiltonian systems and transformation in hilbert space. Proceedings of the
National Academy of Sciences of the United States of America, 17(5):315, 1931.

5

http://arxiv.org/abs/1906.04358

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning. In International Conference on Machine Learning, pp. 5639–
5650. PMLR, 2020.

Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang, Lerrel
Pinto, and Pieter Abbeel. Urlb: Unsupervised reinforcement learning benchmark. arXiv preprint
arXiv:2110.15191, 2021.

Lennart Ljung. System identification. Wiley Encyclopedia of Electrical and Electronics Engineer-
ing, 2001.

Aleksandr Mikhailovich Lyapunov. The general problem of the stability of motion. International
journal of control, 55(3):531–534, 1992.

Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-
fit: State-covering self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698,
2019.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer School on Machine
Learning, pp. 63–71. Springer, 2003.

Samuel H Rudy, J Nathan Kutz, and Steven L Brunton. Deep learning of dynamics and signal-noise
decomposition with time-stepping constraints. Journal of Computational Physics, 396:483–506,
2019.

Shankar Sastry and Marc Bodson. Adaptive control: stability, convergence and robustness. Courier
Corporation, 2011.

Jürgen Schmidhuber. Curious model-building control systems. In Proc. international joint confer-
ence on neural networks, pp. 1458–1463, 1991a.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neu-
ral controllers. In Proc. of the international conference on simulation of adaptive behavior: From
animals to animats, pp. 222–227, 1991b.

Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE
Transactions on Autonomous Mental Development, 2(3):230–247, 2010.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In International Conference on Machine
Learning, pp. 8583–8592. PMLR, 2020.

Krishnan Srinivasan, Benjamin Eysenbach, Sehoon Ha, Jie Tan, and Chelsea Finn. Learning to be
safe: Deep rl with a safety critic. arXiv preprint arXiv:2010.14603, 2020.

Leonid Kuvayev Rich Sutton. Model-based reinforcement learning with an approximate, learned
model. In Proceedings of the ninth Yale workshop on adaptive and learning systems, pp. 101–
105, 1996.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

BCL Touwen, MS Hempel, and LC Westra. The development of crawling between 18 months and
four years. Developmental Medicine & Child Neurology, 34(5):410–416, 1992.

Juyang Weng, James McClelland, Alex Pentland, Olaf Sporns, Ida Stockman, Mriganka Sur, and
Esther Thelen. Autonomous mental development by robots and animals. Science, 291(5504):
599–600, 2001.

Anthony M Zador. A critique of pure learning and what artificial neural networks can learn from
animal brains. Nature communications, 10(1):1–7, 2019.

Kemin Zhou and John Comstock Doyle. Essentials of robust control, volume 104. Prentice hall
Upper Saddle River, NJ, 1998.

6

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

A SUPPLEMENTARY MATERIAL

A.1 PHYSICAL PLATFORM

In this section, we introduce the physical robot on which we tested our method. The robot is called
finger platform or simply finger throughout this paper. The range of movement for the motors
are [0, π], [0, π], [0, 2π] respectively. The axes of the plots throughout the paper are in radian. It
consists of three articulated arms with three degrees of freedom in total (see Figure 3d). The motors
{m1,m2,m3} are depicted in the figure. This naming remains consistent throughout this paper.
Each arm is moved by a separate brushless DC motor and has one degree of freedom to swing
in its own plane (see Figure 3a). Each arm is equipped with an encoder that measures its angle
(see Figure 3b). The brushless motors are controlled by an electronic driver that receives torque
values applied to each motor from a computer terminal via a CAN bus and applies the torques to the
motors (see Figure 3c). Due to the imperfections of the arms, motors, and drivers, we did not use any
model for the system, including the inertial matrix of the robot or the current-torque characteristic
function of the motors. The low-cost and safe nature of this robot makes it a suitable platform to
test the idea of physical derivatives that requires applying many different controllers in the training
phase.

(a) Motor 1 (b) Encoder (c) Driver (d) Finger

Figure 3: Components of the physical finger platform

A.2 ADDITIONAL PLOTS ILLUSTRATING REAL WORLD CHALLENGES (SECTION A.5)

m1

0.0
0.5

1.0
1.5

2.0
2.5

3.0

m 2

0

1

2

3

4

5

6

m
3

0

1

2

3

4

5

6
1
2
3
4
5
6
7
8
9
10

(a) t = 200

m1

0.0
0.5

1.0
1.5

2.0
2.5

3.0

m 2

0

1

2

3

4

5

6

m
3

0

1

2

3

4

5

6
1
2
3
4
5
6
7
8
9
10

(b) t = 400

m1

0.0
0.5

1.0
1.5

2.0
2.5

3.0

m 2

0

1

2

3

4

5

6

m
3

0

1

2

3

4

5

6
1
2
3
4
5
6
7
8
9
10

(c) t = 600

m1

0.0
0.5

1.0
1.5

2.0
2.5

3.0

m 2

0

1

2

3

4

5

6

m
3

0

1

2

3

4

5

6
1
2
3
4
5
6
7
8
9
10

(d) t = 800

m1

0.0
0.5

1.0
1.5

2.0
2.5

3.0

m 2

0

1

2

3

4

5

6

m
3

0

1

2

3

4

5

6
1
2
3
4
5
6
7
8
9
10

(e) t = 1000

Figure 4: Same controller applied for multiple runs. The trajectories are produced by the linear
open-loop controller similar to those used in Appendix A.7.1. See the plot for a different set of
nominal parameters of the controller in Figure 7 in the Appendix (Zooming is recommended).

m1

0.0
0.5

1.0
1.5

2.0
2.5

3.0

m 2

0

1

2

3

4

5

6

m
3

0

1

2

3

4

5

6
1
2
3
4
5
6
7
8
9
10

(a) t = 200

m1

0.0
0.5

1.0
1.5

2.0
2.5

3.0

m 2

0

1

2

3

4

5

6

m
3

0

1

2

3

4

5

6
1
2
3
4
5
6
7
8
9
10

(b) t = 400

m1

0.0
0.5

1.0
1.5

2.0
2.5

3.0

m 2

0

1

2

3

4

5

6

m
3

0

1

2

3

4

5

6
1
2
3
4
5
6
7
8
9
10

(c) t = 600

m1

0.0
0.5

1.0
1.5

2.0
2.5

3.0

m 2

0

1

2

3

4

5

6

m
3

0

1

2

3

4

5

6
1
2
3
4
5
6
7
8
9
10

(d) t = 800

m1

0.0
0.5

1.0
1.5

2.0
2.5

3.0

m 2

0

1

2

3

4

5

6

m
3

0

1

2

3

4

5

6
1
2
3
4
5

(e) t = 1000

Figure 5: The same as Figure 4 but for a different setting.

7

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

m1

0.0
0.5

1.0
1.5

2.0
2.5

3.0

m 2

0

1

2

3

4

5

6

m
3

0

1

2

3

4

5

6
1
2
3
4
5

(a) t = 200

m1

0.0
0.5

1.0
1.5

2.0
2.5

3.0

m 2

0

1

2

3

4

5

6

m
3

0

1

2

3

4

5

6
1
2
3
4
5

(b) t = 400

m1

0.0
0.5

1.0
1.5

2.0
2.5

3.0

m 2

0

1

2

3

4

5

6

m
3

0

1

2

3

4

5

6
1
2
3
4
5

(c) t = 600

m1

0.0
0.5

1.0
1.5

2.0
2.5

3.0

m 2

0

1

2

3

4

5

6

m
3

0

1

2

3

4

5

6
1
2
3
4
5

(d) t = 800

m1

0.0
0.5

1.0
1.5

2.0
2.5

3.0

m 2

0

1

2

3

4

5

6

m
3

0

1

2

3

4

5

6
1
2
3
4
5

(e) t = 1000

Figure 6: Noisy linear open-loop controller.

m1

0.0
0.5

1.0
1.5

2.0
2.5

3.0

m 2

0

1

2

3

4

5

6

m
3

0

1

2

3

4

5

6
1
2
3
4
5

(a) t = 200

m1

0.0
0.5

1.0
1.5

2.0
2.5

3.0

m 2

0

1

2

3

4

5

6
m

3

0

1

2

3

4

5

6
1
2
3
4
5

(b) t = 400

m1

0.0
0.5

1.0
1.5

2.0
2.5

3.0

m 2

0

1

2

3

4

5

6

m
3

0

1

2

3

4

5

6
1
2
3
4
5

(c) t = 600

m1

0.0
0.5

1.0
1.5

2.0
2.5

3.0

m 2

0

1

2

3

4

5

6

m
3

0

1

2

3

4

5

6
1
2
3
4
5

(d) t = 800

m1

0.0
0.5

1.0
1.5

2.0
2.5

3.0

m 2

0

1

2

3

4

5

6

m
3

0

1

2

3

4

5

6
1
2
3
4
5

(e) t = 1000

Figure 7: The same as Figure 6 but for a different nominal parameters of the policy.

m11.2
1.4

1.6
1.8

2.0

m2 2.252.502.753.003.253.503.754.00

m
3

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00 1
2
3
4

(a) Low noise

m11.0
1.2 1.4 1.6 1.8 2.0 2.2

m2 2.02.53.03.54.04.5

m
3

2.0

2.5

3.0

3.5

4.0

4.5 1
2
3
4

(b) Medium noise

m11.0 1.2 1.4 1.6 1.8 2.0 2.2

m2 2.02.53.03.54.04.5

m
3

2.0

2.5

3.0

3.5

4.0

4.5 1
2
3
4

(c) High noise

Figure 8: PD controller with various noise intensities on Kp parameter.

A.3 APPLICATIONS OF PHYSICAL DERIVATIVES

Supposing we know how the states of a trajectory change as a result of a change in the policy
parameters, the policy can be easily updated to push the trajectory towards a desired one. For
example, assume we are interested in going from the current trajectory T (θ) to the target trajectory
T ∗. The distance between these trajectories can get minimized by perturbing the policy parameters
in the direction −∂∥T (θ) − T ∗∥/∂θ. This direction is already available since we have estimated
∂T (θ)/∂θ as a physical derivative. As an exemplary case, we show this application of our method
in practice in Section 3. Other applications of physical derivatives are in robust control and safety.
In both cases, the physical derivative allows us to predict the behaviour of the system if the policy
changes in a neighbourhood around a nominal policy. Then, it is possible to make sure that some
performance or safety criteria will not be violated for the local perturbation in the policy. As a
concrete example, for an autonomous driving system, there can be a calibration phase during which
physical derivatives of the car are estimated by perturbing the controller parameters around different
nominal policies which are likely to occur on real roads. The calibration must be done in a safe
condition and before deploying the system. When deployed, the estimated physical derivatives can
be used to predict the effect of a change of the policy on the behaviour of the system and neutralize
the change if it would move the car towards unsafe regions of its state space. The command that
changes the policy can be issued by a high-level controller (e.g., guidance system), and the safety is
confirmed by a low-level mechanism through physical derivatives. This work focuses on the concept

8

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

and the introduction of physical derivatives and direct applications would go significantly beyond
the scope of this work.

Robust control. In control theory, robust control relates to the design of a controller whose per-
formance is guaranteed for a range of systems and controllers belonging to a certain neighborhood
around the nominal system (Zhou & Doyle, 1998). It is desired to have a controller that keeps the
performance of the system at a certain good level even if the parameters of the controller are not
fixed to the theoretical values. Assume the performance of the system is associated with some func-
tion of a trajectory E(T). Changing the parameters of the controller θ results in a change in the
trajectories. This allows us to compute ∂T /∂θ that consequently gives us ∂E(T)/∂θ by the chain
rule. Roughly speaking, between two sets of parameters θ1 and θ2, the set of parameters that gives
the least ∂E/∂θ is preferred. This means that by perturbing the parameters of the controller and
assessing the performance of the system, an estimate of the curvature of the landscape of E(T (θ))
is obtained. We prefer flatter regions of this space where a small change in θ does not cause a drastic
change in the performance metric E .

Safety. Safety refers to the situations in which the agent may hurt itself or the environment and
causes irreversible damages if it freely takes arbitrary actions (Garcıa & Fernández, 2015). For
a safety-critical system whose full physical models are hard to obtain, the physical gradients can
assist in avoiding restricting the parameters of the robot to prevent unsafe behavior. The physical
derivatives are learned in the Lab environment before the robot is deployed into the wild. For
example, a rover whose mission is to safely explore an unknown environment often enjoys a learning
loop that allows it to adapt to the new environment. Even though the learning in the new environment
requires sufficient exploration, the physical derivatives can be used to give a rough simulation of the
robot’s next few states under a given update to its parameters. The potential harmful updates might
be detected by such simulation and be avoided.

Adversarial system identification. System identification concerns learning about the governing
equations of the system from observed trajectories. Most systems require some input excitation to
show their behavior. Normally the input is designed rich enough to elicit the important behaviors
from the system (Gevers et al., 2009). Assuming the system would not be harmed by the input
signal, this traditional approach has the downside: we never know the input signal is rich enough
to excite every mode of the system. Besides, there exist scenarios when the identification must be
carried out with minimal control effort. Hence, the design of the input signal must not be agnostic
to the dynamics of the system. However, estimating the dynamics is the initial goal of system
identification. This seeming chain problem can be solved by repetitively updating the control input
and the estimated model. This results in an adversarial game between the controller and the current
best estimate of the system which can be described as the following min-max problem

argmin
ϕ

argmax
θ,x0

L =
1

T

∫ t0+T

t0

∥
∫ t

t0

f̂(xm(t),u(x, t;θ);ϕ)dt− x(t;θ)∥22 dt. (11)

In this formula, xm denotes the states of the model parameterized by ϕ and the parameters of the
estimated model while θ shows the parameters of the controller. Notice that x is the state of the
physical system, which is a function of the controller parameters too. The procedure proceeds as
follows: A controller with parameters θ is applied to both models and the physical system. The
produced trajectories by the model and the physical system are compared. The model parameters
are updated in the direction that minimizes this distance to give a better estimate of the system. The
controller parameters, on the other hand, are updated to maximize this distance. This maximization
ensures that the controller drives the system towards the regions of the state space for which the
current model is not yet accurate.

9

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

A.4 DETAILED LITERATURE REVIEW

There has been a recent surge of interest in unsupervised methods in reinforcement learning when
a task-specific reward function is not the only driving force to train the agent (Baranes & Oudeyer,
2013; Bellemare et al., 2016; Gregor et al., 2016; Hausman et al., 2018; Houthooft et al., 2016;
Badia et al., 2020; Sekar et al., 2020). A truly intelligent agent must behave intelligently in a range
of tasks, not only in a single task associated with its reward function. This requires the agent to
develop some sort of general competence that allows it to come up with solutions to new problems
by combining some low-level primitive skills. This general competence is a key factor in animals
to quickly and efficiently adapt to a new environment (Weng et al., 2001). By calling the traditional
RL, extrinsicially motivated RL, the new framework is called intrinsically motivated RL. There have
been many ideas in this line with various definitions for the terms motivation and intrinsic. Some re-
searchers assume a developmental period in which the agent acquires some reusable modular skills
that can be easily combined to tackle more sophisticated tasks (Kaplan & Oudeyer, 2003; Weng
et al., 2001). Curiosity and confidence are other unsupervised factors that can be used to drive the
agent towards unexplored spaces to achieve new skills (Schmidhuber, 1991b; Kompella et al., 2017;
Bagaria et al., 2021). Interestingly, there are observations in neuroscience that dopamine, a known
substance that controls one’s motivation for extrinsic rewards, is also associated with intrinsic prop-
erties of the agent, such as novelty and curiosity. A novel sensory stimulus activates the dopamine
cells the same way they are activated by extrinsic reward. Children build a collection of skills ac-
cumulatively while they engage in activities without a specific goal, e.g., hitting a ball repeatedly
without a long-term target such as scoring a goal. The achieved skills contribute to their stability
while handling objects (Touwen et al., 1992).

Another line of work concerns the fundamental constraints of the agent/environment and ensures
those constraints are met while learning. For example, in many practical systems, learning episodes
must halt if the system is likely to undergo an irreversible change. For example, the training episodes
of a fragile robot must ensure the robot does not fall or will not be broken in any circumstance while
acting under a certain policy. The general name safe RL embodies ideas to tackle such issues in
current interactive learning algorithms (Garcıa & Fernández, 2015; Srinivasan et al., 2020). One
major aspect of safety is stability that loosely means that states of the system converge to some
invariant sets or remain within a certain bound (Lyapunov, 1992). Control theory enjoys a physical
model of the system to guarantee stability (Khalil, 2002). When the physical model is not known in
advance, the model is either learned along with the policy (model-based RL) or will be implicitly
distilled in the value function (model-free RL) (Sutton & Barto, 2018). Stability can be categorized
as an intrinsic motivation for the agent. No matter what task the agent aims to solve, it must remain
stable all the time. Learning the transition model, which is the major concern of model-based RL,
can also be seen as intrinsic motivation. The agent learns to predict the future step given the current
state. The advantage of learning a model—even inaccurately—is twofold: the agent would know
where to go and where not to go. It knows which regions of the state space are unsafe to explore and
must be avoided. It also knows which regions are unexplored and might be informative to improve
the model. This brings us to another view to intrinsic reward that encourages diversity.

Our work is also relevant to sensitivity analysis and its use in training the parameters of dynami-
cal models. After Chen et al.’s NeuralODE on training neural networks by sensitivity analysis of
the network parameters, the method was successfully applied to various tasks such as learning dy-
namics (Rudy et al., 2019), optimal control (Han et al., 2018), and generative models (Grathwohl
et al., 2018). Our method can be seen as a mode-free sensitivity analysis in real-world systems.
In NeuralODE, the gradient with respect to the parameters requires solving ODEs for both states
and adjoint states that require a transition model. Since we work directly on the physical system,
we don’t need to calculate the integrals forward in time. The system itself acts as a physical ODE
solver.

The importance of learning from unlabelled experiences is a known fact in animals. Many animals
function efficiently soon after birth before being exposed to a massive labeled experience. Part of
it might be due to unsupervised learning, but the major part of the story can be a genetic heritage
after years of evolution that Zador called genomic bottleneck. The same idea turned out to be valid
in statistical learning, where an automatically discovered neural network architecture performs sur-
prisingly well with a shared random weight (Gaier & Ha, 2019). The embedded inductive bias in the

10

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

neural network architectures could be analogous to the wiring of the brain of animal babies, which
transfers from generation to generation by genes.

A.5 TACKLING INHERENT NOISE

Inherent noise refers to a change in the system trajectory that is not caused by the intentional inter-
vention on the controller. In our finger platform, we observed two different major sources of noise
that are likely to occur in other physical systems too. We call them temporal and spatial noise for
the reasons that come in the following.

Temporal noise. The temporal noise represented by n affects trajectories by shifting them in time

xt ← xt+n for t = 0, 1, . . . , T. (12)

Notice that the absence of subscript t in n shows that this noise is not time-dependent, i.e., the time
shift does not change along the trajectory as time proceeds.

Spatial noise. The trajectories affected by spatial noise cannot be aligned with each other by shifting
forward or backward in time. We can model this noise as a state-dependent influence on the state of
the system at every time step.

xt ← xt + nxt
(13)

The following definition makes the distinction more concrete.

Definition 1. Consider two trajectories T (1)(t) and T (2)(t) as two temporal signals. Assume St◦
is the shift-in-time operator defined as

St◦T (t) = T (t+ t◦) (14)

for an arbitrary function of time T (t). We say T (2)(t) is temporally noisy version of T (1)(t) if

∃t◦ ∈ R s.t. ∥T (2) − St◦T (1)∥1 ≤ ϵ (15)

where ϵ is a hyper-parameter threshold that reflects our prior confidence about the accuracy of the
motors, joints, physical and electrical elements (in the general construction process) of the robot.
On the other hand, T (2) is called a spatially noisy version of T (1) if

∄t◦ ∈ R s.t. ∥T (2) − St◦T (1)∥1 ≤ ϵ (16)

The temporal noise is coped with correlation-based delay estimation where the time-shift is esti-
mated by computing the correlation between shifted trajectories and the spatial noise is dealt with
voxelization which refers to discretizing the space into voxels (regular 3D boxes) where all states
within a voxel are projected on the center of that voxel. We found the decomposition of noise sources
into these two classes critical for dealing with them. The detailed description of each method is post-
poned to Appendix A.5.1 and Appendix A.5.2.

A.5.1 SOLUTION TO TEMPORAL NOISE

Fortunately, this type of noise is not state-dependent by definition. If we find out how much a trajec-
tory is shifted in time with respect to another trajectory, we can simply shift the trajectory for those
many time steps and compensate for the delay. Hence, the problem becomes detecting the lagged
trajectories with respect to a reference trajectory and also estimating the amount of the required time
shift to compensate for the delay. We can either use physical landmarks in the trajectories to align
them or use the correlation between them as a measure of alignment. The latter gave better results.
Hence, we postpone the description of the former.

Correlation-based delay estimation. In this method, we use the correlation between zero-meaned
trajectories T (i) and T (j) to check if one is the lagged version of the other one. The delay τ is found
by

τ∗ = argmax
τ

T−τ∑
t=0

⟨Sτx
(i)
t ,x

(j)
t ⟩ (17)

where Sτ is a shift-operator by τ ∈ Z time steps. In practice, we take one trajectory of
{T (1), T (2), . . . , T (M)}, e.g. T (r) as the reference and synchronize other trajectories with respect

11

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

to it using Equation (17). The trajectories must be initially normalized to avoid trivial solutions
where every trajectory is pushed towards the larger parts of the reference trajectory. For illustrative
purposes, the plots of Figure 9 show a sample of the lagged trajectory from the finger platform and
its correction by the above method.

(a) Trajectories affected by temporal noise (b) Temporally aligned trajectories

Figure 9: The effect of temporal noise in delaying one trajectory versus the other one and its correc-
tion. The trajectories are produced by the linear open-loop controller similar to those used in Ap-
pendix A.7.1.

Detecting zero crossing. In this method, we take advantage of special landmarks in the trajectories.
The landmarks are typically caused by the physical constraints of the system. For example, when a
robot’s leg touches the ground, the velocity of the leg becomes zero. Likewise, when a joint reaches
its physical limit, the velocity of the connected arm to the joint becomes zero or changes signs. In
both cases, a zero-crossing occurs that can be used as a landmark to synchronize lagged trajectories
with a reference trajectory. Even though this method will eliminate the temporal noise, it requires
the presence of such landmarks along the trajectories. Notice that from a mathematical point of view,
there is nothing special about zero. We can pick any value of states along a reference trajectory and
synchronize all other trajectories with respect to it. However, in practice, physical landmarks are
easier to detect and have less ambiguity that consequently giving a more accurate synchronization.

A.5.2 SOLUTION TO SPATIAL NOISE

The spatial noise can be a stochastic function of the actuator, environmental change, and electronic
drivers. In a perfect model of the transition dynamics xt+1 = f(xt,ut), applying the same control
sequence {u0,u1, . . . ,uT−1} always results in the same sequence of states {x1,x2, . . . ,xT } when
it starts from the same initial state x0. This assumption is often violated in physical systems as
different runs of the same policy may result in different trajectories, as can be seen in Figure 4 in the
Appendix. The noise in the dynamics can be any function of states, input, and time. Therefore, it
is difficult to model this noise since it requires a prohibitively large number of random experiments.
The good news is that if the physical system is built properly, the effect of this noise is expectedly
low. Based on our observations from the finger platform, we can assume the following.

(a) Small voxels
(γ = 0.01)

(b) Medium voxels
(γ = 0.04)

(c) Large voxels
(γ = 0.16)

(d) Very large voxels
(γ = 0.2)

Figure 10: The effect of voxels on supressing spatial noise of the physical system. The trajecto-
ries are produced by linear open-loop controllers as those in Appendix A.7.1 for the purpose of
illustrating the effect of voxelization.

Assumption 2. Limit on the physical noise: Let’s the control sequence U = {u0,u1, . . . ,uT−1} be
applied to the system M times resulting in multiple sequence of states T (1), T (2), . . . , T (M). There
exists a relatively small ζ such that

∥T (i) − T (j)∥∞ ≤ ζ for every i, j ∈ {1, 2, . . . ,m}. (18)

12

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

The word relatively here means that the change of the trajectory due to the inherent physical noise
of the system must be small compared to the change of the trajectories when the parameters of the
policy are perturbed.

To reduce the sensitivity of the estimated gradient to this unwanted spatial noise, we divide the state
space of the physical system into regularly located adjacent cells called voxels. Each voxel vox(c)
is represented by its center c and is defined as

vox(c) = {x ∈ X | ∥x− c∥∞ ≤ γ} (19)

where γ is the parameter of the voxelization. The concept of the voxel is roughly used as a super-
state. Every state that ends up within vox(c) gives rise to the same superstate. After recording the
trajectories from the robot, every state is mapped to the center of the voxel it belongs to as

c← x for x ∈ vox(c) (20)

For simplicity, we denote the center c of the voxel that x belongs to with cγ(x). After voxelization,
we work with cγ(x) instead of x. For example, all the gradients of equation 6 are computed as∇θc
rather than ∇θx. To illustrate the positive effect of voxelization of the state space, it can be seen
in Figure 10 that increasing the voxel size improves the overlapping between two trajectories that
deviate from each other due to the inherent spatial noise of the system not because of perturbing
the parameters of the policy, but because of the inherent imperfection of the mechanical and elec-
trical components of the system. This benefit comes with a cost which is the error introduced by
voxelization. Fortunately, this error is bounded due to the following lemma.

Lemma 3. The additional error caused by voxelization cγ(.) is bounded proportional to the size of
each voxel γ.

Proof. Assume that we have two noisy (spatial noise) trajectories y
(1)
t = x

(1)
t + ϵ

(1)
t ,y

(2)
t =

x
(2)
t + ϵ

(2)
t , for t ∈ {1, 2, . . . , T} where x

(1)
t ,x

(2)
t are primary noiseless trajectories having sig-

nificant difference that we want to calculate derivatives for and spatial errors ϵ(1)t , ϵ
(2)
t comes from a

distribution. The error induced in the standard case is E
ϵ
(1)
t ,ϵ

(2)
t
[||(y(2)

t −y
(1)
t)−(x

(2)
t −x

(1)
t)||∞] =

E
ϵ
(1)
t ,ϵ

(2)
t
[||(y(2)

t − x
(2)
t) − (y

(1)
t − x

(1)
t)||∞] = E

ϵ
(1)
t ,ϵ

(2)
t
[||ϵ(2)t − ϵ

(1)
t ||∞], while the error in the

voxelized world is E
ϵ
(1)
t ,ϵ

(2)
t
[||(cγ(y(2)

t)− cγ(y
(1)
t))− (x

(2)
t − x

(1)
t)||∞] = E

ϵ
(1)
t ,ϵ

(2)
t
[||(cγ(y(2)

t)−
y
(2)
t)−(cγ(y

(1)
t)−y

(1)
t)+(y

(2)
t −y

(1)
t)−(x

(2)
t −x

(1)
t)||∞]. Using triangle inequality and knowing

that ||cγ(y(i)
t)− y

(i)
t ||∞ ≤ γ, we have

E
ϵ
(1)
t ,ϵ

(2)
t
[||(cγ(y(2)

t)− cγ(y
(1)
t))− (x

(2)
t − x

(1)
t)||∞] ≤ 2γ + E

ϵ
(1)
t ,ϵ

(2)
t
[||ϵ(2)t − ϵ

(1)
t ||∞].

Hence, the lemma is proved.

The voxels become boxes in 3D as in Figure 11. The gradient is estimated as the distance between
two points in 3D coordinates. Hence the source of voxelization error is approximating the distance
between two points in 3D with the distance between the centers of the corresponding boxes to which
those points belong. This error is written next to the boxes in Figure 11. The maximum additional
error due to voxelization is proportional to the voxel sizes γ and its proportion is upper-bounded by
2.

A.6 PERTURBATION METHODS

Gaussian Perturbation— Likely values of θ create nominal policies encoded by
{θ(1),θ(2), . . . ,θ(m)}. We put Gaussian distributions centered at each of the nominal values
resulting in a mixture of Gaussians. To reduce the hyper-parameters, we assume the variances
of the Gaussians are themselves sampled from an exponential distribution making sure they all
take positive values (See Figure 12 left). Here, we manually choose a reasonable value for the
rate parameter of the exponential distribution. Making inference on the hyper-parameters of the
sampling distributions can be a topic for future research, especially in active learning for a more

13

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

x(i)
<latexit sha1_base64="jfzeb6sySg5mRHLW8P87TBonI5Q=">AAAB+XicbVDLSsNAFL2pr1pfUZduBotQNyWpgi6LblxWsA9oa5lMJ+3QySTMTIol5E/cuFDErX/izr9x0mahrQcGDufcyz1zvIgzpR3n2yqsrW9sbhW3Szu7e/sH9uFRS4WxJLRJQh7KjocV5UzQpmaa004kKQ48Ttve5Dbz21MqFQvFg55FtB/gkWA+I1gbaWDbvQDrsecnT+ljUmHn6cAuO1VnDrRK3JyUIUdjYH/1hiGJAyo04ViprutEup9gqRnhNC31YkUjTCZ4RLuGChxQ1U/myVN0ZpQh8kNpntBorv7eSHCg1CzwzGSWUy17mfif1421f91PmIhiTQVZHPJjjnSIshrQkElKNJ8ZgolkJisiYywx0aaskinBXf7yKmnVqu5FtXZ/Wa7f5HUU4QROoQIuXEEd7qABTSAwhWd4hTcrsV6sd+tjMVqw8p1j+APr8weTcZOd</latexit>

x(j)
<latexit sha1_base64="EsazSayDmZZk1W/bVBVpDoOijdg=">AAAB+XicbVDLSsNAFL2pr1pfUZduBotQNyVRQZdFNy4r2Ae0sUymk3bsZBJmJsUS8iduXCji1j9x5984bbPQ1gMDh3Pu5Z45fsyZ0o7zbRVWVtfWN4qbpa3tnd09e/+gqaJEEtogEY9k28eKciZoQzPNaTuWFIc+py1/dDP1W2MqFYvEvZ7E1AvxQLCAEayN1LPtboj10A/Sp+whrTyeZj277FSdGdAycXNShhz1nv3V7UckCanQhGOlOq4Tay/FUjPCaVbqJorGmIzwgHYMFTikyktnyTN0YpQ+CiJpntBopv7eSHGo1CT0zeQ0p1r0puJ/XifRwZWXMhEnmgoyPxQkHOkITWtAfSYp0XxiCCaSmayIDLHERJuySqYEd/HLy6R5VnXPq2d3F+XadV5HEY7gGCrgwiXU4Bbq0AACY3iGV3izUuvFerc+5qMFK985hD+wPn8AlPeTng==</latexit>

x(i)
<latexit sha1_base64="jfzeb6sySg5mRHLW8P87TBonI5Q=">AAAB+XicbVDLSsNAFL2pr1pfUZduBotQNyWpgi6LblxWsA9oa5lMJ+3QySTMTIol5E/cuFDErX/izr9x0mahrQcGDufcyz1zvIgzpR3n2yqsrW9sbhW3Szu7e/sH9uFRS4WxJLRJQh7KjocV5UzQpmaa004kKQ48Ttve5Dbz21MqFQvFg55FtB/gkWA+I1gbaWDbvQDrsecnT+ljUmHn6cAuO1VnDrRK3JyUIUdjYH/1hiGJAyo04ViprutEup9gqRnhNC31YkUjTCZ4RLuGChxQ1U/myVN0ZpQh8kNpntBorv7eSHCg1CzwzGSWUy17mfif1421f91PmIhiTQVZHPJjjnSIshrQkElKNJ8ZgolkJisiYywx0aaskinBXf7yKmnVqu5FtXZ/Wa7f5HUU4QROoQIuXEEd7qABTSAwhWd4hTcrsV6sd+tjMVqw8p1j+APr8weTcZOd</latexit>

x(j)
<latexit sha1_base64="EsazSayDmZZk1W/bVBVpDoOijdg=">AAAB+XicbVDLSsNAFL2pr1pfUZduBotQNyVRQZdFNy4r2Ae0sUymk3bsZBJmJsUS8iduXCji1j9x5984bbPQ1gMDh3Pu5Z45fsyZ0o7zbRVWVtfWN4qbpa3tnd09e/+gqaJEEtogEY9k28eKciZoQzPNaTuWFIc+py1/dDP1W2MqFYvEvZ7E1AvxQLCAEayN1LPtboj10A/Sp+whrTyeZj277FSdGdAycXNShhz1nv3V7UckCanQhGOlOq4Tay/FUjPCaVbqJorGmIzwgHYMFTikyktnyTN0YpQ+CiJpntBopv7eSHGo1CT0zeQ0p1r0puJ/XifRwZWXMhEnmgoyPxQkHOkITWtAfSYp0XxiCCaSmayIDLHERJuySqYEd/HLy6R5VnXPq2d3F+XadV5HEY7gGCrgwiXU4Bbq0AACY3iGV3izUuvFerc+5qMFK985hD+wPn8AlPeTng==</latexit>

x(i)
<latexit sha1_base64="jfzeb6sySg5mRHLW8P87TBonI5Q=">AAAB+XicbVDLSsNAFL2pr1pfUZduBotQNyWpgi6LblxWsA9oa5lMJ+3QySTMTIol5E/cuFDErX/izr9x0mahrQcGDufcyz1zvIgzpR3n2yqsrW9sbhW3Szu7e/sH9uFRS4WxJLRJQh7KjocV5UzQpmaa004kKQ48Ttve5Dbz21MqFQvFg55FtB/gkWA+I1gbaWDbvQDrsecnT+ljUmHn6cAuO1VnDrRK3JyUIUdjYH/1hiGJAyo04ViprutEup9gqRnhNC31YkUjTCZ4RLuGChxQ1U/myVN0ZpQh8kNpntBorv7eSHCg1CzwzGSWUy17mfif1421f91PmIhiTQVZHPJjjnSIshrQkElKNJ8ZgolkJisiYywx0aaskinBXf7yKmnVqu5FtXZ/Wa7f5HUU4QROoQIuXEEd7qABTSAwhWd4hTcrsV6sd+tjMVqw8p1j+APr8weTcZOd</latexit>

x(j)
<latexit sha1_base64="EsazSayDmZZk1W/bVBVpDoOijdg=">AAAB+XicbVDLSsNAFL2pr1pfUZduBotQNyVRQZdFNy4r2Ae0sUymk3bsZBJmJsUS8iduXCji1j9x5984bbPQ1gMDh3Pu5Z45fsyZ0o7zbRVWVtfWN4qbpa3tnd09e/+gqaJEEtogEY9k28eKciZoQzPNaTuWFIc+py1/dDP1W2MqFYvEvZ7E1AvxQLCAEayN1LPtboj10A/Sp+whrTyeZj277FSdGdAycXNShhz1nv3V7UckCanQhGOlOq4Tay/FUjPCaVbqJorGmIzwgHYMFTikyktnyTN0YpQ+CiJpntBopv7eSHGo1CT0zeQ0p1r0puJ/XifRwZWXMhEnmgoyPxQkHOkITWtAfSYp0XxiCCaSmayIDLHERJuySqYEd/HLy6R5VnXPq2d3F+XadV5HEY7gGCrgwiXU4Bbq0AACY3iGV3izUuvFerc+5qMFK985hD+wPn8AlPeTng==</latexit>

d
<latexit sha1_base64="i4T7bfCHibYNJNngwp/p1+TXADk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJu3azSbsboRS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCorZNMMWyxRCSqE1CNgktsGW4EdlKFNA4EPgSj25n/8IRK80Tem3GKfkwHkkecUWOlZtgvV9yqOwdZJV5OKpCj0S9/9cKEZTFKwwTVuuu5qfEnVBnOBE5LvUxjStmIDrBrqaQxan8yP3RKzqwSkihRtqQhc/X3xITGWo/jwHbG1Az1sjcT//O6mYmu/QmXaWZQssWiKBPEJGT2NQm5QmbE2BLKFLe3EjakijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8fyTeM7A==</latexit>

⌫ =
d(
p

6� 1)

�w
<latexit sha1_base64="oqSqGk3GmrVPpooIc5I1YGpGFjA=">AAACD3icbVBNS8NAEN34WetX1aOXxaLowZJUUS9CUQ8eK1hbaELZbDe6dLOJuxOlhPwDL/4VLx4U8erVm//GbZuDVh8MPN6bYWaeHwuuwba/rInJqemZ2cJccX5hcWm5tLJ6paNEUdagkYhUyyeaCS5ZAzgI1ooVI6EvWNPvnQ785h1TmkfyEvox80JyLXnAKQEjdUpbrkzwMXYDRWja3Xb1rYL0IMO72NnJUveMCSD4PuuUynbFHgL/JU5OyihHvVP6dLsRTUImgQqidduxY/BSooBTwbKim2gWE9oj16xtqCQh0146/CfDm0bp4iBSpiTgofpzIiWh1v3QN50hgRs97g3E/7x2AsGRl3IZJ8AkHS0KEoEhwoNwcJcrRkH0DSFUcXMrpjfERAMmwqIJwRl/+S+5qlacvUr1Yr9cO8njKKB1tIG2kYMOUQ2dozpqIIoe0BN6Qa/Wo/VsvVnvo9YJK59ZQ79gfXwD6XmbUw==</latexit>

⌫ =
d
p

3

�w
<latexit sha1_base64="V9YFjElVZWMsLy6iCSIBxnuHmzE=">AAACCnicbVDLSsNAFJ34rPUVdelmtAiuStIKuhGKunBZwT6gKWUynbRDJ5M4c6OUkLUbf8WNC0Xc+gXu/Bunj4W2HrhwOOde7r3HjwXX4Djf1sLi0vLKam4tv76xubVt7+zWdZQoymo0EpFq+kQzwSWrAQfBmrFiJPQFa/iDy5HfuGdK80jewjBm7ZD0JA84JWCkjn3gyQSfYy9QhKZd7Ok7BWk5y1Lvigkg+CHr2AWn6IyB54k7JQU0RbVjf3ndiCYhk0AF0brlOjG0U6KAU8GyvJdoFhM6ID3WMlSSkOl2On4lw0dG6eIgUqYk4LH6eyIlodbD0DedIYG+nvVG4n9eK4HgrJ1yGSfAJJ0sChKBIcKjXHCXK0ZBDA0hVHFzK6Z9YlIBk17ehODOvjxP6qWiWy6Wbk4KlYtpHDm0jw7RMXLRKaqga1RFNUTRI3pGr+jNerJerHfrY9K6YE1n9tAfWJ8/vaSaTw==</latexit>

⌫ =
d(
p

11� 2)

�w
<latexit sha1_base64="bCZFEUWsQlA6jPW7lSpTBjLMvvo=">AAACEHicbVC7SgNBFJ2NrxhfUUubwSDGwrAbBW2EoBaWEcwDsiHMTmaTIbOz68xdJSz7CTb+io2FIraWdv6Nk0eh0QMXDufcy733eJHgGmz7y8rMzS8sLmWXcyura+sb+c2tug5jRVmNhiJUTY9oJrhkNeAgWDNSjASeYA1vcDHyG3dMaR7KGxhGrB2QnuQ+pwSM1MnvuzLGZ9j1FaFJt+jqWwWJ46T4EJcP0sS9ZAIIvk87+YJdssfAf4kzJQU0RbWT/3S7IY0DJoEKonXLsSNoJ0QBp4KlOTfWLCJ0QHqsZagkAdPtZPxQiveM0sV+qExJwGP150RCAq2HgWc6AwJ9PeuNxP+8Vgz+aTvhMoqBSTpZ5McCQ4hH6eAuV4yCGBpCqOLmVkz7xGQDJsOcCcGZffkvqZdLzlGpfH1cqJxP48iiHbSLishBJ6iCrlAV1RBFD+gJvaBX69F6tt6s90lrxprObKNfsD6+AV2Om4o=</latexit>

Figure 11: The maximum potential error in the estimated gradients when the space is voxelized. As
can be seen, the error vanishes when the corresponding voxels to x(i) and x(j) are far from each
other.

✓1
<latexit sha1_base64="b2Ff/oUFJw0eznxXS1RygRK2bZk=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTg9HHGnf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fja/d0rOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms+fJQGjOUE4soUwLeythI6opQxtRyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjCQ8Ayv8OY8Oi/Ou/OxaC04+cwx/IHz+QPOtY/Q</latexit>

✓2
<latexit sha1_base64="oe3DagNbCs6bjj10ybLfZH9d5SY=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTg9HHGm/1i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+75ScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZs+TgdCcoZxYQpkW9lbCRlRThjaikg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAg4Rle4c15dF6cd+dj0Vpw8plj+APn8wfQOY/R</latexit>

✓1
<latexit sha1_base64="b2Ff/oUFJw0eznxXS1RygRK2bZk=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTg9HHGnf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fja/d0rOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms+fJQGjOUE4soUwLeythI6opQxtRyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjCQ8Ayv8OY8Oi/Ou/OxaC04+cwx/IHz+QPOtY/Q</latexit>

✓2
<latexit sha1_base64="oe3DagNbCs6bjj10ybLfZH9d5SY=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTg9HHGm/1i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+75ScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZs+TgdCcoZxYQpkW9lbCRlRThjaikg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAg4Rle4c15dF6cd+dj0Vpw8plj+APn8wfQOY/R</latexit>

Figure 12: Gaussian (left) and uniform (right) perturbation examples.

clever less costly sampling strategy.

Uniform Perturbation— In this setting, the state space of the changeable parameters of the policy is
discretized and a uniform distribution is assumed around each value of this grid with some overlap-
ping with the neighboring cells (See Figure 12 right).

A.7 EXPERIMENTAL RESULTS

In this section, the experiments are designed to show each challenge separately and the efficacy
of our proposed solution to it. These experiments subsume linear open-loop controller, Nonlinear
open-loop controller, and Feedback controller.

A.7.1 LINEAR OPEN-LOOP CONTROLLER

As a simple yet general policy, in this section, we consider an open-loop controller , which is a linear
function of time. The policy ut = [u1t, u2t, u3t] constitutes the applied torques to the three motors
{m1,m2,m3} of the system and is assigned as

uit = wit+ bi for i = 1, 2, 3 (21)

Notice that the torque consists of two terms. The first term wit grows with time and the second term
remains constant. The controller has 6 parameters in total denoted by θ. The task is to predict∇θxt

for every t along the trajectory. In the training phase, the training data is obtained via perturbation
as described in Section 2.

Figure 15 shows examples of nominal trajectories + trajectories produced by the perturbed controller
and the computed derivatives. The arrows are plotted as they originate from the perturbed trajectories
only for easier distinction. Each arrow corresponds to the change of the states at a certain time step
on the source trajectory as a result of perturbing the policy. Each figure corresponds to a pair of
nominal values of {w, b} for the linear open-loop controller.

14

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

T = 200 T = 400 T = 600 T = 800

Figure 13: The time evolution of the GP approximated ĝt for a nonlinear sinusoidal open-loop
controller at some exemplary time instances.

T = 10 T = 40 T = 80 T = 200

Figure 14: The time evolution of the GP approximated ĝt for a PD feedback controller at some
exemplary time instances

Table 1: The aggregate performance of our method to predict physical derivatives in unseen di-
rections of perturbations to the parameters. ⟨·⟩ shows the time average. The first column is the
normalized time-averaged MSE. The second column is the time-averaged GP score (closer to 1 is
better. See Appendix A.8.5 for definition). The third column is the time-averaged misalignment
between derivatives. Every experiment is repeated for 10 voxel sizes and the values are chosen for
the best voxel size. N: Gaussian sampling, U: uniform sampling.

Task ⟨MSE⟩ ⟨Score⟩ ⟨cosα⟩
PD controller (N) 0.0087 0.8991 0.9492
PD controller (U) 0.0018 0.9841 0.9723
Sine 2 joints (U) 0.0368 0.7992 0.9513
Sine 2 joints (N) 0.0796 0.6696 0.9553

(a) (b) (c) (d)

Figure 15: Physical gradients computed for various time steps along a source trajectory using two
perturbed trajectories of linear open-loop. The orange trajectory is the source trajectory Ts and
others are the perturbed ones T1, T2. The quivers on the perturbed trajectories represent calculated
finite-difference physical derivatives which point for a state on the perturbed trajectory towards the
state that occurs at the same time on the source trajectory. See further examples in Figure 29.

A.7.2 NONLINEAR OPEN-LOOP CONTROLLER

Physical derivatives can naturally be computed for either linear or nonlinear controllers, which
makes it different from taking the gradient of models through time. In model-based methods, if
the model’s transition dynamics is not differentiable, taking the derivative is theoretically challeng-

15

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

ing. However, our method takes advantage of the real physics of the system to compute the gradients
regardless of whether the approximating model is differentiable or not. To elaborate more on this,
we test our method for a simple but nonlinear policy, i.e., ut = A sin(ωt). The sinusoidal torque
is applied to either one or two motors of the system to investigate the performance of our method.
We tested Gaussian and uniform perturbation for θ = {A, ω} as parameters of this controller. The
GP interpolation for the partial derivatives at some time instances along the trajectory can be seen
in Figure 13 and more extensively in Figures 16 to 18. One might be interested in the direction of
the predicted derivative instead of its exact size. To this end, we take several test perturbations for
every time step and use cos(α) as a measure of alignment between the predicted and ground-truth
derivative vectors. The time evolution of the histogram of this measure along the trajectory shows
a better alignment as time proceeds. This effect can be seen in Figures 27 and 28. This confirms
our observation of initial transient noise in the system that dies out gradually by the progression of
time. The overall performance of our method in predicting physical derivatives in unseen directions
for two different perturbation methods is shown in Table 1.

A.7.3 FEEDBACK CONTROLLER

Often in practice, the policy incorporates some function of the states of the system. Some well-
known examples which have been extensively used in control applications are P, PD, PI and PID
controllers. Here, we consider two members of this family, i.e., P and PD controllers. The policy
becomes u = Kpe for P controllers and u = Kpe + Kdė for PD controllers. The error e shows
the difference between the current state x and the desired state x∗. The parameters of the controller
{Kp,Kd} are scalar values that are multiplied by the error vector elementwise. This implies that
the controller parameters are the same for three motors, leaving the whole platform’s controller with
two parameters that weigh the value and the rate of the error. We applied the uniform and Gaussian
perturbation for the set of parameters θ = {Kp,Kd} with different scenarios. Figure 8 is an
illustration of the resultant trajectories for different levels of noise in the policy. The GP interpolation
for the physical derivatives at some time instances along the trajectory can be seen in Figure 14 and
more extensively in Figures 19 to 24. The time evolution of the histogram of misalignment between
predicted and ground-truth directional derivatives (see Figures 25 and 28) once again confirms the
existence of the initial transient noise, as was also observed in the Appendix A.7.2. Similar to the
sinusoidal experiment, the overall performance of our method is presented in Table 1.

A.8 EXPERIMENTAL DETAILS

Starting position in all the experiments is (π2 ,
π
2 , π). Task’s overall details are as following:

Task number of trajectories timesteps
Linear (N) 640 1500
PD controller(N) 640 1500
PD controller(U) 1000 1500
Sine 1 joint(N) 640 5000
Sine 1 joint(U) 1000 5000
Sine 2 joints(U) 640 5000
Sine 2 joints(N) 1000 5000

In normal sampling cases, we ran 10 simulations for each set of λ parameters which indicates noise
level.

A.8.1 LINEAR

uit = wit+ bi for i = 1, 2, 3 (22)

Gaussian Sampling

wi = Wi + ϵw,i for i = 1, 2, 3

ϵw,i ∼ N(0, ew × ∥Wi∥2)
ew ∼ exp(λw) for λw = 1, 5, 10, 50, 100, 500, 1000, 5000

16

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

bi = Bi + ϵb,i for i = 1, 2, 3

ϵb,i ∼ N(0, eb × ∥Bi∥2)
eb ∼ exp(λb) for λb = 1, 5, 10, 50, 100, 500, 1000, 5000

W = [0.00001, 0.0001,−0.00001], B = [−0.28,−0.15,−0.08]

A.8.2 PD CONTROLLER

Final destination is (π
10 , 3

π
4 , 7

π
12)

Gaussian Sampling

kp = KP + ϵ

ϵkp ∼ N(0, ekp × ∥KP∥2)
ekp ∼ exp(λkp) for λkp = 1, 5, 10, 50, 100, 500, 1000, 5000

kd = KD + ϵ

ϵkd ∼ N(0, ekd × ∥KD∥2)
ekd ∼ exp(λkd) for λkd = 1, 5, 10, 50, 100, 500, 1000, 5000

Uniform Sampling

kp ∼ U(−0.5, 1.5),KP = 1

kd = KD = 0.01

A.8.3 SINE 1 JOINT

Gaussian Sampling

w = W + ϵ

ϵw ∼ N(0, ew × ∥W∥2)
ew ∼ exp(λw) for λw = 1, 5, 10, 50, 100, 500, 1000, 5000

a = A+ ϵ

ϵa ∼ N(0, ea × ∥A∥2)
ea ∼ exp(λa) for λa = 1, 5, 10, 50, 100, 500, 1000, 5000

W = 0.01, B = 0.5

Uniform Sampling

w ∼ U(0.005, 0.015), a = A = 0.5

A.8.4 SINE 2 JOINTS

Gaussian Sampling

wi = Wi + ϵ for i = 1, 2

ϵw,i ∼ N(0, ew × ∥W∥2)
ew ∼ exp(λw) for λw = 1, 5, 10, 50, 100, 500, 1000, 5000

ai = Ai + ϵ for i = 1, 2

ϵa,i ∼ N(0, ea × ∥A∥2)
ea ∼ exp(λa) for λa = 1, 5, 10, 50, 100, 500, 1000, 5000

W = [0.01, 0.01], A = [−0.4, 0.5]

Uniform Sampling

wi ∼ U(0.005, 0.015) for i = 1, 2, a = A = 0.5

17

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

A.8.5 GP SCORE:

Definition of the GP score: The score is defined as (1−u/v), where u is the residual sum of squares
Σ(ytrue−ypred)2 and v is the total sum of squares Σ(ytrue−mean(ytrue))

2. The best possible score
is 1.0.

A.8.6 ZERO-SHOT PLANNING TASK:

For the task of Section 3: Number of training trajectories: 100 each with 1500 time steps

Kd = 0.01

Kp = Uniformly sampled from [0.2, 0.6]

Initial point: X◦ = [π/2, π/2, π])

desired position = [π/10, 3 ∗ π/4, 7 ∗ π/12]

A.9 MORE RESULTS

In this section, the results of the extra experiments that were eliminated from the main text due to
the space limit are presented.

The following figures show GP models trained by a set of directional derivatives collected during
the perturbation phase. The results are provided for the experiments of Appendices A.7.2 and A.7.3.

T = 0 T = 100 T = 300 T = 500

T = 800 T = 1100 T = 1400

T = 2350 T = 2850 T = 3350 T = 3850

T = 4350 T = 4700 T = 5100 T = 5800

T = 1850

Figure 16: The time evolution of the learned GP models from directional derivatives for ∂x3/∂kp
by Gaussian sampling (Sine 1 joint).

18

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

T = 0

T = 700 T = 1050 T = 1400 T = 1900

T = 2350 T = 3350 T = 3850

T = 4300 T = 4650 T = 5150 T = 5800

T = 2700

T = 100 T = 200 T = 450

Figure 17: The time evolution of the learned GP models from directional derivatives for ∂x3/∂kp
by uniform sampling (Sine 1 joint).

T = 0 T = 150

T = 450 T = 650 T = 900

T = 1350 T = 1700 T = 2350

T = 2500 T = 2650 T = 2800 T = 2950

T = 2200

T = 1050

T = 250T = 50

Figure 18: The time evolution of the learned GP models from directional derivatives for ∂x2/∂kp
by uniform sampling (Sine 2 joints).

19

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

T = 120

T = 250 T = 310 T = 360T = 190

T = 0

T = 430 T = 500 T = 640 T = 920

T = 1090 T = 1210 T = 1330 T = 1440

T = 20 T = 80

Figure 19: The time evolution of the learned GP models from directional derivatives for ∂x1/∂kp
by Gaussian sampling (PD controller).

T = 0 T = 10 T = 30

T = 70 T = 110 T = 210

T = 270 T = 390 T = 500 T = 830

T = 1000 T = 1130 T = 1300 T = 1460

T = 160

T = 50

Figure 20: The time evoltuion of the learned GP models from directional derivatives for ∂x2/∂kp
by Gaussian sampling (PD controller).

20

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

T = 0 T = 10 T = 20 T = 40

T = 60 T = 90 T = 120

T = 210 T = 280 T = 460 T = 710

T = 900 T = 1120 T = 1270 T = 1490

T = 160

Figure 21: The time evolution of the learned GP models from directional derivatives for ∂x3/∂kp
by Gaussian sampling (PD controller).

T = 0 T = 40

T = 70 T = 110 T = 170 T = 220

T = 290 T = 310 T = 370 T = 420

T = 560 T = 780 T = 1120 T = 1470

T = 20T = 10

Figure 22: The time evolution of the learned GP models from directional derivatives for ∂x1/∂kp
by uniform sampling (PD controller).

21

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

T = 0 T = 10 T = 30 T = 50

T = 90 T = 160 T = 200

T = 270 T = 370 T = 420 T = 550

T = 780 T = 1030 T = 1260 T = 1490

T = 120

Figure 23: The time evolution of the learned GP models from directional derivatives for ∂x2/∂kp
by uniform sampling (PD controller).

T = 0 T = 10 T = 20 T = 50

T = 80 T = 120 T = 170

T = 220 T = 300 T = 400 T = 510

T = 1000 T = 1200 T = 1470T = 720

T = 150

Figure 24: The time evolution of the learned GP models from directional derivatives for ∂x3/∂kp
by uniform sampling (PD controller).

22

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

T = 0 T = 40 T = 80 T = 120

T = 160 T = 200 T = 260 T = 340

T = 660 T = 880 T = 1020

T = 1360T = 1140 T = 1260

T = 440

T = 1480

Figure 25: The time evolution of the histogram of cos(α) where α is the angle between the true and
predicted directional derivative. The perturbations in the training phase are generated by Gaussian
sampling. As shown, angles of the derivatives are predicted mostly correctly (PD controller).

T = 1440

T = 0 T = 40 T = 80 T = 120

T = 160 T = 200 T = 260 T = 340

T = 660 T = 1020T = 880T = 440

T = 1260 T = 1480T = 1360

Figure 26: The time evolution of the histogram of cos(α) where α is the angle between the true and
predicted directional derivative. The perturbations in the training phase are generated by uniform
sampling. As shown, angles of the derivatives are predicted mostly correctly (PD controller).

23

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

T = 50 T = 350 T = 650 T = 950

T = 1250 T = 1550 T = 1850 T = 2150

T = 2450 T = 2750 T = 3050

T = 3650 T = 3950 T = 4250 T = 4550

T = 3350

Figure 27: The time evolution of the histogram of cos(α) where α is the angle between the true and
predicted directional derivative. The perturbations in the training phase are generated by Gaussian
sampling. As shown, angles of the derivatives are predicted mostly correctly (Sine 2 joints).

T = 50 T = 350 T = 650 T = 950

T = 1250 T = 1550 T = 1850 T = 2150

T = 2450 T = 3350

T = 3650 T = 3950 T = 4250 T = 4550

T = 3050T = 2750

Figure 28: The time evolution of the histogram of cos(α) where α is the angle between the true and
predicted directional derivative. The perturbations in the training phase are generated by uniform
sampling. As shown, angles of the derivatives are predicted mostly correctly (Sine 2 joints).

24

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 29: Examples of trajectories produced by the perturbed controller and the computed deriva-
tives along the trajectory. The arrows are plotted as they originate from the perturbed trajectories
only for easier distinction. Each arrow corresponds to the change of the states at a certain time step
on the source trajectory as a result of perturbing the policy. Each figure corresponds to a pair of
nominal values of {w, b} for the linear open-loop controller of Appendix A.7.1 and the perturbed
trajectories are produced by Gaussian sampling (The orange trajectory is the source trajectory Ts
and others are the perturbed ones T1, T2. The quivers on the perturbed trajectories represent calcu-
lated physical derivatives).

25

	INTRODUCTION
	Estimating Physical Derivatives
	Experiments
	Conclusions
	Supplementary Material
	Physical Platform
	Additional Plots illustrating Real World Challenges (section A.5)
	Applications of physical derivatives
	Detailed literature review
	Tackling inherent noise
	Solution to temporal noise
	Solution to spatial noise

	Perturbation methods
	Experimental Results
	Linear open-loop controller
	Nonlinear open-loop controller
	Feedback controller

	Experimental details
	Linear
	PD Controller
	Sine 1 joint
	Sine 2 joints
	GP Score:
	Zero-shot planning task:

	More results

