Under review as a conference paper at ICLR 2026

BOOSTED TREES ON A DIET: COMPACT MODELS FOR
RESOURCE-CONSTRAINED DEVICES

Anonymous authors
Paper under double-blind review

ABSTRACT

Deploying machine learning models on compute-constrained devices has become
a key building block of modern IoT applications. In this work, we present a
compression scheme for boosted decision trees, addressing the growing need for
lightweight machine learning models. Specifically, we provide techniques for
training compact boosted decision tree ensembles that exhibit a reduced mem-
ory footprint by rewarding, among other things, the reuse of features and thresh-
olds during training. Our experimental evaluation shows that models achieved
the same performance with a compression ratio of 4-16x compared to LightGBM
models using an adapted training process and an alternative memory layout. Once
deployed, the corresponding IoT devices can operate independently of constant
communication or external energy supply, and, thus, autonomously, requiring only
minimal computing power and energy. This capability opens the door to a wide
range of IoT applications, including remote monitoring, edge analytics, and real-
time decision making in isolated or power-limited environments.

1 INTRODUCTION

Modern Internet of Things (IoT) techniques have paved the way for new applications in domains
such as home automation, healthcare, agriculture, or industry (Khanna & Kaur,2020). For instance,
in the context of home automation, sensors can be used to automate (smart) lighting and (smart)
heating. Another example is using sensor data for predictive maintenance to prevent machine fail-
ures and enhance productivity. Microcontrollers are a key building block of these IoT applications,
often equipped with sensors to measure parameters such as temperature, humidity, pressure, or vi-
brations. A key characteristic of such devices is that they generally have very limited computing
and memory resources (Ojo et al., 2018)). For instance, the broadly used open-source Arduino Uno
R4 Minima board is equipped with a 32-bit Renesas RA4M1 microcontroller and an Arm Cortex-
M4 processor running at 48 MHz, 32 KB main memory (RAM), 256 KB flash storage, and 1 KB
electrically erasable programmable read-only memory (EEPROM). There are also microcontrollers
with even less memory and computing resources, such as the Arduino Nano board. Furthermore, the
available resources must be shared among the operating system, sensing data, data-processing pro-
grams, and machine learning models. Another characteristic is that IoT microcontrollers are often
designed for energy efficiency. This makes them well-suited for being deployed in remote locations,
where a continuous power supply is not available. Under ideal conditions, such devices can run
for several months or even years via batteries. Such applications are also supported by specialized
communication protocols such as LoRaE]

To minimize energy-intensive data transfers and to enable real-time processing, the on-site analysis
of data on the IoT device is preferable if possible. Embedding machine learning methods directly
into IoT nodes addresses this need. The key challenge in embedded machine learning is to minimize
both compute and memory requirements to enable execution on resource-constrained devices while,
at the same time, preserving model quality. This has given rise to the concept of Tiny Machine
Learning (TinyML) models (Gural & Murmann, 2019; Reddi et al.,[2021; Kumar et al., 2017} |War-
den & Situnayake, [2019). By sufficiently reducing resource demands, the “tiny”” models can be run
directly on the microcontrollers, enabling compact “smart” devices. An example of a corresponding
IoT application is sketched in Figure[I]

"LoRa enables small volumes of data to be transferred over several kilometres (Mayer et al.} [2019).

Under review as a conference paper at ICLR 2026

Contribution: We propose a framework that allows for compressing boosted decision tree ensem-
bles, one of the most widely used machine learning models for structured data. Our approach,
referred to as Trees on a Diet (ToaD), relies on (1) regularizers that encourage the reuse of features
and thresholds during training and on (2) a specialized memory layout to store the resulting trees.
More precisely, we utilize global lookup tables for both features and thresholds, and we store the
trees without pointers using an adapted bit-wise encoding. Overall, these modifications lead to tree
ensembles with reduced memory requirements, without sacrificing model quality. We showcase the
effectiveness of our approach by assessing the quality-memory trade-off in our experimental evalua-
tion. Our results indicate that the adapted training process yields models of comparable performance
while achieving compression ratios of 4-16x compared to other baselines.

2 BACKGROUND Sensors Microcontr‘oll(ejr‘
We begin with the background on boosted de- BEH
cision trees and tiny machine learning models. O v
sensor
data
2.1 BOOSTED DECISION TREES O g - d{}b _p send
K> Ty Tree warning? ‘))
In contrast to single decision trees, tree en- < *
sembles aggregate the outputs of multiple trees. O-

For instance, a random forest (Breiman, [2001)

is obtained by constructing the trees indepen- Figyre 1: A machine learning model (decision
dently from each other, introducing random-) on a microcontroller processes multi-sensor
ness to the construction process so that a set of gata Jocally and transmits only relevant events, re-

different trees is obtained. In contrast, boosted ducing energy costs; the decision tree must have a
decision trees are built in an incremental man- inimal compute and memory footprint.

ner, one tree at a time. Two prominent frame-
works in this context are XGBoost (Chen & Guestrin, 2016) and LightGBM (Ke et al., [2017)).

Let 7 = {(x1,41)s- -+, (Xn,yn)} C R? x Y be a training (multi)set of data points x; € R¢ with
associated labels y; €). Here,) is the set of labels. For regression, we have)V = R, whereas
one is given a finite set Y = {p1,...,p.} of classes for classification scenarios. Both XGBoost
and LightGBM model ensembles are built in an additive way, resulting in a tree ensemble model 7',
whose prediction 7'(x) for a new data point x € R? is based on the sum of predictions made by K

individual decision trees ty, i.e., T(x) = Zle tr(x), where t;(x) denotes the prediction made by
the tree ¢, for an instance x € R?. Such ensembles are built in a way to minimize

n

> Ly T(x))+ Y Q(t), (1)

i=1 k=1

where £ : Y X Y — R™ is a suitable loss function and where) () specifies the complexity of the
tree ¢;. Constructing an optimal tree ensemble 7" w.r.t. Equation () is generally not feasible. Instead,
one typically resorts to / boosting rounds, and in each round, one new tree is added to the ensemble
built so far so that the Equation (T) is minimized. More precisely, in boosting round m > 1, one
considers the ensemble 7,1 = ZZZ; ti of the trees built so far, starting with 7j := 0, and aims
to find the next best tree t,, that minimizes Y .| £ (i, Tin—1(Xi) + tm(x;)) + Y peq Q(tx). The
decision tree ¢,, itself is also constructed in a greedy manner, starting with the root of the tree being

. . . 113 i _ 1 L 2
recursn./ely split. To penahze complex” trees, one usually resorts to Q(tm? =yL+35A) j=1 05 as
regularizer, where L is the number of leaves and vy, ..., v, € R the associated leaf values of ¢,,.

2.2 RELATED WORK

Decision trees and decision tree ensembles, such as Gradient Boosted Decision Trees (GBDT), have
remained very popular, despite the rise of deep learning models (Grinsztajn et al.| 2022)), especially
for structured (tabular-like) data. They are also generally easy to interpret and need few compu-
tational resources. Recent advances in tree-based models have also introduced several approaches
to enhance their efficiency. For instance, several works focused on improving the training or in-
ference speed of GBDT by means of array structures (Lucchese et al., 2017; |Ye et al., [2018)) or

Under review as a conference paper at ICLR 2026

via the quantization of gradient statistics (Shi et al., 2022} Jiang et al.l 2018; Devos et al.| [2020).
Quantization of tree parameters was employed by [Koschel et al.| (2023), who adapted variants of
QuickScorer (Lucchese et al.,|2017) to enable deployment on IoT devices. Moreover, quantization
of GBDT for resource-constrained devices was investigated by |Alsharari et al.| (2025)) and [Wang
et al.| (2023), both targeting FPGAs. Reduction of model size and latency is the motivation for dif-
ferent post-training pruning techniques (Liu & Mazumder, [2023; |Guo et al., [2018)), some including
the refinement of leave values (Devos et al.| 2025 Emine et al., [2025; Buschjager & Morik, [2023).
Increased efficiency of tree models by design or within the training process is addressed by works
from |[Kumar et al.| (2017) for single decision tree sizes, Ponomareva et al.|(2017) for multiclass clas-
sification, and [Peter et al.|(2017)) for efficient evaluation of deep trees considering feature acquisition
and tree evaluation costs. Further works mostly focusing on optimization of random forests include
Ren et al.|(2015)), Alkhoury et al.| (2025), and Nan et al.| (2016). Due to a lack of space, we refer to
Appendix [C] for a more detailed discussion of related approaches.

In this work, we focus on gradient-boosted trees. For subsequent deployment we aim to minimize
the memory footprint of the ensemble during the training process, while simultaneously ensuring a
good model fit and compact model size. We extend the work of |Peter et al.| (2017) by defining suit-
able feature costs that aim at reducing the bits required to encode feature indices. We also introduce
a corresponding cost regularizer for split thresholds and leaf values, and provide a specialized en-
coding for the induced binary trees. Moreover, our memory layout includes global threshold arrays
shared by all learners.

3 APPROACH

Pruning or quantization techniques are typically applied before or after the training to reduce the size
of trees (see Section[d). However, such methods generally cannot exploit task-specific compression
potential. For instance, they are not designed to incorporate the potential in memory saving of
feature sharing or the reuse of (leaf/split) thresholds within a single tree or across all trees in the
ensemble. Our framework exploits this potential by penalizing unused features and thresholds when
growing new trees. In combination with a corresponding memory layout, this yields a substantially
smaller memory footprint with reused features and thresholds being stored more compactlyE]

3.1 TRAINING COMPRESSED TREES

As sketched above, boosted tree ensembles are built in an incremental manner, and in each boosting
round m, a new tree t,, is added to the ensemble. The tree t,, is, in turn, also built in a greedy
manner by iteratively splitting leaves (starting with the root) if this leads to a better objective (if not,
the construction process stops). To assess the quality of such a leaf split, an associated gain A is
computed (Chen & Guestrin, [2016)). More specifically, for a leaf associated with a set I of training
indices, a split along feature dimension ¢ € {1, ..., d} with respect to threshold induces a potential
gain A(I,i,) € R (which may also be negative). Leaves are split as long as some split yields a
positive gain, always choosing the leaf and split with the highest gain.

The standard gain does not promote the reuse of features or thresholds. FollowingPeter et al.|(2017),
we introduce an additional regularizer based on the set of features Fyy C {1,...,d} and thresholds
T/ C R with f € Fyy that have already been used by the trees t1, . . . , t,, built so far (including the
current tree ¢,,). The memory layout detailed below allows for storing those features and thresholds
in a much more compact manner. In particular, features and thresholds that have already been
used in previous trees contribute only marginally to the overall space consumption and are therefore
essentially “free of charge”. A simple linear regularizer that favors such a reuse of features and
thresholds is given by

Q(tm) = QUtm) + - [Ful+&- D> T, 2)

feFy

2Our work targets resource-constrained devices where memotry, not latency or energy, is the main bottle-
neck. In many applications, the model size determines whether a deployment is feasible or not. It is worth
pointing out that local on-device inference is generally far more energy-efficient than transmitting data to a
remote server and also incurs only minimal latency. Technically, our compression scheme adds only mini-
mal overhead (a few bit-wise operations), so we expect the impact on latency and energy per prediction to be
negligible.

Under review as a conference paper at ICLR 2026

Metadata Feature & Threshold Map i Global Features & Global Leaf Values Trees

Thresholds

Thresholds for
feature f1 € Fy
|

Max depth of trees Max number max.r,[T/| of used
(5-bit Integer) thresholds for any feature |
' (16-bit Integer) Tree t)
H i ! ! 1
101...00 ©00...10 01...00 01...00 00...10 ... @01...1 . 0...1 L. 0...1 00...11 ... 00...01
L I

ey mmm e
. _ .

' i ' '
Number K of trees Number | F, | of Thresholds for Tree tx
(8-bit Integer) used features feature fi | € Fiy
(16-bit Integer)

Figure 2: High-level sketch of the memory layout used to store an ensemble of boosted decision
trees. The first part stores some metadata, such as the number K of boosted trees or the maximum
depth of all trees. The following three parts encode the used features, thresholds, and leaf values.
Finally, the references to the features and thresholds for the individual trees are stored.

where ¢, € RT are user-defined hyperparameters. Thus, using a new feature that has not been
used so far leads to an increase of |Fy/| by 1, and, hence, to an increase of the objective H by ¢.
Accordingly, if a new threshold is used for a feature f € Fy, the objective is increased by £ | Using
this modified regularizer leads to the following modified gain

Al(Ia Z?/J/) = A(Iu Z,,LL) - SfL - Sté-a (3)

where sy = 1 in case a new feature (index) is used and sy = 0 otherwise, and s; = 1 in case a new
threshold is used and s; = 0 otherwise, see Appendix [A] for the derivations.

3.2 MEMORY LAYOUT

Our memory layout leverages the reuse of feature indices and thresholds enforced by the modified
regularizer. A high-level sketch of the overall memory layout is shown in Figure 2] In a nutshell, it
reduces the memory footprint of boosted tree ensembles through two mechanisms:

1. Bit-wise encoding: Encoding the information in a bit-wise manner allows to store a minimal
representation of information compared to the use of higher level data types that may use
non-minimal representations (e.g. a bool occupies eight bits in memory in C).

2. Shared thresholds and leaf values: Global arrays are used to store threshold and leaf values,
which are referenced within internal tree nodes and leaves. Sharing values across trees can
substantially reduce the bits needed for storing thresholds and leaf weights.

The memory layout comprises five components. The first stores metadata, including the number
K of trees, the maximum tree depth, the number |Fy;| of used features, and the maximum number
of thresholds max se, | 77| associated with any feature. In addition, three global arrays and the
individual decision trees 1, . . ., t i are stored. Figure [3|illustrates the bit-wise encoding of a simple
model with two exemplary decision trees. We now detail the individual components.

3.2.1 BIT-WISE ENCODING

Boosted ensembles typically employ shallow, nearly balanced trees with a small depth (e.g., a depth
of up to 5). Such trees can be stored efficiently using pointer-less schemes. More precisely, the root
is stored at index ¢ = 0, and for a node at index ¢, the left child is stored at index 2 - 7 + 1 and the
right child at index 2 - i + 2. For example, in Figure 3] two such array-based representations are
given. Here, the root ny of tree ¢ is stored at index 0, and its two children ny and ng are stored at
indices 1 and 2, respectively. We distinguish between internal nodes and leaf nodes:

e Internal nodes: For each internal node n;, two pieces of information are stored, namely
a reference for the feature f; € Fps that is used for splitting along with an index for the
associated threshold value ,ué— (j-th threshold associated with feature f;). For instance,
for tree t; and node ni, we store a reference 10 for feature f3 and an index O for the
associated threshold 3. The reference 10 can be used to loop up the relevant information

3For example, if a feature corresponds to temperature values, it may be sufficient to restrict the set of ad-
missible thresholds to, e.g., 0 and 20 degrees Celsius. Alternative regularization schemes are also conceivable.

Another option is, for instance, Qe (tm) = Q(tm) + ¢ - Z‘Ji"l‘ JHEE_jwithp =37 |77, which
imposes an exponentially increasing penalty on the number of distinct features and thresholds. In practice,

however, the linear regularizer has been shown to be highly effective and is, hence, used in this work.

Under review as a conference paper at ICLR 2026

Example Dataset Trees

Input Features: F = {1,2,3,4} Used Features: Fiy = {1,3,4}

Feature & Threshold Map

Input feature Threshold Threshold Number of

: bitwidth B numeric type thresholds @ {011 (110§
v v v v i L l LT,

v
)if Int
Index if Float

f] 00 (Feature 1) | 001 (B = 2! = 2) 0 (Int) 1(77=2) ny ny ng L Iy I3 Uy ny ng ng I Iy 13 Uy
fo |10 (Feature 3) | 000 (B =20 =1) | 0(nt) 17T =2) [ﬂm o1 1 JJod] o [m [) au 1 m 1 - ma
f3 |11 (Feawre) | 100 (B =2* =16) | 1(Floa |0 (77| =1) fopl fopd fop? vio v vz g fopy frpy fopd v vs vy v

fi f2 f3 : Global Features & Thresholds Global Leaf Values (32-bit Float)

(0000101)(100000][11' 10)

y = [log2(|Fyl) z= 'logz(l;:zkf\T/\) wopd

Figure 3: Illustration of a bit-wise encoding of a boosted tree ensemble with two trees. Each tree
is stored in a bit-wise manner, with each internal node storing a reference to a feature index and a
reference to a threshold index. For instance, for the left child ns of the root of the tree ¢, a reference
to feature f5 is stored along with a reference to the associated threshold 3. For feature fs, there
are two thresholds used by the entire ensemble, namely p? and p2, which can be used by any node
of any of the trees (e.g. 2 in node n3). Accordingly, the leaf values stored in the leaves of the trees
are shared (e.g. v, is used in leaf [, of tree ¢; and leaf [, of ¢5) and stored in one array. Since the
bit-size of the thresholds varies, additional metadata is stored in the Feature & Threshold
Mapping table/array. For instance, there are two thresholds for feature f; of bit-size 2 (i.e., four
different values), whereas there are two 1-bit thresholds for feature fs.

inthe Feature & Threshold Map. In this case, f3 corresponds to the fourth feature,
24 bits are used to represent the thresholds (floating point), and one threshold was used
overall for that feature. Using the index 0 and along with the information stored for the
other features, one can then loop up the threshold value 3.

* Leaf nodes: For each leaf node, a reference to its leaf value v is stored. For instance, for
the leaf [; of tree ¢, a reference 000 to the leaf value vy is stored. All these leaf values are
shared across all the trees and are stored in the array Global Leaf Values.

The details for each feature are stored in a bit-wise manner in the array Feature &
Thresholds Map that is referred to when decoding the nodes. To process such a reference we
need to know the bit widths of following information:

(a) Input feature index: For a given dataset with features F; = {1,...,d}, the num-
ber d of features is known and can be encoded using [log, (| Fr|)] bits.

(b) Threshold bit-width: Threshold values are assumed to be representable as 1-bit
(binary feature), 2|4-bits (small integers), or 8|16|32-bits (floating point with different pre-
cision or integers). The threshold bit-width per feature can be stored as a power of two,
requiring only three bits to represent the aforementioned values (2° to 2°).

(¢) Threshold numeric type: The representation can be either a floating point number
(float) or a fixed point number (integer), and can be stored using a single bit, allowing for
big integers and floating point values to be used.

(d) Number of thresholds: The maximum number maxjcr, |7/| of thresholds
among all features can be determined at training time and can be encoded using
[log, (maxep, [T/])] bits. Since features with 0 thresholds are not included, we map
the value O to the threshold count 1 (i.e., the bit value +1 is the actual count).

Hence, the array-based representation Trees of the trees t1, ..., tx along with the Feature &
Threshold Map are used to store the trees and additional information to retrieve the actual split
feature indices and thresholds and leaf values in the two global arrays, which are described next.

Under review as a conference paper at ICLR 2026

3.2.2 SHARING THRESHOLDS AND LEAF VALUES

The threshold values are stored on a per-feature basis in a single array, see Global Features
& Thresholds in Figure 3] which is referenced by nodes throughout the entire tree ensemble.
For example, consider a tree node n; referencing the first feature, f1, along with its corresponding
first threshold, u%, as depicted in tree ¢1 in Figure The Feature & Threshold Map allows
for calculating the offset for each feature by determining the memory consumption of all previous
features. Therefore, the associated threshold value (i.e. 10 for u}) can be extracted and decoded to
its original representation (i.e. 10 — (int)2 for pl). This permits the variation of both the bit size
and precision between different features within a single array.

The leaf values are stored (globally) in the array Global Leaf Values using a fixed 32-bit
floating point representation. This allows for a high precision in leaves and a reuse across the
different trees in the ensemble without feature reference. For example, consider the fourth global
leaf value v, in Figure which is referenced by both the leaf [, in tree ¢; and leaf [; of ts.

4 EXPERIMENTS

To assess the quality of our compression approach and the impact of the additional parameters on
the results, we ran three kinds of experiments: (1) A performance comparison of ToaD with other
GBDT and tree ensemble optimization methods, (2) an univariate sensitivity analysis evaluating
the threshold and feature penalties independently, and (3) a multivariate analysis combining both
penalties. For the evaluation, the ToaD models were trained with varying hyperparameters (grid-
search). The maximum number of iterations ranges from 2° to 2!, maximum depth per tree from 2°
to 23, and ¢ and £ from 2710 to 215, Moreover, ¢ and £ were set to 0 in every possible combination.
This results in 32,076 models trained per dataset.

4.1 IMPLEMENTATION DETAILS

Our implementation builds upon the LightGBM frameworkﬂ The penalties were added as op-
tional hyperparaneters to the training process of GBDT. The parameter ¢ is introduced as variable
tinygbdt_penalty_feature and £ as variable t inygbdt _penalty_threshold. More-
over, logging the used features and thresholds enables tracking of the memory consumed by the
selected memory layout. Therefore, the optional variable t inygbdt_forestsize allows train-
ing models for a specific memory limitation (such as 32KB on an Arduino Uno Rev 3). Experiments
were conducted on a collection of eight widely used publicly available datasets (see Appendix B for
specifics). We split all datasets into training and test sets using an 80/20 ratio, respectively. Model
fitting was conducted on the training set, and the test was used to measure the final induced quality
of the models. As metrics for quality measurement of the resulting models, accuracy is used for
classification datasets and the R? score for regression datasets (Lewis-Beck & Lewis-Beck, 2015)).
Note that, for both metrics, higher values indicate better model performance.

4.2 MODEL COMPARISON TO BASELINES

We compared the performance of our approach to that of other efficient GBDT (compression) meth-
ods. LightGBM is considered an established framework for training boosted trees (Ke et al.,[2017).
It was used for comparison in both the standard and quantized version. For quantization, the thresh-
old and leaf values were reduced to 16-bit floating point precision. In addition LightGBM was eval-
uated in an array-based structure, i.e. it was stored without pointers but assuming all trees are com-
plete as described in Section[3.2.1] This allows the comparison between ToaD and LightGBM under
a unified pointer-less layout. Moreover, different pruning methods were evaluated with cost-efficient
gradient boosting (CEGB) (Peter et al.| 2017)) and minimal cost-complexity pruning (CCP) (Breiman
et al., [1984). All models were trained with the same hyperparameters as the ToaD models, i.e. all
combinations of 2° to 2!° maximum trees and maximum tree depth between 2° and 23. Along-
side related work (e.g., Buschjager & Morik| (2023)), we calculated the memory usage of a model

4All the source code and the experimental setup will be made publicly available upon acceptance. An
anonymous code repository is already available at https://anonymous.4open.science/r/ToaD/
experiments/README . md.

https://anonymous.4open.science/r/ToaD/experiments/README.md
https://anonymous.4open.science/r/ToaD/experiments/README.md

Under review as a conference paper at ICLR 2026

mushroom (binary) covtype (binary) breastcancer (binary) kr-vs-kp (binary)
MO RS [/ S SRR,
0.08 | 1= -e— LightGBM : / 0.98 7 ¢
> b = LightGBM FP16 > 085 /" 5 ‘,x/
8 096 LightGBM array-based <4 i 8 0.96 1 x=x
8 cpp 3 A 3 / 7
<094 CEGB < 0.80 = < 094
002 —-— ToaD wlo Penalties /4,; 7
) —x— ToaD w/ best Penalties 0.75 - x=%= 0.875 0.92
0.90
kin8nm (regression) california_housing (regression) wine (multiclass) covtype_multi (multiclass)
08 S ———]] L Xk
27 = 08+ =z 065 T 09 s
2 g 7 P
06 Vi Vi o %
w4 ° :: 0.60 ,,/ 08 e
2 Nz 206 / 0 By 7 # z ¥
g Nl 8 g AP 4 o
@D 0.4 ik 4 7 30585 “ - 307 =
o V2 s & / o« 8 xR X 8 —x—¥
4 ZRr; o < i < xZl il
0.4 050 - 06
02 2 /
2 P 045
0.0 02 05
I R R R I I R FERR S ST ST
N x»,rgg\\,&,gévg o ~m«?;\,&;g§,{§ o '\(’)‘g'f\\/&);;é\/g o ngg&:gévrvg
Max Memory (KB) Max Memory (KB) Max Memory (KB) Max Memory (KB)

Figure 4: Accuracy vs. memory (KB) for ToaD and baselines. All models were trained on multiple
train-test splits and the best model performance at a given memory limit from the hyperparameter
analysis is depicted. The points show the mean across the splits, the errorbars show the respective
standard deviation.

with 128 bits per node, assuming all values are stored in single precision (float32) and 64 bits for
quantized half-precision models?| In constrast to Buschjiager & Morik| (2023)), we assume the infor-
mation about a node being a leaf can be encoded by a specific feature and child node identifier, thus
no additional boolean values are required. Moreover, boosted trees do not need to store the class
information within a leaf but create one ensemble per class.

For the calculation of the memory footprint of the ToaD models, the proposed memory layout is
used. For the ToaD models, it is distinguished between the memory layout without applying penal-
ization during training, i.e., ¢ = 0 and £ = 0, and the best-performing models with penalization.
For the comparison visualized in Figure] the best-performing models with a memory consumption
less than or equal to the respective upper limit were chosen from the grid search results. Thus, the
number or depth of trees of models at the same memory limit for the same dataset may differ for
different model types. We expect ToaD to outperform the baseline implementations as it does not
require pointers to its children, it encodes boolean values with only 2 bits, and a suitable penalty
configuration encourages the model to reuse features and thresholds. Thus ToaD especially benefits
from the pointer-less tree layout which is strong for complete trees, whereas a standard child-pointer
layout also allows deeper non-complete trees without wasting too many resources.

4.2.1 RESULTS BASELINE COMPARISON Penalty Grid Search, California Housing, 1 KB

| | o o | 5| []o:
Since the primary use case for ToaD is microcon- 3 1 os

. P . ++ 3
trollers, typical memory limits are considered for > 2° Best Modeh 13 $4884
the respective performance comparison. The results s £888¢ 04 9
. . . . R & 1 233381 S

are depicted in Figure[d For almost all investigated g 233381 032
configurations, ToaD outperforms the baseline ap- 822 i # - =
proaches, even more when considering the models 23888 ‘
from the penalized training. On all tested multiclass 271 i 1 01
datasets, the ToaD approaches are superior to the L 0.0

T T T T T
2-7 272 23 28 213

other models across all memory limits. The same Threshold Penalty

holds for the regression datasets until the perfor-
mance saturates, starting with different memory lim-
its, with some of the competitors catching up to the
same score with increasing memory available. In the
interesting memory range up to 128 KB, before some model performances saturate, the competing
methods need 4 to 16 times the memory to achieve the same performance. For example, on the
covertype multiclass dataset, the best ToaD model at 2 KB achieves an accuracy of 69 %, which
quantized LightGBM as the best competitor only matches with 8 KB, while float32 LightGBM even
needs 16 KB. A further finding includes that ToaD outperforms array-based LightGBM, showcasing
the effectiveness of our approach beyond the pure pointer-less layout.

Figure 5: Model performance on California
Housing with a 1 KB memory limit under
varying penalties.

SEach node stores four values: one feature identifier, one threshold, and two child pointers.

Under review as a conference paper at ICLR 2026

california_housing kin8nm covtype breastcancer kr-vs-kp mushroom wine covtype_multi
5210 (regression) (regression) (binary) (binary) (binary) (binary) (multiclass) (multiclass)
3T 1L Y w 40 ot
£5 . ts | 75 4 W“. Y Ry » ' s v 10 "X' w0
oo Y v % % . !
2205 w. 150 i 5.0 Y Lo hS v 1 10 * %
ug ‘, b 'v! A3 vw "v,' 5 % 5 o2
5= W 25 =} 25 . ' Y
o % i'" ",,‘ w
=x 0.0 Y| vovverw| 0 | Vo] “vrveev| .
N Feature Penalty - Feature Penalty Feature Penalty Feature Penalty Feature Penalty Feature Penalty Feature Penalty Feature Penalty
=1 6 T 120 24 ey
85 o m"g,. 1200 [=*% 1200 1200 et 175 % Tooo M haw " 500 oo [2580
s | i ;"‘\."\- 14 Fas: v o §0g, |t 2.0 ‘! 8 i
gd Vok W 800 N 1300 i ¥ bt p 600 | mm—— L, - 20D I 30db
£fos 3 ey el e} 10 ' Tl1e - -
£g N [R i i r40p % 1 Fi%s L Y [3® Rl Pt
5 | 4 o i 12 | h i X
2200 viea) o — &) s 0,00 - 0.0 o— | _—"". 4 3-80

il 0.0 2.0 0 0 sl g, 0
2772723 28513 27727223 2813 27727223 2813 2577273 8513 2777273 8513 277253 28513 2777293 28513 2777293 28513
Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty

#Values w/
Penalty = 0

#Features w/

- #Features Penalty = 0

Metric -+~ #Values =~ Reuse factor

Figure 6: Influence of penalties ¢ and £ on the number of thresholds and the number of features,
displayed on the right y-axis, alongside the respective performance scores shown on the left y-
axis. The threshold penalty figure additionally depicts the reuse factor. The maximum number of
iterations per model is set to 256 during training with a maximum tree depth of 2.

Figure[5|shows an exemplary grid for model performances at a given memory limit for the California
Housing dataset. The maximum memory size is fixed, allowing for an unlimited number of trees and
nodes. As the forestsize parameter determining the memory limitation can be set by the user
within our implementation, this graph can easily be generated for any memory size to determine
the best penalty configuration. This approach helps identify the best-performing model for a given
dataset on memory-limited hardware

4.3 UNIVARIATE SENSITIVITY ANALYSIS

We conducted a univariate sensitivity analysis of the two newly introduced penalties to assess their
individual effects on the model. During training, we varied the feature penalty ¢ and the threshold
penalty ¢ independently over the range 2710 to 21°, setting the other parameter to zero. We then
tracked the number of nodes and leaves, the number of global values (thresholds and leaf values),
and the test set performance. Furthermore, to evaluate how efficiently threshold values were reused,
we calculated the reusing factor RF" as the ratio between the sum of the nodes and leaves and the
global number of values. In a naive implementation, the number of leaves and nodes equals the count
of values, resulting in REF' = 1. With the ratio RF’', we can determine how many of these values
are reused by the ToaD approach. For instance, a value of RF' = 1.5 can be interpreted as a model
reusing 50% of its threshold and leaf values, while RF' = 2.0 indicates that, on average, each value
is used twice. Results of this analysis are depicted in Figure[6] with a maximum number of iterations
of 256 and a maximum depth per tree of 2, as ToaD is meant to be especially useful for shallow
trees. A selection of results for further hyperparameter settings can be found in Appendix [E.2]

4.3.1 RESULTS FEATURE PENALTY

Figure [6] (top) shows the univariate sensitivity analysis for the feature penalty ¢. For ¢ < 1, the
number of features is largely unchanged, except for a notable drop in the Breast Cancer dataset. The
value of the feature penalty at which it takes effect varies between different datasets. For datasets
with few features (California Housing and kin8nm), the accuracy drops shortly after the number of
features decreases. We assume the few features in this dataset are essential for accurate predictions.
In contrast, datasets with more features show a slower and later accuracy decline, as the penalty first
removes less relevant features. For example, the Covertype model loses only ~ 2% accuracy when
+ = 22, while the feature count drops from 35 to 5.

4.3.2 RESULTS THRESHOLD PENALTY

In the bottom row of Figure[6] the performance metric for the model, the number of global values,
and the reuse factor (RF') are depicted against a varying threshold penalty £. For all datasets, an
increase in the threshold penalty decreases the number of global values used by the model. For the
maximum penalty of ¢ = 2!, the number of global values approaches 1 for all models, i.e., the
model only consists of one tree with the root node. The trend of the performance metrics differs
between the datasets. The accuracy drops abruptly after a certain penalty for most of the binary
datasets, whereas the performance of the other datasets declines more gradually. The models trained

8 A script to reproduce the figures is available in the repository.

Under review as a conference paper at ICLR 2026

california_housing kingnm
(regression) (regression)

2% 0 28 o1 2 2 on 2 2% 20 30 gn P S T 2% 20 26 ok 2% 20 25 ok

e o i
Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty

covtype breastcancer Kkrvs-kp mushroom wine
(binary) (binary) (binary) (binary) (multiclass)

covtype_multi
(multicTass)

52
g Z‘H
H

ture Penalty

F

Figure 7: Influence of ¢ and ¢ on the needed memory (KB) and the representative metric (accuracy or
R? score). Orange dots mark penalty configuration combinations that are a good trade-off between
model accuracy and memory. The maximum number of iterations per model is set to 256 during
training with a maximum tree depth of 2.

on the Covertype dataset record the slightest decrease of about 6% from the smallest to the largest
penalty value. At the same time, the number of values used for the model drops from 1323 to only
18. These differences probably arise from the size of the datasets, as the more stable models have
more data points to choose from.

The reuse factor follows a similar pattern across all datasets. At first, it increases for higher penalties,
but with very high penalties, it starts to decrease abruptly. At its peak, every model achieves a RF'
of at least 1.5 with the wine dataset, reusing each value more than three times for a penalty around
28. In contrast, for the highest investigated threshold penalty of & = 2%, all models—except for
the Covertype dataset-result in REF' = 1, meaning each value is only used once per feature. This
decrease in RF for very high £ values can be explained by fewer global values being available for
reuse, thus reducing reuse opportunities across training splits. Interestingly, the RE' drops later than
the number of values; actually, first it increases, and with the sharp decrease of the RF', also the
accuracy plunges. Of special interest for the training process are the penalties with RF' peaks, as
here the model performance is still satisfactory, but the number of global thresholds is low.

4.4 MULTIVARIATE SENSITIVITY ANALYSIS

To assess the combined effects of our penalties, we performed a multivariate sensitivity analysis for
both penalty parameter values. As in the univariate sensitivity analysis, we used the parameter space
2710 t0 215 for both parameters, resulting in 26 x 26 = 676 trained models per dataset and tree
setting. Figure [/| shows the memory consumption next to the performance metric in a grid of the
combined penalties with a maximum of 256 iterations with a maximum tree depth of 2. A selection
of results for further hyperparamter settings can be found in Appendix [E3]

The memory requirements for all datasets decreased significantly as penalties increased, with each
dataset having a specific threshold at which memory usage drops rapidly. The different looks of the
multiclass dataset memories are reasoned by them using one tree ensemble per class; thus, more trees
and memory are needed. For the larger datasets (Covertype, California Housing), the difference in
memory consumption is stronger, starting at around 5 KB for small penalties and dropping to around
80 Byte for larger penalties. On average, predictive performance is better for smaller penalties as
more features and thresholds are used. Independent of the dataset and objective, after a certain
threshold in the feature penalty, model predictions are not better than guessing. This is expected
as the penalties reduced tree complexity, thus it loses its predictive capabilities with the omitted
features and thresholds.

By combining both penalty parameters, we can select a model that maintains high predictive perfor-
mance while having a significantly smaller memory footprint. This creates solutions that are equally
viable, known as nondominated solutions (Deb, 201 1)), where no solution is better in both predictive
performance and memory usage simultaneously. If we know the minimal predictive performance
we need for a task, we can select the corresponding microcontroller accordingly. Exemplary points
are marked in orange where the accuracy is good, but the memory usage dropped.

To summarize, there is no globally optimal penalty setting as it depends on the dataset being used
and the number and depth of trees allowed during training. For all datasets, we found that higher

Under review as a conference paper at ICLR 2026

memory usage does not necessitate an incline in predictive performance. Instead, the metrics re-
mained similar until there was a considerable decrease in memory usage.

5 CONCLUSION & FUTURE WORK

We propose two hyperparameters and a new memory layout to optimize the memory footprint of
boosted decision tree ensembles. First, custom penalties within boosted decision tree training were
implemented that encourage a boosted tree to reuse features and thresholds and thus create smaller
models. An univariate analysis has shown an effective decrease in the number of utilized values but
almost unchanged performance for specific penalty values. Then, the decision tree memory layout
ToaD was introduced. Building upon index-based trees that enable a pointer-less node sequence and
global value lookup, it allows the reuse of threshold values multiple times per feature and allows
storing thresholds with fewer bits, e.g. only 1 bit for boolean values. Our experiments show that
we can store models with a significantly smaller memory footprint than baseline methods while
maintaining the same accuracy, supporting the application of powerful boosted decision trees on
resource-constrained devices.

Although the linear penalizer already performed well, a deeper analysis of more sophisticated pe-
nalizers may reveal even better performance and thus would prove to be an interesting extension
to the present work. Adapting our method to reuse leaf values more effectively could also prove
useful as well as the transfer to other variants of decision tree ensembles. Lastly, to further assess
the effectiveness of the proposed method, its deployment to different microcontroller units would be
valuable.

REFERENCES

Fouad Alkhoury, Sebastian Buschjidger, and Pascal Welke. Splitting stump forests: tree ensemble
compression for edge devices (extended version). Machine Learning, 114(10), August 2025.
ISSN 1573-0565. doi: 10.1007/s10994-025-06866-2.

Majed Alsharari, Son T. Mai, Roger Woods, and Carlos Reafio. Efficient integer-only-inference
of gradient boosting decision trees on low-power devices. [EEE Transactions on Circuits and
Systems I: Regular Papers, 72(1):241-253, January 2025. ISSN 1558-0806. doi: 10.1109/tcsi.
2024.3446582.

Jock Blackard. Covertype. UCI Machine Learning Repository, 1998. URL https://doi.org/
10.24432/C50K5N.

Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. Classification And
Regression Trees. Chapman and Hall/CRC, 1 edition, 1984. ISBN 9781315139470. doi: 10.
1201/9781315139470. URL https://doi.org/10.1201/9781315139470.

Sebastian Buschjdger and Katharina Morik. Joint leaf-refinement and ensemble pruning through I,
regularization. Data Mining and Knowledge Discovery, 37(3):1230-1261, March 2023. ISSN
1573-756X. doi: 10.1007/s10618-023-00921-z.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In International
Conference on Knowledge Discovery and Data Mining (KDD), pp. 785-794, San Francisco Cal-
ifornia USA, August 2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939785.
URLhttps://dl.acm.org/doi/10.1145/2939672.2939785.

Paulo Cortez, Anténio Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. Modeling wine
preferences by data mining from physicochemical properties. Decision Support Systems, 47(4):
547-553, November 2009. ISSN 0167-9236. doi: 10.1016/j.dss.2009.05.016. URL https:
//doi.org/10.1016/7.dss.2009.05.016.

Kalyanmoy Deb. Multi-objective Optimisation Using Evolutionary Algorithms: An Introduc-
tion, pp. 3-34. Springer London, London, 2011. ISBN 978-0-85729-652-8. doi: 10.1007/
978-0-85729-652-8_1. URL https://doi.org/10.1007/978-0-85729-652—-8_1.

10

https://doi.org/10.24432/C50K5N
https://doi.org/10.24432/C50K5N
https://doi.org/10.1201/9781315139470
https://dl.acm.org/doi/10.1145/2939672.2939785
https://doi.org/10.1016/j.dss.2009.05.016
https://doi.org/10.1016/j.dss.2009.05.016
https://doi.org/10.1007/978-0-85729-652-8_1

Under review as a conference paper at ICLR 2026

Laurens Devos, Wannes Meert, and Jesse Davis. Fast gradient boosting decision trees with bit-
level data structures. In Ulf Brefeld, Elisa Fromont, Andreas Hotho, Arno Knobbe, Marloes
Maathuis, and Céline Robardet (eds.), Machine Learning and Knowledge Discovery in Databases,
pp- 590-606, Cham, 2020. Springer International Publishing. ISBN 978-3-030-46150-8. doi:
10.1007/978-3-030-46150-8_35. ECML PKDD 2019.

Laurens Devos, Timo Martens, Deniz Can, Wannes Meert, Hendrik Blockeel, and Jesse Davis.
Compressing tree ensembles through level-wise optimization and pruning. In Forty-second Inter-
national Conference on Machine Learning, 2025.

Youssouf Emine, Alexandre Forel, Idriss Malek, and Thibaut Vidal. Free lunch in the for-
est: Functionally-identical pruning of boosted tree ensembles. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 39(16):16488-16495, April 2025. ISSN 2159-5399. doi:
10.1609/aaai.v39i16.33811. URL https://doi.org/10.1609/aaai.v39116.33811,

Zoubin Ghahramani. kin8nm. URL https://www.openml.org/search?type=dataé&
1d=189.

Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. @ Why do tree-based models still
outperform deep learning on typical tabular data? In Advances in Neural Informa-
tion Processing Systems, volume 35, pp. 507-520. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
0378c7692da36807bdec87ab043cdadc-Paper—-Datasets_and_Benchmarks.
pdf.

Huaping Guo, Hongbing Liu, Ran Li, Changan Wu, Yibo Guo, and Mingliang Xu. Margin &
diversity based ordering ensemble pruning. Neurocomputing, 275:237-246, 2018. ISSN 0925-
2312. doi: 10.1016/j.neucom.2017.06.052.

Chirag Gupta, Arun Sai Suggala, Ankit Goyal, Harsha Vardhan Simhadri, Bhargavi Paranjape,
Ashish Kumar, Saurabh Goyal, Raghavendra Udupa, Manik Varma, and Prateek Jain. Pro-
tonn: Compressed and accurate knn for resource-scarce devices. In Doina Precup and Yee Whye
Teh (eds.), Proceedings of the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pp. 1331-1340. PMLR, 2017. URL https:
//proceedings.mlr.press/v70/guptal7a.htmll

Albert Gural and Boris Murmann. Memory-optimal direct convolutions for maximizing classi-
fication accuracy in embedded applications. In Internatinal Conference on Machine Learning
(ICML), pp. 2515-2524, 2019.

Jiawei Jiang, Bin Cui, Ce Zhang, and Fangcheng Fu. Dimboost: Boosting gradient boosting decision
tree to higher dimensions. In Proceedings of the 2018 International Conference on Management
of Data, SIGMOD/PODS ’18, pp. 1363-1376. ACM, May 2018. doi: 10.1145/3183713.3196892.
URL https://doi.org/10.1145/3183713.3196892.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye,
and Tie-Yan Liu. LightGBM: A highly efficient gradient boosting decision tree. In Ad-
vances in neural information processing systems (NeurIPS), volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/6449f44a102fde848669pdd9ebbb76fa-Paper.pdfl

R. Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability
Letters, 33(3):291-297, 1997. ISSN 0167-7152. URL https://doi.org/10.1016/
S0167-7152(96) 00140-X.

Abhishek Khanna and Sanmeet Kaur. Internet of Things (IoT), Applications and Challenges:
A Comprehensive Review. Wireless Personal Communications, 114(2):1687-1762, September
2020. ISSN 1572-834X. doi: 10.1007/s11277-020-07446-4. URL https://doi.org/10.
1007/s11277-020-07446-4.

Simon Koschel, Sebastian Buschjiger, Claudio Lucchese, and Katharina Morik. Fast inference
of tree ensembles on arm devices. 2023. doi: 10.48550/ARXIV.2305.08579. URL https:
//arxiv.org/abs/2305.085709.

11

https://doi.org/10.1609/aaai.v39i16.33811
https://www.openml.org/search?type=data&id=189
https://www.openml.org/search?type=data&id=189
https://proceedings.neurips.cc/paper_files/paper/2022/file/0378c7692da36807bdec87ab043cdadc-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0378c7692da36807bdec87ab043cdadc-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0378c7692da36807bdec87ab043cdadc-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.mlr.press/v70/gupta17a.html
https://proceedings.mlr.press/v70/gupta17a.html
https://doi.org/10.1145/3183713.3196892
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://doi.org/10.1016/S0167-7152(96)00140-X
https://doi.org/10.1016/S0167-7152(96)00140-X
https://doi.org/10.1007/s11277-020-07446-4
https://doi.org/10.1007/s11277-020-07446-4
https://arxiv.org/abs/2305.08579
https://arxiv.org/abs/2305.08579

Under review as a conference paper at ICLR 2026

Ashish Kumar, Saurabh Goyal, and Manik Varma. Resource-efficient machine learning in 2 kb
ram for the internet of things. In Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1935-1944. PMLR,
August 2017. URL https://proceedings.mlr.press/v70/kumarl7a.htmll

Colin Lewis-Beck and Michael Lewis-Beck. Applied regression: An introduction, volume 22. Sage
publications, 2015.

Brian Liu and Rahul Mazumder. Forestprune: Compact depth-pruned tree ensembles. In Francisco
Ruiz, Jennifer Dy, and Jan-Willem van de Meent (eds.), Proceedings of The 26th International
Conference on Artificial Intelligence and Statistics, volume 206 of Proceedings of Machine Learn-
ing Research, pp. 9417-9428. PMLR, 25-27 Apr2023. URL https://proceedings.mlr.
press/v206/1iu23h.html.

Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Nicola Tonellotto,
and Rossano Venturini. Quickscorer: Efficient traversal of large ensembles of decision trees. In
Machine Learning and Knowledge Discovery in Databases, pp. 383-387, Cham, 2017. Springer
International Publishing. ISBN 978-3-319-71273-4. doi: 10.1007/978-3-319-71273-4_36. URL
https://doi.org/10.1007/978-3-319-71273-4_36l

Philipp Mayer, Michele Magno, Thomas Brunner, and Luca Benini. Lora vs. lora: In-field evaluation
and comparison for long-lifetime sensor nodes. In International Workshop on Advances in Sensors
and Interfaces (IWASI), pp. 307-311. IEEE, 2019.

Mushroom. UCI Machine Learning Repository, 1981. URL https://doi.org/10.24432/
C5959T.

Feng Nan, Joseph Wang, and Venkatesh Saligrama. Pruning random forests for prediction
on a budget. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/
file/3948ead63a9£2944218de038d8934305-Paper.pdfl

Mike O. Ojo, Stefano Giordano, Gregorio Procissi, and Ilias N. Seitanidis. A Review of Low-
End, Middle-End, and High-End Iot Devices. IEEE Access, 6:70528-70554, 2018. ISSN
2169-3536. doi: 10.1109/ACCESS.2018.2879615. URL https://doi.org/10.1109/
ACCESS.2018.2879615.

Sven Peter, Ferran Diego, Fred A Hamprecht, and Boaz Nadler. Cost efficient gradient boost-
ing. In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/4fac9ball5l40acd4flc22da82aalbc7/f-Paper.pdfl

Natalia Ponomareva, Thomas Colthurst, Gilbert Hendry, Salem Haykal, and Soroush Radpour.
Compact multi-class boosted trees. In 2017 IEEE International Conference on Big Data (Big
Data), pp. 47-56,2017. doi: 10.1109/BigData.2017.8257910. URL|https://doi.org/10.
1109/Bigbhata.2017.8257910.

Vijay Janapa Reddi, Brian Plancher, Susan Kennedy, Laurence Moroney, Pete Warden, Anant
Agarwal, Colby R. Banbury, Massimo Banzi, Matthew Bennett, Benjamin Brown, Sharad Chit-
langia, Radhika Ghosal, Sarah Grafman, Rupert Jaeger, Srivatsan Krishnan, Maximilian Lam,
Daniel Leiker, Cara Mann, Mark Mazumder, Dominic Pajak, Dhilan Ramaprasad, J. Evan Smith,
Matthew Stewart, and Dustin Tingley. Widening access to applied machine learning with tinyml.
CoRR, abs/2106.04008, 2021. URL https://arxiv.org/abs/2106.04008.

Shaoqging Ren, Xudong Cao, Yichen Wei, and Jian Sun. Global refinement of random forest. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

Alen Shapiro. Chess (King-Rook vs. King-Pawn). UCI Machine Learning Repository, 1983. URL
https://doi.org/10.24432/C5DK5C.

12

https://proceedings.mlr.press/v70/kumar17a.html
https://proceedings.mlr.press/v206/liu23h.html
https://proceedings.mlr.press/v206/liu23h.html
https://doi.org/10.1007/978-3-319-71273-4_36
https://doi.org/10.24432/C5959T
https://doi.org/10.24432/C5959T
https://proceedings.neurips.cc/paper_files/paper/2016/file/3948ead63a9f2944218de038d8934305-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/3948ead63a9f2944218de038d8934305-Paper.pdf
https://doi.org/10.1109/ACCESS.2018.2879615
https://doi.org/10.1109/ACCESS.2018.2879615
https://proceedings.neurips.cc/paper_files/paper/2017/file/4fac9ba115140ac4f1c22da82aa0bc7f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/4fac9ba115140ac4f1c22da82aa0bc7f-Paper.pdf
https://doi.org/10.1109/BigData.2017.8257910
https://doi.org/10.1109/BigData.2017.8257910
https://arxiv.org/abs/2106.04008
https://doi.org/10.24432/C5DK5C

Under review as a conference paper at ICLR 2026

Yu Shi, Guolin Ke, Zhuoming Chen, Shuxin Zheng, and Tie-Yan Liu. Quantized
training of gradient boosting decision trees. In Advances in neural information
processing systems (NeurIPS), volume 35, pp. 18822-18833. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/77911ed9%e6be864calal3dlo5b2c3cb258-Paper—Conference.pdf.

Hongfei Wang, Zhanfei Wu, Xiangwei Wang, Longyun Bian, and Hai Jin. Hardgbm: A framework
for accurate and hardware-efficient gradient boosting machines. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 42(7):2122-2135, 2023. doi: 10.1109/TCAD.
2022.3218509.

Pete Warden and Daniel Situnayake. TinyML: Machine Learning with Tensorflow Lite on Arduino
and Ultra-Low-Power Microcontrollers. O’Reilly Media, Inc., 2019.

William Wolberg, Olvi Mangasarian, and Nick Street. Breast Cancer Wisconsin (Diagnostic). UCI
Machine Learning Repository, 1993. URL https://doi.org/10.24432/C5DW2B.

Ting Ye, Hucheng Zhou, Will Y. Zou, Bin Gao, and Ruofei Zhang. Rapidscorer: Fast tree en-
semble evaluation by maximizing compactness in data level parallelization. In ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 941-950, London United
Kingdom, July 2018. ACM. ISBN 978-1-4503-5552-0. doi: 10.1145/3219819.3219857. URL
https://dl.acm.org/doi/10.1145/3219819.3219857.

13

https://proceedings.neurips.cc/paper_files/paper/2022/file/77911ed9e6e864ca1a3d165b2c3cb258-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/77911ed9e6e864ca1a3d165b2c3cb258-Paper-Conference.pdf
https://doi.org/10.24432/C5DW2B
https://dl.acm.org/doi/10.1145/3219819.3219857

Under review as a conference paper at ICLR 2026

A TRAINING COMPRESSED ENSEMBLES

Constructing an optimal tree ensemble 7" w.r.t. Equation (1)) is computationally infeasible. There-
fore, one resorts to K boosting rounds. In each boosting round m, one considers 7},,—1 = Z:ll tr

together with a new tree t,,, that is built in this round (starting with 7y := 0) (Chen & Guestrin,
2016)). The new tree is chosen such that

m

D LY Tr1(xi) + i (x2) + > Q) (4)

i=1 k=1

is minimized. A common choice for the regularizer (2 is

L
1
Q(ty) =~L + 5)\21}?,
j=1

where L is the number of leaves and vq,...,v; € R are the associated leaf values of ¢,,,. This
penalizes trees with many leaves and large absolute leaf values. The modified regularizer
Ql(tm) = Q(tm) +¢- IFU| + § ' Z |Tf|a (5)
feFu

proposed in Section [3| with user-defined hyperparameters ¢, € R™T, penalizes the use of new
features and thresholds in a linear manner. Similar to [Peter et al.| (2017), incorporating €2; into the
objective leads to a modified gain compared to standard boosted decision trees (Chen & Guestrin,
2016). More precisely, using gradient statistics of the form

0

i = =LY,

g 0z (i:2) 2=Tp_1(x;)
62

hi = 5Ly,
822 <y Z) Z:Tnl—l(xi)

and omitting constant terms, one obtains the simplified objective

L
1
S [enu+ 3 0, +3) 8]+ oL+ dmol+e- 3 17 ©

Jj=1 feFy

with G5 =) ;g gi and Hg =) . ¢ h;. Here, I; denotes the set of training indices assigned to
the j-th leaf of the current tree ¢,,, i.e., I; = {i | ¢(x;) = j}, where ¢ : R? — {1,..., L} maps an
input instance to the corresponding leaf of ¢,,, (i.e., t,,(X) = vg(x))-

The decision tree ¢, is constructed greedily by iteratively splitting leaves (starting at the root) if this
improves Objective (6); otherwise, the construction stops. More specifically, given a leaf associated

with a set I of training indices, a split on feature ¢ € {1, ..., d} with threshold p divides I into two
subsets, I, (left leaf) and I (right leaf). The corresponding gain is then given by
1 G G (Gn)*
AL, = = L+ B — v — 8L — S, 7
(Ld) 2<H1L+>\ Hip+n Hy+a) ST @
= A(I,Z,,U/) _SfL_stga (8)

where sy = 1 if a new feature is used (and sy = 0 otherwise), and s; = 1 if a new threshold is used
(and s; = 0 otherwise). Thus, the modified regularizer (E]) introduces the additional terms —s¢¢ and
—s¢&, corresponding to the cost of using a new feature or threshold, respectively.

14

Under review as a conference paper at ICLR 2026

B DATASETS

An overview of the eight datasets used for experiments in Section] along with their statistics are
presented in Table The binary Covertype (covtype) dataset (Blackard, 1998), the Califor-
nia Housing regression dataset (Kelley Pace & Barryl [1997), the KRKPA7 (kr-vs-kp) dataset
(Shapiro| [1983)) and the Breast Cancer dataset (Wolberg et al.l [1993) are commonly solved using
boosted decision trees. The kin8nm dataset (Ghahramani)), which describes robotics decision mak-
ing, and the Mushroom dataset (Mushroom, [1981)), which is for mushroom edibility classification,
cover data that might be of interest for analysis on constrained edge devices.

Table 1: Datasets

Dataset Instances Features Task

Covertype (Blackard|[1998) 581,012 54 Binary & multiclass

classification

California Housing (Kelley Pace & Barry||1997) 20,640 8 Regression

kin8nm (Ghahramani) 8,192 8 Regression
Mushroom (Mushroom,|1981) 8,124 22 Binary classification

Wine Quality (Cortez et al.!|[2009) 6,497 11 Multiclass classification
KRKPA7 (Shapiro!|1983) 3,196 36 Binary classification
Breast Cancer Wisconsin (diagnostic) . . .

569 30 Binary classification

(Wolberg et al.||1993)

C EXTENDED RELATED WORK

Decision trees and decision tree ensembles, such as GBDT, have remained very popular, despite
the rise of deep learning models (Grinsztajn et al.,[2022). These tree-based methods are highly val-
ued for their interpretability, particularly when dealing with small datasets, mixed data types, and
constrained computational resources. Recent advances in tree-based models have also introduced
several approaches to enhance their efficiency. For instance, cost-efficient gradient boosting intro-
duces mechanisms to account for feature acquisition and tree evaluation costs (Peter et al., [2017),
which involves penalizing the use of new features based on their cost and minimizing the number
of split nodes an input traverses during inference. Other work (Ponomareva et al.l [2017) presents
a method to train compact boosted tree ensembles for multi-class classification using vector-valued
trees and layer-by-layer boosting. Bonsai (Kumar et al.,|2017), instead, yields a single decision tree
model and reduces the model size by projecting the input data into a low-dimensional subspace. Two
other approaches are QuickScorer (Lucchese et al.,2017) and its enhanced version, RapidScorer (Ye
et al.l 2018)), decision tree ensembles both developed for search engines, where array structures are
used to reduce model size. These methods prioritize enhancing processing speed over minimizing
memory footprint by summarizing features and split values for joint calculation. Recently, |Koschel
et al.| (2023) further adapted these approaches to IoT contexts, focusing on ARM CPUs prevalent
in such devices. Their work involves adapting QuickScorer variants for these CPUs and applying
fixed-point quantization to split nodes and leaf values, emphasizing computational enhancements
over memory optimization. DimBoost (Jiang et al.,|2018) made use of lower precision values dur-
ing the calculation of gradient histograms in training as one of their contributions to improve the
performance of GBDT for high-dimensional data. Additionally, |Shi et al.| (2022) demonstrated that
using just two or three bits suffices to represent gradients in GBDT training. |Devos et al.| (2020)
represent input data as well as gradients in bit-level data structures to improve the runtime of GBDT
training.

The related works sketched above aim mostly at enhancing the training process, leading to improve-
ments in memory and energy consumption as ancillary benefits. The notable exception are the works
by [Kumar et al.| (2017 and |[Ponomareva et al.| (2017), which explicitly address a memory footprint
reduction in the context of resource-constrained devices, achieving compact and effective tree-based
models. However, the approach of Kumar et al.|(2017) only considers single decision trees and con-
ceptually modifies the tree building process and the underlying models. [Ponomareva et al.| (2017)

"nttps://www.cs.toronto.edu/~delve/data/kin/desc.html

15

https://www.cs.toronto.edu/~delve/data/kin/desc.html

Under review as a conference paper at ICLR 2026

focus on multi-class classification problems. However, the vector-values used within trees may in-
crease the memory footprint of tree models for binary classification or for low-number multi-class
problems. Additionally, an evaluation of memory consumption is not conducted directly, but rather
the number of trees is used as an estimate. Specific memory consumption of different Machine
Learning (ML) models and compression techniques is considered by [Buschjager & Morik| (2023)
and (Devos et all, [2025). Their works combine ensemble pruning and update of leaves values as
post-training compression methods to reduce the size of random forests and GBDTs respectively.
Lossless post-training pruning of boosted ensembles is proposed by [Emine et al. (2025). |Liu &
Mazumder] (2023)) on the other hand focuses on pruning deep layers of trees to tackle growing
memory demands because of exponential increase in the number of nodes for deeper layers. There
are many other works optimizing non-decision tree based methods for deployment on resource-
constrained devices, for example based on k-nearest neighbors|Gupta et al.| (2017). In this work, we
focus on gradient boosted trees, and at minimizing the memory footprint of the overall ensemble
in the course of the training process. We extend the work of by defining feature
costs that aim at reducing the bits required to encode feature indices. We also introduce a special
cost for adding new thresholds to each feature and provide a specialized encoding for the induced
binary trees, including global threshold arrays that are shared across all individual learners.

D COMPARISON TO RANDOM FOREST

ToaD as a compression method developed for GBDT is compared to a baseline random forest (RF)
method for classification tasks as well as version pruned along as shown in Fig-
ure [8] Only classification results are included as most pruning methods are not implemented for
regression tasks. The results show an advantage of RF in multiclass classification. This is reasoned
by boosted trees being usually trained with one ensemble per class whereas RFs store the class in-
formation in the nodes. An extension of our work in the future could include optimizing ToaD for
multiclass classification, for example based on the approach of |Ponomareva et al.| (2017)).

mushroom (binary) covtype (binary) breastcancer (binary)

1.00 e — /":":":" 0.98 e —
4 0.90 % 5
/2 — - AT
0981/ x/ . Rt
Model / /! 094 79‘ -
g 096 / —e— LightGBM 30859 ¥ g e
] LightGBM FP16 H 7 ose| ¥ d
< 094 LightGBM array-based | < ¢ o0 /x/ < /
Random Forest e 0.90
02 Pruned Random Forest -
) —+— ToaD wio Penalties 0.75 0.88
—x— ToaD w/ best Penalties
0.90
kr-vs-kp (binary) wine (multiclass) covtype_multi (multiclass)
10 K e X e e s X s X S X s X s X =
bt Pt e 0,65 e =] 09 —
09 ,/ / // =g
0,60 S = 08 e
g 4 v AN & i -
gos §°55’ e go7 e
2 2 M o i b A
0504 12 o x__7
07 / 7 - /
0.45 4 A
i 05 V4
EEEEREF RN EEEERE N RN
o ngi\/&:gé\/g o ~mcg_-ymu‘?,gév§ o ~rureg,§“;é»‘§
Max Memory (KB) Max Memory (KB) Max Memory (KB)

Figure 8: Comparison of baseline LightGBM method and ToaD to baseline random forests and

random forests pruned by the method presented by (2018)). Best models at each memory
threshold are depicted. Models were trained on multiple train-test data splits.

16

Under review as a conference paper at ICLR 2026

E EXPERIMENTS

E.1 RUNTIME EXPERIMENTS

For an estimate for the expected runtime, we deployed a ToaD-model processing the covtype binary
dataset at a memory limit of 0.5 KB. The model consists of four complete trees with a depth of four.
We measured 20 runs, with each run having 500 predictions. We decided to stop at 20 runs as the
variance between the runs was minimal. Experiments were conducted on the Seeed Xiao ESP32-S3
and the Arduino Nano 33 BLE Rev2. To ensure that programs are not further optimized, we used
random numbers as input. The prototypes are available at the anonymous repositoryﬂ Note that
currently the ToaD-program is only a first prototype and there are many options for optimization.
A single prediction took 0.51 milliseconds for the ToaD-model on the Arduino Nano. In contrast
to the LightGBM program, this is a slowdown by a factor of ~ 5. For the ESP32-S3, a single
prediction took 0.14 milliseconds, with a respective slowdown in contrast to LightGBM of a factor
of ~ 8. Those findings should be read as an outlook for future work to incorporate optimization
techniques to close the runtime gap. As already stressed in the main paper, the observed latency
degradation is not a significant factor in real-world deployments. At below millisecond inference
time for ToaD, the overall latency and energy consumption of real-world use cases is dominated by
the device measuring the input data and potentially transmitting the results.

Hardware Average Prediction Runtime (us)

ToaD LightGBM
XIAO ESP32S3 137.08 17.63
Arduino Nano 33 BLE 512.89 102.16

Table 2: Runtime for one inference run for the covtype binary dataset with four trees, each with a
depth of four.

E.2 UNIVARIATE SENSITIVITY ANALYSIS

Influence of feature penalty ¢ and threshold penalty £ on the number of thresholds and the number of
features, for different hyperparamter settings are displayed in the following figures. The respective
top row shows the influence of ¢ on the number of features and the performance when & = 0. The
respective top row shows the influence of £ on the number of thresholds and the performance when
¢ = 0. Additionally the reuse factor RF is displayed as described in Section[d.3]

We can observe similar patterns in the evolution of used features and thresholds and the correspond-
ing performance as described in Section 4.3]

california_housing kin8nm covtype breastcancer kr-vs-kp mushroom wine covtype_multi
(regression) (regression) (binary) (binary) (binary) (binary) (multiclass) (multiclass)
o 3 3 21 7 v 4 6 3 =
gs Rt 6 b w M o .
; | Y w_bs S 1 el
ggos w 2 5 4 ! " Y
58 o2 i 2 o n] Y Y 5 v o[
£< 3 { H H 2 \ Y \
22 ; & b ? ! 'n ? w Yris
0.0 w1 v 1 1.9 ovrow| Ve 1 kol “verew| |
Feature Penalty Feature Penalty Feature Penalty Feature Penalty Feature Penalty Feature Penalty Feature Penalty Feature Penalty
o [ee———] [——] o ——— 1 575 x 24 [F— L7s (e Ty [H
7 BN 4 LR [e——_ ¢ [Vi
38 | —] KM i % 3 W L1 o .
ggos 4 [e 1% | ol 17 N
g8 Pl Ve i \\ 125 i A [;
gy 1 FLo4 H 1.05 i :] ® 80
> { X { if13s
=00 -l - 0 S} 1.00 bl 0 el A

277272 23 28 13 277272 23 28 13 277272 23 28 o1 257272 23 28 Q13 251272 25 28 o1 251272 25 28 g3 271272 23 28 o1 257272 25 28 o
Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty

#Thresholds w/
Penalty = 0

#Features w/

-¥- #Features Penalty = 0

Metric -+~ #Thresholds -=- Reuse factor

Figure 9: maz_iterations = 4, max_depth = 2

$https://anonymous.4open.science/r/ToaD/experiments/latency/README .md

17

https://anonymous.4open.science/r/ToaD/experiments/latency/README.md

Under review as a conference paper at ICLR 2026

california_housing kingnm covtype breastcancer Kkr-vs-kp mushroom wine covtype_multi
(regression) (regression) (binary) (binary) (binary) (binary) (multiclass) (multiclass)
1.0 8 10.0
o
9T A j 15 W ‘e 10 | 0 e 2
2 : s bt 75 A %
g€,s 10 ¥
< 20
g N b s 5
3o 5 5 W 10
=% 00 e e i
N Feature Penalty Feature Penalty Feature Penalty Feature Penalty Feature Penalty
7 [T s T - b i
€8 ni Yt [18 - .
27 o 80 332 g 400
2205 .:‘ H 1.20 Fy 2.0
e *o ! 126
gf — ¢ 40 ¢ o 20
N H
o2 | 1.05 20
00 32
22 3 38 g 22 35 g8 g 21272 3 38 21 2272 3 38 g 2 5 38 o1 T2 5 38 b 211272 5 38 21 21202 3 o 2B
Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty
e wreatures o BERNSH L e o yrivestolds o AU o e factor
Figure 10: max_iterations = 4, max_depth = 4
california_housing Kin8nm covtype breastcancer kr-vs-kp mushroom n covtype_multi
(regression) (regression) (binary) (binary) (binary) (binary) (multiclass) (multiclass)
1.0 40
22 . \ Y
85 i 6 4 75 e 10 | 10 ™
£ 4 X v
Sa Y Y * 30
<£os | 4 H 5.0 " Y
2E 5 : 5 % f20
g9 m 2 25 T
00 - wevevee T everee "y w10
Feature Penalty Feature Penalty Feature Penalty Feature Penalty Feature Penalty Feature Penalty
1200
3z 1 [o0 Y [1 e % 1200
3% 136 W I 800 ‘ Hl
38 ¢ ol)
3¢ 170 febo b 2.0 i% fi®
g 128 [w - 12 400 IS
5 & s 16 s Thaw
= 120 2.0 j—
22 3 35 gh 2 2 28 o 212t 95 3o b 2 2 38 o PLENEPrR T 2 3 38 g 2T1272 95 28 o 12t 35 35 2B
Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty
¥ #Features e Metric - #Thresholds fomesholds e Reuse factor
Figure 11: maz_iterations = 4, max_depth = 8
california_housing kin8nm covtype breastcancer kr-vs-kp mushroom covtype_multi
(regression) (regression) (binary) (binary) (binary) (binary) (multiclass) (multiclass)
>2 1.0 1 ‘v 20 — 15 3
:H . % ' 10
g ﬁ v 10 1
) M \
\ x 5 5
X
& N
o] Wovee|
alty Feature Penalt Feature Penalty Feature Penalty
e
240
i dbo
160
1 2800
80
12 2
0 4|
25 2 28 o 12 2 28 o1 T2 5 5 g 12 2 28 b T2 g o ok 12 3 28 o PRI 2122 35 38 2B
Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty
v~ #Features ::::llt‘;risgw Metric -4~ #Thresholds #Thresholds /' __ Reuse factor
Figure 12: maz_iterations = 64, max_depth = 2
california_housing kin8nm covtype breastcancer kr-vs-kp mushroom covtype_multi
(regression) (regression) (binary) (binary) (binary) (binary) (multiclass) (multiclass)
_10 v ™ 30 g 20
g X Y W N v
85 7.5 \ 75 10 A% 40
g5 w \
23 ! ¥ 20 % 20 % Y
2Lo0s X 5.0 5.0 1 10 4
og 10 W 10 5 \ 20
o
4 ¥
=% 00 S o S o Yo w]
Feature Penalty Feature enalty Feature Penalty _ _Feature Penalty Feature Penalty
5210]) 195 & 39 6000 /8000
gs x L 1200 * 2.8 1.92
cs v Yool 165 1) 18 4
g¢ e ‘-"\ L soo 369 o 59 4000 & f 6000
<505 L8 1] * % Liso s [2 24 R S
££ 50 v\ | 400 2135 1 250 250 2000 F 4fa000
R Y l13s i 1.2 12 20 V176
00 sl 1.0 L “sbwos.. 0.00 ol 0 s 0 o
252 3 g8 o 252 2 g8 o1 PR 252 2 g8 o PPN 52 3 ge g PEPEPI PP
Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penaty Threshold Penalty Threshold Penaty Threshold Penalty
¥ #Features s Metric —+- #Thresholds foesholds W - Reuse factor

Figure 13: max __iterations = 64, max_depth = 4

18

Under review as a conference paper at ICLR 2026

california_housing Kingnm covtype breastcancer krvs-kp mushroom wine covtype_multi
(regression) (regression) (binary) (binary) (binary) (binary) (multiclass) (multiclass)
1.0 I 30
32 "" 30
fs 15
B 20 40
Se 20
< % 05 10
55 o 0 5 20
S
0.0 Vol
Feature Penalty Feature Penalty
10 1800 ¥ 15001 1.98
s o 20 230 LR 15000
g g M “‘ l“ ED%OU 1.92
g8 (e e 20 L))
38" . ¥l 2 £
== a@s 600 i® TR 5000
8~ b,]
2 L2
0.0 . 2.00 0 0.0 0 Ao
PLEPSPTRSI 25727 5 28 o 2 3 g8 g PIEPEPTRSIT 272 35 58 o T2 3 38 o 217127 35 28 o1 211252 33 38 g
Threshold Penalty Threshold Penaty Threshold Penalty Threshold Penalty Threshold Penaty Threshold Penalty Threshold Penalty Threshold Penaty
e wreatures o BERNSH L e o yrivestolds o AU o e factor
Figure 14: max _iterations = 64, max_depth = 8
california_housing Kingnm covtype breastcancer krvs-kp mushroom wine covtype_multi
(regression) (regression) (binary) (binary) (binary) (binary) (multiclass) (multiclass)
ez 10 T =
£s | 75 40 15 40
38
g8 {
<Los { 5.0 " 10
eg ! 20
N *w 25 5
s
0.0 L 0 .|
Feature Penalty Feature Penalty Feature Penalty Feature Pen Feature Penalty
10 1580 H 10.0 30000
i g0 s T Fome e *
3% J b : {
28 VR e 3000 T Eamo 3100
<Los 3o * 24bo
gg L T 1900 LAREL B 26000
8o .t 25
== — _"
00 .00 Foo -5 0 80
PLEPEPTRR A 22 5 28 o a3 35 g PLEPEPTRSI 2 3 3 o 2 3 3 oh PLENEP TR 12t 35 35 9B
Threshold Penalty Threshold Penaty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty
¥ #Features e Metric —+- #Thresholds fomesholds W - Reuse factor
Figure 15: max _iterations = 1024, max_depth = 2
california_housing kin8nm covtype breastcancer kr-vs-kp mushroom wine covtype_multi
(regression) (regression) (binary) (binary) (binary) (binary) (multiclass) (multiclass)
1.0 T
>= 3 h 1
25 75 : 75 X 10 w*\w 2
\ % Yy
EEs 5.0 i 5.0 10 i
g { s iy
2 ks 25 viir20
gy 25 8 i
== w H
0.0 i voverermy| “weerw| v
Feature Penalty Feature Penalty Feature Penalty Feature Pen: Feature Penalty Feature Penalty Feature Penalty
159 3000 £ g , ¥ 75000 MR og
1201 o 4500 VOm - . 3.2
175 ® 75 “ Yk L7s yo0h 28 . 30000
e 1EWO| 2000 e 000 i 3000 . 50000 28
') 130 1Sl B T {=l50 }-' fowss| 2.4 e | [0000
Lot | | @B 1089 % Laooo 1 |isoo § 7 oo %
! A 25 | 25 \
4 — | 2.0
0 . .00 0 .00 St 0 “Baml 0 Moo §
722 5 28 ob 257272 25 28 o T2 3 38 o 722 D 28 ob 71272 35 28 o 2122 3 38 o 722 5 28 ob 2171252 25 28 B
Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty
v #Features ;‘:ﬁ:ﬁ‘;’fo“” Metric -4 #Thresholds ;‘J:;ﬁ;":'gs W _a- Reuse factor
Figure 16: max _iterations = 1024, max_depth = 4
california_housing Kingnm covtype breastcancer krvs-kp mushroom wine covtype_multi
(regression) (regression) (binary) (binary) (binary) (binary) (multiclass) (multiclass)
1.0 20
22 ; 30— 30
g8 Y Y 20 Y 20
2Los 5.0 4 10 a5
Gf ¥
s 20 10 Y, 10 10
gz =, * Y
0.0 | 0 0 ! vl
Feature Penalty Feature Penalty Feature Penalty Feature Penalty |
10 3 20000 100 g =3 08
g5 : R 20009 it 10t ' 34000 , A 150000
S i " 5 Lo i Jtho
g4 [l 20690] i, 20990 20000 YW liso 16000 oo
i50% - Pl Lo 5% 5.0
5§ i :] 1500 50,
£E 4 wy L0090 | | 10890 10000 & i 8900 s i 375900
g : : .
s« \ o 25 1)
0.0 2.00 .00 0 0.00 S| 0 fa W 0 4 | 105000
252 3 g8 g 2725 33 28 o1 227 5 3 o 252 35 28 o1 23 3o PP Ih 25725 33 28 o1 211272 23 28 o1
Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty
% #Features it Metric -+~ #Thresholds Fresholds W/ Reuse factor

Figure 17: max_iterations = 1024, max_depth = 8

19

Under review as a conference paper at ICLR 2026

E.3 MULTIVARIATE SENSITIVITY ANALYSIS

In the following figures the influence of ¢ and £ on the needed memory (KB) on the top row and the
representative metric (accuracy or R? score) on the bottom row are depicted for different hyperpa-
rameter settings.

Similarly as depicted in Figure [7] and described in Section [#.4] we can find useful penalty combi-
nations that provide a useful trade-off between a small decrease in performance but a significant
decrease in memory consumption for most of the given examples.

california_housing
(regression)

kin8nm
(regression)

covtype

breastcancer kr-vs-kp mushroom
(binary) i

covtype_multi
(binary) (binary) (binary) i

(multiclass)

wine
(multiclass)

[t 0.7
.
z 05 o
c 25 X
& 04 2z
§ > g
2 0.2
8 5 g
N
2z 08 3T
= g5
5 o6 23
H s 25
v I
El 04 £E
& 0.2 gg
276 20 g5 k2 %6 20 g8 ok 2T g0 g6 ohz 2T 0 g6 oh 2% 20 g5 i 26 20 g8 ok 2% 20 2o ohz 2T 0 g6 ohz 00
Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty
Figure 18: maz_iterations = 4, max_depth = 2
california_housing kin8nm covtype breastcancer kr-vs-kp mushroom wine covtype_multi
(regression) (regression) (binary) (binary) (binary) (binary) (multiclass) (multicTass)
[F29
22 5
X
15 F-l
g
£
07 2

0.8
0.6

Feature Penalty

Feature Penalty
Towon %

Metric: Accuracy
R2 (regression))

0.2

2% 20 25 o1 25 20 26 o1 2% 20 25 o1 2% 20 25 o1 2% 20 25 on 2% 20 26 o1 2% 20 25 i 2% 20 25 o1 00
Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty
Figure 19: max_iterations = 4, max_depth = 4
california_housing kin8nm covtype breastcancer Kkr-vs-kp mushroom wine covtype_multi
(regression) (regression) (binary) (binary) (binary) (binary) (multiclass) (multiclass)
55
g
37 %
g
18§
=
T 1.00

I
| |
]
= |
.| |
_l
wd
| -

Feature Penalty

Metric: Accuracy
R2 (regression))

°
&

276 20 g6 i 276 20 g8 o2 276 20 26 oi2 276 0 g6 oiz 276 20 g6 i 276 20 g6 o2 256 20 26 oz 276 0 g6 oiz 0.00
Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty
Figure 20: max_iterations = 4, max_depth = 8

california_housing kin8nm covtype breastcancer Kkr-vs-kp mushroom wine covtype_multi
(regression) (regression) (binary) binary) (binary) (binary) (multiclass) (multiclass)

73 _

s

X

a9 %

g

£

2.4 2

.|
| |
]
. |
| |
_l
ol
|-

Lo M -
2z 08 £5
5= 3%
& 06 28
§ > g
2 04 £=
&€ -6 02 2
00

256 20 g6 i 256 20 g6 o2 2% 20 26 oi2 276 0 g6 oi2 256 20 g6 i 256 20 g6 o 2% 20 26 oiz 276 0 g6 oi2
Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty

Figure 21: max _iterations = 64, max_depth = 2

[\

0

Under review as a conference paper at ICLR 2026

california_housing kin8nm covtype breastcancer Kkr-vs-kp mushroom wine covtype_multi
(regression) (regression) (binary) (binary) (binary) (binary) (multiclass) (multiclass)
2 293 _
©)
s E3
& 195 =
g 3
H 5
§ 9.8 2
 1.00
- -
g 075 58
g 050 ;8
& 025 28
256 20 g6 i 256 20 g6 o2 2% g0 26 oi2 %6 0 g6 oi2 256 20 g6 i 256 20 g6 o 256 20 g6 ok 2% 0 26 oi2 0.00
Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty
Figure 22: max_iterations = 64, max_depth = 4
california_housing kin8nm covtype breastcancer kr-vs-kp mushroom wine covtype_multi
(regression) (regression) (binary) (binary) (binary) (binary) (multiclass) (multicTass) 13

Feature Penalty

.|

Memory (KB)

Feature Penalty

°
&

]

o o

o 3 9

& & 8
Metric: Accuracy
R2 (regression))

256 20 g6 12 256 20 26 12 276 20 g6 iz 276 20 25 i 256 20 g6 iz 256 20 26 12 276 20 g6 iz 256 20 26 iz 0.00
Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty
Figure 23: maz_iterations = 64, max_depth = 8
california_housing kin8nm covtype breastcancer kr-vs-kp mushroom wine covtype_multi
(regression) (regression) (binary) (binary) (binary) (binary) (multiclass) (multicTass)
1221
91.6

2
s
Memory (KB)

Feature Penalty

Feature Penalty
Nowoon %
]
Metric: Accuracy
R2 (regression))

°
&

276 20 g6 i 276 20 g8 o2 276 20 26 oiz 276 0 g6 onz 276 20 g6 i 256 20 g8 o2 276 20 26 oz 276 0 g6 oiz 0.00
Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty
Figure 24: max _iterations = 1024, max_depth = 2
california_housing Kkin8nm covtype breastcancer Kkr-vs-kp mushroom wine covtype_multi
(regression) (regression) (binary) (binary) (binary) (binary) (multiclass) (multiclass)

2 B 4883
i 3062 g
e 2
g » 2441 §
5 1221 2
£

T 1.00

Feature Penalty
Metric: Accuracy
R2 (regression))

°
&

il
|
| |
.| |
_
1ud

276 0 g5 ok 256 20 g5 ok 2% 20 26 oz

2 25 gk

20

Jh

N

20 26 oz 256 20 g5 ok

2% 20 25 i
Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty Threshold Penalty

Figure 25: max_iterations = 1024, max_depth = 4

F LARGE LANGUAGE MODEL USAGE

This manuscript has undergone sentence-level improvements using Large Language Models (LLMs)
to enhance clarity and readability. However, all scientific ideas, methods, results and conclusions
are the exclusive work of the authors.

[\
—

	Introduction
	Background
	Boosted Decision Trees
	Related Work

	Approach
	Training Compressed Trees
	Memory Layout
	Bit-Wise Encoding
	Sharing Thresholds and Leaf Values

	Experiments
	Implementation Details
	Model Comparison to Baselines
	Results Baseline Comparison

	Univariate Sensitivity Analysis
	Results Feature Penalty
	Results Threshold Penalty

	Multivariate Sensitivity Analysis

	Conclusion & Future Work
	Training Compressed Ensembles
	Datasets
	Extended Related Work
	Comparison to Random Forest
	Experiments
	Runtime Experiments
	Univariate Sensitivity Analysis
	Multivariate Sensitivity Analysis

	Large Language Model Usage

