
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BOOSTED TREES ON A DIET: COMPACT MODELS FOR
RESOURCE-CONSTRAINED DEVICES

Anonymous authors
Paper under double-blind review

ABSTRACT

Deploying machine learning models on compute-constrained devices has become
a key building block of modern IoT applications. In this work, we present a
compression scheme for boosted decision trees, addressing the growing need for
lightweight machine learning models. Specifically, we provide techniques for
training compact boosted decision tree ensembles that exhibit a reduced mem-
ory footprint by rewarding, among other things, the reuse of features and thresh-
olds during training. Our experimental evaluation shows that models achieved
the same performance with a compression ratio of 4–16x compared to LightGBM
models using an adapted training process and an alternative memory layout. Once
deployed, the corresponding IoT devices can operate independently of constant
communication or external energy supply, and, thus, autonomously, requiring only
minimal computing power and energy. This capability opens the door to a wide
range of IoT applications, including remote monitoring, edge analytics, and real-
time decision making in isolated or power-limited environments.

1 INTRODUCTION

Modern Internet of Things (IoT) techniques have paved the way for new applications in domains
such as home automation, healthcare, agriculture, or industry (Khanna & Kaur, 2020). For instance,
in the context of home automation, sensors can be used to automate (smart) lighting and (smart)
heating. Another example is using sensor data for predictive maintenance to prevent machine fail-
ures and enhance productivity. Microcontrollers are a key building block of these IoT applications,
often equipped with sensors to measure parameters such as temperature, humidity, pressure, or vi-
brations. A key characteristic of such devices is that they generally have very limited computing
and memory resources (Ojo et al., 2018). For instance, the broadly used open-source Arduino Uno
R4 Minima board is equipped with a 32-bit Renesas RA4M1 microcontroller and an Arm Cortex-
M4 processor running at 48 MHz, 32 KB main memory (RAM), 256 KB flash storage, and 1 KB
electrically erasable programmable read-only memory (EEPROM). There are also microcontrollers
with even less memory and computing resources, such as the Arduino Nano board. Furthermore, the
available resources must be shared among the operating system, sensing data, data-processing pro-
grams, and machine learning models. Another characteristic is that IoT microcontrollers are often
designed for energy efficiency. This makes them well-suited for being deployed in remote locations,
where a continuous power supply is not available. Under ideal conditions, such devices can run
for several months or even years via batteries. Such applications are also supported by specialized
communication protocols such as LoRa.1

To minimize energy-intensive data transfers and to enable real-time processing, the on-site analysis
of data on the IoT device is preferable if possible. Embedding machine learning methods directly
into IoT nodes addresses this need. The key challenge in embedded machine learning is to minimize
both compute and memory requirements to enable execution on resource-constrained devices while,
at the same time, preserving model quality. This has given rise to the concept of Tiny Machine
Learning (TinyML) models (Gural & Murmann, 2019; Reddi et al., 2021; Kumar et al., 2017; War-
den & Situnayake, 2019). By sufficiently reducing resource demands, the “tiny” models can be run
directly on the microcontrollers, enabling compact “smart” devices. An example of a corresponding
IoT application is sketched in Figure 1.

1LoRa enables small volumes of data to be transferred over several kilometres (Mayer et al., 2019).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Contribution: We propose a framework that allows for compressing boosted decision tree ensem-
bles, one of the most widely used machine learning models for structured data. Our approach,
referred to as Trees on a Diet (ToaD), relies on (1) regularizers that encourage the reuse of features
and thresholds during training and on (2) a specialized memory layout to store the resulting trees.
More precisely, we utilize global lookup tables for both features and thresholds, and we store the
trees without pointers using an adapted bit-wise encoding. Overall, these modifications lead to tree
ensembles with reduced memory requirements, without sacrificing model quality. We showcase the
effectiveness of our approach by assessing the quality-memory trade-off in our experimental evalua-
tion. Our results indicate that the adapted training process yields models of comparable performance
while achieving compression ratios of 4-16x compared to other baselines.

2 BACKGROUND
Microcontroller

send
warning?Tiny Tree

sensor
data

Sensors

Figure 1: A machine learning model (decision
tree) on a microcontroller processes multi-sensor
data locally and transmits only relevant events, re-
ducing energy costs; the decision tree must have a
minimal compute and memory footprint.

We begin with the background on boosted de-
cision trees and tiny machine learning models.

2.1 BOOSTED DECISION TREES

In contrast to single decision trees, tree en-
sembles aggregate the outputs of multiple trees.
For instance, a random forest (Breiman, 2001)
is obtained by constructing the trees indepen-
dently from each other, introducing random-
ness to the construction process so that a set of
different trees is obtained. In contrast, boosted
decision trees are built in an incremental man-
ner, one tree at a time. Two prominent frame-
works in this context are XGBoost (Chen & Guestrin, 2016) and LightGBM (Ke et al., 2017).

Let T = {(x1, y1), . . . , (xn, yn)} ⊂ Rd × Y be a training (multi)set of data points xi ∈ Rd with
associated labels yi ∈ Y . Here, Y is the set of labels. For regression, we have Y = R, whereas
one is given a finite set Y = {p1, . . . , pc} of classes for classification scenarios. Both XGBoost
and LightGBM model ensembles are built in an additive way, resulting in a tree ensemble model T ,
whose prediction T (x) for a new data point x ∈ Rd is based on the sum of predictions made by K

individual decision trees tk, i.e., T (x) =
∑K

k=1 tk(x), where tk(x) denotes the prediction made by
the tree tk for an instance x ∈ Rd. Such ensembles are built in a way to minimize

n∑
i=1

L (yi, T (xi)) +

K∑
k=1

Ω (tk) , (1)

where L : Y ×Y → R+ is a suitable loss function and where Ω (tk) specifies the complexity of the
tree tk. Constructing an optimal tree ensemble T w.r.t. Equation (1) is generally not feasible. Instead,
one typically resorts to K boosting rounds, and in each round, one new tree is added to the ensemble
built so far so that the Equation (1) is minimized. More precisely, in boosting round m ≥ 1, one
considers the ensemble Tm−1 :=

∑m−1
k=1 tk of the trees built so far, starting with T0 := 0, and aims

to find the next best tree tm that minimizes
∑n

i=1 L (yi, Tm−1(xi) + tm(xi)) +
∑m

k=1 Ω(tk). The
decision tree tm itself is also constructed in a greedy manner, starting with the root of the tree being
recursively split. To penalize “complex” trees, one usually resorts to Ω(tm) = γL+ 1

2λ
∑L

j=1 v
2
j as

regularizer, where L is the number of leaves and v1, . . . , vL ∈ R the associated leaf values of tm.

2.2 RELATED WORK

Decision trees and decision tree ensembles, such as Gradient Boosted Decision Trees (GBDT), have
remained very popular, despite the rise of deep learning models (Grinsztajn et al., 2022), especially
for structured (tabular-like) data. They are also generally easy to interpret and need few compu-
tational resources. Recent advances in tree-based models have also introduced several approaches
to enhance their efficiency. For instance, several works focused on improving the training or in-
ference speed of GBDT by means of array structures (Lucchese et al., 2017; Ye et al., 2018) or

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

via the quantization of gradient statistics (Shi et al., 2022; Jiang et al., 2018; Devos et al., 2020).
Quantization of tree parameters was employed by Koschel et al. (2023), who adapted variants of
QuickScorer (Lucchese et al., 2017) to enable deployment on IoT devices. Moreover, quantization
of GBDT for resource-constrained devices was investigated by Alsharari et al. (2025) and Wang
et al. (2023), both targeting FPGAs. Reduction of model size and latency is the motivation for dif-
ferent post-training pruning techniques (Liu & Mazumder, 2023; Guo et al., 2018), some including
the refinement of leave values (Devos et al., 2025; Emine et al., 2025; Buschjäger & Morik, 2023).
Increased efficiency of tree models by design or within the training process is addressed by works
from Kumar et al. (2017) for single decision tree sizes, Ponomareva et al. (2017) for multiclass clas-
sification, and Peter et al. (2017) for efficient evaluation of deep trees considering feature acquisition
and tree evaluation costs. Further works mostly focusing on optimization of random forests include
Ren et al. (2015), Alkhoury et al. (2025), and Nan et al. (2016). Due to a lack of space, we refer to
Appendix C for a more detailed discussion of related approaches.

In this work, we focus on gradient-boosted trees. For subsequent deployment we aim to minimize
the memory footprint of the ensemble during the training process, while simultaneously ensuring a
good model fit and compact model size. We extend the work of Peter et al. (2017) by defining suit-
able feature costs that aim at reducing the bits required to encode feature indices. We also introduce
a corresponding cost regularizer for split thresholds and leaf values, and provide a specialized en-
coding for the induced binary trees. Moreover, our memory layout includes global threshold arrays
shared by all learners.

3 APPROACH

Pruning or quantization techniques are typically applied before or after the training to reduce the size
of trees (see Section 4). However, such methods generally cannot exploit task-specific compression
potential. For instance, they are not designed to incorporate the potential in memory saving of
feature sharing or the reuse of (leaf/split) thresholds within a single tree or across all trees in the
ensemble. Our framework exploits this potential by penalizing unused features and thresholds when
growing new trees. In combination with a corresponding memory layout, this yields a substantially
smaller memory footprint with reused features and thresholds being stored more compactly.2

3.1 TRAINING COMPRESSED TREES

As sketched above, boosted tree ensembles are built in an incremental manner, and in each boosting
round m, a new tree tm is added to the ensemble. The tree tm is, in turn, also built in a greedy
manner by iteratively splitting leaves (starting with the root) if this leads to a better objective (if not,
the construction process stops). To assess the quality of such a leaf split, an associated gain ∆ is
computed (Chen & Guestrin, 2016). More specifically, for a leaf associated with a set I of training
indices, a split along feature dimension i ∈ {1, . . . , d} with respect to threshold µ induces a potential
gain ∆(I, i, µ) ∈ R (which may also be negative). Leaves are split as long as some split yields a
positive gain, always choosing the leaf and split with the highest gain.

The standard gain does not promote the reuse of features or thresholds. Following Peter et al. (2017),
we introduce an additional regularizer based on the set of features FU ⊆ {1, . . . , d} and thresholds
T f ⊂ R with f ∈ FU that have already been used by the trees t1, . . . , tm built so far (including the
current tree tm). The memory layout detailed below allows for storing those features and thresholds
in a much more compact manner. In particular, features and thresholds that have already been
used in previous trees contribute only marginally to the overall space consumption and are therefore
essentially “free of charge”. A simple linear regularizer that favors such a reuse of features and
thresholds is given by

Ωl(tm) = Ω(tm) + ι · |FU |+ ξ ·
∑
f∈FU

|T f |, (2)

2Our work targets resource-constrained devices where memotry, not latency or energy, is the main bottle-
neck. In many applications, the model size determines whether a deployment is feasible or not. It is worth
pointing out that local on-device inference is generally far more energy-efficient than transmitting data to a
remote server and also incurs only minimal latency. Technically, our compression scheme adds only mini-
mal overhead (a few bit-wise operations), so we expect the impact on latency and energy per prediction to be
negligible.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Max number of used
thresholds for any feature

(16-bit Integer)

00...10 01...0001...00

Number of trees
(8-bit Integer)

Max depth of trees
(5-bit Integer)

Number of
used features

(16-bit Integer)

00...10

Feature & Threshold Map

01...1... 00...11

Tree

... 00...01

Tree

TreesMetadata Global Features &
Thresholds

0...1 0...1...

Thresholds for
feature

Thresholds for
feature

0...1 0...0...

Global Leaf Values

01...00

Figure 2: High-level sketch of the memory layout used to store an ensemble of boosted decision
trees. The first part stores some metadata, such as the number K of boosted trees or the maximum
depth of all trees. The following three parts encode the used features, thresholds, and leaf values.
Finally, the references to the features and thresholds for the individual trees are stored.

where ι, ξ ∈ R+ are user-defined hyperparameters. Thus, using a new feature that has not been
used so far leads to an increase of |FU | by 1, and, hence, to an increase of the objective (1) by ι.
Accordingly, if a new threshold is used for a feature f ∈ FU , the objective is increased by ξ.3 Using
this modified regularizer leads to the following modified gain

∆l(I, i, µ) = ∆(I, i, µ)− sf ι− stξ, (3)

where sf = 1 in case a new feature (index) is used and sf = 0 otherwise, and st = 1 in case a new
threshold is used and st = 0 otherwise, see Appendix A for the derivations.

3.2 MEMORY LAYOUT

Our memory layout leverages the reuse of feature indices and thresholds enforced by the modified
regularizer. A high-level sketch of the overall memory layout is shown in Figure 2. In a nutshell, it
reduces the memory footprint of boosted tree ensembles through two mechanisms:

1. Bit-wise encoding: Encoding the information in a bit-wise manner allows to store a minimal
representation of information compared to the use of higher level data types that may use
non-minimal representations (e.g. a bool occupies eight bits in memory in C).

2. Shared thresholds and leaf values: Global arrays are used to store threshold and leaf values,
which are referenced within internal tree nodes and leaves. Sharing values across trees can
substantially reduce the bits needed for storing thresholds and leaf weights.

The memory layout comprises five components. The first stores metadata, including the number
K of trees, the maximum tree depth, the number |FU | of used features, and the maximum number
of thresholds maxf∈FU

|T f | associated with any feature. In addition, three global arrays and the
individual decision trees t1, . . . , tK are stored. Figure 3 illustrates the bit-wise encoding of a simple
model with two exemplary decision trees. We now detail the individual components.

3.2.1 BIT-WISE ENCODING

Boosted ensembles typically employ shallow, nearly balanced trees with a small depth (e.g., a depth
of up to 5). Such trees can be stored efficiently using pointer-less schemes. More precisely, the root
is stored at index i = 0, and for a node at index i, the left child is stored at index 2 · i + 1 and the
right child at index 2 · i + 2. For example, in Figure 3, two such array-based representations are
given. Here, the root n1 of tree t1 is stored at index 0, and its two children n2 and n3 are stored at
indices 1 and 2, respectively. We distinguish between internal nodes and leaf nodes:

• Internal nodes: For each internal node ni, two pieces of information are stored, namely
a reference for the feature fi ∈ FU that is used for splitting along with an index for the
associated threshold value µi

j (j-th threshold associated with feature fi). For instance,
for tree t2 and node n1, we store a reference 10 for feature f3 and an index 0 for the
associated threshold µ3

1. The reference 10 can be used to loop up the relevant information

3For example, if a feature corresponds to temperature values, it may be sufficient to restrict the set of ad-
missible thresholds to, e.g., 0 and 20 degrees Celsius. Alternative regularization schemes are also conceivable.
Another option is, for instance, Ωe(tm) = Ω(tm) + ι ·

∑|FU |
j=1 j + ξ ·

∑p
j=1 j with p =

∑
f∈FU

|T f |, which
imposes an exponentially increasing penalty on the number of distinct features and thresholds. In practice,
however, the linear regularizer has been shown to be highly effective and is, hence, used in this work.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

110

100

010

101

000

011

Global Features & Thresholds

0 110 01

Global Leaf Values (32-bit Float)

00...11 00...10 01...10 10...10 00...0000...010100100000010011

000 001 010 01100 0

01 1

01 0

011 100 010 10110 0 00 1 01 1

Feature & Threshold Map

Example Dataset

Input Features: Used Features:

Trees

...

Features Label

1 2 3 4

3 7.3 0 0.4 1

0 (Int)

Index

00 (Feature 1)

10 (Feature 3)

11 (Feature 4)

001 ()

000 ()

100 ()

1 ()

1 (Float)

-bit 3-bit 1-bit -bit

0000101 1000001 1110010

Threshold
bit-width

Input feature Threshold
numeric type

Number of
thresholds

0 (Int) 1 ()

0 ()

encoded as

Figure 3: Illustration of a bit-wise encoding of a boosted tree ensemble with two trees. Each tree
is stored in a bit-wise manner, with each internal node storing a reference to a feature index and a
reference to a threshold index. For instance, for the left child n2 of the root of the tree t1, a reference
to feature f2 is stored along with a reference to the associated threshold µ2

2. For feature f2, there
are two thresholds used by the entire ensemble, namely µ2

1 and µ2
2, which can be used by any node

of any of the trees (e.g. t2 in node n3). Accordingly, the leaf values stored in the leaves of the trees
are shared (e.g. v4 is used in leaf l4 of tree t1 and leaf l1 of t2) and stored in one array. Since the
bit-size of the thresholds varies, additional metadata is stored in the Feature & Threshold
Mapping table/array. For instance, there are two thresholds for feature f1 of bit-size 2 (i.e., four
different values), whereas there are two 1-bit thresholds for feature f2.

in the Feature & Threshold Map. In this case, f3 corresponds to the fourth feature,
24 bits are used to represent the thresholds (floating point), and one threshold was used
overall for that feature. Using the index 0 and along with the information stored for the
other features, one can then loop up the threshold value µ3

1.

• Leaf nodes: For each leaf node, a reference to its leaf value v is stored. For instance, for
the leaf l1 of tree t1, a reference 000 to the leaf value v1 is stored. All these leaf values are
shared across all the trees and are stored in the array Global Leaf Values.

The details for each feature are stored in a bit-wise manner in the array Feature &
Thresholds Map that is referred to when decoding the nodes. To process such a reference we
need to know the bit widths of following information:

(a) Input feature index: For a given dataset with features FI = {1, . . . , d}, the num-
ber d of features is known and can be encoded using ⌈log2(|FI |)⌉ bits.

(b) Threshold bit-width: Threshold values are assumed to be representable as 1-bit
(binary feature), 2|4-bits (small integers), or 8|16|32-bits (floating point with different pre-
cision or integers). The threshold bit-width per feature can be stored as a power of two,
requiring only three bits to represent the aforementioned values (20 to 25).

(c) Threshold numeric type: The representation can be either a floating point number
(float) or a fixed point number (integer), and can be stored using a single bit, allowing for
big integers and floating point values to be used.

(d) Number of thresholds: The maximum number maxf∈FU
|T f | of thresholds

among all features can be determined at training time and can be encoded using
⌈log2(maxf∈FU

|T f |)⌉ bits. Since features with 0 thresholds are not included, we map
the value 0 to the threshold count 1 (i.e., the bit value +1 is the actual count).

Hence, the array-based representation Trees of the trees t1, . . . , tK along with the Feature &
Threshold Map are used to store the trees and additional information to retrieve the actual split
feature indices and thresholds and leaf values in the two global arrays, which are described next.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2.2 SHARING THRESHOLDS AND LEAF VALUES

The threshold values are stored on a per-feature basis in a single array, see Global Features
& Thresholds in Figure 3, which is referenced by nodes throughout the entire tree ensemble.
For example, consider a tree node n1 referencing the first feature, f1, along with its corresponding
first threshold, µ1

1, as depicted in tree t1 in Figure 3. The Feature & Threshold Map allows
for calculating the offset for each feature by determining the memory consumption of all previous
features. Therefore, the associated threshold value (i.e. 10 for µ1

1) can be extracted and decoded to
its original representation (i.e. 10 → (int)2 for µ1

1). This permits the variation of both the bit size
and precision between different features within a single array.

The leaf values are stored (globally) in the array Global Leaf Values using a fixed 32-bit
floating point representation. This allows for a high precision in leaves and a reuse across the
different trees in the ensemble without feature reference. For example, consider the fourth global
leaf value v4 in Figure 3, which is referenced by both the leaf l4 in tree t1 and leaf l1 of t2.

4 EXPERIMENTS

To assess the quality of our compression approach and the impact of the additional parameters on
the results, we ran three kinds of experiments: (1) A performance comparison of ToaD with other
GBDT and tree ensemble optimization methods, (2) an univariate sensitivity analysis evaluating
the threshold and feature penalties independently, and (3) a multivariate analysis combining both
penalties. For the evaluation, the ToaD models were trained with varying hyperparameters (grid-
search). The maximum number of iterations ranges from 20 to 210, maximum depth per tree from 20

to 23, and ι and ξ from 2−10 to 215. Moreover, ι and ξ were set to 0 in every possible combination.
This results in 32,076 models trained per dataset.

4.1 IMPLEMENTATION DETAILS

Our implementation builds upon the LightGBM framework.4 The penalties were added as op-
tional hyperparaneters to the training process of GBDT. The parameter ι is introduced as variable
tinygbdt penalty feature and ξ as variable tinygbdt penalty threshold. More-
over, logging the used features and thresholds enables tracking of the memory consumed by the
selected memory layout. Therefore, the optional variable tinygbdt forestsize allows train-
ing models for a specific memory limitation (such as 32KB on an Arduino Uno Rev 3). Experiments
were conducted on a collection of eight widely used publicly available datasets (see Appendix B for
specifics). We split all datasets into training and test sets using an 80/20 ratio, respectively. Model
fitting was conducted on the training set, and the test was used to measure the final induced quality
of the models. As metrics for quality measurement of the resulting models, accuracy is used for
classification datasets and the R2 score for regression datasets (Lewis-Beck & Lewis-Beck, 2015).
Note that, for both metrics, higher values indicate better model performance.

4.2 MODEL COMPARISON TO BASELINES

We compared the performance of our approach to that of other efficient GBDT (compression) meth-
ods. LightGBM is considered an established framework for training boosted trees (Ke et al., 2017).
It was used for comparison in both the standard and quantized version. For quantization, the thresh-
old and leaf values were reduced to 16-bit floating point precision. In addition LightGBM was eval-
uated in an array-based structure, i.e. it was stored without pointers but assuming all trees are com-
plete as described in Section 3.2.1. This allows the comparison between ToaD and LightGBM under
a unified pointer-less layout. Moreover, different pruning methods were evaluated with cost-efficient
gradient boosting (CEGB) (Peter et al., 2017) and minimal cost-complexity pruning (CCP) (Breiman
et al., 1984). All models were trained with the same hyperparameters as the ToaD models, i.e. all
combinations of 20 to 210 maximum trees and maximum tree depth between 20 and 23. Along-
side related work (e.g., Buschjäger & Morik (2023)), we calculated the memory usage of a model

4All the source code and the experimental setup will be made publicly available upon acceptance. An
anonymous code repository is already available at https://anonymous.4open.science/r/ToaD/
experiments/README.md.

6

https://anonymous.4open.science/r/ToaD/experiments/README.md
https://anonymous.4open.science/r/ToaD/experiments/README.md

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.90

0.92

0.94

0.96

0.98

1.00

A
cc

ur
ac

y

mushroom (binary)

Model
LightGBM
LightGBM FP16
LightGBM array-based
CPP
CEGB
ToaD w/o Penalties
ToaD w/ best Penalties 0.75

0.80

0.85

0.90

A
cc

ur
ac

y

covtype (binary)

0.875

0.900

0.925

0.950

0.975

A
cc

ur
ac

y

breastcancer (binary)

0.92

0.94

0.96

0.98

A
cc

ur
ac

y

kr-vs-kp (binary)

0.
25 0.
5

1.
0

2.
0

4.
0

8.
0

16
.0

32
.0

64
.0

12
8.

0
25

6.
0

51
2.

0
10

24
.0

20
48

.0

Max Memory (KB)

0.0

0.2

0.4

0.6

0.8

R
2

S
co

re

kin8nm (regression)

0.
25 0.
5

1.
0

2.
0

4.
0

8.
0

16
.0

32
.0

64
.0

12
8.

0
25

6.
0

51
2.

0
10

24
.0

20
48

.0

Max Memory (KB)

0.2

0.4

0.6

0.8

R
2

S
co

re

california_housing (regression)

0.
25 0.
5

1.
0

2.
0

4.
0

8.
0

16
.0

32
.0

64
.0

12
8.

0
25

6.
0

51
2.

0
10

24
.0

20
48

.0

Max Memory (KB)

0.45

0.50

0.55

0.60

0.65

A
cc

ur
ac

y

wine (multiclass)

0.
25 0.
5

1.
0

2.
0

4.
0

8.
0

16
.0

32
.0

64
.0

12
8.

0
25

6.
0

51
2.

0
10

24
.0

20
48

.0

Max Memory (KB)

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

covtype_multi (multiclass)

Figure 4: Accuracy vs. memory (KB) for ToaD and baselines. All models were trained on multiple
train-test splits and the best model performance at a given memory limit from the hyperparameter
analysis is depicted. The points show the mean across the splits, the errorbars show the respective
standard deviation.

with 128 bits per node, assuming all values are stored in single precision (float32) and 64 bits for
quantized half-precision models.5 In constrast to Buschjäger & Morik (2023), we assume the infor-
mation about a node being a leaf can be encoded by a specific feature and child node identifier, thus
no additional boolean values are required. Moreover, boosted trees do not need to store the class
information within a leaf but create one ensemble per class.

For the calculation of the memory footprint of the ToaD models, the proposed memory layout is
used. For the ToaD models, it is distinguished between the memory layout without applying penal-
ization during training, i.e., ι = 0 and ξ = 0, and the best-performing models with penalization.
For the comparison visualized in Figure 4, the best-performing models with a memory consumption
less than or equal to the respective upper limit were chosen from the grid search results. Thus, the
number or depth of trees of models at the same memory limit for the same dataset may differ for
different model types. We expect ToaD to outperform the baseline implementations as it does not
require pointers to its children, it encodes boolean values with only 2 bits, and a suitable penalty
configuration encourages the model to reuse features and thresholds. Thus ToaD especially benefits
from the pointer-less tree layout which is strong for complete trees, whereas a standard child-pointer
layout also allows deeper non-complete trees without wasting too many resources.

4.2.1 RESULTS BASELINE COMPARISON

2 7 2 2 23 28 213

Threshold Penalty

2 7

2 2

23

28

213

Fe
at

ur
e

Pe
na

lty Best Model

Penalty Grid Search, California Housing, 1 KB

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R2
 sc

or
e

Figure 5: Model performance on California
Housing with a 1 KB memory limit under
varying penalties.

Since the primary use case for ToaD is microcon-
trollers, typical memory limits are considered for
the respective performance comparison. The results
are depicted in Figure 4. For almost all investigated
configurations, ToaD outperforms the baseline ap-
proaches, even more when considering the models
from the penalized training. On all tested multiclass
datasets, the ToaD approaches are superior to the
other models across all memory limits. The same
holds for the regression datasets until the perfor-
mance saturates, starting with different memory lim-
its, with some of the competitors catching up to the
same score with increasing memory available. In the
interesting memory range up to 128 KB, before some model performances saturate, the competing
methods need 4 to 16 times the memory to achieve the same performance. For example, on the
covertype multiclass dataset, the best ToaD model at 2 KB achieves an accuracy of 69 %, which
quantized LightGBM as the best competitor only matches with 8 KB, while float32 LightGBM even
needs 16 KB. A further finding includes that ToaD outperforms array-based LightGBM, showcasing
the effectiveness of our approach beyond the pure pointer-less layout.

5Each node stores four values: one feature identifier, one threshold, and two child pointers.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Feature Penalty
0.0

0.5

1.0

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

california_housing
(regression)

Feature Penalty

kin8nm
(regression)

Feature Penalty

covtype
(binary)

Feature Penalty

breastcancer
(binary)

Feature Penalty

kr-vs-kp
(binary)

Feature Penalty

mushroom
(binary)

Feature Penalty

wine
(multiclass)

Feature Penalty

covtype_multi
(multiclass)

2 72 2 23 28 213

Threshold Penalty

0.0

0.5

1.0

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

2 72 2 23 28 213

Threshold Penalty
2 72 2 23 28 213

Threshold Penalty
2 72 2 23 28 213

Threshold Penalty
2 72 2 23 28 213

Threshold Penalty
2 72 2 23 28 213

Threshold Penalty
2 72 2 23 28 213

Threshold Penalty
2 72 2 23 28 213

Threshold Penalty

2.5

5.0

7.5

0
400
800
1200

1.0

1.2

1.4

1.6

2.5

5.0

7.5

0
400
800
1200

1.0

1.2

1.4

1.6

2.5

5.0

7.5

0

400

800

1200

1.0

1.2

1.4

2.5

5.0

7.5

0

400

800

1200

1.0

1.2

1.4

20

40

0

400

800

1200

1.4

1.6

1.8

0

20

0

400

800

1200

1.00

1.25

1.50

1.75

0

20

0
300
600
900

1.2
1.6
2.0
2.4

5
10
15

0
300
600
900

1.0
1.5
2.0
2.5

5

10

0

2500

5000

7500

2.0
2.4
2.8
3.2

20

40

0

2500

5000

7500

1.80
1.95
2.10
2.25

#Features #Features w/
Penalty = 0 Metric #Values #Values w/

Penalty = 0 Reuse factor

Figure 6: Influence of penalties ι and ξ on the number of thresholds and the number of features,
displayed on the right y-axis, alongside the respective performance scores shown on the left y-
axis. The threshold penalty figure additionally depicts the reuse factor. The maximum number of
iterations per model is set to 256 during training with a maximum tree depth of 2.

Figure 5 shows an exemplary grid for model performances at a given memory limit for the California
Housing dataset. The maximum memory size is fixed, allowing for an unlimited number of trees and
nodes. As the forestsize parameter determining the memory limitation can be set by the user
within our implementation, this graph can easily be generated for any memory size to determine
the best penalty configuration. This approach helps identify the best-performing model for a given
dataset on memory-limited hardware.6

4.3 UNIVARIATE SENSITIVITY ANALYSIS

We conducted a univariate sensitivity analysis of the two newly introduced penalties to assess their
individual effects on the model. During training, we varied the feature penalty ι and the threshold
penalty ξ independently over the range 2−10 to 215, setting the other parameter to zero. We then
tracked the number of nodes and leaves, the number of global values (thresholds and leaf values),
and the test set performance. Furthermore, to evaluate how efficiently threshold values were reused,
we calculated the reusing factor RF as the ratio between the sum of the nodes and leaves and the
global number of values. In a naive implementation, the number of leaves and nodes equals the count
of values, resulting in RF = 1. With the ratio RF , we can determine how many of these values
are reused by the ToaD approach. For instance, a value of RF = 1.5 can be interpreted as a model
reusing 50% of its threshold and leaf values, while RF = 2.0 indicates that, on average, each value
is used twice. Results of this analysis are depicted in Figure 6 with a maximum number of iterations
of 256 and a maximum depth per tree of 2, as ToaD is meant to be especially useful for shallow
trees. A selection of results for further hyperparameter settings can be found in Appendix E.2.

4.3.1 RESULTS FEATURE PENALTY

Figure 6 (top) shows the univariate sensitivity analysis for the feature penalty ι. For ι < 1, the
number of features is largely unchanged, except for a notable drop in the Breast Cancer dataset. The
value of the feature penalty at which it takes effect varies between different datasets. For datasets
with few features (California Housing and kin8nm), the accuracy drops shortly after the number of
features decreases. We assume the few features in this dataset are essential for accurate predictions.
In contrast, datasets with more features show a slower and later accuracy decline, as the penalty first
removes less relevant features. For example, the Covertype model loses only ≈ 2% accuracy when
ι = 212, while the feature count drops from 35 to 5.

4.3.2 RESULTS THRESHOLD PENALTY

In the bottom row of Figure 6, the performance metric for the model, the number of global values,
and the reuse factor (RF) are depicted against a varying threshold penalty ξ. For all datasets, an
increase in the threshold penalty decreases the number of global values used by the model. For the
maximum penalty of ξ = 215, the number of global values approaches 1 for all models, i.e., the
model only consists of one tree with the root node. The trend of the performance metrics differs
between the datasets. The accuracy drops abruptly after a certain penalty for most of the binary
datasets, whereas the performance of the other datasets declines more gradually. The models trained

6A script to reproduce the figures is available in the repository.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

2 6

20

26

212

Fe
at

ur
e

Pe
na

lty

california_housing
(regression)

kin8nm
(regression)

covtype
(binary)

breastcancer
(binary)

kr-vs-kp
(binary)

mushroom
(binary)

wine
(multiclass)

M
em

or
y

(K
B)

covtype_multi
(multiclass)

2 6 20 26 212

Threshold Penalty

2 6

20

26

212

Fe
at

ur
e

Pe
na

lty

2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

7.3 KB

14.6 KB

22.0 KB

29.3 KB

0.00

0.25

0.50

0.75

1.00

Figure 7: Influence of ι and ξ on the needed memory (KB) and the representative metric (accuracy or
R2 score). Orange dots mark penalty configuration combinations that are a good trade-off between
model accuracy and memory. The maximum number of iterations per model is set to 256 during
training with a maximum tree depth of 2.

on the Covertype dataset record the slightest decrease of about 6% from the smallest to the largest
penalty value. At the same time, the number of values used for the model drops from 1323 to only
18. These differences probably arise from the size of the datasets, as the more stable models have
more data points to choose from.

The reuse factor follows a similar pattern across all datasets. At first, it increases for higher penalties,
but with very high penalties, it starts to decrease abruptly. At its peak, every model achieves a RF
of at least 1.5 with the wine dataset, reusing each value more than three times for a penalty around
28. In contrast, for the highest investigated threshold penalty of ξ = 215, all models–except for
the Covertype dataset–result in RF = 1, meaning each value is only used once per feature. This
decrease in RF for very high ξ values can be explained by fewer global values being available for
reuse, thus reducing reuse opportunities across training splits. Interestingly, the RF drops later than
the number of values; actually, first it increases, and with the sharp decrease of the RF , also the
accuracy plunges. Of special interest for the training process are the penalties with RF peaks, as
here the model performance is still satisfactory, but the number of global thresholds is low.

4.4 MULTIVARIATE SENSITIVITY ANALYSIS

To assess the combined effects of our penalties, we performed a multivariate sensitivity analysis for
both penalty parameter values. As in the univariate sensitivity analysis, we used the parameter space
2−10 to 215 for both parameters, resulting in 26 × 26 = 676 trained models per dataset and tree
setting. Figure 7 shows the memory consumption next to the performance metric in a grid of the
combined penalties with a maximum of 256 iterations with a maximum tree depth of 2. A selection
of results for further hyperparamter settings can be found in Appendix E.3.

The memory requirements for all datasets decreased significantly as penalties increased, with each
dataset having a specific threshold at which memory usage drops rapidly. The different looks of the
multiclass dataset memories are reasoned by them using one tree ensemble per class; thus, more trees
and memory are needed. For the larger datasets (Covertype, California Housing), the difference in
memory consumption is stronger, starting at around 5 KB for small penalties and dropping to around
80 Byte for larger penalties. On average, predictive performance is better for smaller penalties as
more features and thresholds are used. Independent of the dataset and objective, after a certain
threshold in the feature penalty, model predictions are not better than guessing. This is expected
as the penalties reduced tree complexity, thus it loses its predictive capabilities with the omitted
features and thresholds.

By combining both penalty parameters, we can select a model that maintains high predictive perfor-
mance while having a significantly smaller memory footprint. This creates solutions that are equally
viable, known as nondominated solutions (Deb, 2011), where no solution is better in both predictive
performance and memory usage simultaneously. If we know the minimal predictive performance
we need for a task, we can select the corresponding microcontroller accordingly. Exemplary points
are marked in orange where the accuracy is good, but the memory usage dropped.

To summarize, there is no globally optimal penalty setting as it depends on the dataset being used
and the number and depth of trees allowed during training. For all datasets, we found that higher

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

memory usage does not necessitate an incline in predictive performance. Instead, the metrics re-
mained similar until there was a considerable decrease in memory usage.

5 CONCLUSION & FUTURE WORK

We propose two hyperparameters and a new memory layout to optimize the memory footprint of
boosted decision tree ensembles. First, custom penalties within boosted decision tree training were
implemented that encourage a boosted tree to reuse features and thresholds and thus create smaller
models. An univariate analysis has shown an effective decrease in the number of utilized values but
almost unchanged performance for specific penalty values. Then, the decision tree memory layout
ToaDwas introduced. Building upon index-based trees that enable a pointer-less node sequence and
global value lookup, it allows the reuse of threshold values multiple times per feature and allows
storing thresholds with fewer bits, e.g. only 1 bit for boolean values. Our experiments show that
we can store models with a significantly smaller memory footprint than baseline methods while
maintaining the same accuracy, supporting the application of powerful boosted decision trees on
resource-constrained devices.

Although the linear penalizer already performed well, a deeper analysis of more sophisticated pe-
nalizers may reveal even better performance and thus would prove to be an interesting extension
to the present work. Adapting our method to reuse leaf values more effectively could also prove
useful as well as the transfer to other variants of decision tree ensembles. Lastly, to further assess
the effectiveness of the proposed method, its deployment to different microcontroller units would be
valuable.

REFERENCES

Fouad Alkhoury, Sebastian Buschjäger, and Pascal Welke. Splitting stump forests: tree ensemble
compression for edge devices (extended version). Machine Learning, 114(10), August 2025.
ISSN 1573-0565. doi: 10.1007/s10994-025-06866-2.

Majed Alsharari, Son T. Mai, Roger Woods, and Carlos Reaño. Efficient integer-only-inference
of gradient boosting decision trees on low-power devices. IEEE Transactions on Circuits and
Systems I: Regular Papers, 72(1):241–253, January 2025. ISSN 1558-0806. doi: 10.1109/tcsi.
2024.3446582.

Jock Blackard. Covertype. UCI Machine Learning Repository, 1998. URL https://doi.org/
10.24432/C50K5N.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. Classification And
Regression Trees. Chapman and Hall/CRC, 1 edition, 1984. ISBN 9781315139470. doi: 10.
1201/9781315139470. URL https://doi.org/10.1201/9781315139470.

Sebastian Buschjäger and Katharina Morik. Joint leaf-refinement and ensemble pruning through l1
regularization. Data Mining and Knowledge Discovery, 37(3):1230–1261, March 2023. ISSN
1573-756X. doi: 10.1007/s10618-023-00921-z.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In International
Conference on Knowledge Discovery and Data Mining (KDD), pp. 785–794, San Francisco Cal-
ifornia USA, August 2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939785.
URL https://dl.acm.org/doi/10.1145/2939672.2939785.

Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. Modeling wine
preferences by data mining from physicochemical properties. Decision Support Systems, 47(4):
547–553, November 2009. ISSN 0167-9236. doi: 10.1016/j.dss.2009.05.016. URL https:
//doi.org/10.1016/j.dss.2009.05.016.

Kalyanmoy Deb. Multi-objective Optimisation Using Evolutionary Algorithms: An Introduc-
tion, pp. 3–34. Springer London, London, 2011. ISBN 978-0-85729-652-8. doi: 10.1007/
978-0-85729-652-8 1. URL https://doi.org/10.1007/978-0-85729-652-8_1.

10

https://doi.org/10.24432/C50K5N
https://doi.org/10.24432/C50K5N
https://doi.org/10.1201/9781315139470
https://dl.acm.org/doi/10.1145/2939672.2939785
https://doi.org/10.1016/j.dss.2009.05.016
https://doi.org/10.1016/j.dss.2009.05.016
https://doi.org/10.1007/978-0-85729-652-8_1

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Laurens Devos, Wannes Meert, and Jesse Davis. Fast gradient boosting decision trees with bit-
level data structures. In Ulf Brefeld, Elisa Fromont, Andreas Hotho, Arno Knobbe, Marloes
Maathuis, and Céline Robardet (eds.), Machine Learning and Knowledge Discovery in Databases,
pp. 590–606, Cham, 2020. Springer International Publishing. ISBN 978-3-030-46150-8. doi:
10.1007/978-3-030-46150-8 35. ECML PKDD 2019.

Laurens Devos, Timo Martens, Deniz Can, Wannes Meert, Hendrik Blockeel, and Jesse Davis.
Compressing tree ensembles through level-wise optimization and pruning. In Forty-second Inter-
national Conference on Machine Learning, 2025.

Youssouf Emine, Alexandre Forel, Idriss Malek, and Thibaut Vidal. Free lunch in the for-
est: Functionally-identical pruning of boosted tree ensembles. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 39(16):16488–16495, April 2025. ISSN 2159-5399. doi:
10.1609/aaai.v39i16.33811. URL https://doi.org/10.1609/aaai.v39i16.33811.

Zoubin Ghahramani. kin8nm. URL https://www.openml.org/search?type=data&
id=189.

Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. Why do tree-based models still
outperform deep learning on typical tabular data? In Advances in Neural Informa-
tion Processing Systems, volume 35, pp. 507–520. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
0378c7692da36807bdec87ab043cdadc-Paper-Datasets_and_Benchmarks.
pdf.

Huaping Guo, Hongbing Liu, Ran Li, Changan Wu, Yibo Guo, and Mingliang Xu. Margin &
diversity based ordering ensemble pruning. Neurocomputing, 275:237–246, 2018. ISSN 0925-
2312. doi: 10.1016/j.neucom.2017.06.052.

Chirag Gupta, Arun Sai Suggala, Ankit Goyal, Harsha Vardhan Simhadri, Bhargavi Paranjape,
Ashish Kumar, Saurabh Goyal, Raghavendra Udupa, Manik Varma, and Prateek Jain. Pro-
tonn: Compressed and accurate knn for resource-scarce devices. In Doina Precup and Yee Whye
Teh (eds.), Proceedings of the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pp. 1331–1340. PMLR, 2017. URL https:
//proceedings.mlr.press/v70/gupta17a.html.

Albert Gural and Boris Murmann. Memory-optimal direct convolutions for maximizing classi-
fication accuracy in embedded applications. In Internatinal Conference on Machine Learning
(ICML), pp. 2515–2524, 2019.

Jiawei Jiang, Bin Cui, Ce Zhang, and Fangcheng Fu. Dimboost: Boosting gradient boosting decision
tree to higher dimensions. In Proceedings of the 2018 International Conference on Management
of Data, SIGMOD/PODS ’18, pp. 1363–1376. ACM, May 2018. doi: 10.1145/3183713.3196892.
URL https://doi.org/10.1145/3183713.3196892.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye,
and Tie-Yan Liu. LightGBM: A highly efficient gradient boosting decision tree. In Ad-
vances in neural information processing systems (NeurIPS), volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.

R. Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability
Letters, 33(3):291–297, 1997. ISSN 0167-7152. URL https://doi.org/10.1016/
S0167-7152(96)00140-X.

Abhishek Khanna and Sanmeet Kaur. Internet of Things (IoT), Applications and Challenges:
A Comprehensive Review. Wireless Personal Communications, 114(2):1687–1762, September
2020. ISSN 1572-834X. doi: 10.1007/s11277-020-07446-4. URL https://doi.org/10.
1007/s11277-020-07446-4.

Simon Koschel, Sebastian Buschjäger, Claudio Lucchese, and Katharina Morik. Fast inference
of tree ensembles on arm devices. 2023. doi: 10.48550/ARXIV.2305.08579. URL https:
//arxiv.org/abs/2305.08579.

11

https://doi.org/10.1609/aaai.v39i16.33811
https://www.openml.org/search?type=data&id=189
https://www.openml.org/search?type=data&id=189
https://proceedings.neurips.cc/paper_files/paper/2022/file/0378c7692da36807bdec87ab043cdadc-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0378c7692da36807bdec87ab043cdadc-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0378c7692da36807bdec87ab043cdadc-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.mlr.press/v70/gupta17a.html
https://proceedings.mlr.press/v70/gupta17a.html
https://doi.org/10.1145/3183713.3196892
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://doi.org/10.1016/S0167-7152(96)00140-X
https://doi.org/10.1016/S0167-7152(96)00140-X
https://doi.org/10.1007/s11277-020-07446-4
https://doi.org/10.1007/s11277-020-07446-4
https://arxiv.org/abs/2305.08579
https://arxiv.org/abs/2305.08579

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ashish Kumar, Saurabh Goyal, and Manik Varma. Resource-efficient machine learning in 2 kb
ram for the internet of things. In Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1935–1944. PMLR,
August 2017. URL https://proceedings.mlr.press/v70/kumar17a.html.

Colin Lewis-Beck and Michael Lewis-Beck. Applied regression: An introduction, volume 22. Sage
publications, 2015.

Brian Liu and Rahul Mazumder. Forestprune: Compact depth-pruned tree ensembles. In Francisco
Ruiz, Jennifer Dy, and Jan-Willem van de Meent (eds.), Proceedings of The 26th International
Conference on Artificial Intelligence and Statistics, volume 206 of Proceedings of Machine Learn-
ing Research, pp. 9417–9428. PMLR, 25–27 Apr 2023. URL https://proceedings.mlr.
press/v206/liu23h.html.

Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Nicola Tonellotto,
and Rossano Venturini. Quickscorer: Efficient traversal of large ensembles of decision trees. In
Machine Learning and Knowledge Discovery in Databases, pp. 383–387, Cham, 2017. Springer
International Publishing. ISBN 978-3-319-71273-4. doi: 10.1007/978-3-319-71273-4 36. URL
https://doi.org/10.1007/978-3-319-71273-4_36.

Philipp Mayer, Michele Magno, Thomas Brunner, and Luca Benini. Lora vs. lora: In-field evaluation
and comparison for long-lifetime sensor nodes. In International Workshop on Advances in Sensors
and Interfaces (IWASI), pp. 307–311. IEEE, 2019.

Mushroom. UCI Machine Learning Repository, 1981. URL https://doi.org/10.24432/
C5959T.

Feng Nan, Joseph Wang, and Venkatesh Saligrama. Pruning random forests for prediction
on a budget. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/
file/3948ead63a9f2944218de038d8934305-Paper.pdf.

Mike O. Ojo, Stefano Giordano, Gregorio Procissi, and Ilias N. Seitanidis. A Review of Low-
End, Middle-End, and High-End Iot Devices. IEEE Access, 6:70528–70554, 2018. ISSN
2169-3536. doi: 10.1109/ACCESS.2018.2879615. URL https://doi.org/10.1109/
ACCESS.2018.2879615.

Sven Peter, Ferran Diego, Fred A Hamprecht, and Boaz Nadler. Cost efficient gradient boost-
ing. In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/4fac9ba115140ac4f1c22da82aa0bc7f-Paper.pdf.

Natalia Ponomareva, Thomas Colthurst, Gilbert Hendry, Salem Haykal, and Soroush Radpour.
Compact multi-class boosted trees. In 2017 IEEE International Conference on Big Data (Big
Data), pp. 47–56, 2017. doi: 10.1109/BigData.2017.8257910. URL https://doi.org/10.
1109/BigData.2017.8257910.

Vijay Janapa Reddi, Brian Plancher, Susan Kennedy, Laurence Moroney, Pete Warden, Anant
Agarwal, Colby R. Banbury, Massimo Banzi, Matthew Bennett, Benjamin Brown, Sharad Chit-
langia, Radhika Ghosal, Sarah Grafman, Rupert Jaeger, Srivatsan Krishnan, Maximilian Lam,
Daniel Leiker, Cara Mann, Mark Mazumder, Dominic Pajak, Dhilan Ramaprasad, J. Evan Smith,
Matthew Stewart, and Dustin Tingley. Widening access to applied machine learning with tinyml.
CoRR, abs/2106.04008, 2021. URL https://arxiv.org/abs/2106.04008.

Shaoqing Ren, Xudong Cao, Yichen Wei, and Jian Sun. Global refinement of random forest. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

Alen Shapiro. Chess (King-Rook vs. King-Pawn). UCI Machine Learning Repository, 1983. URL
https://doi.org/10.24432/C5DK5C.

12

https://proceedings.mlr.press/v70/kumar17a.html
https://proceedings.mlr.press/v206/liu23h.html
https://proceedings.mlr.press/v206/liu23h.html
https://doi.org/10.1007/978-3-319-71273-4_36
https://doi.org/10.24432/C5959T
https://doi.org/10.24432/C5959T
https://proceedings.neurips.cc/paper_files/paper/2016/file/3948ead63a9f2944218de038d8934305-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/3948ead63a9f2944218de038d8934305-Paper.pdf
https://doi.org/10.1109/ACCESS.2018.2879615
https://doi.org/10.1109/ACCESS.2018.2879615
https://proceedings.neurips.cc/paper_files/paper/2017/file/4fac9ba115140ac4f1c22da82aa0bc7f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/4fac9ba115140ac4f1c22da82aa0bc7f-Paper.pdf
https://doi.org/10.1109/BigData.2017.8257910
https://doi.org/10.1109/BigData.2017.8257910
https://arxiv.org/abs/2106.04008
https://doi.org/10.24432/C5DK5C

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yu Shi, Guolin Ke, Zhuoming Chen, Shuxin Zheng, and Tie-Yan Liu. Quantized
training of gradient boosting decision trees. In Advances in neural information
processing systems (NeurIPS), volume 35, pp. 18822–18833. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/77911ed9e6e864ca1a3d165b2c3cb258-Paper-Conference.pdf.

Hongfei Wang, Zhanfei Wu, Xiangwei Wang, Longyun Bian, and Hai Jin. Hardgbm: A framework
for accurate and hardware-efficient gradient boosting machines. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 42(7):2122–2135, 2023. doi: 10.1109/TCAD.
2022.3218509.

Pete Warden and Daniel Situnayake. TinyML: Machine Learning with Tensorflow Lite on Arduino
and Ultra-Low-Power Microcontrollers. O’Reilly Media, Inc., 2019.

William Wolberg, Olvi Mangasarian, and Nick Street. Breast Cancer Wisconsin (Diagnostic). UCI
Machine Learning Repository, 1993. URL https://doi.org/10.24432/C5DW2B.

Ting Ye, Hucheng Zhou, Will Y. Zou, Bin Gao, and Ruofei Zhang. Rapidscorer: Fast tree en-
semble evaluation by maximizing compactness in data level parallelization. In ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 941–950, London United
Kingdom, July 2018. ACM. ISBN 978-1-4503-5552-0. doi: 10.1145/3219819.3219857. URL
https://dl.acm.org/doi/10.1145/3219819.3219857.

13

https://proceedings.neurips.cc/paper_files/paper/2022/file/77911ed9e6e864ca1a3d165b2c3cb258-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/77911ed9e6e864ca1a3d165b2c3cb258-Paper-Conference.pdf
https://doi.org/10.24432/C5DW2B
https://dl.acm.org/doi/10.1145/3219819.3219857

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A TRAINING COMPRESSED ENSEMBLES

Constructing an optimal tree ensemble T w.r.t. Equation (1) is computationally infeasible. There-
fore, one resorts to K boosting rounds. In each boosting round m, one considers Tm−1 :=

∑m−1
k=1 tk

together with a new tree tm that is built in this round (starting with T0 := 0) (Chen & Guestrin,
2016). The new tree is chosen such that

n∑
i=1

L (yi, Tm−1(xi) + tm(xi)) +

m∑
k=1

Ω(tk) (4)

is minimized. A common choice for the regularizer Ω is

Ω(tm) = γL+
1

2
λ

L∑
j=1

v2j ,

where L is the number of leaves and v1, . . . , vL ∈ R are the associated leaf values of tm. This
penalizes trees with many leaves and large absolute leaf values. The modified regularizer

Ωl(tm) = Ω(tm) + ι · |FU |+ ξ ·
∑
f∈FU

|T f |, (5)

proposed in Section 3, with user-defined hyperparameters ι, ξ ∈ R+, penalizes the use of new
features and thresholds in a linear manner. Similar to Peter et al. (2017), incorporating Ωl into the
objective leads to a modified gain compared to standard boosted decision trees (Chen & Guestrin,
2016). More precisely, using gradient statistics of the form

gi :=
∂

∂z
L(yi, z)

∣∣∣
z=Tm−1(xi)

hi :=
∂2

∂2z
L(yi, z)

∣∣∣
z=Tm−1(xi)

and omitting constant terms, one obtains the simplified objective

L∑
j=1

[
GIjvj +

1

2

(
HIj + λ

)
v2j

]
+ γL+ ι|FU |+ ξ ·

∑
f∈FU

|T f | (6)

with GS :=
∑

i∈S gi and HS :=
∑

i∈S hi. Here, Ij denotes the set of training indices assigned to
the j-th leaf of the current tree tm, i.e., Ij = {i | q(xi) = j}, where q : Rd → {1, . . . , L} maps an
input instance to the corresponding leaf of tm (i.e., tm(x) = vq(x)).

The decision tree tm is constructed greedily by iteratively splitting leaves (starting at the root) if this
improves Objective (6); otherwise, the construction stops. More specifically, given a leaf associated
with a set I of training indices, a split on feature i ∈ {1, . . . , d} with threshold µ divides I into two
subsets, IL (left leaf) and IR (right leaf). The corresponding gain is then given by

∆l(I, i, µ) :=
1

2

(
G2

IL

HIL + λ
+

G2
IR

HIR + λ
− (GI)

2

HI + λ

)
− γ − sf ι− stξ, (7)

= ∆(I, i, µ)− sf ι− stξ, (8)

where sf = 1 if a new feature is used (and sf = 0 otherwise), and st = 1 if a new threshold is used
(and st = 0 otherwise). Thus, the modified regularizer (5) introduces the additional terms −sf ι and
−stξ, corresponding to the cost of using a new feature or threshold, respectively.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B DATASETS

An overview of the eight datasets used for experiments in Section 4 along with their statistics are
presented in Table 1. The binary Covertype (covtype) dataset (Blackard, 1998), the Califor-
nia Housing regression dataset (Kelley Pace & Barry, 1997), the KRKPA7 (kr-vs-kp) dataset
(Shapiro, 1983) and the Breast Cancer dataset (Wolberg et al., 1993) are commonly solved using
boosted decision trees. The kin8nm dataset (Ghahramani), which describes robotics decision mak-
ing, and the Mushroom dataset (Mushroom, 1981), which is for mushroom edibility classification,
cover data that might be of interest for analysis on constrained edge devices.

Table 1: Datasets

Dataset Instances Features Task

Covertype (Blackard, 1998) 581,012 54 Binary & multiclass
classification

California Housing (Kelley Pace & Barry, 1997) 20,640 8 Regression
kin8nm (Ghahramani) 7 8,192 8 Regression

Mushroom (Mushroom, 1981) 8,124 22 Binary classification
Wine Quality (Cortez et al., 2009) 6,497 11 Multiclass classification

KRKPA7 (Shapiro, 1983) 3,196 36 Binary classification
Breast Cancer Wisconsin (diagnostic)

(Wolberg et al., 1993) 569 30 Binary classification

C EXTENDED RELATED WORK

Decision trees and decision tree ensembles, such as GBDT, have remained very popular, despite
the rise of deep learning models (Grinsztajn et al., 2022). These tree-based methods are highly val-
ued for their interpretability, particularly when dealing with small datasets, mixed data types, and
constrained computational resources. Recent advances in tree-based models have also introduced
several approaches to enhance their efficiency. For instance, cost-efficient gradient boosting intro-
duces mechanisms to account for feature acquisition and tree evaluation costs (Peter et al., 2017),
which involves penalizing the use of new features based on their cost and minimizing the number
of split nodes an input traverses during inference. Other work (Ponomareva et al., 2017) presents
a method to train compact boosted tree ensembles for multi-class classification using vector-valued
trees and layer-by-layer boosting. Bonsai (Kumar et al., 2017), instead, yields a single decision tree
model and reduces the model size by projecting the input data into a low-dimensional subspace. Two
other approaches are QuickScorer (Lucchese et al., 2017) and its enhanced version, RapidScorer (Ye
et al., 2018), decision tree ensembles both developed for search engines, where array structures are
used to reduce model size. These methods prioritize enhancing processing speed over minimizing
memory footprint by summarizing features and split values for joint calculation. Recently, Koschel
et al. (2023) further adapted these approaches to IoT contexts, focusing on ARM CPUs prevalent
in such devices. Their work involves adapting QuickScorer variants for these CPUs and applying
fixed-point quantization to split nodes and leaf values, emphasizing computational enhancements
over memory optimization. DimBoost (Jiang et al., 2018) made use of lower precision values dur-
ing the calculation of gradient histograms in training as one of their contributions to improve the
performance of GBDT for high-dimensional data. Additionally, Shi et al. (2022) demonstrated that
using just two or three bits suffices to represent gradients in GBDT training. Devos et al. (2020)
represent input data as well as gradients in bit-level data structures to improve the runtime of GBDT
training.

The related works sketched above aim mostly at enhancing the training process, leading to improve-
ments in memory and energy consumption as ancillary benefits. The notable exception are the works
by Kumar et al. (2017) and Ponomareva et al. (2017), which explicitly address a memory footprint
reduction in the context of resource-constrained devices, achieving compact and effective tree-based
models. However, the approach of Kumar et al. (2017) only considers single decision trees and con-
ceptually modifies the tree building process and the underlying models. Ponomareva et al. (2017)

7https://www.cs.toronto.edu/˜delve/data/kin/desc.html

15

https://www.cs.toronto.edu/~delve/data/kin/desc.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

focus on multi-class classification problems. However, the vector-values used within trees may in-
crease the memory footprint of tree models for binary classification or for low-number multi-class
problems. Additionally, an evaluation of memory consumption is not conducted directly, but rather
the number of trees is used as an estimate. Specific memory consumption of different Machine
Learning (ML) models and compression techniques is considered by Buschjäger & Morik (2023)
and (Devos et al., 2025). Their works combine ensemble pruning and update of leaves values as
post-training compression methods to reduce the size of random forests and GBDTs respectively.
Lossless post-training pruning of boosted ensembles is proposed by Emine et al. (2025). Liu &
Mazumder (2023) on the other hand focuses on pruning deep layers of trees to tackle growing
memory demands because of exponential increase in the number of nodes for deeper layers. There
are many other works optimizing non-decision tree based methods for deployment on resource-
constrained devices, for example based on k-nearest neighbors Gupta et al. (2017). In this work, we
focus on gradient boosted trees, and at minimizing the memory footprint of the overall ensemble
in the course of the training process. We extend the work of Peter et al. (2017) by defining feature
costs that aim at reducing the bits required to encode feature indices. We also introduce a special
cost for adding new thresholds to each feature and provide a specialized encoding for the induced
binary trees, including global threshold arrays that are shared across all individual learners.

D COMPARISON TO RANDOM FOREST

ToaD as a compression method developed for GBDT is compared to a baseline random forest (RF)
method for classification tasks as well as version pruned along Guo et al. (2018) as shown in Fig-
ure 8. Only classification results are included as most pruning methods are not implemented for
regression tasks. The results show an advantage of RF in multiclass classification. This is reasoned
by boosted trees being usually trained with one ensemble per class whereas RFs store the class in-
formation in the nodes. An extension of our work in the future could include optimizing ToaD for
multiclass classification, for example based on the approach of Ponomareva et al. (2017).

0.90

0.92

0.94

0.96

0.98

1.00

A
cc

ur
ac

y

mushroom (binary)

Model
LightGBM
LightGBM FP16
LightGBM array-based
Random Forest
Pruned Random Forest
ToaD w/o Penalties
ToaD w/ best Penalties

0.75

0.80

0.85

0.90

A
cc

ur
ac

y

covtype (binary)

0.88

0.90

0.92

0.94

0.96

0.98

A
cc

ur
ac

y

breastcancer (binary)

0.
25 0.
5

1.
0

2.
0

4.
0

8.
0

16
.0

32
.0

64
.0

12
8.

0
25

6.
0

51
2.

0
10

24
.0

20
48

.0

Max Memory (KB)

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

kr-vs-kp (binary)

0.
25 0.
5

1.
0

2.
0

4.
0

8.
0

16
.0

32
.0

64
.0

12
8.

0
25

6.
0

51
2.

0
10

24
.0

20
48

.0

Max Memory (KB)

0.45

0.50

0.55

0.60

0.65

A
cc

ur
ac

y

wine (multiclass)

0.
25 0.
5

1.
0

2.
0

4.
0

8.
0

16
.0

32
.0

64
.0

12
8.

0
25

6.
0

51
2.

0
10

24
.0

20
48

.0

Max Memory (KB)

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

covtype_multi (multiclass)

Figure 8: Comparison of baseline LightGBM method and ToaD to baseline random forests and
random forests pruned by the method presented by Guo et al. (2018). Best models at each memory
threshold are depicted. Models were trained on multiple train-test data splits.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E EXPERIMENTS

E.1 RUNTIME EXPERIMENTS

For an estimate for the expected runtime, we deployed a ToaD-model processing the covtype binary
dataset at a memory limit of 0.5 KB. The model consists of four complete trees with a depth of four.
We measured 20 runs, with each run having 500 predictions. We decided to stop at 20 runs as the
variance between the runs was minimal. Experiments were conducted on the Seeed Xiao ESP32-S3
and the Arduino Nano 33 BLE Rev2. To ensure that programs are not further optimized, we used
random numbers as input. The prototypes are available at the anonymous repository8. Note that
currently the ToaD-program is only a first prototype and there are many options for optimization.
A single prediction took 0.51 milliseconds for the ToaD-model on the Arduino Nano. In contrast
to the LightGBM program, this is a slowdown by a factor of ∼ 5. For the ESP32-S3, a single
prediction took 0.14 milliseconds, with a respective slowdown in contrast to LightGBM of a factor
of ∼ 8. Those findings should be read as an outlook for future work to incorporate optimization
techniques to close the runtime gap. As already stressed in the main paper, the observed latency
degradation is not a significant factor in real-world deployments. At below millisecond inference
time for ToaD, the overall latency and energy consumption of real-world use cases is dominated by
the device measuring the input data and potentially transmitting the results.

Hardware Average Prediction Runtime (µs)
ToaD LightGBM

XIAO ESP32S3 137.08 17.63
Arduino Nano 33 BLE 512.89 102.16

Table 2: Runtime for one inference run for the covtype binary dataset with four trees, each with a
depth of four.

E.2 UNIVARIATE SENSITIVITY ANALYSIS

Influence of feature penalty ι and threshold penalty ξ on the number of thresholds and the number of
features, for different hyperparamter settings are displayed in the following figures. The respective
top row shows the influence of ι on the number of features and the performance when ξ = 0. The
respective top row shows the influence of ξ on the number of thresholds and the performance when
ι = 0. Additionally the reuse factor RF is displayed as described in Section 4.3.

We can observe similar patterns in the evolution of used features and thresholds and the correspond-
ing performance as described in Section 4.3.

Feature Penalty
0.0

0.5

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

california_housing
(regression)

Feature Penalty

kin8nm
(regression)

Feature Penalty

covtype
(binary)

Feature Penalty

breastcancer
(binary)

Feature Penalty

kr-vs-kp
(binary)

Feature Penalty

mushroom
(binary)

Feature Penalty

wine
(multiclass)

Feature Penalty

covtype_multi
(multiclass)

2 7 2 2 23 28 213

Threshold Penalty

0.0

0.5

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty

1

2

3

0

8

16

24

1.04

1.12

1.20

1

2

3

0

8

16

24

1.04

1.12

1.20

1

2

3

0

8

16

24

1.05

1.20

1.35

1

2

3

0

8

16

24

1.05

1.20

1.35

1.9

2.0

2.1

20.0

22.5

25.0

1.200

1.225

1.250

1.275

2

4

6

0

8

16

24

1.0

1.2

1.4

1

2

3

4

4

8

12

1.00

1.25

1.50

1.75

2

4

6

0

6

12

18

1.0

1.2

1.4

1.6

5

10

0

50

100

150

1.6

2.0

2.4

5

10

15

80

120

160

1.35

1.50

1.65

#Features #Features w/
Penalty = 0 Metric #Thresholds #Thresholds w/

Penalty = 0 Reuse factor

Figure 9: max iterations = 4, max depth = 2

8https://anonymous.4open.science/r/ToaD/experiments/latency/README.md

17

https://anonymous.4open.science/r/ToaD/experiments/latency/README.md

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Feature Penalty
0.0

0.5

1.0

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

california_housing
(regression)

Feature Penalty

kin8nm
(regression)

Feature Penalty

covtype
(binary)

Feature Penalty

breastcancer
(binary)

Feature Penalty

kr-vs-kp
(binary)

Feature Penalty

mushroom
(binary)

Feature Penalty

wine
(multiclass)

Feature Penalty

covtype_multi
(multiclass)

2 7 2 2 23 28 213

Threshold Penalty

0.0

0.5

1.0

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty

2

4

6

0

40

80

1.04

1.12

1.20

2

4

6

0

40

80

1.04

1.12

1.20

2

4

6

8

0

40

80

1.05

1.20

1.35

2

4

6

8

0

40

80

1.05

1.20

1.35

5

10

15

25

50

75

100

1.20

1.26

1.32

1.38

5

10

0

15

30

45

1.0

1.2

1.4

2.5

5.0

7.5

10.0

0

10

20

30

1.2

1.5

1.8

5

10

0

15

30

1.0

1.5

2.0

2.5

5

10

0

200

400

600

1.6

2.0

2.4

10

20

30

150

300

450

600

1.35

1.50

1.65

1.80

#Features #Features w/
Penalty = 0 Metric #Thresholds #Thresholds w/

Penalty = 0 Reuse factor

Figure 10: max iterations = 4, max depth = 4

Feature Penalty
0.0

0.5

1.0

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

california_housing
(regression)

Feature Penalty

kin8nm
(regression)

Feature Penalty

covtype
(binary)

Feature Penalty

breastcancer
(binary)

Feature Penalty

kr-vs-kp
(binary)

Feature Penalty

mushroom
(binary)

Feature Penalty

wine
(multiclass)

Feature Penalty

covtype_multi
(multiclass)

2 7 2 2 23 28 213

Threshold Penalty

0.0

0.5

1.0

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty

2

4

6

0

60

120

180

1.0

1.1

1.2

1.3

2

4

6

0

60

120

180

1.0

1.1

1.2

1.3

2.5

5.0

7.5

0

80

160

1.05

1.20

1.35

2.5

5.0

7.5

0

80

160

1.05

1.20

1.35

10

20

60

120

180

1.20

1.28

1.36

1.44

5

10

0

20

40

60

1.0

1.2

1.4

0

10

20

0

25

50

75

1.2

1.8

2.4

5

10

15

0

15

30

45

1

2

3

4

5

10

0

400

800

1200

1.6

2.0

2.4

10

20

30

40

400

800

1200

1.4

1.6

1.8

#Features #Features w/
Penalty = 0 Metric #Thresholds #Thresholds w/

Penalty = 0 Reuse factor

Figure 11: max iterations = 4, max depth = 8

Feature Penalty
0.0

0.5

1.0

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

california_housing
(regression)

Feature Penalty

kin8nm
(regression)

Feature Penalty

covtype
(binary)

Feature Penalty

breastcancer
(binary)

Feature Penalty

kr-vs-kp
(binary)

Feature Penalty

mushroom
(binary)

Feature Penalty

wine
(multiclass)

Feature Penalty

covtype_multi
(multiclass)

2 7 2 2 23 28 213

Threshold Penalty

0.0

0.5

1.0

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty

2.5

5.0

7.5

0

150

300

1.05

1.20

1.35

2.5

5.0

7.5

0

150

300

1.05

1.20

1.35

2.5

5.0

7.5

0

150

300

1.05

1.20

1.35

2.5

5.0

7.5

0

150

300

1.05

1.20

1.35

10

20

100

200

300

1.35

1.50

1.65

0

10

20

0

100

200

300

1.00

1.25

1.50

1.75

5

10

15

0

80

160

240

1.2

1.5

1.8

5

10

0

80

160

240

1.2

1.5

1.8

5

10

0

600

1200

1800

2.0

2.5

3.0

20

40

0

600

1200

1800

1.6

1.8

2.0

#Features #Features w/
Penalty = 0 Metric #Thresholds #Thresholds w/

Penalty = 0 Reuse factor

Figure 12: max iterations = 64, max depth = 2

Feature Penalty
0.0

0.5

1.0

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

california_housing
(regression)

Feature Penalty

kin8nm
(regression)

Feature Penalty

covtype
(binary)

Feature Penalty

breastcancer
(binary)

Feature Penalty

kr-vs-kp
(binary)

Feature Penalty

mushroom
(binary)

Feature Penalty

wine
(multiclass)

Feature Penalty

covtype_multi
(multiclass)

2 7 2 2 23 28 213

Threshold Penalty

0.0

0.5

1.0

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty

2.5

5.0

7.5

0

400

800

1200

1.0

1.2

1.4

2.5

5.0

7.5

0

400

800

1200

1.0

1.2

1.4

2.5

5.0

7.5

0

500

1000

1500

1.05

1.20

1.35

1.50

2.5

5.0

7.5

0

500

1000

1500

1.05

1.20

1.35

1.50

10

20

30

0

400

800

1200

1.35

1.50

1.65

1.80

0

10

20

30

0

250

500

750

1.00

1.25

1.50

1.75

0

10

20

30

0

250

500

750

1.2

1.5

1.8

2.1

10

20

0

250

500

750

1.2

1.6

2.0

5

10

0

2000

4000

6000

2.0

2.4

2.8

20

40

4000

6000

8000

1.76

1.84

1.92

#Features #Features w/
Penalty = 0 Metric #Thresholds #Thresholds w/

Penalty = 0 Reuse factor

Figure 13: max iterations = 64, max depth = 4

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Feature Penalty
0.0

0.5

1.0

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

california_housing
(regression)

Feature Penalty

kin8nm
(regression)

Feature Penalty

covtype
(binary)

Feature Penalty

breastcancer
(binary)

Feature Penalty

kr-vs-kp
(binary)

Feature Penalty

mushroom
(binary)

Feature Penalty

wine
(multiclass)

Feature Penalty

covtype_multi
(multiclass)

2 7 2 2 23 28 213

Threshold Penalty

0.0

0.5

1.0

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty

2.5

5.0

7.5

0

800

1600

2400

1.0

1.2

1.4

1.6

2.5

5.0

7.5

0

800

1600

2400

1.0

1.2

1.4

1.6

2.5

5.0

7.5

0

1000

2000

3000

1.0

1.2

1.4

1.6

2.5

5.0

7.5

0

1000

2000

3000

1.0

1.2

1.4

1.6
0

20

40

0

800

1600

2400

1.4

1.6

1.8

0

10

20

30

0

400

800

1200

1.00

1.25

1.50

1.75

0

10

20

30

0

600

1200

1800

1.2

1.6

2.0

5

10

15

0

500

1000

1500

1.0

1.5

2.0

2.5

5

10

0

5000

10000

15000

2.0

2.4

2.8

20

40

12000

13500

15000

1.80

1.86

1.92

1.98

#Features #Features w/
Penalty = 0 Metric #Thresholds #Thresholds w/

Penalty = 0 Reuse factor

Figure 14: max iterations = 64, max depth = 8

Feature Penalty
0.0

0.5

1.0

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

california_housing
(regression)

Feature Penalty

kin8nm
(regression)

Feature Penalty

covtype
(binary)

Feature Penalty

breastcancer
(binary)

Feature Penalty

kr-vs-kp
(binary)

Feature Penalty

mushroom
(binary)

Feature Penalty

wine
(multiclass)

Feature Penalty

covtype_multi
(multiclass)

2 7 2 2 23 28 213

Threshold Penalty

0.0

0.5

1.0

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty

2.5

5.0

7.5

0

1500

3000

4500

1.00

1.25

1.50

1.75

2.5

5.0

7.5

0

1500

3000

4500

1.00

1.25

1.50

1.75

2.5

5.0

7.5

0

1500

3000

4500

1.0

1.2

1.4

1.6

2.5

5.0

7.5

0

1500

3000

4500

1.0

1.2

1.4

1.6

0

20

40

0

1500

3000

4500

1.5

3.0

4.5

6.0

0

10

20

30

0

800

1600

2400

1.00

1.25

1.50

1.75

0

10

20

30

0

1500

3000

2

4

6

8

5

10

15

0

1500

3000

2.5

5.0

7.5

10.0

5

10

0

8000

16000

24000

2.0

2.5

3.0

20

40

0

10000

20000

30000

2.0

2.5

3.0

3.5

#Features #Features w/
Penalty = 0 Metric #Thresholds #Thresholds w/

Penalty = 0 Reuse factor

Figure 15: max iterations = 1024, max depth = 2

Feature Penalty
0.0

0.5

1.0

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

california_housing
(regression)

Feature Penalty

kin8nm
(regression)

Feature Penalty

covtype
(binary)

Feature Penalty

breastcancer
(binary)

Feature Penalty

kr-vs-kp
(binary)

Feature Penalty

mushroom
(binary)

Feature Penalty

wine
(multiclass)

Feature Penalty

covtype_multi
(multiclass)

2 7 2 2 23 28 213

Threshold Penalty

0.0

0.5

1.0

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty

2.5

5.0

7.5

0

5000

10000

15000

1.00

1.25

1.50

1.75

2.5

5.0

7.5

0

5000

10000

15000

1.00

1.25

1.50

1.75

2.5

5.0

7.5

0

5000

10000

15000

1.00

1.25

1.50

1.75

2.5

5.0

7.5

0

5000

10000

15000

1.00

1.25

1.50

1.75

0

20

40

0

5000

10000

15000

2.5

5.0

7.5

10.0

0

10

20

30

0

1000

2000

3000

1.00

1.25

1.50

1.75

0

10

20

30

0

4000

8000

12000

2.5

5.0

7.5

10.0

10

20

0

1500

3000

4500

2.5

5.0

7.5

5

10

0

25000

50000

75000

2.0

2.4

2.8

20

40

30000

60000

90000

2.0

2.4

2.8

3.2

#Features #Features w/
Penalty = 0 Metric #Thresholds #Thresholds w/

Penalty = 0 Reuse factor

Figure 16: max iterations = 1024, max depth = 4

Feature Penalty
0.0

0.5

1.0

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

california_housing
(regression)

Feature Penalty

kin8nm
(regression)

Feature Penalty

covtype
(binary)

Feature Penalty

breastcancer
(binary)

Feature Penalty

kr-vs-kp
(binary)

Feature Penalty

mushroom
(binary)

Feature Penalty

wine
(multiclass)

Feature Penalty

covtype_multi
(multiclass)

2 7 2 2 23 28 213

Threshold Penalty

0.0

0.5

1.0

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty
2 7 2 2 23 28 213

Threshold Penalty

2.5

5.0

7.5

0

10000

20000

30000

1.00

1.25

1.50

1.75

2.5

5.0

7.5

0

10000

20000

30000

1.00

1.25

1.50

1.75

2.5

5.0

7.5

0

10000

20000

30000

1.00

1.25

1.50

1.75

2.5

5.0

7.5

0

10000

20000

30000

1.00

1.25

1.50

1.75

0

20

40

0

10000

20000

30000

2.5

5.0

7.5

10.0

0

10

20

30

0

1500

3000

1.00

1.25

1.50

1.75

0

10

20

30

0

8000

16000

24000

2.5

5.0

7.5

10.0

10

20

0

2000

4000

2.5

5.0

7.5

5

10

0

40000

80000

120000

2.0

2.4

2.8

3.2

40

45

50

105000

120000

135000

150000

2.00

2.04

2.08

#Features #Features w/
Penalty = 0 Metric #Thresholds #Thresholds w/

Penalty = 0 Reuse factor

Figure 17: max iterations = 1024, max depth = 8

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E.3 MULTIVARIATE SENSITIVITY ANALYSIS

In the following figures the influence of ι and ξ on the needed memory (KB) on the top row and the
representative metric (accuracy or R2 score) on the bottom row are depicted for different hyperpa-
rameter settings.

Similarly as depicted in Figure 7 and described in Section 4.4 we can find useful penalty combi-
nations that provide a useful trade-off between a small decrease in performance but a significant
decrease in memory consumption for most of the given examples.

2 6

20

26

212

Fe
at

ur
e

Pe
na

lty

california_housing
(regression)

kin8nm
(regression)

covtype
(binary)

breastcancer
(binary)

kr-vs-kp
(binary)

mushroom
(binary)

wine
(multiclass)

M
em

or
y

(K
B)

covtype_multi
(multiclass)

2 6 20 26 212

Threshold Penalty

2 6

20

26

212

Fe
at

ur
e

Pe
na

lty

2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

0.2

0.4

0.5

0.7

0.0

0.2

0.4

0.6

0.8

Figure 18: max iterations = 4, max depth = 2

2 6

20

26

212

Fe
at

ur
e

Pe
na

lty

california_housing
(regression)

kin8nm
(regression)

covtype
(binary)

breastcancer
(binary)

kr-vs-kp
(binary)

mushroom
(binary)

wine
(multiclass)

M
em

or
y

(K
B)

covtype_multi
(multiclass)

2 6 20 26 212

Threshold Penalty

2 6

20

26

212

Fe
at

ur
e

Pe
na

lty

2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

0.7

1.5

2.2

2.9

0.0

0.2

0.4

0.6

0.8

Figure 19: max iterations = 4, max depth = 4

2 6

20

26

212

Fe
at

ur
e

Pe
na

lty

california_housing
(regression)

kin8nm
(regression)

covtype
(binary)

breastcancer
(binary)

kr-vs-kp
(binary)

mushroom
(binary)

wine
(multiclass)

M
em

or
y

(K
B)

covtype_multi
(multiclass)

2 6 20 26 212

Threshold Penalty

2 6

20

26

212

Fe
at

ur
e

Pe
na

lty

2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

1.8

3.7

5.5

0.00

0.25

0.50

0.75

1.00

Figure 20: max iterations = 4, max depth = 8

2 6

20

26

212

Fe
at

ur
e

Pe
na

lty

california_housing
(regression)

kin8nm
(regression)

covtype
(binary)

breastcancer
(binary)

kr-vs-kp
(binary)

mushroom
(binary)

wine
(multiclass)

M
em

or
y

(K
B)

covtype_multi
(multiclass)

2 6 20 26 212

Threshold Penalty

2 6

20

26

212

Fe
at

ur
e

Pe
na

lty

2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

2.4

4.9

7.3

0.0

0.2

0.4

0.6

0.8

Figure 21: max iterations = 64, max depth = 2

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

2 6

20

26

212

Fe
at

ur
e

Pe
na

lty

california_housing
(regression)

kin8nm
(regression)

covtype
(binary)

breastcancer
(binary)

kr-vs-kp
(binary)

mushroom
(binary)

wine
(multiclass)

M
em

or
y

(K
B)

covtype_multi
(multiclass)

2 6 20 26 212

Threshold Penalty

2 6

20

26

212

Fe
at

ur
e

Pe
na

lty

2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

9.8

19.5

29.3

0.00

0.25

0.50

0.75

1.00

Figure 22: max iterations = 64, max depth = 4

2 6

20

26

212

Fe
at

ur
e

Pe
na

lty

california_housing
(regression)

kin8nm
(regression)

covtype
(binary)

breastcancer
(binary)

kr-vs-kp
(binary)

mushroom
(binary)

wine
(multiclass)

M
em

or
y

(K
B)

covtype_multi
(multiclass)

2 6 20 26 212

Threshold Penalty

2 6

20

26

212

Fe
at

ur
e

Pe
na

lty

2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

18.3

36.6

54.9

73.2

0.00

0.25

0.50

0.75

1.00

Figure 23: max iterations = 64, max depth = 8

2 6

20

26

212

Fe
at

ur
e

Pe
na

lty

california_housing
(regression)

kin8nm
(regression)

covtype
(binary)

breastcancer
(binary)

kr-vs-kp
(binary)

mushroom
(binary)

wine
(multiclass)

M
em

or
y

(K
B)

covtype_multi
(multiclass)

2 6 20 26 212

Threshold Penalty

2 6

20

26

212

Fe
at

ur
e

Pe
na

lty

2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

30.5

61.0

91.6

122.1

0.00

0.25

0.50

0.75

1.00

Figure 24: max iterations = 1024, max depth = 2

2 6

20

26

212

Fe
at

ur
e

Pe
na

lty

california_housing
(regression)

kin8nm
(regression)

covtype
(binary)

breastcancer
(binary)

kr-vs-kp
(binary)

mushroom
(binary)

wine
(multiclass)

M
em

or
y

(K
B)

covtype_multi
(multiclass)

2 6 20 26 212

Threshold Penalty

2 6

20

26

212

Fe
at

ur
e

Pe
na

lty

2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty

M
et

ric
: A

cc
ur

ac
y

 R
2

(re
gr

es
sio

n)
)

122.1

244.1

366.2

488.3

0.00

0.25

0.50

0.75

1.00

Figure 25: max iterations = 1024, max depth = 4

F LARGE LANGUAGE MODEL USAGE

This manuscript has undergone sentence-level improvements using Large Language Models (LLMs)
to enhance clarity and readability. However, all scientific ideas, methods, results and conclusions
are the exclusive work of the authors.

21

	Introduction
	Background
	Boosted Decision Trees
	Related Work

	Approach
	Training Compressed Trees
	Memory Layout
	Bit-Wise Encoding
	Sharing Thresholds and Leaf Values

	Experiments
	Implementation Details
	Model Comparison to Baselines
	Results Baseline Comparison

	Univariate Sensitivity Analysis
	Results Feature Penalty
	Results Threshold Penalty

	Multivariate Sensitivity Analysis

	Conclusion & Future Work
	Training Compressed Ensembles
	Datasets
	Extended Related Work
	Comparison to Random Forest
	Experiments
	Runtime Experiments
	Univariate Sensitivity Analysis
	Multivariate Sensitivity Analysis

	Large Language Model Usage

