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ABSTRACT

Deploying machine learning models on compute-constrained devices has become
a key building block of modern IoT applications. In this work, we present a
compression scheme for boosted decision trees, addressing the growing need for
lightweight machine learning models. Specifically, we provide techniques for
training compact boosted decision tree ensembles that exhibit a reduced mem-
ory footprint by rewarding, among other things, the reuse of features and thresh-
olds during training. Our experimental evaluation shows that models achieved
the same performance with a compression ratio of 4–16x compared to LightGBM
models using an adapted training process and an alternative memory layout. Once
deployed, the corresponding IoT devices can operate independently of constant
communication or external energy supply, and, thus, autonomously, requiring only
minimal computing power and energy. This capability opens the door to a wide
range of IoT applications, including remote monitoring, edge analytics, and real-
time decision making in isolated or power-limited environments.

1 INTRODUCTION

Modern Internet of Things (IoT) techniques have paved the way for new applications in domains
such as home automation, healthcare, agriculture, or industry (Khanna & Kaur, 2020). For instance,
in the context of home automation, sensors can be used to automate (smart) lighting and (smart)
heating. Another example is using sensor data for predictive maintenance to prevent machine fail-
ures and enhance productivity. Microcontrollers are a key building block of these IoT applications,
often equipped with sensors to measure parameters such as temperature, humidity, pressure, or vi-
brations. A key characteristic of such devices is that they generally have very limited computing
and memory resources (Ojo et al., 2018). For instance, the broadly used open-source Arduino Uno
R4 Minima board is equipped with a 32-bit Renesas RA4M1 microcontroller and an Arm Cortex-
M4 processor running at 48 MHz, 32 KB main memory (RAM), 256 KB flash storage, and 1 KB
electrically erasable programmable read-only memory (EEPROM). There are also microcontrollers
with even less memory and computing resources, such as the Arduino Nano board. Furthermore, the
available resources must be shared among the operating system, sensing data, data-processing pro-
grams, and machine learning models. Another characteristic is that IoT microcontrollers are often
designed for energy efficiency. This makes them well-suited for being deployed in remote locations,
where a continuous power supply is not available. Under ideal conditions, such devices can run
for several months or even years via batteries. Such applications are also supported by specialized
communication protocols such as LoRa.1

To minimize energy-intensive data transfers and to enable real-time processing, the on-site analysis
of data on the IoT device is preferable if possible. Embedding machine learning methods directly
into IoT nodes addresses this need. The key challenge in embedded machine learning is to minimize
both compute and memory requirements to enable execution on resource-constrained devices while,
at the same time, preserving model quality. This has given rise to the concept of Tiny Machine
Learning (TinyML) models (Gural & Murmann, 2019; Reddi et al., 2021; Kumar et al., 2017; War-
den & Situnayake, 2019). By sufficiently reducing resource demands, the “tiny” models can be run
directly on the microcontrollers, enabling compact “smart” devices. An example of a corresponding
IoT application is sketched in Figure 1.

1LoRa enables small volumes of data to be transferred over several kilometres (Mayer et al., 2019).
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Contribution: We propose a framework that allows for compressing boosted decision tree ensem-
bles, one of the most widely used machine learning models for structured data. Our approach,
referred to as Trees on a Diet (ToaD), relies on (1) regularizers that encourage the reuse of features
and thresholds during training and on (2) a specialized memory layout to store the resulting trees.
More precisely, we utilize global lookup tables for both features and thresholds, and we store the
trees without pointers using an adapted bit-wise encoding. Overall, these modifications lead to tree
ensembles with reduced memory requirements, without sacrificing model quality. We showcase the
effectiveness of our approach by assessing the quality-memory trade-off in our experimental evalua-
tion. Our results indicate that the adapted training process yields models of comparable performance
while achieving compression ratios of 4-16x compared to other baselines.

2 BACKGROUND Microcontroller

send
warning?Tiny Tree

sensor
data

Sensors

Figure 1: A machine learning model (decision
tree) on a microcontroller processes multi-sensor
data locally and transmits only relevant events, re-
ducing energy costs; the decision tree must have a
minimal compute and memory footprint.

We begin with the background on boosted de-
cision trees and tiny machine learning models.

2.1 BOOSTED DECISION TREES

In contrast to single decision trees, tree en-
sembles aggregate the outputs of multiple trees.
For instance, a random forest (Breiman, 2001)
is obtained by constructing the trees indepen-
dently from each other, introducing random-
ness to the construction process so that a set of
different trees is obtained. In contrast, boosted
decision trees are built in an incremental man-
ner, one tree at a time. Two prominent frame-
works in this context are XGBoost (Chen & Guestrin, 2016) and LightGBM (Ke et al., 2017).

Let T = {(x1, y1), . . . , (xn, yn)} ⊂ Rd × Y be a training (multi)set of data points xi ∈ Rd with
associated labels yi ∈ Y . Here, Y is the set of labels. For regression, we have Y = R, whereas
one is given a finite set Y = {p1, . . . , pc} of classes for classification scenarios. Both XGBoost
and LightGBM model ensembles are built in an additive way, resulting in a tree ensemble model T ,
whose prediction T (x) for a new data point x ∈ Rd is based on the sum of predictions made by K

individual decision trees tk, i.e., T (x) =
∑K

k=1 tk(x), where tk(x) denotes the prediction made by
the tree tk for an instance x ∈ Rd. Such ensembles are built in a way to minimize

n∑
i=1

L (yi, T (xi)) +

K∑
k=1

Ω (tk) , (1)

where L : Y ×Y → R+ is a suitable loss function and where Ω (tk) specifies the complexity of the
tree tk. Constructing an optimal tree ensemble T w.r.t. Equation (1) is generally not feasible. Instead,
one typically resorts to K boosting rounds, and in each round, one new tree is added to the ensemble
built so far so that the Equation (1) is minimized. More precisely, in boosting round m ≥ 1, one
considers the ensemble Tm−1 :=

∑m−1
k=1 tk of the trees built so far, starting with T0 := 0, and aims

to find the next best tree tm that minimizes
∑n

i=1 L (yi, Tm−1(xi) + tm(xi)) +
∑m

k=1 Ω(tk). The
decision tree tm itself is also constructed in a greedy manner, starting with the root of the tree being
recursively split. To penalize “complex” trees, one usually resorts to Ω(tm) = γL+ 1

2λ
∑L

j=1 v
2
j as

regularizer, where L is the number of leaves and v1, . . . , vL ∈ R the associated leaf values of tm.

2.2 RELATED WORK

Decision trees and decision tree ensembles, such as Gradient Boosted Decision Trees (GBDT), have
remained very popular, despite the rise of deep learning models (Grinsztajn et al., 2022), especially
for structured (tabular-like) data. They are also generally easy to interpret and need few computa-
tional resources. Recent advances in tree-based models have also introduced several approaches to
enhance their efficiency. For instance, several works focused on improving the training or inference

2
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speed of GBDT by means of array structures (Lucchese et al., 2017; Ye et al., 2018) or via the
quantization of gradient statistics (Shi et al., 2022; Jiang et al., 2018). Quantization of tree parame-
ters was employed by Koschel et al. (2023), who adapted variants of QuickScorer (Lucchese et al.,
2017) to enable deployment on IoT devices. Reduction of model size and latency is the motivation
for different post-training pruning techniques, including the refinement of leave values (Devos et al.,
2025; Emine et al., 2025; Buschjäger & Morik, 2023). Increased efficiency of tree models by design
or within the training process is addressed by works from Kumar et al. (2017) for single decision
tree sizes, Ponomareva et al. (2017) for multiclass classification, and Peter et al. (2017) for efficient
evaluation of deep trees considering feature acquisition and tree evaluation costs. Due to a lack of
space, we refer to Appendix C for a more detailed discussion of related approaches.

In this work, we focus on gradient-boosted trees and aim to minimize the memory footprint of the
ensemble during the training process, while simultaneously ensuring a good model fit and compact
model size. We extend the work of Peter et al. (2017) by defining suitable feature costs that aim
at reducing the bits required to encode feature indices. We also introduce a corresponding cost
regularizer for split thresholds and leaf values, and provide a specialized encoding for the induced
binary trees. Moreover, our memory layout includes global threshold arrays shared by all learners.

3 APPROACH

Pruning or quantization techniques are typically applied before or after the training to reduce the size
of trees (see Section 4). However, such methods generally cannot exploit task-specific compression
potential. For instance, they are not designed to incorporate the potential in memory saving of
feature sharing or the reuse of (leaf/split) thresholds within a single tree or across all trees in the
ensemble. Our framework exploits this potential by penalizing unused features and thresholds when
growing new trees. In combination with a corresponding memory layout, this yields a substantially
smaller memory footprint with reused features and thresholds being stored more compactly.

3.1 TRAINING COMPRESSED TREES

As sketched above, boosted tree ensembles are built in an incremental manner, and in each boosting
round m, a new tree tm is added to the ensemble. The tree tm is, in turn, also built in a greedy
manner by iteratively splitting leaves (starting with the root) if this leads to a better objective (if not,
the construction process stops). To assess the quality of such a leaf split, an associated gain ∆ is
computed (Chen & Guestrin, 2016). More specifically, for a leaf associated with a set I of training
indices, a split along feature dimension i ∈ {1, . . . , d} with respect to threshold µ induces a potential
gain ∆(I, i, µ) ∈ R (which may also be negative). Leaves are split as long as some split yields a
positive gain, always choosing the leaf and split with the highest gain.

The standard gain does not promote the reuse of features or thresholds. Following Peter et al. (2017),
we introduce an additional regularizer based on the set of features FU ⊆ {1, . . . , d} and thresholds
T f ⊂ R with f ∈ FU that have already been used by the trees t1, . . . , tm built so far (including the
current tree tm). The memory layout detailed below allows for storing those features and thresholds
in a much more compact manner. In particular, features and thresholds that have already been
used in previous trees contribute only marginally to the overall space consumption and are therefore
essentially “free of charge”. A simple linear regularizer that favors such a reuse of features and
thresholds is given by

Ωl(tm) = Ω(tm) + ι · |FU |+ ξ ·
∑
f∈FU

|T f |, (2)

where ι, ξ ∈ R+ are user-defined hyperparameters. Thus, using a new feature that has not been
used so far leads to an increase of |FU | by 1, and, hence, to an increase of the objective (1) by ι.
Accordingly, if a new threshold is used for a feature f ∈ FU , the objective is increased by ξ.2 Using

2For example, if a feature corresponds to temperature values, it may be sufficient to restrict the set of ad-
missible thresholds to, e.g., 0 and 20 degrees Celsius. Alternative regularization schemes are also conceivable.
Another option is, for instance, Ωe(tm) = Ω(tm) + ι ·

∑|FU |
j=1 j + ξ ·

∑p
j=1 j with p =

∑
f∈FU

|T f |, which
imposes an exponentially increasing penalty on the number of distinct features and thresholds. In practice,
however, the linear regularizer has been shown to be highly effective and is, hence, used in this work.
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Figure 2: High-level sketch of the memory layout used to store an ensemble of boosted decision
trees. The first part stores some metadata, such as the number K of boosted trees or the maximum
depth of all trees. The following three parts encode the used features, thresholds, and leaf values.
Finally, the references to the features and thresholds for the individual trees are stored.

this modified regularizer leads to the following modified gain

∆l(I, i, µ) = ∆(I, i, µ)− sf ι− stξ, (3)

where sf = 1 in case a new feature (index) is used and sf = 0 otherwise, and st = 1 in case a new
threshold is used and st = 0 otherwise, see Appendix A for the derivations.

3.2 MEMORY LAYOUT

Our memory layout leverages the reuse of feature indices and thresholds enforced by the modified
regularizer. A high-level sketch of the overall memory layout is shown in Figure 2. In a nutshell, it
reduces the memory footprint of boosted tree ensembles through two mechanisms:

1. Bit-wise encoding: Encoding the information in a bit-wise manner allows to store a minimal
representation of information compared to the use of higher level data types that may use
non-minimal representations (e.g. a bool occupies eight bits in memory in C).

2. Shared thresholds and leaf values: Global arrays are used to store threshold and leaf values,
which are referenced within internal tree nodes and leaves. Sharing values across trees can
substantially reduce the bits needed for storing thresholds and leaf weights.

The memory layout comprises five components. The first stores metadata, including the number
K of trees, the maximum tree depth, the number |FU | of used features, and the maximum number
of thresholds maxf∈FU

|T f | associated with any feature. In addition, three global arrays and the
individual decision trees t1, . . . , tK are stored. Figure 3 illustrates the bit-wise encoding of a simple
model with two exemplary decision trees. We now detail the individual components.

3.2.1 BIT-WISE ENCODING

Boosted ensembles typically employ shallow, nearly balanced trees with a small depth (e.g., a depth
of up to 5). Such trees can be stored efficiently using pointer-less schemes. More precisely, the root
is stored at index i = 0, and for a node at index i, the left child is stored at index 2 · i + 1 and the
right child at index 2 · i + 2. For example, in Figure 3, two such array-based representations are
given. Here, the root n1 of tree t1 is stored at index 0, and its two children n2 and n3 are stored at
indices 1 and 2, respectively. We distinguish between internal nodes and leaf nodes:

• Internal nodes: For each internal node ni, two pieces of information are stored, namely
a reference for the feature fi ∈ FU that is used for splitting along with an index for the
associated threshold value µi

j (j-th threshold associated with feature fi). For instance,
for tree t2 and node n1, we store a reference 10 for feature f3 and an index 0 for the
associated threshold µ3

1. The reference 10 can be used to loop up the relevant information
in the Feature & Threshold Map. In this case, f3 corresponds to the fourth feature,
24 bits are used to represent the thresholds (floating point), and one threshold was used
overall for that feature. Using the index 0 and along with the information stored for the
other features, one can then loop up the threshold value µ3

1.

• Leaf nodes: For each leaf node, a reference to its leaf value v is stored. For instance, for
the leaf l1 of tree t1, a reference 000 to the leaf value v1 is stored. All these leaf values are
shared across all the trees and are stored in the array Global Leaf Values.

4
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Figure 3: Illustration of a bit-wise encoding of a boosted tree ensemble with two trees. Each tree
is stored in a bit-wise manner, with each internal node storing a reference to a feature index and a
reference to a threshold index. For instance, for the left child n2 of the root of the tree t1, a reference
to feature f2 is stored along with a reference to the associated threshold µ2

2. For feature f2, there
are two thresholds used by the entire ensemble, namely µ2

1 and µ2
2, which can be used by any node

of any of the trees (e.g. t2 in node n3). Accordingly, the leaf values stored in the leaves of the trees
are shared (e.g. v4 is used in leaf l4 of tree t1 and leaf l1 of t2) and stored in one array. Since the
bit-size of the thresholds varies, additional metadata is stored in the Feature & Threshold
Mapping table/array. For instance, there are two thresholds for feature f1 of bit-size 2 (i.e., four
different values), whereas there are two 1-bit thresholds for feature f2.

The details for each feature are stored in a bit-wise manner in the array Feature &
Thresholds Map that is referred to when decoding the nodes. To process such a reference we
need to know the bit widths of following information:

(a) Input feature index: For a given dataset with features FI = {1, . . . , d}, the num-
ber d of features is known and can be encoded using ⌈log2(|FI |)⌉ bits.

(b) Threshold bit-width: Threshold values are assumed to be representable as 1-bit
(binary feature), 2|4-bits (small integers), or 8|16|32-bits (floating point with different pre-
cision or integers). The threshold bit-width per feature can be stored as a power of two,
requiring only three bits to represent the aforementioned values (20 to 25).

(c) Threshold numeric type: The representation can be either a floating point number
(float) or a fixed point number (integer), and can be stored using a single bit, allowing for
big integers and floating point values to be used.

(d) Number of thresholds: The maximum number maxf∈FU
|T f | of thresholds

among all features can be determined at training time and can be encoded using
⌈log2(maxf∈FU

|T f |)⌉ bits. Since features with 0 thresholds are not included, we map
the value 0 to the threshold count 1 (i.e., the bit value +1 is the actual count).

Hence, the array-based representation Trees of the trees t1, . . . , tK along with the Feature &
Threshold Map are used to store the trees and additional information to retrieve the actual split
feature indices and thresholds and leaf values in the two global arrays, which are described next.

3.2.2 SHARING THRESHOLDS AND LEAF VALUES

The threshold values are stored on a per-feature basis in a single array, see Global Features
& Thresholds in Figure 3, which is referenced by nodes throughout the entire tree ensemble.
For example, consider a tree node n1 referencing the first feature, f1, along with its corresponding
first threshold, µ1

1, as depicted in tree t1 in Figure 3. The Feature & Threshold Map allows
for calculating the offset for each feature by determining the memory consumption of all previous
features. Therefore, the associated threshold value (i.e. 10 for µ1

1) can be extracted and decoded to
its original representation (i.e. 10 → (int)2 for µ1

1). This permits the variation of both the bit size
and precision between different features within a single array.

5
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The leaf values are stored (globally) in the array Global Leaf Values using a fixed 32-bit
floating point representation. This allows for a high precision in leaves and a reuse across the
different trees in the ensemble without feature reference. For example, consider the fourth global
leaf value v4 in Figure 3, which is referenced by both the leaf l4 in tree t1 and leaf l1 of t2.

4 EXPERIMENTS

To assess the quality of our compression approach and the impact of the additional parameters on
the results, we ran three kinds of experiments: (1) A performance comparison of ToaD with other
GBDT and tree ensemble optimization methods, (2) an univariate sensitivity analysis evaluating
the threshold and feature penalties independently, and (3) a multivariate analysis combining both
penalties. For the evaluation, the ToaD models were trained with varying hyperparameters (grid-
search). The maximum number of iterations ranges from 20 to 210, maximum depth per tree from 20

to 23, and ι and ξ from 2−10 to 215. Moreover, ι and ξ were set to 0 in every possible combination.
This results in 32,076 models trained per dataset.

4.1 IMPLEMENTATION DETAILS

Our implementation builds upon the LightGBM framework.3 The penalties were added as op-
tional hyperparaneters to the training process of GBDT. The parameter ι is introduced as variable
tinygbdt penalty feature and ξ as variable tinygbdt penalty threshold. More-
over, logging the used features and thresholds enables tracking of the memory consumed by the
selected memory layout. Therefore, the optional variable tinygbdt forestsize allows train-
ing models for a specific memory limitation (such as 32KB on an Arduino Uno Rev 3). Experiments
were conducted on a collection of eight widely used publicly available datasets (see Appendix B for
specifics). We split all datasets into training and test sets using an 80/20 ratio, respectively. Model
fitting was conducted on the training set, and the test was used to measure the final induced quality
of the models. As metrics for quality measurement of the resulting models, accuracy is used for
classification datasets and the R2 score for regression datasets (Lewis-Beck & Lewis-Beck, 2015).
Note that, for both metrics, higher values indicate better model performance.

4.2 MODEL COMPARISON TO BASELINES

We compared the performance of our approach to that of other efficient GBDT (compression) meth-
ods. LightGBM is considered an established framework for training boosted trees (Ke et al., 2017).
It was used for comparison in both the standard and quantized version. For quantization, the thresh-
old and leaf values were reduced to 16-bit floating point precision. Moreover, different pruning
methods were evaluated with cost-efficient gradient boosting (CEGB) (Peter et al., 2017) and mini-
mal cost-complexity pruning (CCP) (Breiman et al., 1984). All models were trained with the same
hyperparameters as the ToaD models, i.e. all combinations of 20 to 210 maximum trees and maxi-
mum tree depth between 20 and 23. Alongside related work (e.g., Buschjäger & Morik (2023)), we
calculated the memory usage of a model with 128 bits per node, assuming all values are stored in sin-
gle precision (float32) and 64 bits for quantized half-precision models.4 In constrast to Buschjäger
& Morik (2023), we assume the information about a node being a leaf can be encoded by a specific
feature and child node identifier, thus no additional boolean values are required. Moreover, boosted
trees do not need to store the class information within a leaf but create one ensemble per class.

For the calculation of the memory footprint of the ToaD models, the proposed memory layout is
used. For the ToaD models, it is distinguished between the memory layout without applying penal-
ization during training, i.e., ι = 0 and ξ = 0, and the best-performing models with penalization.
For the comparison visualized in Figure 4, the best-performing models with a memory consumption
less than or equal to the respective upper limit were chosen from the grid search results. Thus, the
number or depth of trees of models at the same memory limit for the same dataset may differ for
different model types. We expect ToaD to outperform the baseline implementations as it does not

3All the source code and the experimental setup will be made publicly available upon acceptance. An
anonymous code repository is already available at https://anonymous.4open.science/r/ToaD/
experiments/README.md.

4Each node stores four values: one feature identifier, one threshold, and two child pointers.

6

https://anonymous.4open.science/r/ToaD/experiments/README.md
https://anonymous.4open.science/r/ToaD/experiments/README.md


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

mushroom (binary)

Model
LightGBM
LightGBM FP16
CEGB
CCP
ToaD w/ best Penalties
ToaD w/o Penalties 0.92

0.94

0.96

0.98

Ac
cu

ra
cy

kr-vs-kp (binary)

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

covtype (binary)

0.90

0.92

0.94

0.96

0.98

Ac
cu

ra
cy

breastcancer (binary)

0.
25 0.
5

1.
0

2.
0

4.
0

8.
0

16
.0

32
.0

64
.0

12
8.

0
25

6.
0

51
2.

0
10

24
.0

20
48

.0

Max Memory (KB)

0.45

0.50

0.55

0.60

0.65

Ac
cu

ra
cy

wine (multiclass)

0.
25 0.
5

1.
0

2.
0

4.
0

8.
0

16
.0

32
.0

64
.0

12
8.

0
25

6.
0

51
2.

0
10

24
.0

20
48

.0

Max Memory (KB)

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

covtype_multi (multiclass)

0.
25 0.
5

1.
0

2.
0

4.
0

8.
0

16
.0

32
.0

64
.0

12
8.

0
25

6.
0

51
2.

0
10

24
.0

20
48

.0

Max Memory (KB)

0.2

0.4

0.6

0.8

R
2 

Sc
or

e

kin8nm (regression)

0.
25 0.
5

1.
0

2.
0

4.
0

8.
0

16
.0

32
.0

64
.0

12
8.

0
25

6.
0

51
2.

0
10

24
.0

20
48

.0

Max Memory (KB)

0.2

0.4

0.6

0.8

R
2 

Sc
or

e

california_housing (regression)

Figure 4: Accuracy vs. memory (KB) for ToaD and baselines. Each point shows the best model
performance at a given memory limit from the hyperparameter analysis.

require pointers to its children, it encodes boolean values with only 2 bits, and a suitable penalty
configuration encourages the model to reuse features and thresholds.

Since the primary use case for ToaD is microcontrollers, typical memory limits are considered for
the respective performance comparison. The results are depicted in Figure 4. For almost all in-
vestigated configurations, ToaD outperforms the baseline approaches, even more when considering
the models from the penalized training. On all tested multiclass datasets, the ToaD approaches are
superior to the other models across all memory limits. The same holds for the regression datasets
until the performance saturates, starting with different memory limits, with some of the competitors
catching up to the same score with increasing memory available. In the interesting memory range
up to 128 KB, before some model performances saturate, the competing methods need 4 to 16 times
the memory to achieve the same performance. For example, on the covertype multiclass dataset, the
best ToaD model at 2 KB achieves an accuracy of 69 %, which quantized LightGBM as the best
competitor only matches with 8 KB, while float32 LightGBM even needs 16 KB.
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Figure 5: Model performance on California
Housing with a 1 KB memory limit under
varying penalties.

Figure 5 shows an exemplary grid for model per-
formances at a given memory limit for the Califor-
nia Housing dataset. The maximum memory size
is fixed, allowing for an unlimited number of trees
and nodes. As the forestsize parameter deter-
mining the memory limitation can be set by the user
within our implementation, this graph can easily be
generated for any memory size to determine the best
penalty configuration. This approach helps identify
the best-performing model for a given dataset on
memory-limited hardware.5

4.3 UNIVARIATE SENSITIVITY ANALYSIS

We conducted a univariate sensitivity analysis of the
two newly introduced penalties to assess their individual effects on the model. During training,
we varied the feature penalty ι and the threshold penalty ξ independently over the range 2−10 to
215, setting the other parameter to zero. We then tracked the number of nodes and leaves, the
number of global values (thresholds and leaf values), and the test set performance. Furthermore,
to evaluate how efficiently threshold values were reused, we calculated the reusing factor RF as
the ratio between the global number of values and the sum of tree nodes and leaves. In a naive
implementation, the number of leaves and nodes equals the count of values, resulting in RF = 1.
With the ratio RF , we can determine how many of these values are reused by the ToaD approach.
For instance, a value of RF = 1.5 can be interpreted as a model reusing 50% of its threshold and
leaf values, while RF = 2.0 indicates that, on average, each value is used twice. Results of this
analysis are depicted in Figure 6 with a maximum number of iterations of 256 and a maximum depth

5A script to reproduce the figures is available in the repository.
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Figure 6: Influence of penalties ι and ξ on the number of thresholds and the number of features,
displayed on the right y-axis, alongside the respective performance scores shown on the left y-
axis. The threshold penalty figure additionally depicts the reuse factor. The maximum number of
iterations per model is set to 256 during training with a maximum tree depth of 2.

per tree of 2, as ToaD is meant to be especially useful for shallow trees. A selection of results for
further hyperparameter settings can be found in Appendix D.1.

4.3.1 RESULTS FEATURE PENALTY

Figure 6 (top) shows the univariate sensitivity analysis for the feature penalty ι. For ι < 1, the
number of features is largely unchanged, except for a notable drop in the Breast Cancer dataset. The
value of the feature penalty at which it takes effect varies between different datasets. For datasets
with few features (California Housing and kin8nm), the accuracy drops shortly after the number of
features decreases. We assume the few features in this dataset are essential for accurate predictions.
In contrast, datasets with more features show a slower and later accuracy decline, as the penalty first
removes less relevant features. For example, the Covertype model loses only ≈ 2% accuracy when
ι = 212, while the feature count drops from 35 to 5.

4.3.2 RESULTS THRESHOLD PENALTY

In the bottom row of Figure 6, the performance metric for the model, the number of global values,
and the reuse factor (RF ) are depicted against a varying threshold penalty ξ. For all datasets, an
increase in the threshold penalty decreases the number of global values used by the model. For the
maximum penalty of ξ = 215, the number of global values approaches 1 for all models, i.e., the
model only consists of one tree with the root node. The trend of the performance metrics differs
between the datasets. The accuracy drops abruptly after a certain penalty for most of the binary
datasets, whereas the performance of the other datasets declines more gradually. The models trained
on the Covertype dataset record the slightest decrease of about 6% from the smallest to the largest
penalty value. At the same time, the number of values used for the model drops from 1323 to only
18. These differences probably arise from the size of the datasets, as the more stable models have
more data points to choose from.

The reuse factor follows a similar pattern across all datasets. At first, it increases for higher penalties,
but with very high penalties, it starts to decrease abruptly. At its peak, every model achieves a RF
of at least 1.5 with the wine dataset, reusing each value more than three times for a penalty around
28. In contrast, for the highest investigated threshold penalty of ξ = 215, all models–except for
the Covertype dataset–result in RF = 1, meaning each value is only used once per feature. This
decrease in RF for very high ξ values can be explained by fewer global values being available for
reuse, thus reducing reuse opportunities across training splits. Interestingly, the RF drops later than
the number of values; actually, first it increases, and with the sharp decrease of the RF , also the
accuracy plunges. Of special interest for the training process are the penalties with RF peaks, as
here the model performance is still satisfactory, but the number of global thresholds is low.

4.4 MULTIVARIATE SENSITIVITY ANALYSIS

To assess the combined effects of our penalties, we performed a multivariate sensitivity analysis for
both penalty parameter values. As in the univariate sensitivity analysis, we used the parameter space
2−10 to 215 for both parameters, resulting in 26 × 26 = 676 trained models per dataset and tree
setting. Figure 7 shows the memory consumption next to the performance metric in a grid of the
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Figure 7: Influence of ι and ξ on the needed memory (KB) and the representative metric (accuracy or
R2 score). Orange dots mark penalty configuration combinations that are a good trade-off between
model accuracy and memory. The maximum number of iterations per model is set to 256 during
training with a maximum tree depth of 2.

combined penalties with a maximum of 256 iterations with a maximum tree depth of 2. A selection
of results for further hyperparamter settings can be found in Appendix D.2.

The memory requirements for all datasets decreased significantly as penalties increased, with each
dataset having a specific threshold at which memory usage drops rapidly. The different looks of the
multiclass dataset memories are reasoned by them using one tree ensemble per class; thus, more trees
and memory are needed. For the larger datasets (Covertype, California Housing), the difference in
memory consumption is stronger, starting at around 5 KB for small penalties and dropping to around
80 Byte for larger penalties. On average, predictive performance is better for smaller penalties as
more features and thresholds are used. Independent of the dataset and objective, after a certain
threshold in the feature penalty, model predictions are not better than guessing. This is expected
as the penalties reduced tree complexity, thus it loses its predictive capabilities with the omitted
features and thresholds.

By combining both penalty parameters, we can select a model that maintains high predictive perfor-
mance while having a significantly smaller memory footprint. This creates solutions that are equally
viable, known as nondominated solutions (Deb, 2011), where no solution is better in both predictive
performance and memory usage simultaneously. If we know the minimal predictive performance
we need for a task, we can select the corresponding microcontroller accordingly. Exemplary points
are marked in orange where the accuracy is good, but the memory usage dropped.

To summarize, there is no globally optimal penalty setting as it depends on the dataset being used
and the number and depth of trees allowed during training. For all datasets, we found that higher
memory usage does not necessitate an incline in predictive performance. Instead, the metrics re-
mained similar until there was a considerable decrease in memory usage.

5 CONCLUSION & FUTURE WORK

We propose two hyperparameters and a new memory layout to optimize the memory footprint of
boosted decision tree ensembles. First, custom penalties within boosted decision tree training were
implemented that encourage a boosted tree to reuse features and thresholds and thus create smaller
models. An univariate analysis has shown an effective decrease in the number of utilized values but
almost unchanged performance for specific penalty values. Then, the decision tree memory layout
ToaDwas introduced. Building upon index-based trees that enable a pointer-less node sequence and
global value lookup, it allows the reuse of threshold values multiple times per feature and allows
storing thresholds with fewer bits, e.g. only 1 bit for boolean values. Our experiments show that
we can store models with a significantly smaller memory footprint than baseline methods while
maintaining the same accuracy, supporting the application of powerful boosted decision trees on
resource-constrained devices.

Although the linear penalizer already performed well, a deeper analysis of more sophisticated pe-
nalizers may reveal even better performance and thus would prove to be an interesting extension
to the present work. Adapting our method to reuse leaf values more effectively could also prove
useful as well as the transfer to other variants of decision tree ensembles. Lastly, to further assess
the effectiveness of the proposed method, its deployment to different microcontroller units would be
valuable.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jock Blackard. Covertype. UCI Machine Learning Repository, 1998. URL https://doi.org/
10.24432/C50K5N.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. Classification And
Regression Trees. Chapman and Hall/CRC, 1 edition, 1984. ISBN 9781315139470. doi: 10.
1201/9781315139470. URL https://doi.org/10.1201/9781315139470.

Sebastian Buschjäger and Katharina Morik. Joint leaf-refinement and ensemble pruning through l1
regularization. Data Mining and Knowledge Discovery, 37(3):1230–1261, March 2023. ISSN
1573-756X. doi: 10.1007/s10618-023-00921-z.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In International
Conference on Knowledge Discovery and Data Mining (KDD), pp. 785–794, San Francisco Cal-
ifornia USA, August 2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939785.
URL https://dl.acm.org/doi/10.1145/2939672.2939785.

Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. Modeling wine
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A TRAINING COMPRESSED ENSEMBLES

Constructing an optimal tree ensemble T w.r.t. Equation (1) is computationally infeasible. There-
fore, one resorts to K boosting rounds. In each boosting round m, one considers Tm−1 :=

∑m−1
k=1 tk

together with a new tree tm that is built in this round (starting with T0 := 0) (Chen & Guestrin,
2016). The new tree is chosen such that

n∑
i=1

L (yi, Tm−1(xi) + tm(xi)) +

m∑
k=1

Ω(tk) (4)

is minimized. A common choice for the regularizer Ω is

Ω(tm) = γL+
1

2
λ

L∑
j=1

v2j ,

where L is the number of leaves and v1, . . . , vL ∈ R are the associated leaf values of tm. This
penalizes trees with many leaves and large absolute leaf values. The modified regularizer

Ωl(tm) = Ω(tm) + ι · |FU |+ ξ ·
∑
f∈FU

|T f |, (5)

proposed in Section 3, with user-defined hyperparameters ι, ξ ∈ R+, penalizes the use of new
features and thresholds in a linear manner. Similar to Peter et al. (2017), incorporating Ωl into the
objective leads to a modified gain compared to standard boosted decision trees (Chen & Guestrin,
2016). More precisely, using gradient statistics of the form

gi :=
∂

∂z
L(yi, z)

∣∣∣
z=Tm−1(xi)

hi :=
∂2

∂2z
L(yi, z)

∣∣∣
z=Tm−1(xi)

and omitting constant terms, one obtains the simplified objective
L∑

j=1

[
GIjvj +

1

2

(
HIj + λ

)
v2j

]
+ γL+ ι|FU |+ ξ ·

∑
f∈FU

|T f | (6)

with GS :=
∑

i∈S gi and HS :=
∑

i∈S hi. Here, Ij denotes the set of training indices assigned to
the j-th leaf of the current tree tm, i.e., Ij = {i | q(xi) = j}, where q : Rd → {1, . . . , L} maps an
input instance to the corresponding leaf of tm (i.e., tm(x) = vq(x)).

The decision tree tm is constructed greedily by iteratively splitting leaves (starting at the root) if this
improves Objective (6); otherwise, the construction stops. More specifically, given a leaf associated
with a set I of training indices, a split on feature i ∈ {1, . . . , d} with threshold µ divides I into two
subsets, IL (left leaf) and IR (right leaf). The corresponding gain is then given by

∆l(I, i, µ) :=
1

2

(
G2

IL

HIL + λ
+

G2
IR

HIR + λ
− (GI)

2

HI + λ

)
− γ − sf ι− stξ, (7)

= ∆(I, i, µ)− sf ι− stξ, (8)
where sf = 1 if a new feature is used (and sf = 0 otherwise), and st = 1 if a new threshold is used
(and st = 0 otherwise). Thus, the modified regularizer (5) introduces the additional terms −sf ι and
−stξ, corresponding to the cost of using a new feature or threshold, respectively.

B DATASETS

An overview of the eight datasets used for experiments in Section 4 along with their statistics are
presented in Table 1. The binary Covertype (covtype) dataset (Blackard, 1998), the Califor-
nia Housing regression dataset (Kelley Pace & Barry, 1997), the KRKPA7 (kr-vs-kp) dataset
(Shapiro, 1983) and the Breast Cancer dataset (Wolberg et al., 1993) are commonly solved using
boosted decision trees. The kin8nm dataset (Ghahramani), which describes robotics decision mak-
ing, and the Mushroom dataset (Mushroom, 1981), which is for mushroom edibility classification,
cover data that might be of interest for analysis on constrained edge devices.

6https://www.cs.toronto.edu/˜delve/data/kin/desc.html
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Table 1: Datasets

Dataset Instances Features Task

Covertype (Blackard, 1998) 581,012 54 Binary & multiclass
classification

California Housing (Kelley Pace & Barry, 1997) 20,640 8 Regression
kin8nm (Ghahramani) 6 8,192 8 Regression

Mushroom (Mushroom, 1981) 8,124 22 Binary classification
Wine Quality (Cortez et al., 2009) 6,497 11 Multiclass classification

KRKPA7 (Shapiro, 1983) 3,196 36 Binary classification
Breast Cancer Wisconsin (diagnostic)

(Wolberg et al., 1993) 569 30 Binary classification

C EXTENDED RELATED WORK

Decision trees and decision tree ensembles, such as GBDT, have remained very popular, despite
the rise of deep learning models (Grinsztajn et al., 2022). These tree-based methods are highly val-
ued for their interpretability, particularly when dealing with small datasets, mixed data types, and
constrained computational resources. Recent advances in tree-based models have also introduced
several approaches to enhance their efficiency. For instance, cost-efficient gradient boosting intro-
duces mechanisms to account for feature acquisition and tree evaluation costs (Peter et al., 2017),
which involves penalizing the use of new features based on their cost and minimizing the number
of split nodes an input traverses during inference. Other work (Ponomareva et al., 2017) presents
a method to train compact boosted tree ensembles for multi-class classification using vector-valued
trees and layer-by-layer boosting. Bonsai (Kumar et al., 2017), instead, yields a single decision tree
model and reduces the model size by projecting the input data into a low-dimensional subspace. Two
other approaches are QuickScorer (Lucchese et al., 2017) and its enhanced version, RapidScorer (Ye
et al., 2018), decision tree ensembles both developed for search engines, where array structures are
used to reduce model size. These methods prioritize enhancing processing speed over minimizing
memory footprint by summarizing features and split values for joint calculation. Recently, Koschel
et al. (2023) further adapted these approaches to IoT contexts, focusing on ARM CPUs prevalent
in such devices. Their work involves adapting QuickScorer variants for these CPUs and applying
fixed-point quantization to split nodes and leaf values, emphasizing computational enhancements
over memory optimization. DimBoost (Jiang et al., 2018) made use of lower precision values dur-
ing the calculation of gradient histograms in training as one of their contributions to improve the
performance of GBDT for high-dimensional data. Additionally, Shi et al. (2022) demonstrated that
using just two or three bits suffices to represent gradients in GBDT training.

The related works sketched above aim mostly at enhancing the training process, leading to improve-
ments in memory and energy consumption as ancillary benefits. The notable exception are the works
by Kumar et al. (2017) and Ponomareva et al. (2017), which explicitly address a memory footprint
reduction in the context of resource-constrained devices, achieving compact and effective tree-based
models. However, the approach of Kumar et al. (2017) only considers single decision trees and con-
ceptually modifies the tree building process and the underlying models. Ponomareva et al. (2017)
focus on multi-class classification problems. However, the vector-values used within trees may in-
crease the memory footprint of tree models for binary classification or for low-number multi-class
problems. Additionally, an evaluation of memory consumption is not conducted directly, but rather
the number of trees is used as an estimate. Specific memory consumption of different Machine
Learning (ML) models and compression techniques is considered by Buschjäger & Morik (2023)
and (Devos et al., 2025). Their works combine ensemble pruning and update of leaves values as
post-training compression methods to reduce the size of random and GBDTs respectively. Lossless
post-training pruning of boosted ensembles is proposed by Emine et al. (2025). In this work, we
focus on gradient boosted trees, and at minimizing the memory footprint of the overall ensemble
in the course of the training process. We extend the work of Peter et al. (2017) by defining feature
costs that aim at reducing the bits required to encode feature indices. We also introduce a special
cost for adding new thresholds to each feature and provide a specialized encoding for the induced
binary trees, including global threshold arrays that are shared across all individual learners.
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D EXPERIMENTS

D.1 UNIVARIATE SENSITIVITY ANALYSIS

Influence of feature penalty ι and threshold penalty ξ on the number of thresholds and the number of
features, for different hyperparamter settings are displayed in the following figures. The respective
top row shows the influence of ι on the number of features and the performance when ξ = 0. The
respective top row shows the influence of ξ on the number of thresholds and the performance when
ι = 0. Additionally the reuse factor RF is displayed as described in Section 4.3.

We can observe similar patterns in the evolution of used features and thresholds and the correspond-
ing performance as described in Section 4.3.
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Figure 8: max iterations = 4, max depth = 2
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Figure 9: max iterations = 4, max depth = 4
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Figure 10: max iterations = 4, max depth = 8
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Figure 11: max iterations = 64, max depth = 2
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Figure 12: max iterations = 64, max depth = 4
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Figure 13: max iterations = 64, max depth = 8
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Figure 14: max iterations = 1024, max depth = 2
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Figure 15: max iterations = 1024, max depth = 4
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Figure 16: max iterations = 1024, max depth = 8

D.2 MULTIVARIATE SENSITIVITY ANALYSIS

In the following figures the influence of ι and ξ on the needed memory (KB) on the top row and the
representative metric (accuracy or R2 score) on the bottom row are depicted for different hyperpa-
rameter settings.

Similarly as depicted in Figure 7 and described in Section 4.4 we can find useful penalty combi-
nations that provide a useful trade-off between a small decrease in performance but a significant
decrease in memory consumption for most of the given examples.
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Figure 17: max iterations = 4, max depth = 2
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Figure 18: max iterations = 4, max depth = 4
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Figure 19: max iterations = 4, max depth = 8
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Figure 20: max iterations = 64, max depth = 2
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Figure 21: max iterations = 64, max depth = 4
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Figure 22: max iterations = 64, max depth = 8
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Figure 23: max iterations = 1024, max depth = 2

2 6

20

26

212

Fe
at

ur
e 

Pe
na

lty

california_housing
(regression)

kin8nm
(regression)

covtype
(binary)

breastcancer
(binary)

kr-vs-kp
(binary)

mushroom
(binary)

wine
(multiclass)

M
em

or
y 

(K
B)

covtype_multi
(multiclass)

2 6 20 26 212

Threshold Penalty

2 6

20

26

212

Fe
at

ur
e 

Pe
na

lty

2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty
2 6 20 26 212

Threshold Penalty

M
et

ric
: A

cc
ur

ac
y

 R
2 

(re
gr

es
sio

n)
)

122.1

244.1

366.2

488.3

0.00

0.25

0.50

0.75

1.00

Figure 24: max iterations = 1024, max depth = 4
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Figure 25: max iterations = 1024, max depth = 8

E LARGE LANGUAGE MODEL USAGE

This manuscript has undergone sentence-level improvements using Large Language Models (LLMs)
to enhance clarity and readability. However, all scientific ideas, methods, results and conclusions
are the exclusive work of the authors.
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