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ABSTRACT

Large Language Models (LLMs) incur quadratic attention complexity with input
length, creating a major time bottleneck in the prefilling stage. Existing accelera-
tion methods largely exploit attention score sparsity by estimating blocks with high
attention scores and applying dynamic sparse attention. In this work, we identify
another untapped form of sparsity in the prefilling stage, namely decoding-time
contribution sparsity, where many attention blocks exhibit nontrivial attention
scores during prefilling yet contribute negligibly to subsequent decoding, as in-
dicated by gradient-based analysis. Building on this observation, we propose
TriangleMix, a training-free static attention pattern that uses dense attention in a
subset of layers and switches to Triangle attention in the others. Extensive exper-
iments show that TriangleMix preserves nearly lossless performance relative to
dense attention while substantially reducing attention overhead in Triangle lay-
ers. For 128K inputs, Triangle attention achieves a 15.3x speedup in attention
computation, significantly exceeding the acceleration of typical dynamic sparse
methods (1.9%x-3.4%). Furthermore, TriangleMix can be seamlessly combined
with dynamic sparsity approaches, delivering an additional 6%—19% reduction in
TTFT over using dynamic sparsity alone.
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Figure 1: The average gradient Grad(M, [) of the Middle Q-K sections, measured on three models,
shows a significant sparsity in deeper layers. This suggests that the Middle Q-K components in deeper
layers contribute minimally to decoding and might potentially be skipped to improve efficiency.
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Figure 2: Left: Attention computation in certain layers exhibits contribution locality. Right: The
proposed TriangleMix pattern for Llama-3.1-8B-Instruct.



Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Large Language Models (LLMs) are capable of processing input sequences of varying lengths
(Grattafiori et al.| [2024; |Achiam et al 2023} Yang et al.l 2024), a crucial ability that supports diverse
downstream tasks, such as question answering (Bai et al., [2023), long-form document understanding
(Zhao et al.l [2024), and code generation (Jiang et al. [2024b). However, due to the quadratic
complexity of attention mechanisms, the attention computation time significantly increases as the
input context length grows. As prior research has demonstrated, attention computation has become a
critical bottleneck in the prefilling stage of LLMs (Jiang et al.,[2024a} |Lai et al., [2025)).

To mitigate this bottleneck, several dynamic sparse attention techniques have been proposed, including
Minference (Jiang et al., [2024a), FlexPrefill (Lai et al., [2025), and XAttention (Xu et al., [2025]).
These methods exploit attention score sparsity to accelerate computation: the majority of entries in
attention matrix have negligible values and can be safely skipped, while blocks with significant scores
need to be computed. Dynamic sparsity methods first estimate which regions are likely to contain
high attention scores, and then selectively perform computation on these regions to approximate full
attention (Jiang et al., [2024a} [Lai et al.l 2025 Xu et al., [2025).

Dynamic sparsity attention is built on a simple intuition: low-score blocks can be skipped, while
blocks with non-trivial scores must be computed. This raises a deeper question: Must we compute
all non-trivial blocks during prefilling to preserve decoding accuracy? A natural concern is
that skipping them might distort the attention distribution and degrade performance. However, our
analysis reveals that the situation is subtler. We uncover a new form of sparsity in the prefilling stage,
which we call decoding-time contribution sparsity. Unlike score sparsity, it reflects that certain
blocks, though holding non-trivial scores, have little impact on the actual decoding process.

To rigorously evaluate the necessity of each block, we analyze how its removal affects the generation
of the first token following the prompt. Gradient analysis offers a direct measure of this sensitivity.
As shown in Figure @ we divide causal attention into three regions: Last Q—K, Middle Q-K, and
the Streaming region. Our results indicate that the Streaming and Last Q—K regions are critical to
decoding, while the Middle Q-K exhibits significant layer-wise sparsity pattern (Figure[Tb). Notably,
although the attention score magnitude of Middle Q-K regions are often comparable to Last Q-K, its
gradients reveal substantially lower impact in certain layers.

This sparsity arises from the phenomenon that certain parts of attention scores’ contribution has
locality of influence with respect to the decoding token position. As shown in Figure [2a] many
attention scores only affect predictions within a limited temporal window after they occur. The Middle
Q-K region in some layers has considerable influence on an intermediate token o;, but contribute very
little to the tokens generated after the entire prompt on, On 1, -... This distinction allows us to safely
skip Middle Q-K region’s attention computation of certain layers during the prefilling phase.

Motivated by this insight, we introduce TriangleMix, a simple yet effective static attention pattern
for accelerating prefilling. As depicted in Figure [2b] TriangleMix combines dense attention in some
layers with a triangle-shaped sparse attention pattern in others. This design brings four key benefits:

* Training-free: It can be applied directly to state-of-the-art pretrained LLLMs without fine-tuning.

* Nearly lossless accuracy: Despite its simplicity, TriangleMix preserves model performance,
reaching accuracy comparable to sophisticated dynamic sparsity methods.

» Efficiency: Its static triangle pattern removes the need for block index estimation, reducing
complexity from O(N?) to O(N) and enabling significantly simpler and faster attention kernel
than dynamic sparsity attention.

* Complementary to dynamic attention: Replacing dynamic sparsity with Triangle attention in
selected layers delivers extra acceleration while maintaining performance.

We conduct extensive experiments on three long-context LLMs, including Llama-3.1-8B-Instruct
(Grattafiori et al.| 2024])), Llama-3-8B-Instruct-262K (GradientAll [2024)), and Qwen2.5-7B-Instruct
(Yang et al.| [2024), using all tasks from the RULER and LongBench benchmarks (Hsieh et al., [2024;
Bai et al.,|2023)). Our results show that TriangleMix preserves the accuracy of full attention while
substantially improving efficiency. Specifically, with 128K-token inputs, Triangle attention achieves a
15.3x speedup in attention computation, far exceeding typical dynamic sparse methods (1.9 x-3.4x).
For Llama-3.1-8B-Instruct, TriangleMix reduces overall TTFT by 12%-32% across context lengths



Under review as a conference paper at ICLR 2026

from 32K to 128K. In addition, TriangleMix integrates seamlessly with dynamic sparsity approaches,
yielding a further 6% to 19% decrease in TTFT compared to dynamic sparsity alone.

2 METHODOLOGY

2.1 PROBING ATTENTION BLOCK CONTRIBUTION

The prefilling stage of Transformer attention can be formulated as:

1
Vd

where Q, K,V are matrices of shape (N, d), and M is a causal mask matrix of shape (N, N), with
entries M, ; € {0,1}. Here, N represents the number of input tokens, and ¢ is a large positive
constant to ensure attention scores masked by M ; = 0 become effectively zero after the softmax
operation. To accelerate computing, sparse attention (Jiang et al.| 2024a; |Lai et al.,|2025; Xu et al.|
2025)) aims to find a sparse mask matrix M’ to compute the attention output:

A = Softmax(— QKT — ¢(1 — M))

1
Vd

The mask matrix M’ can be either static or dynamic. StreamingLLM (Xiao et al.,[2023) and LM-
infinite (Han et al.,|2024)) employ similar static streaming mask, which restricts attention to a few
sink tokens and a sliding window of nearby tokens. Such pattern reduces the computation complexity
of attention to O(N) but significantly harms the performance of long-context LLMs(Li et al., [2024a).

A’ = Softmax(— QKT — ¢(1 — M"))

In contrast, dynamic masks enable dynamic sparsity attention. During inference, block indices in
M’ that likely yield non-trivial scores are identified from the input, and FlashAttention (Dao et al.,
2022) is applied only to these blocks. Methods such as MInference (Jiang et al.,[2024a), FlexPrefill
(Lai et al.}2025), and XAttention (Xu et al., 2025) all adopt this strategy.

A central challenge for these dynamic sparsity attention lies in efficiently and accurately estimating
the block indices with meaningful attention scores. MlInference categorizes attention heads into
three types and applies different estimation strategies, either by observing recent query tokens or by
pooling vectors from @ and K. FlexPrefill adopts a similar strategy but determines the head type
dynamically during inference. XAttention, on the other hand, uses the sum of anti-diagonal scores to
identify blocks with large attention. Despite these differences, the common objective remains the
same: reliably locating blocks with meaningful attention scores. In this paper, we move beyond block
index estimation and pose a more fundamental question: Must we compute all non-trivial blocks
during prefilling to preserve decoding accuracy?

To answer this, we quantitatively probe each block’s contribution relative to the generated tokens in
decoding, which we call its decoding-time contribution. Our goal is to prioritize computation for
blocks with higher decoding-time contribution. Since gradients naturally capture such sensitivity, we
propose a gradient-based method to perform this analysis.

Given an input X, containing N tokens fed into a language model, we define a probing variable
0 € REXNXN "where 6,; ; = 1 for all layers ¢ and token indices i, j. Here, L represents the total
number of layers in the model. For simplicity of notation, we omit the attention head dimension here,
but our proposed method generalizes naturally to both Multi-head Attention (Vaswani et al.,2017)
and Grouped Query Attention (Ainslie et al.,[2023]).

In layer [, the attention scores is calculated as:

1
—QK"-c1-M >
NG (1= M)

where ©® denotes element-wise multiplication. Since all elements of 8 are initially set to 1, this
operation does not alter the attention scores.

Ag = 0; ® Softmax <

The model then outputs a logit prediction Yy for the next token after the Nth token, represented
as a vector Yp = [y1, Y2, - - -, Yvocab)- INOte that it is only the output of the last query. Our focus
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Figure 3: First row: Average attention score for the Middle and Last Q-K sections; Second row:
average gradient Grad(M , () for the Middle and Last Q-K sections.

is on a specific logit ¥4, associated with the correct label or ground truth token. For instance, the
correct answer in a multiple-choice scenario or the initial token of the target sequence in a needle-

in-a-haystack task. We are particularly interested in the partial derivative a‘?;,’?‘ -, which measures
i g

the sensitivity of the model’s output to changes in attention scores. We quantify the importance of
a specific attention section M’ by computing the mean of the derivative values within that section.
Formally, we define the gradient-based importance as:

E . 8ygt
M; j=1 00, ; ;

Grad(M, 1) = e AL
M; j=1 Y

Here, M € {0, 1}V>*¥ is a binary mask specifying the attention section of interest, with M” =1
indicating that the pair (i, j) belongs to the region. The quantity Grad(M 1) thus represents the

average sensitivity of s, to perturbations within region M at layer . This formulation is general
and can be applied to quantify the contribution of any region in the attention map.

2.2 DECODING-TIME SPARSITY IN MIDDLE Q-K SECTIONS

Under the framework proposed in Section 2.1} we conduct an initial gradient-based analysis of three
predefined attention sections. As illustrated in Figure[Tal we partition attention into the Streaming
section, the Middle Q-K section, and the Last Q-K section. We evaluate these regions using a
key—value retrieval task in which the language model must output the corresponding value beginning
with its first generated token; we set y, to the first token of the correct value. See Appendix [A;f] for
the exact region definitions and the full prompt.

First, we observe that both the attention scores and the gradients are high in the Streaming section,
consistent with prior works (Xiao et al., 2023 |Han et al.,|2024). For the Middle Q-K and Last Q-K
sections, we summarize our findings as follows:

Slightly higher attention scores in Middle Q-K. As shown in the top row of Figure[3| the average
attention scores in the Middle Q-K and Last Q—K sections are similar, with the Middle Q-K section
being slightly higher. This indicates that both regions contain non-trivial attention blocks.

Lower gradients in Middle Q-K. Despite the slightly higher attention scores, the Middle Q-K
section exhibits substantially smaller gradients than the Last Q—K section (The bottom row of
Figure[3). This suggests that, for predicting the first token, computing blocks in the Last Q-K region
is more critical.

Layer-wise sparsity. The gradients within the Middle Q-K section display clear layer-wise sparsity.
For example, in Llama-3.1-8B-Instruct and Llama-3-8B-262K (Figure[Ib), the gradients of the last 16
layers are near zero, implying that block computations in this region could be skipped with minimal
impact on first-token prediction. We refer to this phenomenon as decoding-time contribution sparsity,
since it is defined directly by contributions to decoded tokens. Moreover, the observation extends
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beyond the first token: for later generated tokens, the current Middle Q—K region becomes a subset
of the future Middle Q-K region.

2.3 PERPLEXITY ANALYSIS

Llama-3.1-8B-Instruct Llama-3-Instruct-262k QOwen2.5-7B-Instruct
Method 1024-1152  1920-2048  1024-1152  1920-2048  1024-1152  1920-2048
Dense 8.31 7.81 8.05 7.62 8.05 7.62

Skip Q (512-1024)-K 50% layers  8.58 (+0.27) 7.82 (+0.01) 8.33 (+0.28) 7.63 (+0.01) 8.16 (+0.11) 7.64 (+0.02)
Skip Q (512-1024)-K all layers ~ 8.76 (+0.45) 7.90 (+0.09) 8.54 (+0.49) 7.72 (+0.10) 8.54 (+0.49) 7.72 (+0.10)

Table 1: Perplexity (PPL) comparison across different models and settings.

To further validate our claim, we study the impact of removing attention computation in the middle
region. We randomly sample 1,024 Wikipedia articles and take the first 2,048 tokens from each.
Three settings are compared: (1) full attention, (2) skipping attention with Q indices from 512 to
1,024 across all layers, and (3) skipping the same region in only half of the layers. In both (2) and (3),
the Streaming section and the attention with other Q indices are still retained. For the third setting,
we select the half of layers with the lowest Grad(M, 1), where M denotes the skipped attention
region and the gradient measures its contribution to predicting the 2049th token. For each model, the
skipped layers remain fixed across all 1,024 samples, although different models may choose different
sets of layers.

Table T|reports perplexity changes for token ranges 1024—1152 and 1920-2048. At position 1024, the
skipped computation corresponds to the Last Q—K section (since Q indices 512—1024 are omitted). At
positions 1920-2048, the skipped region aligns with the Middle Q-K section. We find that skipping
either all or half of the layers significantly increases perplexity in the 1024—1152 range, confirming
our observations in Section [2.2] that the Last Q-K section is critical. In contrast, at 1920-2048,
skipping half of the layers causes only a minor increase in perplexity (0.01-0.02), though skipping
all Middle Q-K computations still raises perplexity noticeably.

We visualize this phenomenon in Figure[2a] We refer to it as the locality of influence, which describes
the finite-horizon effect of certain attention scores in transformer models. Specifically, even if some
attention blocks have non-trivial scores, their influence on the output distribution disappears once
the decoding position n exceeds ¢ + At, where ¢ is the query index of the block and At is a small
constant (e.g., At = 128). This indicates that many attention scores only affect predictions within a
limited temporal window after they occur. As a result, they influence nearby predictions but do not
affect distant tokens, particularly those beyond the prompt. This distinction allows us to safely skip
computing certain attention weights during the prefilling phase without relying on the magnitude of
the attention weights themselves.

2.4 TRIANGLEMIX

Based on these observations, we introduce TriangleMix, an effective and efficient static attention
pattern for long-context prefilling. The key idea is that the Middle Q-K section in some layers
contributes little to decoding, and can therefore be safely skipped. In these layers, attention reduces
to the Triangle pattern shown in Figure [2b] This modification lowers the complexity of attention in
those layers from O(N?) to O(N). Unlike dynamic sparsity, Triangle attention is static: there is no
need to predict block indices or design specialized sparse kernels. As a result, the kernel is much
simpler and faster to implement. Overall, TriangleMix combines dense attention in some layers with
Triangle attention in others.

For a given model, the application of TriangleMix is as follows. We first conduct the gradient-
based analysis introduced in Sections [2.1]and For each layer /;, we compute the decoding-time
contribution of its Middle Q-K section, denoted as Grad(M™ddle 1) for i = 1,2,..., Niayer-
Based on these values, we identify the Ly,; layers with the lowest contributions, where Ly,; is a
hyperparameter controlling how many layers are converted into Triangle attention. These selected
layers adopt the Triangle pattern at inference time, thereby reducing computation. The remaining
layers retain their original dense attention. Alternatively, they can also be replaced with dynamic
sparse attention methods to achieve further acceleration.
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3 EVALUATIONS

3.1 SETTINGS

LLMs and Benchmarks. We evaluate our method on three recent long-context LLMs: Llama-3.1-
8B-Instruct (Grattafiori et al.,|2024), Llama-3-8B-Instruct-262K (GradientAl, [2024), and Qwen2.5-
7B-Instruct (Yang et al.,|2024)). We use two challenging benchmarks: LongBench (Bai et al., |2023))
and RULER (Hsieh et al.,2024). On RULER, we test input lengths of 4K, 8K, 16K, 32K, 64K, and
128K. On LongBench, we evaluate all English tasks.

Hyperparameters. Different models exhibit varying levels of decoding-time contribution sparsity.
We set Li,; = 16 for Llama-3.1-8B-Instruct and Llama-3-8B-Instruct-262K, and L;,; = 8 for
Qwen?2.5-7B-Instruct, which preserves nearly lossless accuracy. An analysis of different Ly,; settings
is provided in Section [3.3] For all experiments, we fix the sink token size to 8 and the local window
size to 512.

Static Sparsity Baselines. We compare our approach with four static sparsity baselines: (1) Stream-
ing pattern (Xiao et al.| 2023; Han et al., 2024), applied to all layers during prefilling; (2) Triangle
attention, also applied to all layers; (3) StreamingMix, where Triangle attention in TriangleMix
is replaced by the Streaming pattern; (4) DuoAttention (Xiao et al.,2024])), which learns a separate
sparsity pattern for each attention head. For DuoAttention, we use the official pattern for Llama-3.1-
8B-Instruct and train a pattern for Llama-3-8B-Instruct-262K using the authors’ script. We set the
sparsity ratio to be 50%. However, training on Qwen2.5-7B-Instruct did not converge, so results are
omitted. For all static sparsity baselines, we set the sink token number and local window to 8 and
512, consistent with our method.

Methods 4K 8K 16K 32K 64K 128K Avg.
Llama-3.1  |96.6 95.3 94.8 91.3 86.3 78.1 90.4

Methods 4K 8K 16K 32K 64K 128K Avg. TriangleMix (963 95.1 94.7 91.3 86.3 77.5 90.2
Llama-3.1° "~ 196.6 95.3 94.8 91.3 86.3 78.1 90.4 MInference  |96.3 95.1 95.0 90.5 86.8 75.0 89.8
Streaming  |64.1 55.4 40.5 28.9 26.7 3.3 36.5 Ours + Minfer|96.2 95.0 94.5 90.8 87.2 75.8 89.9
Triangle ~ 188.8 88.3 82.8 72.6 65.0 39.0 727 FlexPrefill  |95.0 94.7 94.5 92.8 86.5 75.9 89.9
Streammngx 943 91.8 90.2 86.2 79.2 719 85.6 Ours + FP 952 95.0 94.7 92.8 86.8 76.2 90.1
DuoAttention [95.7 93.1 88.4 84.3 82.5 64.0 84.7 XAttn 96.5 94.9 94.5 91.8 85.7 73.8 89.5
TriangleMix |96.3 95.1 94.7 91.3 86.3 77.5 90.2 Ours + XAttn 196.2 95.1 94.9 91.9 857 72.9 89.4
Llama-3-262k|93.4 90.3 88.8 85.1 82.2 79.4 86.5 Llama-3-262k |93.4 90.3 88.8 85.1 82.2 79.4 86.5
Streaming |49.4 38.7 33.4 30.2 26.5 21.7 33.3 TriangleMix |93.5 91.0 88.1 85.0 82.4 79.6 86.6
Triangle ~ 188.1 84.7 80.6 71.0 65.0 55.4 74.1 Minference  |93.4 90.7 88.8 85.1 82.6 80.1 86.8
StreamingMix |87.3 83.2 80.8 79.9 77.6 70.8 79.9 Ours + Minfer|93.0 90.4 88.6 84.4 82.7 80.1 86.5
DuoAttention [92.8 91.9 89.0 85.0 81.1 76.1 86.0 FlexPrefill 90.3 87.7 88.0 83.8 80.2 75.7 84.3
TriangleMix [93.5 91.0 88.1 85.0 82.4 79.6 86.6 Ours + FP 90.2 87.3 87.3 83.8 80.0 76.6 84.2
Owen2.5 95.8 93.6 92.6 84.5 81.9 67.4 86.0 XAttn 93.6 91.1 87.7 84.8 82.6 78.9 86.5
Streaming  |55.6 47.8 35.9 30.6 28.1 21.0 36.5 Ours + XAttn [93.3 91.2 87.9 84.3 82.5 79.3 86.4
Triangle 88.4 81.9 74.0 58.3 51.0 14.6 614 Qwen2.5 058 93.6 92.6 845 81.9 674 86.0
StreamingMix |93.3 90.4 89.4 81.7 76.4 63.6 82.5 TriangleMix |95.5 93.8 92.1 84.6 80.2 67.7 85.6
TriangleMix |95.5 93.8 92.1 84.6 80.2 67.7 85.6 Minference 95.6 93.8 92.8 84.9 79.1 68.0 85.7
Ours + Mlnfer|95.7 93.5 92.4 84.8 769 63.5 845

Table 2: Comparison with static sparsity meth- FlexPrefill  [91.1 89.7 88.5 75.4 72.5 51.2 78.1
ods on RULER. Llama-3.1, Llama-3-262K, Ours +FP 192.2 91.1 89.5 77.0 73.3 52.7 79.3
Qwen2.5 are abbreviations for Llama-3.1-8B- gﬁ’rtsnl T ggg gg; g%g g%g ;Zi ggg gi‘z

Instruct, Llama-3-8B-262K, and Qwen2.5-8B-

Instruct. The same applies to Table@ Table 3: Comparison with dynamic sparsity

methods on RULER.

Dynamic Sparsity Baselines. We further compare with three dynamic sparsity methods: MInference
(Jiang et al., [2024a)), FlexPrefill (Lai et al.,2025), and XAttention (Xu et al.,[2025). Our method can
also be combined with these approaches: Triangle attention is retained, while layers that require full
attention are replaced with dynamic sparse attention. This design further reduces runtime overhead
compared with dynamic sparsity alone, since Triangle attention skips more attention computation
and is much simpler. We denote the combined versions as “Ours + MInference,” “Ours + FlexPrefill,”
and “Ours + XAttention.” For dynamic methods, we also set their hyperparameters to maintain
near-lossless accuracy: v = 0.95 for FlexPrefill, and 7 = 0.95 with stride = 8 for X Attention.
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3.2 EFFECTIVENESS OF TRIANGLEMIX

Comparison with Static Sparsity. Table[2]and Table 5| present the evaluation results of TriangleMix
and various static sparsity baselines. TriangleMix consistently outperforms all static baselines and
remains nearly lossless performance across all input lengths. In contrast, other static methods usually
suffer noticeable performance degradation. DuoAttention performs comparably to TriangleMix
on LongBench using Llama-3.1-8B-Instruct. However, its performance is worse than TriangleMix
on RULER, especially deteriorates at longer lengths (e.g., 64K and 128K). Furthermore, DuoAt-
tention requires a separate training phase to learn head-wise sparsity, which introduces additional
computational overhead and may fail to converge on models such as Qwen-2.5-7B-Instruct.

On the LongBench benchmark, we observe that the full Triangle pattern performs poorly on Pas-
sageRetrieval tasks, while the StreamingMix pattern underperforms on the in-context learning task
(TREC). These findings suggest that attention over the Middle Q-K section in certain layers (espe-
cially shallow layers) is still crucial for retrieval tasks, while attention over the Last Q-K section in
certain layers (especially deep layers) plays a key role in supporting in-context learning.

) ) N o > s $ o SOOI &
F F & oo & & > & & &
Methods Average '\»é & Q° \)O @é & Q%% Q%% g & %"& & &
Llama-3.1-8B-Instruct 54.8 48.1 34.4 61.6 666 256 569 16.8 99.7 44.9 52.7 42.6 71.0 91.6
TriangleMix 54.5 47.8 343 61.5 67.0 258 565 16.8 98.3 44.8 51.9 422 69.7 922
Mlinference 54.9 48.1 345 614 670 259 570 17.5 99.7 44.7 52.5 42.6 713 919
Ours + Mlinference 54.5 48.3 342 62.0 66.7 256 56.6 17.4 98.3 44.8 51.6 42.1 69.3 92.1
FlexPrefill 48.4 394 337 583 672 256 556 4.0 47.7 425 53.8 41.9 69.7 90.2
Ours + FlexPrefill 522 394 335 585 669 257 545 33 97.0 43.1 53.8 423 69.3 908
XAttention 53.5 454 345 61.0 669 257 559 18.1 86.0 429 55.5 429 71.0 90.2
Ours + XAttention 54.3 450 346 61.0 668 256 57.1 19.0 98.7 424 544 420 693 904
Llama-3-8B-Instruct-262k ~ 44.2 21.0 343 264 46.1 263 50.2 4.7 95.0 30.5 433 41.1 683 86.8
TriangleMix 434 20.7 345 257 473 26.1 51.1 4.7 85.3 30.7 43.6 40.9 66.7 87.0
Mlinference 44.1 20.5 343 258 462 263 502 43 95.0 30.7 44.7 40.5 683 86.8
Ours + Mlnference 434 206 344 264 472 262 51.1 43 85.3 30.3 43.6 40.9 66.7 869
FlexPrefill 35.0 17.7 33.0 25.1 36.8 26.1 49.1 33 13.7 28.3 36.2 39.1 65.0 81.7
Ours + FlexPrefill 36.0 18.3 33.2 25.1 369 262 49.6 6.7 24.0 28.3 35.6 38.9 643 804
XAttention 41.5 20.7 343 260 379 26.1 52.3 4.7 71.3 30.8 39.4 40.0 683 872
Ours + XAttention 42.1 21.1 343 26.1 377 262 51.7 5.7 81.3 30.3 38.3 39.9 67.3 87.0
QOwen2.5-7B-Instruct 46.8 24.5 30.7 322 622 223 413 13.1 99.3 24.4 60.7 42.5 67.0 88.7
TriangleMix 46.1 24.7 30.6 323 626 223 409 13.1 89.3 239 59.6 424 69.3 88.5
Minference 46.8 24.5 30.7 327 61.6 223 408 12.8 100.0 243 60.2 42.1 68.0 89.3
Ours + Mlnference 46.1 25.7 30.3 322 619 223 407 11.4 89.7 25.8 59.4 42.5 68.7 89.0
FlexPrefill 40.8 202 29.7 339 66.8 21.8 404 4.0 48.7 17.1 54.8 40.5 673 855
Ours + FlexPrefill 41.7 21.0 298 328 648 219 396 5.3 56.0 19.8 55.1 40.9 69.0 85.8
XAttention 46.6 224 309 340 639 224 405 10.9 98.0 235 60.9 422 67.7 88.8
Ours + XAttention 45.8 23.6 31.1 33.1 638 21.7 413 9.8 88.3 24.5 58.2 424 69.0 884

Table 4: Comparison with dynamic sparsity methods on LongBench.

Comparison with Dynamic Sparsity. Tables [3|and ] present the results of TriangleMix compared
with dynamic sparsity methods, as well as their combinations. Despite its simplicity, TriangleMix
maintains accuracy comparable to dynamic sparsity methods. On the RULER benchmark, it yields
an average accuracy change of only —0.4% to +0.1% relative to full attention, which is on par with
Minference (—0.6% to +0.3%), and outperforms FlexPrefill (—9.1% to —0.6%) and XAttention
(—2.2% to +0.0%). Importantly, although TriangleMix skips many attention blocks with non-trivial
scores, the decoding accuracy remains nearly lossless. This supports our claim that such blocks
contribute only marginally to decoding-time accuracy, and that decoding-time sparsity is a general
property across all three tested models.

Moreover, when combined with dynamic sparsity methods such as MInference, FlexPrefill, or X At-
tention, TriangleMix consistently preserves their original performance. On LongBench, combining
TriangleMix with FlexPrefill or X Attention even yields slight performance improvements. These
combinations are meaningful: by eliminating computation in many additional attention blocks, Trian-
gleMix reduces the computation required by dynamic sparsity methods, making prefilling even faster
than using dynamic sparsity alone.

Overall, TriangleMix preserves nearly full accuracy of dense attention across tasks while significantly
reducing time complexity from O(N?) to O(NN) in layers using Triangle attention.
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; S 5 S > $ s » $ ¢ >

¢ S S s SS S S
Methods Average '\§ < ¢° \)o @ & Q%% Q%% [\ig & %‘b& &é) <
Llama-3.1-8B-Instruct 54.8 48.1 344 61.6 666 256 569 16.8 99.7 449 52.7 426 710 0916
Streaming 34.7 174 322 19.8 656 246 256 5.7 11.8 233 54.1 40.6 527 773
Triangle 47.0 40.6 332 523 636 246 535 79 42.0 463 465 43.0 67.0 90.1
StreamingMix 48.9 364 343 394 649 258 423 184 983 424 53.6 426 510 868
DuoAttention 54.5 44.6  34.1 59.1 68.0 253 550 157 99.7 439 58.8 427 713 910
TriangleMix 54.5 478 343 615 670 258 565 168 983 44.8 51.9 422 69.7 922
Llama-3-8B-Instruct-262k ~ 44.2 21.0 343 264 46.1 263 50.2 4.7 95.0 305 433 41.1 683  86.8
Streaming 30.8 16.8 343 185 418 253 39.6 0.3 100 234 365 386  49.0 66.0
Triangle 36.2 17.1  34.1 212 355 253 50.0 5.0 320 289 324 405 63.0 859
StreamingMix 39.9 185 344 19.8 423 259 474 53 850 30.0 383 40.1 483 833
DuoAttention 42.6 19.2  34.6 25.1 444 261 518 23 877 296 41.1 404 657 859
TriangleMix 434 | 20.7 345 257 473 261 51.1 4.7 853 30.7 436 409 66.7 87.0
Qwen2.5-7B-Instruct 46.8 245 307 322 622 223 413 131 993 244  60.7 425 670 887
Streaming 28.3 10.1 313 9.5 61.7 215 207 6.5 8.2 114 448 402 51.7 499
Triangle 36.9 174 275 240 485 179 385 5.6 439 223 396 412 650 88.1
StreamingMix 452 244 319 385 682 225 435 107 930 248 609 420 437 83.1
TriangleMix 46.1 24.7 30.6 323 626 223 409 131 893 239 59.6 424 693 885

Table 5: Comparison with static sparsity methods on Longbench.

Llama-3.1-8B-Instruct Llama-3-8B-Instruct-262k Qwen2.5-7B-Instruct
X 80 1
3 801 801
o
5
70 A 60 1
=) ]
Z 70
0 10 20 30 0 10 20 30 0 10 20
Triangle Layer Num Triangle Layer Num Triangle Layer Num

Figure 4: Average RULER score at 64K length for different Ly,; values.

3.3 ANALYSIS OF Ly

In this section, we investigate the choice of Ly; for each LLM. We evaluate all models on the 64K
length tasks in the RULER benchmark, sweeping Li; from O to the total number of layers with a step
size of 2. As shown in Figured] Llama-3.1-8B-Instruct and Llama-3-8B-Instruct-262K exhibit similar
patterns: setting Ly = 20 retains 99.7% and 100.0% of their original performance, respectively.
This indicates that 62.5% of the layers can adopt the O (V) Triangle Attention without noticeable
degradation. In contrast, Qwen-2.5-7B-Instruct requires a less threshold: setting Ly = 8 retains
98.2% of the performance, corresponding to a sparsity ratio of 28.6%.

Llama-3.1-8B-Instruct QOwen?2.5-7B-Instruct
Method 32K 64K 128K 32K 64K 128K
Dense 44 179 750 40 156 646

MlInference 94 (0.5x) 152 (1.2x) 229 (3.3x) 93 (0.4x) 151 (1.0x) 245 (2.6x)
FlexPrefill 32 (1.4x) 71 (2.5x) 220(3.4x) 38(1.0x) 99 (1.6x) 310 (2.1x)
XAttention 47 (0.9x) 127 (1.4x) 391 (1.9x) 44(0.9x) 128(1.2x) 391 (1.7x)
Triangle 12(37x) 24(7.5x) 49(153x) 11(3.7x) 21 (7.4x) 76 (8.5%)

Table 6: Attention kernel latency (ms) for one layer.

3.4 EFFICIENCY OF TRIANGLEMIX

We implement Triangle Attention using Triton (Tillet et al., [2019), with further implementation
details provided in Appendix [A.2] All experiments are conducted on a single NVIDIA A100 80GB
GPU. Dense attention is implemented using FlashAttention (Kwon et al., [2023)).

Attention Kernel Latency. We first benchmark the average attention kernel time per layer on Llama-
3.1-8B-Instruct and Qwen2.5-7B-Instruct at sequence lengths of 32K, 64K, and 128K. As shown
in Table [6] Triangle Attention achieves 3.7x to 15.3x speedup compared to dense attention,. The
speedup mainly comes from Triangle Attention’s linear complexity (O(NV)), which makes it much
more efficient than O(N?) dense attention. Besides, unlike dynamic sparsity methods, TriangleMix
does not require estimating attention block indices. Its triangle attention kernel is also much simpler
to implement, which further reduces overhead.
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Method 32K 48K 64K 80K 96K 112K 128K

Dense 4.1 7.3 11.2 15.9 21.3 27.5 34.5

DuoAttention 36 (-13%)  58(-20%) 87(-22%) 11.7(-26%) 15.5(-27%) 19.1 (-31%) 23.7 (-31%)
TriangleMix 3.6 (-12%) 59(-19%) 8.6 (-23%) 11.7(-26%) 15.2(-29%) 19.1 (-31%) 23.4 (-32%)
Minference 5.5 H+34%) 1.8 (+7%) 10.1(-10%) 123 (-23%) 13.4(-37%) 159 (-42%) 18.0 (-48%)
Ours + MInference 4.2 (+2%) 6.0 (-18%) 7.7 (-31%) 9.5 (-40%) 10.9 (-49%) 12.7 (-54%) 14.5 (-58%)
FlexPrefill 36 (-12%) 55(-25%) 1.7(-31%) 9.9 (-38%) 123 (-42%) 15.0 (-45%) 17.8 (-48%)
Ours + FlexPrefill 34(-17%) 52(-29%) 72(-36%) 92(-42%) 113 (-47%) 13.6(-51%) 16.1 (-53%)
XAttention 4.1 (-1%) 6.6 (-10%) 94 (-16%) 12.4(-22%) 157 (-26%) 19.3 (-30%) 23.2 (-33%)

Ours + XAttention 3.5 (-14%) 5.5(-24%) 7.7(31%) 100 (-37%) 12.4 (-42%) 15.1 (-45%) 17.8 (-48%)

Table 7: Time-to-first-token (TTFT) in seconds measured on Llama-3.1-8B-Instruct.

End-to-End TTFT. We measure the end-to-end time-to-first-token (TTFT) for sequence lengths
of 32K, 48K, 64K, 96K, 112K, and 128K. Table reports the results on Llama-3.1-8B-Instruct.
TriangleMix yields a TTFT reduction of 12%—-32%. Compared with DuoAttention, TriangleMix
achieves similar efficiency but causes less performance degradation (see Section[3.2)). In addition,
DuoAttention partitions heads within the same layer into different sparsity patterns (Liu et al.|
2025)), which leads to imbalance under tensor parallelism, while TriangleMix avoids this issue.
Moreover, TriangleMix can be seamlessly combined with dynamic attention for further efficiency
gains. For instance, integrating MInference with TriangleMix lowers TTFT from 18.0s to 14.5s (a
19% reduction) at length 128K. TriangleMix combined with FlexPrefill achieves the lowest TTFT for
32K-80K inputs, whereas TriangleMix with MInference is optimal for 96K-128K inputs.

4 RELATED WORKS

Static Sparsity Attention. Early methods employ fixed sparse patterns, such as strided (Child et al.,
2019), dilated (Ding et al.| 2023)), sliding window (Jiang et al.,[2023)), and mixed patterns (Beltagy
et al.,|2020), typically requiring training from scratch. DuoAttention (Xiao et al.,[2024) introduces
head-level static sparsity but needs additional offline training. Streaming pattern is a training-free
approach (Xiao et al.| 2023) but leads to degraded accuracy for long contexts (Li et al.,[2024a)). In
contrast, the proposed TriangleMix attention pattern significantly mitigates performance loss and is
nearly lossless in accuracy.

Dynamic Sparsity Attention. Existing methods such as MInference (Jiang et al.,20244a), FlexPrefill
(Lai et al., [2025)), and X Attention (Xu et al.,[2025) dynamically identify attention blocks with high
scores and restrict computation to these blocks. While this form of attention score sparsity focuses on
pruning blocks with small attention scores, our work moves beyond by uncovering a different kind of
sparsity, which we term decoding-time contribution sparsity. Specifically, we show that many blocks
with non-trivial scores still contribute little to decoding, and thus can be safely skipped. Leveraging
this property enables additional acceleration in the prefilling stage.

Long-context LLM Inference. FlashAttention (Dao et al.|[2022) speeds up attention by reducing
memory access through fused operations. PagedAttention (Kwon et al.|,[2023) improves decoding
by managing KV cache allocation efficiently. KV cache optimizations techniques also include
token-level eviction (SnapKV (L1 et al.,|2024b)) and query-aware cache selection (Quest (Tang et al.,
2024)). TriangleMix is orthogonal to these approaches.

5 CONCLUSION

In this paper, we identify a new form of sparsity in the prefilling stage, termed decoding-time
contribution sparsity, and introduce TriangleMix, a training-free static attention pattern. By selectively
applying Triangle attention in certain layers, TriangleMix substantially reduces attention overhead
while maintaining nearly lossless performance. On 128K inputs, it achieves up to a 15.3x speedup in
attention computation, surpassing typical dynamic sparse methods. Moreover, TriangleMix can be
seamlessly combined with dynamic sparsity, yielding an additional 6%—19% reduction in TTFT.
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A APPENDIX

A.1 DETAILS OF ATTENTION BLOCK PROBING
We divide the causal attention matrix into three distinct sections as illustrated in Figure [Ta}f

» Streaming section: includes attention sink and the sliding window;

» Last Q-K section: covers interactions between the last part of @ and K, excluding the
Streaming section;

* Middle Q-K section: consists of the remaining interactions between the middle parts of Q
and K.

We define the Streaming mask as:

L i2j,j<si
st}reaming _ 1

4,7 ) ZZ.]aZ_.]SSZ

0, otherwise

where si is the number of sink tokens and s/ is the sliding window size.

We define the Last Q—K mask as:

1, 1> 35, N —1i<last,
M5t = j > siyi—j > sl
0, otherwise

where last > 1 specifies the number of rows corresponding to the last section.

The Middle Q-K mask is defined as:

1, i>j, N —1i>last,
MpAde = § > siyi—j > sl
0, otherwise

In our gradient-based attention block probing experiments, we set the parameters to si = 64, sl = 128,
and last = 128. We adopt a key-value retrieval task, where the language model is prompted to
output the correct value starting from its very first generated token. Each input sequence contains
approximately 2,000 tokens, and gradients are computed over 100 randomly generated samples. The
prompt used in this task is as follows:

Prompt for Attention Importance Probing:

Extract the value corresponding to the specified key in the data below.

Data:
<key 1>: <value 1>
<key 2>: <value 2>

<key n>: <value n>

Extract the value corresponding to this key:
key: {key i}

Please directly output the corresponding value without outputing anything else.
value:

We randomly generate pairs of keys and values using UUID strings.

12
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A.2 IMPLEMENTATION OF TRIANGLE ATTENTION

We implement Triangle Attention using Triton (Tillet et al., 2019), with details provided in Algo-
rithm [T} For each row index, we apply a different attention mechanism: if the row index is less than
N — Ny, we apply Streaming Attention; otherwise, we apply chunked FlashAttention to increase
GPU utilization. The outputs from both segments are then merged to produce the final result.

Algorithm 1 Fused Triangle Attention

Input data: Q, K,V € RV*xd»
Input triangle shape: sink token number Ny, sliding window size Nyindow, last rows number

last
Input kernel block shape: Bj;, By
Calculate best number of splits S for last row
Initialize O < (0)V*?, output buffer O, < (0)°NMastXdn LSE buffer lj,g < (— inf)SNast

Parallelized inN Gl]’VU N
for i + 1to [731;‘“] + S(—B};ﬂ do
Initialize Ocpip < (0)ZM ¥ m « (—inf)BN, 5 « (0)PM
if i < [YMast] then
M

Upper part: the same as streaming attention
LoadQ — QiBM:(i+1)BM
Loop through sink tokens
: Ngin
for] +— 1to ’VTNk—I do
Load K cip KjBN5(j+1)BN’ V enip ViBn:(G+1)BN
ﬂash_attn(Q K chip, Venip, Ochip, m, S)
end for

chip

chip?

Loop through sliding window
. N—Nyindow N

fOI‘j — I—ﬁ—l to ’—ﬁ-l do

Load K cip KIBN:G+1)BN c RBxdn Venip ViBN:(i+1)BN ¢ RBXdn
flash_attn(Q.py, Kechip, Vehip, Ochip, 117, 8)

end for

Write outputs

iBpr:(i+1)B

Save Q*Pmi D) Bym Ohip
else

Last rows: split in to S chunks

Chunk index ¢ + [ (i — [7]\];]1\3“" N/ (—Ag;‘ 1]

; N_N ast Nas
Chunk offset b < (i — [#]) mod [ﬁ]
Qindex ig + [N—Bifl\gm] +b
Load Q, < QieBm:liqt) By
for j cfﬁ] to (¢ + 1)[%1 do
Load Kchip +— KIBNv:G+)BN Veip ViBN:G+) By
flash_attn(Q ., Kehips Vchip, Ochip, M, S)
end for

chip?

Write outputs
i—iq)Bn:(i—ig+1)B
Save O\’ ‘@ Pmilizit By g

‘las‘t L chip
Save 1\’ ‘@ P imiQt BT gy oy
end
end for

Merge last row output buffer
O~ Nast):N merge_output(Oiast, liast)
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8K 16K 32K
Methods op=2 op=4 op=6 op=8 op=2 op=4 op=6 op=8 op=2 op=4 op=6 op=8 Average
Llama-3.1 0.142 0.050 0.042 0.040 0.136 0.058 0.030 0.030 0.210 0.080 0.058 0.036 0.076
TriangleMix 0.156 0.048 0.044 0.030 0.108 0.066 0.028 0.028 0.208 0.070 0.068 0.036 0.074
Qwen2.5 0.404 0.182 0.138 0.114 0.266 0.110 0.142 0.064 0.238 0.106 0.100 0.066 0.161

TriangleMix 0.428 0.196 0.176 0.114 0.286 0.134 0.108 0.068 0.258 0.110 0.092 0.056 0.169
DeepSeek-Distill 0.200 0.078 0.048 0.040 0.288 0.132 0.086 0.082 0.070 0.016 0.018 0.018 0.090
TriangleMix 0.210 0.088 0.058 0.032 0.300 0.110 0.082 0.088 0.036 0.022 0.026 0.022 0.090

Table 8: The evaluation results on GSM-infinite hard subset with various context lengths and operation
numbers.

A.3 REASONING BENCHMARKS

We further evaluate our method on the GSM-Infinite reasoning benchmark (Zhou et al.), which
simultaneously challenges both long-context and reasoning ability of the model. GSM-Infinite
constructs a complex computational graph containing both task-relevant operations and distractor
operations; by varying the number of operations, we can precisely control the context length and
complexity of the underlying graph. We use the hard subset of GSM-Infinite and evaluate models
under context lengths of 8K, 16K, and 32K, and operation counts of 2, 4, 6, and 8. For each
context—operation pair, we sample 500 problems, resulting in a total of 6,000 test instances. The
evaluating metric is accuracy.

We compare full attention with our proposed TriangleMix on Llama-3.1-8B-Instruct, Qwen2.5-7B-
Instruct, and a reasoning model DeepSeek-R 1-Distill-Qwen-7B 2025). As shown in
Table 8] TriangleMix yields only —0.002 to +0.008 absolute accuracy change to dense attention,
demonstrating that it preserves both long-context capacity and reasoning performance across all
settings. We also observe that DeepSeek-R1-Distill-Qwen-7B underperforms its origin model
Qwen?2.5-7B-Instruct, possibly because the distillation process weakened some long-context abilities.
A deeper investigation is left for future work.

A.4 ACKNOWLEDGEMENT OF LLM USAGE

We used large language models to polish the writing of this paper, and all generated content was
carefully reviewed to ensure precise expression.

14



	Introduction
	Methodology
	Probing Attention Block Contribution
	Decoding-time Sparsity in Middle Q-K sections
	Perplexity Analysis
	TriangleMix

	Evaluations
	Settings
	Effectiveness of TriangleMix
	Analysis of Ltri
	Efficiency of TriangleMix

	Related Works
	Conclusion
	Appendix
	Details of Attention Block Probing
	Implementation of Triangle Attention
	Reasoning Benchmarks
	Acknowledgement of LLM Usage


