
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRIANGLEMIX: ACCELERATING PREFILLING VIA
DECODING-TIME CONTRIBUTION SPARSITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) incur quadratic attention complexity with input
length, creating a major time bottleneck in the prefilling stage. Existing accelera-
tion methods largely exploit attention score sparsity by estimating blocks with high
attention scores and applying dynamic sparse attention. In this work, we identify
another untapped form of sparsity in the prefilling stage, namely decoding-time
contribution sparsity, where many attention blocks exhibit nontrivial attention
scores during prefilling yet contribute negligibly to subsequent decoding, as in-
dicated by gradient-based analysis. Building on this observation, we propose
TriangleMix, a training-free static attention pattern that uses dense attention in a
subset of layers and switches to Triangle attention in the others. Extensive exper-
iments show that TriangleMix preserves nearly lossless performance relative to
dense attention while substantially reducing attention overhead in Triangle lay-
ers. For 128K inputs, Triangle attention achieves a 15.3× speedup in attention
computation, significantly exceeding the acceleration of typical dynamic sparse
methods (1.9×–3.4×). Furthermore, TriangleMix can be seamlessly combined
with dynamic sparsity approaches, delivering an additional 6%–19% reduction in
TTFT over using dynamic sparsity alone.

Last Q-K

Middle Q-K

Streaming

(a) Attention sections.

Sparsity Sparsity Sparsity

(b) Gradient of Middle Q-K with respect to the first generated token

Figure 1: The average gradient Grad(M , l) of the Middle Q-K sections, measured on three models,
shows a significant sparsity in deeper layers. This suggests that the Middle Q-K components in deeper
layers contribute minimally to decoding and might potentially be skipped to improve efficiency.

𝑜𝑖

𝑜1

𝑜𝑁

𝑜2

In
pu

t T
ok

en
s

Input Tokens

𝑜𝑖

𝑜1

𝑜𝑁

𝑜2

Input Tokens

In
pu

t T
ok

en
s

Strong

Strong Contribution

(a) Measure contribution based on different tokens

First 16 Layers Last 16 Layers

(b) TriangleMix on Llama-3.1-8B-Instruct

Figure 2: Left: Attention computation in certain layers exhibits contribution locality. Right: The
proposed TriangleMix pattern for Llama-3.1-8B-Instruct.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Large Language Models (LLMs) are capable of processing input sequences of varying lengths
(Grattafiori et al., 2024; Achiam et al., 2023; Yang et al., 2024), a crucial ability that supports diverse
downstream tasks, such as question answering (Bai et al., 2023), long-form document understanding
(Zhao et al., 2024), and code generation (Jiang et al., 2024b). However, due to the quadratic
complexity of attention mechanisms, the attention computation time significantly increases as the
input context length grows. As prior research has demonstrated, attention computation has become a
critical bottleneck in the prefilling stage of LLMs (Jiang et al., 2024a; Lai et al., 2025).

To mitigate this bottleneck, several dynamic sparse attention techniques have been proposed, including
MInference (Jiang et al., 2024a), FlexPrefill (Lai et al., 2025), and XAttention (Xu et al., 2025).
These methods exploit attention score sparsity to accelerate computation: the majority of entries in
attention matrix have negligible values and can be safely skipped, while blocks with significant scores
need to be computed. Dynamic sparsity methods first estimate which regions are likely to contain
high attention scores, and then selectively perform computation on these regions to approximate full
attention (Jiang et al., 2024a; Lai et al., 2025; Xu et al., 2025).

Dynamic sparsity attention is built on a simple intuition: low-score blocks can be skipped, while
blocks with non-trivial scores must be computed. This raises a deeper question: Must we compute
all non-trivial blocks during prefilling to preserve decoding accuracy? A natural concern is
that skipping them might distort the attention distribution and degrade performance. However, our
analysis reveals that the situation is subtler. We uncover a new form of sparsity in the prefilling stage,
which we call decoding-time contribution sparsity. Unlike score sparsity, it reflects that certain
blocks, though holding non-trivial scores, have little impact on the actual decoding process.

To rigorously evaluate the necessity of each block, we analyze how its removal affects the generation
of the first token following the prompt. Gradient analysis offers a direct measure of this sensitivity.
As shown in Figure 1a, we divide causal attention into three regions: Last Q–K, Middle Q–K, and
the Streaming region. Our results indicate that the Streaming and Last Q–K regions are critical to
decoding, while the Middle Q–K exhibits significant layer-wise sparsity pattern (Figure 1b). Notably,
although the attention score magnitude of Middle Q–K regions are often comparable to Last Q–K, its
gradients reveal substantially lower impact in certain layers.

This sparsity arises from the phenomenon that certain parts of attention scores’ contribution has
locality of influence with respect to the decoding token position. As shown in Figure 2a, many
attention scores only affect predictions within a limited temporal window after they occur. The Middle
Q-K region in some layers has considerable influence on an intermediate token oi, but contribute very
little to the tokens generated after the entire prompt oN , oN+1, This distinction allows us to safely
skip Middle Q-K region’s attention computation of certain layers during the prefilling phase.

Motivated by this insight, we introduce TriangleMix, a simple yet effective static attention pattern
for accelerating prefilling. As depicted in Figure 2b, TriangleMix combines dense attention in some
layers with a triangle-shaped sparse attention pattern in others. This design brings four key benefits:

• Training-free: It can be applied directly to state-of-the-art pretrained LLMs without fine-tuning.
• Nearly lossless accuracy: Despite its simplicity, TriangleMix preserves model performance,

reaching accuracy comparable to sophisticated dynamic sparsity methods.
• Efficiency: Its static triangle pattern removes the need for block index estimation, reducing

complexity from O(N2) to O(N) and enabling significantly simpler and faster attention kernel
than dynamic sparsity attention.

• Complementary to dynamic attention: Replacing dynamic sparsity with Triangle attention in
selected layers delivers extra acceleration while maintaining performance.

We conduct extensive experiments on three long-context LLMs, including Llama-3.1-8B-Instruct
(Grattafiori et al., 2024), Llama-3-8B-Instruct-262K (GradientAI, 2024), and Qwen2.5-7B-Instruct
(Yang et al., 2024), using all tasks from the RULER and LongBench benchmarks (Hsieh et al., 2024;
Bai et al., 2023). Our results show that TriangleMix preserves the accuracy of full attention while
substantially improving efficiency. Specifically, with 128K-token inputs, Triangle attention achieves a
15.3× speedup in attention computation, far exceeding typical dynamic sparse methods (1.9×–3.4×).
For Llama-3.1-8B-Instruct, TriangleMix reduces overall TTFT by 12%–32% across context lengths

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

from 32K to 128K. In addition, TriangleMix integrates seamlessly with dynamic sparsity approaches,
yielding a further 6% to 19% decrease in TTFT compared to dynamic sparsity alone.

2 METHODOLOGY

2.1 PROBING ATTENTION BLOCK CONTRIBUTION

The prefilling stage of Transformer attention can be formulated as:

A = Softmax(
1√
d
QKT − c(1−M))

where Q,K,V are matrices of shape (N, d), and M is a causal mask matrix of shape (N,N), with
entries Mi,j ∈ {0, 1}. Here, N represents the number of input tokens, and c is a large positive
constant to ensure attention scores masked by Mi,j = 0 become effectively zero after the softmax
operation. To accelerate computing, sparse attention (Jiang et al., 2024a; Lai et al., 2025; Xu et al.,
2025) aims to find a sparse mask matrix M ′ to compute the attention output:

A′ = Softmax(
1√
d
QKT − c(1−M ′))

The mask matrix M ′ can be either static or dynamic. StreamingLLM (Xiao et al., 2023) and LM-
infinite (Han et al., 2024) employ similar static streaming mask, which restricts attention to a few
sink tokens and a sliding window of nearby tokens. Such pattern reduces the computation complexity
of attention to O(N) but significantly harms the performance of long-context LLMs(Li et al., 2024a).

In contrast, dynamic masks enable dynamic sparsity attention. During inference, block indices in
M ′ that likely yield non-trivial scores are identified from the input, and FlashAttention (Dao et al.,
2022) is applied only to these blocks. Methods such as MInference (Jiang et al., 2024a), FlexPrefill
(Lai et al., 2025), and XAttention (Xu et al., 2025) all adopt this strategy.

A central challenge for these dynamic sparsity attention lies in efficiently and accurately estimating
the block indices with meaningful attention scores. MInference categorizes attention heads into
three types and applies different estimation strategies, either by observing recent query tokens or by
pooling vectors from Q and K. FlexPrefill adopts a similar strategy but determines the head type
dynamically during inference. XAttention, on the other hand, uses the sum of anti-diagonal scores to
identify blocks with large attention. Despite these differences, the common objective remains the
same: reliably locating blocks with meaningful attention scores. In this paper, we move beyond block
index estimation and pose a more fundamental question: Must we compute all non-trivial blocks
during prefilling to preserve decoding accuracy?

To answer this, we quantitatively probe each block’s contribution relative to the generated tokens in
decoding, which we call its decoding-time contribution. Our goal is to prioritize computation for
blocks with higher decoding-time contribution. Since gradients naturally capture such sensitivity, we
propose a gradient-based method to perform this analysis.

Given an input Xinput containing N tokens fed into a language model, we define a probing variable
θ ∈ RL×N×N , where θℓ,i,j = 1 for all layers ℓ and token indices i, j. Here, L represents the total
number of layers in the model. For simplicity of notation, we omit the attention head dimension here,
but our proposed method generalizes naturally to both Multi-head Attention (Vaswani et al., 2017)
and Grouped Query Attention (Ainslie et al., 2023).

In layer l, the attention scores is calculated as:

Aθ = θl ⊙ Softmax

(
1√
d
QKT − c(1−M)

)
where ⊙ denotes element-wise multiplication. Since all elements of θ are initially set to 1, this
operation does not alter the attention scores.

The model then outputs a logit prediction Yθ for the next token after the N th token, represented
as a vector Yθ = [y1, y2, . . . , yvocab]. Note that it is only the output of the last query. Our focus

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 10 20 30

0.01

0.02

M
ea

n
At

te
nt

io
n

Llama-3.1-8B-Instruct

0 10 20 30

0.01

0.02

Llama-3-8B-Instruct-262k

0 10 20

0.01

0.02

Qwen2.5-7B-Instruct

0 10 20 30
Layer Index

0.0

2.5

5.0

M
ea

n
G

ra
di

en
t 1e−5

0 10 20 30
Layer Index

0

2

1e−5

0 10 20
Layer Index

0

5

10

1e−5

Middle Q-K Last Q-K

Figure 3: First row: Average attention score for the Middle and Last Q-K sections; Second row:
average gradient Grad(M , l) for the Middle and Last Q-K sections.

is on a specific logit ygt, associated with the correct label or ground truth token. For instance, the
correct answer in a multiple-choice scenario or the initial token of the target sequence in a needle-
in-a-haystack task. We are particularly interested in the partial derivative ∂ygt

∂θl,i,j
, which measures

the sensitivity of the model’s output to changes in attention scores. We quantify the importance of
a specific attention section M ′ by computing the mean of the derivative values within that section.
Formally, we define the gradient-based importance as:

Grad(M̂ , l) =

∑
M̂i,j=1

∂ygt

∂θl,i,j∑
M̂i,j=1 M̂i,j

Here, M̂ ∈ {0, 1}N×N is a binary mask specifying the attention section of interest, with M̂i,j = 1

indicating that the pair (i, j) belongs to the region. The quantity Grad(M̂ , l) thus represents the
average sensitivity of ygt to perturbations within region M̂ at layer l. This formulation is general
and can be applied to quantify the contribution of any region in the attention map.

2.2 DECODING-TIME SPARSITY IN MIDDLE Q-K SECTIONS

Under the framework proposed in Section 2.1, we conduct an initial gradient-based analysis of three
predefined attention sections. As illustrated in Figure 1a, we partition attention into the Streaming
section, the Middle Q–K section, and the Last Q–K section. We evaluate these regions using a
key–value retrieval task in which the language model must output the corresponding value beginning
with its first generated token; we set ygt to the first token of the correct value. See Appendix A.1 for
the exact region definitions and the full prompt.

First, we observe that both the attention scores and the gradients are high in the Streaming section,
consistent with prior works (Xiao et al., 2023; Han et al., 2024). For the Middle Q–K and Last Q–K
sections, we summarize our findings as follows:

Slightly higher attention scores in Middle Q–K. As shown in the top row of Figure 3, the average
attention scores in the Middle Q–K and Last Q–K sections are similar, with the Middle Q–K section
being slightly higher. This indicates that both regions contain non-trivial attention blocks.

Lower gradients in Middle Q–K. Despite the slightly higher attention scores, the Middle Q–K
section exhibits substantially smaller gradients than the Last Q–K section (The bottom row of
Figure 3). This suggests that, for predicting the first token, computing blocks in the Last Q–K region
is more critical.

Layer-wise sparsity. The gradients within the Middle Q–K section display clear layer-wise sparsity.
For example, in Llama-3.1-8B-Instruct and Llama-3-8B-262K (Figure 1b), the gradients of the last 16
layers are near zero, implying that block computations in this region could be skipped with minimal
impact on first-token prediction. We refer to this phenomenon as decoding-time contribution sparsity,
since it is defined directly by contributions to decoded tokens. Moreover, the observation extends

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

beyond the first token: for later generated tokens, the current Middle Q–K region becomes a subset
of the future Middle Q–K region.

2.3 PERPLEXITY ANALYSIS

Llama-3.1-8B-Instruct Llama-3-Instruct-262k Qwen2.5-7B-Instruct
Method 1024–1152 1920–2048 1024–1152 1920–2048 1024–1152 1920–2048
Dense 8.31 7.81 8.05 7.62 8.05 7.62
Skip Q (512–1024)-K 50% layers 8.58 (+0.27) 7.82 (+0.01) 8.33 (+0.28) 7.63 (+0.01) 8.16 (+0.11) 7.64 (+0.02)
Skip Q (512–1024)-K all layers 8.76 (+0.45) 7.90 (+0.09) 8.54 (+0.49) 7.72 (+0.10) 8.54 (+0.49) 7.72 (+0.10)

Table 1: Perplexity (PPL) comparison across different models and settings.

To further validate our claim, we study the impact of removing attention computation in the middle
region. We randomly sample 1,024 Wikipedia articles and take the first 2,048 tokens from each.
Three settings are compared: (1) full attention, (2) skipping attention with Q indices from 512 to
1,024 across all layers, and (3) skipping the same region in only half of the layers. In both (2) and (3),
the Streaming section and the attention with other Q indices are still retained. For the third setting,
we select the half of layers with the lowest Grad(M̂ , l), where M̂ denotes the skipped attention
region and the gradient measures its contribution to predicting the 2049th token. For each model, the
skipped layers remain fixed across all 1,024 samples, although different models may choose different
sets of layers.

Table 1 reports perplexity changes for token ranges 1024–1152 and 1920–2048. At position 1024, the
skipped computation corresponds to the Last Q–K section (since Q indices 512–1024 are omitted). At
positions 1920–2048, the skipped region aligns with the Middle Q–K section. We find that skipping
either all or half of the layers significantly increases perplexity in the 1024–1152 range, confirming
our observations in Section 2.2 that the Last Q–K section is critical. In contrast, at 1920–2048,
skipping half of the layers causes only a minor increase in perplexity (0.01–0.02), though skipping
all Middle Q–K computations still raises perplexity noticeably.

We visualize this phenomenon in Figure 2a. We refer to it as the locality of influence, which describes
the finite-horizon effect of certain attention scores in transformer models. Specifically, even if some
attention blocks have non-trivial scores, their influence on the output distribution disappears once
the decoding position n exceeds t+∆t, where t is the query index of the block and ∆t is a small
constant (e.g., ∆t = 128). This indicates that many attention scores only affect predictions within a
limited temporal window after they occur. As a result, they influence nearby predictions but do not
affect distant tokens, particularly those beyond the prompt. This distinction allows us to safely skip
computing certain attention weights during the prefilling phase without relying on the magnitude of
the attention weights themselves.

2.4 TRIANGLEMIX

Based on these observations, we introduce TriangleMix, an effective and efficient static attention
pattern for long-context prefilling. The key idea is that the Middle Q–K section in some layers
contributes little to decoding, and can therefore be safely skipped. In these layers, attention reduces
to the Triangle pattern shown in Figure 2b. This modification lowers the complexity of attention in
those layers from O(N2) to O(N). Unlike dynamic sparsity, Triangle attention is static: there is no
need to predict block indices or design specialized sparse kernels. As a result, the kernel is much
simpler and faster to implement. Overall, TriangleMix combines dense attention in some layers with
Triangle attention in others.

For a given model, the application of TriangleMix is as follows. We first conduct the gradient-
based analysis introduced in Sections 2.1 and 2.2. For each layer li, we compute the decoding-time
contribution of its Middle Q–K section, denoted as Grad(Mmiddle, li) for i = 1, 2, . . . , Nlayer.
Based on these values, we identify the Ltri layers with the lowest contributions, where Ltri is a
hyperparameter controlling how many layers are converted into Triangle attention. These selected
layers adopt the Triangle pattern at inference time, thereby reducing computation. The remaining
layers retain their original dense attention. Alternatively, they can also be replaced with dynamic
sparse attention methods to achieve further acceleration.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3 EVALUATIONS

3.1 SETTINGS

LLMs and Benchmarks. We evaluate our method on three recent long-context LLMs: Llama-3.1-
8B-Instruct (Grattafiori et al., 2024), Llama-3-8B-Instruct-262K (GradientAI, 2024), and Qwen2.5-
7B-Instruct (Yang et al., 2024). We use two challenging benchmarks: LongBench (Bai et al., 2023)
and RULER (Hsieh et al., 2024). On RULER, we test input lengths of 4K, 8K, 16K, 32K, 64K, and
128K. On LongBench, we evaluate all English tasks.

Hyperparameters. Different models exhibit varying levels of decoding-time contribution sparsity.
We set Ltri = 16 for Llama-3.1-8B-Instruct and Llama-3-8B-Instruct-262K, and Ltri = 8 for
Qwen2.5-7B-Instruct, which preserves nearly lossless accuracy. An analysis of different Ltri settings
is provided in Section 3.3. For all experiments, we fix the sink token size to 8 and the local window
size to 512.

Static Sparsity Baselines. We compare our approach with four static sparsity baselines: (1) Stream-
ing pattern (Xiao et al., 2023; Han et al., 2024), applied to all layers during prefilling; (2) Triangle
attention, also applied to all layers; (3) StreamingMix, where Triangle attention in TriangleMix
is replaced by the Streaming pattern; (4) DuoAttention (Xiao et al., 2024), which learns a separate
sparsity pattern for each attention head. For DuoAttention, we use the official pattern for Llama-3.1-
8B-Instruct and train a pattern for Llama-3-8B-Instruct-262K using the authors’ script. We set the
sparsity ratio to be 50%. However, training on Qwen2.5-7B-Instruct did not converge, so results are
omitted. For all static sparsity baselines, we set the sink token number and local window to 8 and
512, consistent with our method.

Methods 4K 8K 16K 32K 64K 128K Avg.
Llama-3.1 96.6 95.3 94.8 91.3 86.3 78.1 90.4
Streaming 64.1 55.4 40.5 28.9 26.7 3.3 36.5
Triangle 88.8 88.3 82.8 72.6 65.0 39.0 72.7
StreamingMix 94.3 91.8 90.2 86.2 79.2 71.9 85.6
DuoAttention 95.7 93.1 88.4 84.3 82.5 64.0 84.7
TriangleMix 96.3 95.1 94.7 91.3 86.3 77.5 90.2
Llama-3-262k 93.4 90.3 88.8 85.1 82.2 79.4 86.5
Streaming 49.4 38.7 33.4 30.2 26.5 21.7 33.3
Triangle 88.1 84.7 80.6 71.0 65.0 55.4 74.1
StreamingMix 87.3 83.2 80.8 79.9 77.6 70.8 79.9
DuoAttention 92.8 91.9 89.0 85.0 81.1 76.1 86.0
TriangleMix 93.5 91.0 88.1 85.0 82.4 79.6 86.6
Qwen2.5 95.8 93.6 92.6 84.5 81.9 67.4 86.0
Streaming 55.6 47.8 35.9 30.6 28.1 21.0 36.5
Triangle 88.4 81.9 74.0 58.3 51.0 14.6 61.4
StreamingMix 93.3 90.4 89.4 81.7 76.4 63.6 82.5
TriangleMix 95.5 93.8 92.1 84.6 80.2 67.7 85.6

Table 2: Comparison with static sparsity meth-
ods on RULER. Llama-3.1, Llama-3-262K,
Qwen2.5 are abbreviations for Llama-3.1-8B-
Instruct, Llama-3-8B-262K, and Qwen2.5-8B-
Instruct. The same applies to Table 3.

Methods 4K 8K 16K 32K 64K 128K Avg.
Llama-3.1 96.6 95.3 94.8 91.3 86.3 78.1 90.4
TriangleMix 96.3 95.1 94.7 91.3 86.3 77.5 90.2
MInference 96.3 95.1 95.0 90.5 86.8 75.0 89.8
Ours + MInfer 96.2 95.0 94.5 90.8 87.2 75.8 89.9
FlexPrefill 95.0 94.7 94.5 92.8 86.5 75.9 89.9
Ours + FP 95.2 95.0 94.7 92.8 86.8 76.2 90.1
XAttn 96.5 94.9 94.5 91.8 85.7 73.8 89.5
Ours + XAttn 96.2 95.1 94.9 91.9 85.7 72.9 89.4
Llama-3-262k 93.4 90.3 88.8 85.1 82.2 79.4 86.5
TriangleMix 93.5 91.0 88.1 85.0 82.4 79.6 86.6
MInference 93.4 90.7 88.8 85.1 82.6 80.1 86.8
Ours + MInfer 93.0 90.4 88.6 84.4 82.7 80.1 86.5
FlexPrefill 90.3 87.7 88.0 83.8 80.2 75.7 84.3
Ours + FP 90.2 87.3 87.3 83.8 80.0 76.6 84.2
XAttn 93.6 91.1 87.7 84.8 82.6 78.9 86.5
Ours + XAttn 93.3 91.2 87.9 84.3 82.5 79.3 86.4
Qwen2.5 95.8 93.6 92.6 84.5 81.9 67.4 86.0
TriangleMix 95.5 93.8 92.1 84.6 80.2 67.7 85.6
MInference 95.6 93.8 92.8 84.9 79.1 68.0 85.7
Ours + MInfer 95.7 93.5 92.4 84.8 76.9 63.5 84.5
FlexPrefill 91.1 89.7 88.5 75.4 72.5 51.2 78.1
Ours + FP 92.2 91.1 89.5 77.0 73.3 52.7 79.3
XAttn 95.4 93.7 92.0 82.9 77.8 66.2 84.7
Ours + XAttn 95.3 93.3 91.5 82.2 77.4 64.9 84.1

Table 3: Comparison with dynamic sparsity
methods on RULER.

Dynamic Sparsity Baselines. We further compare with three dynamic sparsity methods: MInference
(Jiang et al., 2024a), FlexPrefill (Lai et al., 2025), and XAttention (Xu et al., 2025). Our method can
also be combined with these approaches: Triangle attention is retained, while layers that require full
attention are replaced with dynamic sparse attention. This design further reduces runtime overhead
compared with dynamic sparsity alone, since Triangle attention skips more attention computation
and is much simpler. We denote the combined versions as “Ours + MInference,” “Ours + FlexPrefill,”
and “Ours + XAttention.” For dynamic methods, we also set their hyperparameters to maintain
near-lossless accuracy: γ = 0.95 for FlexPrefill, and τ = 0.95 with stride = 8 for XAttention.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.2 EFFECTIVENESS OF TRIANGLEMIX

Comparison with Static Sparsity. Table 2 and Table 5 present the evaluation results of TriangleMix
and various static sparsity baselines. TriangleMix consistently outperforms all static baselines and
remains nearly lossless performance across all input lengths. In contrast, other static methods usually
suffer noticeable performance degradation. DuoAttention performs comparably to TriangleMix
on LongBench using Llama-3.1-8B-Instruct. However, its performance is worse than TriangleMix
on RULER, especially deteriorates at longer lengths (e.g., 64K and 128K). Furthermore, DuoAt-
tention requires a separate training phase to learn head-wise sparsity, which introduces additional
computational overhead and may fail to converge on models such as Qwen-2.5-7B-Instruct.

On the LongBench benchmark, we observe that the full Triangle pattern performs poorly on Pas-
sageRetrieval tasks, while the StreamingMix pattern underperforms on the in-context learning task
(TREC). These findings suggest that attention over the Middle Q-K section in certain layers (espe-
cially shallow layers) is still crucial for retrieval tasks, while attention over the Last Q-K section in
certain layers (especially deep layers) plays a key role in supporting in-context learning.

Methods Average 2W
iki

Gov
Rep

Hotp
ot

LCC
M

New
s

M
F-en

PsgC
nt

PsgR
tr

Qasp
er

Rben
ch

Sam
su

m

TREC
Trv

QA

Llama-3.1-8B-Instruct 54.8 48.1 34.4 61.6 66.6 25.6 56.9 16.8 99.7 44.9 52.7 42.6 71.0 91.6
TriangleMix 54.5 47.8 34.3 61.5 67.0 25.8 56.5 16.8 98.3 44.8 51.9 42.2 69.7 92.2
MInference 54.9 48.1 34.5 61.4 67.0 25.9 57.0 17.5 99.7 44.7 52.5 42.6 71.3 91.9
Ours + MInference 54.5 48.3 34.2 62.0 66.7 25.6 56.6 17.4 98.3 44.8 51.6 42.1 69.3 92.1
FlexPrefill 48.4 39.4 33.7 58.3 67.2 25.6 55.6 4.0 47.7 42.5 53.8 41.9 69.7 90.2
Ours + FlexPrefill 52.2 39.4 33.5 58.5 66.9 25.7 54.5 3.3 97.0 43.1 53.8 42.3 69.3 90.8
XAttention 53.5 45.4 34.5 61.0 66.9 25.7 55.9 18.1 86.0 42.9 55.5 42.9 71.0 90.2
Ours + XAttention 54.3 45.0 34.6 61.0 66.8 25.6 57.1 19.0 98.7 42.4 54.4 42.0 69.3 90.4
Llama-3-8B-Instruct-262k 44.2 21.0 34.3 26.4 46.1 26.3 50.2 4.7 95.0 30.5 43.3 41.1 68.3 86.8
TriangleMix 43.4 20.7 34.5 25.7 47.3 26.1 51.1 4.7 85.3 30.7 43.6 40.9 66.7 87.0
MInference 44.1 20.5 34.3 25.8 46.2 26.3 50.2 4.3 95.0 30.7 44.7 40.5 68.3 86.8
Ours + MInference 43.4 20.6 34.4 26.4 47.2 26.2 51.1 4.3 85.3 30.3 43.6 40.9 66.7 86.9
FlexPrefill 35.0 17.7 33.0 25.1 36.8 26.1 49.1 3.3 13.7 28.3 36.2 39.1 65.0 81.7
Ours + FlexPrefill 36.0 18.3 33.2 25.1 36.9 26.2 49.6 6.7 24.0 28.3 35.6 38.9 64.3 80.4
XAttention 41.5 20.7 34.3 26.0 37.9 26.1 52.3 4.7 71.3 30.8 39.4 40.0 68.3 87.2
Ours + XAttention 42.1 21.1 34.3 26.1 37.7 26.2 51.7 5.7 81.3 30.3 38.3 39.9 67.3 87.0
Qwen2.5-7B-Instruct 46.8 24.5 30.7 32.2 62.2 22.3 41.3 13.1 99.3 24.4 60.7 42.5 67.0 88.7
TriangleMix 46.1 24.7 30.6 32.3 62.6 22.3 40.9 13.1 89.3 23.9 59.6 42.4 69.3 88.5
MInference 46.8 24.5 30.7 32.7 61.6 22.3 40.8 12.8 100.0 24.3 60.2 42.1 68.0 89.3
Ours + MInference 46.1 25.7 30.3 32.2 61.9 22.3 40.7 11.4 89.7 25.8 59.4 42.5 68.7 89.0
FlexPrefill 40.8 20.2 29.7 33.9 66.8 21.8 40.4 4.0 48.7 17.1 54.8 40.5 67.3 85.5
Ours + FlexPrefill 41.7 21.0 29.8 32.8 64.8 21.9 39.6 5.3 56.0 19.8 55.1 40.9 69.0 85.8
XAttention 46.6 22.4 30.9 34.0 63.9 22.4 40.5 10.9 98.0 23.5 60.9 42.2 67.7 88.8
Ours + XAttention 45.8 23.6 31.1 33.1 63.8 21.7 41.3 9.8 88.3 24.5 58.2 42.4 69.0 88.4

Table 4: Comparison with dynamic sparsity methods on LongBench.

Comparison with Dynamic Sparsity. Tables 3 and 4 present the results of TriangleMix compared
with dynamic sparsity methods, as well as their combinations. Despite its simplicity, TriangleMix
maintains accuracy comparable to dynamic sparsity methods. On the RULER benchmark, it yields
an average accuracy change of only −0.4% to +0.1% relative to full attention, which is on par with
MInference (−0.6% to +0.3%), and outperforms FlexPrefill (−9.1% to −0.6%) and XAttention
(−2.2% to +0.0%). Importantly, although TriangleMix skips many attention blocks with non-trivial
scores, the decoding accuracy remains nearly lossless. This supports our claim that such blocks
contribute only marginally to decoding-time accuracy, and that decoding-time sparsity is a general
property across all three tested models.

Moreover, when combined with dynamic sparsity methods such as MInference, FlexPrefill, or XAt-
tention, TriangleMix consistently preserves their original performance. On LongBench, combining
TriangleMix with FlexPrefill or XAttention even yields slight performance improvements. These
combinations are meaningful: by eliminating computation in many additional attention blocks, Trian-
gleMix reduces the computation required by dynamic sparsity methods, making prefilling even faster
than using dynamic sparsity alone.

Overall, TriangleMix preserves nearly full accuracy of dense attention across tasks while significantly
reducing time complexity from O(N2) to O(N) in layers using Triangle attention.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Methods Average 2W
iki

Gov
Rep

Hotp
ot

LCC
M

New
s

M
F-en

PsgC
nt

PsgR
tr

Qasp
er

Rben
ch

Sam
su

m

TREC
Trv

QA

Llama-3.1-8B-Instruct 54.8 48.1 34.4 61.6 66.6 25.6 56.9 16.8 99.7 44.9 52.7 42.6 71.0 91.6
Streaming 34.7 17.4 32.2 19.8 65.6 24.6 25.6 5.7 11.8 23.3 54.1 40.6 52.7 77.3
Triangle 47.0 40.6 33.2 52.3 63.6 24.6 53.5 7.9 42.0 46.3 46.5 43.0 67.0 90.1
StreamingMix 48.9 36.4 34.3 39.4 64.9 25.8 42.3 18.4 98.3 42.4 53.6 42.6 51.0 86.8
DuoAttention 54.5 44.6 34.1 59.1 68.0 25.3 55.0 15.7 99.7 43.9 58.8 42.7 71.3 91.0
TriangleMix 54.5 47.8 34.3 61.5 67.0 25.8 56.5 16.8 98.3 44.8 51.9 42.2 69.7 92.2
Llama-3-8B-Instruct-262k 44.2 21.0 34.3 26.4 46.1 26.3 50.2 4.7 95.0 30.5 43.3 41.1 68.3 86.8
Streaming 30.8 16.8 34.3 18.5 41.8 25.3 39.6 0.3 10.0 23.4 36.5 38.6 49.0 66.0
Triangle 36.2 17.1 34.1 21.2 35.5 25.3 50.0 5.0 32.0 28.9 32.4 40.5 63.0 85.9
StreamingMix 39.9 18.5 34.4 19.8 42.3 25.9 47.4 5.3 85.0 30.0 38.3 40.1 48.3 83.3
DuoAttention 42.6 19.2 34.6 25.1 44.4 26.1 51.8 2.3 87.7 29.6 41.1 40.4 65.7 85.9
TriangleMix 43.4 20.7 34.5 25.7 47.3 26.1 51.1 4.7 85.3 30.7 43.6 40.9 66.7 87.0
Qwen2.5-7B-Instruct 46.8 24.5 30.7 32.2 62.2 22.3 41.3 13.1 99.3 24.4 60.7 42.5 67.0 88.7
Streaming 28.3 10.1 31.3 9.5 61.7 21.5 20.7 6.5 8.2 11.4 44.8 40.2 51.7 49.9
Triangle 36.9 17.4 27.5 24.0 48.5 17.9 38.5 5.6 43.9 22.3 39.6 41.2 65.0 88.1
StreamingMix 45.2 24.4 31.9 38.5 68.2 22.5 43.5 10.7 93.0 24.8 60.9 42.0 43.7 83.1
TriangleMix 46.1 24.7 30.6 32.3 62.6 22.3 40.9 13.1 89.3 23.9 59.6 42.4 69.3 88.5

Table 5: Comparison with static sparsity methods on Longbench.

0 10 20 30
Triangle Layer Num

70

80

R
U

LE
R

 6
4K

Llama-3.1-8B-Instruct

0 10 20 30
Triangle Layer Num

70

80

Llama-3-8B-Instruct-262k

0 10 20
Triangle Layer Num

60

80
Qwen2.5-7B-Instruct

Figure 4: Average RULER score at 64K length for different Ltri values.

3.3 ANALYSIS OF Ltri

In this section, we investigate the choice of Ltri for each LLM. We evaluate all models on the 64K
length tasks in the RULER benchmark, sweeping Ltri from 0 to the total number of layers with a step
size of 2. As shown in Figure 4, Llama-3.1-8B-Instruct and Llama-3-8B-Instruct-262K exhibit similar
patterns: setting Ltri = 20 retains 99.7% and 100.0% of their original performance, respectively.
This indicates that 62.5% of the layers can adopt the O(N) Triangle Attention without noticeable
degradation. In contrast, Qwen-2.5-7B-Instruct requires a less threshold: setting Ltri = 8 retains
98.2% of the performance, corresponding to a sparsity ratio of 28.6%.

Llama-3.1-8B-Instruct Qwen2.5-7B-Instruct
Method 32K 64K 128K 32K 64K 128K
Dense 44 179 750 40 156 646
MInference 94 (0.5x) 152 (1.2x) 229 (3.3x) 93 (0.4x) 151 (1.0x) 245 (2.6x)
FlexPrefill 32 (1.4x) 71 (2.5x) 220 (3.4x) 38 (1.0x) 99 (1.6x) 310 (2.1x)
XAttention 47 (0.9x) 127 (1.4x) 391 (1.9x) 44 (0.9x) 128 (1.2x) 391 (1.7x)
Triangle 12 (3.7x) 24 (7.5x) 49 (15.3x) 11 (3.7x) 21 (7.4x) 76 (8.5x)

Table 6: Attention kernel latency (ms) for one layer.

3.4 EFFICIENCY OF TRIANGLEMIX

We implement Triangle Attention using Triton (Tillet et al., 2019), with further implementation
details provided in Appendix A.2. All experiments are conducted on a single NVIDIA A100 80GB
GPU. Dense attention is implemented using FlashAttention (Kwon et al., 2023).

Attention Kernel Latency. We first benchmark the average attention kernel time per layer on Llama-
3.1-8B-Instruct and Qwen2.5-7B-Instruct at sequence lengths of 32K, 64K, and 128K. As shown
in Table 6, Triangle Attention achieves 3.7× to 15.3× speedup compared to dense attention,. The
speedup mainly comes from Triangle Attention’s linear complexity (O(N)), which makes it much
more efficient than O(N2) dense attention. Besides, unlike dynamic sparsity methods, TriangleMix
does not require estimating attention block indices. Its triangle attention kernel is also much simpler
to implement, which further reduces overhead.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Method 32K 48K 64K 80K 96K 112K 128K
Dense 4.1 7.3 11.2 15.9 21.3 27.5 34.5
DuoAttention 3.6 (-13%) 5.8 (-20%) 8.7 (-22%) 11.7 (-26%) 15.5 (-27%) 19.1 (-31%) 23.7 (-31%)
TriangleMix 3.6 (-12%) 5.9 (-19%) 8.6 (-23%) 11.7 (-26%) 15.2 (-29%) 19.1 (-31%) 23.4 (-32%)
MInference 5.5 (+34%) 7.8 (+7%) 10.1 (-10%) 12.3 (-23%) 13.4 (-37%) 15.9 (-42%) 18.0 (-48%)
Ours + MInference 4.2 (+2%) 6.0 (-18%) 7.7 (-31%) 9.5 (-40%) 10.9 (-49%) 12.7 (-54%) 14.5 (-58%)
FlexPrefill 3.6 (-12%) 5.5 (-25%) 7.7 (-31%) 9.9 (-38%) 12.3 (-42%) 15.0 (-45%) 17.8 (-48%)
Ours + FlexPrefill 3.4 (-17%) 5.2 (-29%) 7.2 (-36%) 9.2 (-42%) 11.3 (-47%) 13.6 (-51%) 16.1 (-53%)
XAttention 4.1 (-1%) 6.6 (-10%) 9.4 (-16%) 12.4 (-22%) 15.7 (-26%) 19.3 (-30%) 23.2 (-33%)
Ours + XAttention 3.5 (-14%) 5.5 (-24%) 7.7 (-31%) 10.0 (-37%) 12.4 (-42%) 15.1 (-45%) 17.8 (-48%)

Table 7: Time-to-first-token (TTFT) in seconds measured on Llama-3.1-8B-Instruct.

End-to-End TTFT. We measure the end-to-end time-to-first-token (TTFT) for sequence lengths
of 32K, 48K, 64K, 96K, 112K, and 128K. Table 7 reports the results on Llama-3.1-8B-Instruct.
TriangleMix yields a TTFT reduction of 12%–32%. Compared with DuoAttention, TriangleMix
achieves similar efficiency but causes less performance degradation (see Section 3.2). In addition,
DuoAttention partitions heads within the same layer into different sparsity patterns (Liu et al.,
2025), which leads to imbalance under tensor parallelism, while TriangleMix avoids this issue.
Moreover, TriangleMix can be seamlessly combined with dynamic attention for further efficiency
gains. For instance, integrating MInference with TriangleMix lowers TTFT from 18.0s to 14.5s (a
19% reduction) at length 128K. TriangleMix combined with FlexPrefill achieves the lowest TTFT for
32K–80K inputs, whereas TriangleMix with MInference is optimal for 96K–128K inputs.

4 RELATED WORKS

Static Sparsity Attention. Early methods employ fixed sparse patterns, such as strided (Child et al.,
2019), dilated (Ding et al., 2023), sliding window (Jiang et al., 2023), and mixed patterns (Beltagy
et al., 2020), typically requiring training from scratch. DuoAttention (Xiao et al., 2024) introduces
head-level static sparsity but needs additional offline training. Streaming pattern is a training-free
approach (Xiao et al., 2023) but leads to degraded accuracy for long contexts (Li et al., 2024a). In
contrast, the proposed TriangleMix attention pattern significantly mitigates performance loss and is
nearly lossless in accuracy.

Dynamic Sparsity Attention. Existing methods such as MInference (Jiang et al., 2024a), FlexPrefill
(Lai et al., 2025), and XAttention (Xu et al., 2025) dynamically identify attention blocks with high
scores and restrict computation to these blocks. While this form of attention score sparsity focuses on
pruning blocks with small attention scores, our work moves beyond by uncovering a different kind of
sparsity, which we term decoding-time contribution sparsity. Specifically, we show that many blocks
with non-trivial scores still contribute little to decoding, and thus can be safely skipped. Leveraging
this property enables additional acceleration in the prefilling stage.

Long-context LLM Inference. FlashAttention (Dao et al., 2022) speeds up attention by reducing
memory access through fused operations. PagedAttention (Kwon et al., 2023) improves decoding
by managing KV cache allocation efficiently. KV cache optimizations techniques also include
token-level eviction (SnapKV (Li et al., 2024b)) and query-aware cache selection (Quest (Tang et al.,
2024)). TriangleMix is orthogonal to these approaches.

5 CONCLUSION

In this paper, we identify a new form of sparsity in the prefilling stage, termed decoding-time
contribution sparsity, and introduce TriangleMix, a training-free static attention pattern. By selectively
applying Triangle attention in certain layers, TriangleMix substantially reduces attention overhead
while maintaining nearly lossless performance. On 128K inputs, it achieves up to a 15.3× speedup in
attention computation, surpassing typical dynamic sparse methods. Moreover, TriangleMix can be
seamlessly combined with dynamic sparsity, yielding an additional 6%–19% reduction in TTFT.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems, 35:
16344–16359, 2022.

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, Shaohan Huang, Wenhui Wang, Nanning
Zheng, and Furu Wei. Longnet: Scaling transformers to 1,000,000,000 tokens. arXiv preprint
arXiv:2307.02486, 2023.

GradientAI. Llama-3 8b gradient instruct 262k. 2024. URL https://huggingface.co/
gradientai/Llama-3-8B-Instruct-262k.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. LM-infinite:
Zero-shot extreme length generalization for large language models. In Kevin Duh, Helena Gomez,
and Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies (Volume 1:
Long Papers), pp. 3991–4008, Mexico City, Mexico, June 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.naacl-long.222. URL https://aclanthology.org/2024.
naacl-long.222/.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/
abs/2310.06825.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. Advances in Neural Information Processing
Systems, 37:52481–52515, 2024a.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515, 2024b.

10

https://huggingface.co/gradientai/Llama-3-8B-Instruct-262k
https://huggingface.co/gradientai/Llama-3-8B-Instruct-262k
https://aclanthology.org/2024.naacl-long.222/
https://aclanthology.org/2024.naacl-long.222/
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611–626, 2023.

Xunhao Lai, Jianqiao Lu, Yao Luo, Yiyuan Ma, and Xun Zhou. Flexprefill: A context-aware sparse
attention mechanism for efficient long-sequence inference. arXiv preprint arXiv:2502.20766,
2025.

Yucheng Li, Huiqiang Jiang, Qianhui Wu, Xufang Luo, Surin Ahn, Chengruidong Zhang, Amir H
Abdi, Dongsheng Li, Jianfeng Gao, Yuqing Yang, et al. Scbench: A kv cache-centric analysis of
long-context methods. arXiv preprint arXiv:2412.10319, 2024a.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
Advances in Neural Information Processing Systems, 37:22947–22970, 2024b.

Zhuorui Liu, Chen Zhang, and Dawei Song. Zigzagattention: Efficient long-context inference with
exclusive retrieval and streaming heads. arXiv preprint arXiv:2508.12407, 2025.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler
for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp. 10–19, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu, and
Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming heads.
arXiv preprint arXiv:2410.10819, 2024.

Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, and Song Han. Xattention: Block sparse
attention with antidiagonal scoring. arXiv preprint arXiv:2503.16428, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Siyun Zhao, Yuqing Yang, Zilong Wang, Zhiyuan He, Luna K Qiu, and Lili Qiu. Retrieval augmented
generation (rag) and beyond: A comprehensive survey on how to make your llms use external data
more wisely. arXiv preprint arXiv:2409.14924, 2024.

Yang Zhou, Hongyi Liu, Zhuoming Chen, Yuandong Tian, and Beidi Chen. Gsm-infinite: How
do your llms behave over infinitely increasing reasoning complexity and context length? In
Forty-second International Conference on Machine Learning.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 DETAILS OF ATTENTION BLOCK PROBING

We divide the causal attention matrix into three distinct sections as illustrated in Figure 1a:

• Streaming section: includes attention sink and the sliding window;
• Last Q–K section: covers interactions between the last part of Q and K, excluding the

Streaming section;
• Middle Q–K section: consists of the remaining interactions between the middle parts of Q

and K.

We define the Streaming mask as:

M streaming
i,j =


1, i ≥ j, j ≤ si

1, i ≥ j, i− j ≤ sl

0, otherwise

where si is the number of sink tokens and sl is the sliding window size.

We define the Last Q–K mask as:

M last
i,j =


1, i ≥ j,N − i < last,

j > si, i− j > sl

0, otherwise

where last ≥ 1 specifies the number of rows corresponding to the last section.

The Middle Q–K mask is defined as:

Mmiddle
i,j =


1, i ≥ j,N − i ≥ last,

j > si, i− j > sl

0, otherwise

In our gradient-based attention block probing experiments, we set the parameters to si = 64, sl = 128,
and last = 128. We adopt a key-value retrieval task, where the language model is prompted to
output the correct value starting from its very first generated token. Each input sequence contains
approximately 2,000 tokens, and gradients are computed over 100 randomly generated samples. The
prompt used in this task is as follows:

Prompt for Attention Importance Probing:

Extract the value corresponding to the specified key in the data below.

Data:
<key 1>: <value 1>
<key 2>: <value 2>
......
<key n>: <value n>

Extract the value corresponding to this key:
key: {key i}

Please directly output the corresponding value without outputing anything else.
value:

We randomly generate pairs of keys and values using UUID strings.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.2 IMPLEMENTATION OF TRIANGLE ATTENTION

We implement Triangle Attention using Triton (Tillet et al., 2019), with details provided in Algo-
rithm 1. For each row index, we apply a different attention mechanism: if the row index is less than
N −Nlast, we apply Streaming Attention; otherwise, we apply chunked FlashAttention to increase
GPU utilization. The outputs from both segments are then merged to produce the final result.

Algorithm 1 Fused Triangle Attention

Input data: Q,K,V ∈ RN×dh

Input triangle shape: sink token number Nsink, sliding window size Nwindow, last rows number
Nlast

Input kernel block shape: BM , BN

Calculate best number of splits S for last row
Initialize O ← (0)N×dh , output buffer Olast ← (0)SNlast×dh , LSE buffer llast ← (− inf)SNlast

Parallelized in GPU
for i← 1 to ⌈N−Nlast

BM
⌉+ S⌈Nlast

BM
⌉ do

Initialize Ochip ← (0)BM×dh , m← (− inf)BN , s← (0)BM

if i ≤ ⌈N−Nlast
BM

⌉ then

Upper part: the same as streaming attention
Load Qchip ← QiBM :(i+1)BM

Loop through sink tokens
for j ← 1 to ⌈Nsink

BN
⌉ do

Load Kchip ←KjBN :(j+1)BN , V chip ← V jBN :(j+1)BN

flash_attn(Qchip,Kchip,V chip,Ochip,m, s)
end for
Loop through sliding window
for j ← ⌈N−Nwindow

BN
⌉ to ⌈ N

BN
⌉ do

Load Kchip ←KjBN :(j+1)BN ∈ RB×dh , V chip ← V jBN :(j+1)BN ∈ RB×dh

flash_attn(Qchip,Kchip,V chip,Ochip,m, s)
end for
Write outputs
Save OiBM :(i+1)BM ← Ochip

else
Last rows: split in to S chunks
Chunk index c← ⌊(i− ⌈N−Nlast

BM
⌉)/⌈Nlast

BM
⌉⌋

Chunk offset b← (i− ⌈N−Nlast
BM

⌉) mod ⌈Nlast
BM
⌉

Q index iQ ← ⌈N−Nlast
BM

⌉+ b

Load Qchip ← QiQBM :(iQ+1)BM

for j ← c⌈ N
SBN
⌉ to (c+ 1)⌈ N

SBN
⌉ do

Load Kchip ←KjBN :(j+1)BN , V chip ← V jBN :(j+1)BN

flash_attn(Qchip,Kchip,V chip,Ochip,m, s)
end for
Write outputs

Save O
(i−iQ)BM :(i−iQ+1)BM

last ← Ochip

Save l
(i−iQ)BM :(i−iQ+1)BM

last ← ln s+m
end

end for
Merge last row output buffer
O(N−Nlast):N ← merge_output(Olast, llast)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

8K 16K 32K
Methods op=2 op=4 op=6 op=8 op=2 op=4 op=6 op=8 op=2 op=4 op=6 op=8 Average
Llama-3.1 0.142 0.050 0.042 0.040 0.136 0.058 0.030 0.030 0.210 0.080 0.058 0.036 0.076
TriangleMix 0.156 0.048 0.044 0.030 0.108 0.066 0.028 0.028 0.208 0.070 0.068 0.036 0.074
Qwen2.5 0.404 0.182 0.138 0.114 0.266 0.110 0.142 0.064 0.238 0.106 0.100 0.066 0.161
TriangleMix 0.428 0.196 0.176 0.114 0.286 0.134 0.108 0.068 0.258 0.110 0.092 0.056 0.169
DeepSeek-Distill 0.200 0.078 0.048 0.040 0.288 0.132 0.086 0.082 0.070 0.016 0.018 0.018 0.090
TriangleMix 0.210 0.088 0.058 0.032 0.300 0.110 0.082 0.088 0.036 0.022 0.026 0.022 0.090

Table 8: The evaluation results on GSM-infinite hard subset with various context lengths and operation
numbers.

A.3 REASONING BENCHMARKS

We further evaluate our method on the GSM-Infinite reasoning benchmark (Zhou et al.), which
simultaneously challenges both long-context and reasoning ability of the model. GSM-Infinite
constructs a complex computational graph containing both task-relevant operations and distractor
operations; by varying the number of operations, we can precisely control the context length and
complexity of the underlying graph. We use the hard subset of GSM-Infinite and evaluate models
under context lengths of 8K, 16K, and 32K, and operation counts of 2, 4, 6, and 8. For each
context–operation pair, we sample 500 problems, resulting in a total of 6,000 test instances. The
evaluating metric is accuracy.

We compare full attention with our proposed TriangleMix on Llama-3.1-8B-Instruct, Qwen2.5-7B-
Instruct, and a reasoning model DeepSeek-R1-Distill-Qwen-7B (Guo et al., 2025). As shown in
Table 8, TriangleMix yields only −0.002 to +0.008 absolute accuracy change to dense attention,
demonstrating that it preserves both long-context capacity and reasoning performance across all
settings. We also observe that DeepSeek-R1-Distill-Qwen-7B underperforms its origin model
Qwen2.5-7B-Instruct, possibly because the distillation process weakened some long-context abilities.
A deeper investigation is left for future work.

A.4 ACKNOWLEDGEMENT OF LLM USAGE

We used large language models to polish the writing of this paper, and all generated content was
carefully reviewed to ensure precise expression.

14

	Introduction
	Methodology
	Probing Attention Block Contribution
	Decoding-time Sparsity in Middle Q-K sections
	Perplexity Analysis
	TriangleMix

	Evaluations
	Settings
	Effectiveness of TriangleMix
	Analysis of Ltri
	Efficiency of TriangleMix

	Related Works
	Conclusion
	Appendix
	Details of Attention Block Probing
	Implementation of Triangle Attention
	Reasoning Benchmarks
	Acknowledgement of LLM Usage

